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Abstract

This thesis investigates some unaddressed problems in kernel nonparametric

hypothesis testing. The contributions are grouped around three main themes:

Wild Bootstrap for Degenerate Kernel Tests. A wild bootstrap method for non-

parametric hypothesis tests based on kernel distribution embeddings is pro-

posed. This bootstrap method is used to construct provably consistent tests

that apply to random processes. It applies to a large group of kernel tests

based on V-statistics, which are degenerate under the null hypothesis, and

non-degenerate elsewhere. In experiments, the wild bootstrap gives strong

performance on synthetic examples, on audio data, and in performance bench-

marking for the Gibbs sampler.

A Kernel Test of Goodness of Fit. A nonparametric statistical test for goodness-

of-fit is proposed: given a set of samples, the test determines how likely it

is that these were generated from a target density function. The measure of

goodness-of-fit is a divergence constructed via Stein’s method using functions

from a Reproducing Kernel Hilbert Space. Construction of the test is based on

the wild bootstrap method. We apply our test to quantifying convergence of

approximate Markov Chain Monte Carlo methods, statistical model criticism,

and evaluating quality of fit vs model complexity in nonparametric density

estimation.

Fast Analytic Functions Based Two Sample Test. A class of nonparametric two-

sample tests with a cost linear in the sample size is proposed. Two tests are

given, both based on an ensemble of distances between analytic functions

representing each of the distributions. Experiments on artificial benchmarks

and on challenging real-world testing problems demonstrate good power/time

tradeoff retained even in high dimensional problems.
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The main contributions to science are the following. We prove that the kernel

tests based on the wild bootstrap method tightly control the type one error

on the desired level and are consistent i.e. type two error drops to zero with

increasing number of samples. We construct a kernel goodness of fit test that

requires only knowledge of the density up to an normalizing constant. We

use this test to construct first consistent test for convergence of Markov Chains

and use it to quantify properties of approximate MCMC algorithms. Finally,

we construct a linear time two-sample test that uses new, finite dimensional

feature representation of probability measures.
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Chapter 1

Introduction

In this chapter, we describe the research motivation, research objectives, con-

tributions to science, and finish with an outline of the document.

Research Motivation

Wild Bootstrap for Degenerate Kernel Tests. Statistical kernel tests, that is

tests based on distribution embeddings into reproducing kernel Hilbert spaces

(RKHS), have been applied in many contexts, including two sample tests by

Harchaoui et al. [52], Gretton et al. [47], Sugiyama et al. [107], tests of inde-

pendence by Gretton et al. [44], Zhang et al. [115], Besserve et al. [14], tests of

conditional independence by Fukumizu et al. [37], Gretton et al. [49], Zhang

et al. [115], test for higher order (Lancaster) interactions by Sejdinovic et al.

[87], and normality test by Baringhaus and Henze [8]. Another example is

kernel goodnesses-of-fit test, developed in this thesis.

For these tests, consistency is usually guaranteed if the observations are in-

dependent and identically distributed (i.i.d.), an exception being Zhang et al.

[116]. Much real-world data fails to satisfy the i.i.d. assumption: audio sig-

nals, EEG recordings, text documents, financial time series, and samples ob-

tained when running Markov Chain Monte Carlo, all show significant temporal

dependence patterns.

The asymptotic behaviour of statistics, used in kernel tests, may become quite

different when temporal dependencies exist within the samples. In this case,

the null distribution is shown to be an infinite weighted sum of dependent χ2-

variables, as opposed to the sum of independent χ2-variables obtained in the

case of i.i.d. observations [44]. The difference in the asymptotic null distri-
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butions has important implications in practice: under the i.i.d. assumption,

an empirical estimate of the null distribution can be obtained by repeatedly

permuting the time indices of one of the signals. This breaks the temporal

dependence within the permuted signal, which causes the test to return an

elevated number of false positives, when used for testing time series.

To address this problem, in the preliminary work we proposed an alternative

estimate of the null distribution, where the null distribution is simulated by

repeatedly shifting one signal relative to the other (which is a form a block

bootstrap). This preserves the temporal structure within each signal, while

breaking the cross-signal dependence.

A serious limitation of the shift bootstrap procedure is that it is specific to

the problem of independence testing: there is no obvious way to generalise it

to other testing contexts. For instance, we might have two time series, with

the goal of comparing their marginal distributions - this is a generalization of

the two-sample setting to which the shift approach does not apply. Another

example is kernel goodness-of-fit test developed in this thesis.

It is interesting to study whether some other bootstrap procedure can be used

in place of the Shift bootstrap, so that all kernel tests are consistent if applied

to data with temporal dependence patterns.

A Kernel Test of Goodness of Fit. A particular type of a statical test, a

goodness-of-fit test, is a fundamental tool in statistical analysis, dating back to

the test of Kolmogorov and Smirnov [62, 94]. Given a set of samples {Zi}ni=1

with distribution Zi ∼ q, our interest is in whether q matches some reference

or target distribution p, which we assume to be only known up to the normal-

isation constant. This setting, in which target density is not exactly known,

is quite challenging and particularly relevant in Markov Chain Monte Carlo

diagnostic.

Recently Gorham and Mackey [40] proposed an elegant measure of sample

quality with respect to a target. This measure is a maximum discrepancy be-

tween empirical sample expectations and target expectations over a large class

of test functions, constructed so as to have zero expectation over the target

distribution by use of a Stein operator. This operator depends only on the

derivative of the logq: thus, the approach can be applied very generally, as it
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does not require closed-form integrals over the target distribution (or numer-

ical approximations of such integrals). By contrast, many earlier discrepancy

measures require integrals with respect to the target. This is problematic if the

intention is to perform benchmarks for assessing Markov Chain Monte Carlo

methods, since these integrals will certainly not be known to the practitioner.

A challenge in applying the approach of Gorham and Mackey [40] is the com-

plexity of the function class used, which results from applying the Stein opera-

tor to the bounded Lipschitz functions.1.

An important application of a goodness-of-fit measure is in statistical testing,

where it is desired to determine whether the empirical discrepancy measure

is large enough to reject the null hypothesis (that the sample arises from the

target distribution). One approach is to establish the asymptotic behaviour of

the test statistic, and to set a test threshold at a large quantile of the asymptotic

distribution. The asymptotic behaviour of the Lipschitz functions based Stein

discrepancy remains a challenging open problem, due to the complexity of the

function class used. It is not clear how one would compute p-values for this

statistic, or determine when the goodness of fit test would allow us to accept

the null hypothesis (at the user-specified test level).

It is interesting to study if replacing the class of bounded Lipschitz functions

with some other class of functions, a natural candidate being some reproducing

kernel Hilbert space, one can develop a goodness-of-fit test. Since such a test

would be a very useful tool in Markov Chain Monte Carlo methods convergance

diagnostics, another consideration is whether it can be applied to data with

temporal dependence patterns.

Fast Analytic Functions Based Two Sample Test. Since most of nonparamet-

ric test, including kernel tests, are computationally expensive, we turn atten-

tion to computational complexity related problems. We focus on a two-sample

testing problem, hoping that results for this problem can translated to other

types of kernel tests. Traditional approaches to two-sample testing are based

on distances between representations of the distributions, such as density func-

tions, cumulative distribution functions, characteristic functions or mean em-

beddings in a reproducing kernel Hilbert space [97, 99]. These representa-

1The bounded Lipschitz functions give rise to the Wasserstein integral probability metric. By
contrast, the Kolmogorov-Smirnov test uses functions of bounded variation 1 [73]
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tions are infinite dimensional objects, which poses challenges when defining a

distance between distributions. Examples of such distances include the classi-

cal Kolmogorov-Smirnov distance (sup-norm between cumulative distribution

functions); the Maximum Mean Discrepancy (MMD) [45], an RKHS norm of

the difference between mean embeddings, and the N-distance (also known as

energy distance) [118, 111, 7], which is also an MMD-based test for a particu-

lar family of kernels [88].

This traditional approaches usually result in tests with a quadratic time com-

plexity. While there exists a line of work which modifies some of those

quadratic tests [114, 48], it exploits solutions in which the algorithm is de-

signed to ignore some information available e.g. use only part of a kernel ma-

trix. It is interesting to study if it is possible to construct a linear time complex-

ity test by considering more compact representation of probability measures

(more compact compared to classical infinite dimensional representation).

Research Objectives

As outlined in the previous section, there are three problems that will be stud-

ied in this thesis.

First, we study bootstrap methods for general kernel tests for times series. We

note, that many kernel tests have a test statistic with a particular structure: the

Maximum Mean Discrepancy (MMD),Hilbert-Schmidt Independence Criterion

(HSIC), the Lancaster interaction statistic, and kernel test of goodness of fit

proposed in the chapter 4 each have empirical estimates which can be cast as

normalized V -statistics,

1
nm−1

∑
1≤i1,...,im≤n

h(Zi1 , ...,Zim),

where Zi1 , ...,Zim are samples from a random process at the time points

{i1, . . . , im} and n is a sample size. We want to show that a method of ex-

ternal randomization known as the wild bootstrap Shao [93], Leucht and Neu-

mann [67] may be applied to simulate from the null distribution. In particular

Leucht and Neumann [67] shows that wild bootstrap mimics distribution of

V -statistics of order two, i.e. when function h takes two arguments, well.

Therefore the main effort will be to generalize the results of Leucht and Neu-

mann [67] for arbitrary V -statistics, as all the kernel statistical test mentioned
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above take this form.

Second, we aim to construct a goodness-of-fit test, based on the Stein operator

applied to the RKHS functions, such that it only requires knowledge of an

unnormalized density. To construct the test statistic, we will use a function class

defined by the application of the the Stein operator to a specific space of RKHS

functions, as proposed by Oates et al. [74], who addressed the problem of

variance reduction in Monte Carlo integration. We want to provide a statistical

tests for both uncorrelated and correlated samples, where the latter is essential

if the test is to be used in assessing the quality of output of an MCMC procedure.

Third, we aim to construct a linear time complexity test based on a parsi-

monious representation of probability measures. Heuristics based on pseudo-

distances, such as the difference between characteristic functions evaluated at

a single frequency, have been studied in the context of goodness-of-fit tests

[54, 55]. The objective is to improve on those inconsistent tests based on

pseudo-distances between characteristic functions and propose an alternative,

consistent test. To construct a test statistic we will exploit the properties of

some of the infinite dimension representations of the measures and show that

to distinguish between two measures it is sufficient to look a very low dimen-

sional, randomly chosen subspace of the representation.

Contributions to Science

Wild Bootstrap for Degenerate Kernel Tests. The main result is showing that

the wild bootstrap procedure yields consistent tests for time series, i.e., tests

based on the wild bootstrap have a Type I error rate (of wrongly rejecting

the null hypothesis) approaching the design parameter α, and a Type II error

(of wrongly accepting the null) approaching zero, as the number of samples

increases. We use this result to construct a two-sample test using MMD, an

independence test using HSIC (resulting procedure is applied both to testing for

instantaneous independence, and to testing for independence across multiple

time lags) and the kernel goodness of fit test (discussed in the second chapter).

In brief, the arguments of the sum

1
nm−1

∑
1≤i1,...,im≤n

h(Zi1 , ...,Zim),
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are repeatedly multiplied by random, user-defined time series Wi, resulting in

a bootstraped V -statistic

1
nm−1

∑
1≤i1,...,im≤n

Wi1Wi2h(Zi1 , ...,Zim).

For a test of level α, the 1−α quantile of the empirical distribution obtained

using these perturbed statistics serves as the test threshold. This approach

has the important advantage over our preliminary work on shift bootstrap for

HSIC that it may be applied to all kernel-based tests for which V -statistics are

employed, and not just for independence tests. Additionally the consistency of

the shift bootstrap can not be proved in general, unlike the consistency results

for wild bootstrap.

In the section 3.4, we present a number of empirical comparisons: in the two

sample case, we present a performance diagnostic for the output of a Gibbs

sampler (the MCMC M.D.); in the independence case, we test for independence

of two time series sharing a common variance (a characteristic of economet-

ric models), and compare against the test of Besserve et al. [14] in the case

where dependence may occur at multiple, potentially unknown lags. Our tests

outperform both the naive approach which neglects the dependence structure

within the samples, and the approach of Besserve et al. [14], when testing

across multiple lags.

A Kernel Test of Goodness of Fit. The key contribution of this work is to de-

fine a statistical test of goodness-of-fit, based on a Stein discrepancy computed

in a RKHS. To construct our test statistic, we apply the Stein operator to our

chosen set of RKHS functions, and define our measure of goodness of fit as

the largest discrepancy over this set between empirical sample expectations

and target expectations (the latter being zero, due to the effect of the Stein

operator). This approach is a natural extension to goodness-of-fit testing of

the earlier two-sample tests [47] and independence tests [44] based on the

maximum mean discrepancy, which is an integral probability metric.

As with these earlier tests, our statistic is a simple V-statistic, and can be com-

puted in close form and in quadratic time; moreover, it is an unbiased estimate

of the corresponding population discrepancy. As with all Stein-based discrep-

ancies, only the gradient of the log-density of the target density is needed; we
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do not require integrals with respect to the target density – including the nor-

malisation constant. Given that our test statistic is a V-statistic, we may make

use of the results from the Chapter 3 to provide statistical tests for both uncor-

related and correlated samples, where the latter is essential if the test is to be

used in assessing the quality of output of an MCMC procedure. An identical

test was obtained simultaneously in independent work by Liu et al. [69], for

uncorrelated samples.

In our experiments, a particular focus is on applying our goodness-of-fit test to

certify the output of approximate Markov Chain Monte Carlo (MCMC) sam-

plers [63, 112, 6]. These methods use modifications to Markov transition

kernels that improve mixing speed at the cost of worsening the asymptotic

bias. The bias-variance trade-off can usually be tuned with parameters of the

sampling algorithms. It is therefore important to test whether for a particular

parameter setting and run-time, the samples are of the desired quality. This

question cannot be answered with classical MCMC convergence statistics, such

as the widely used potential scale reduction factor (R-factor) [39] or the effec-

tive sample size, since these assume that the Markov chain reaches its equilib-

rium distribution. By contrast, our test exactly quantifies the asymptotic bias

of approximate MCMC.

In the section 4.3 we provide a number of experimental applications for our

test. We begin with a simple check to establish correct test calibration on

non-i.i.d. data, followed by a demonstration of statistical model criticism for

Gaussian Process (GP) regression. We then apply the proposed test to quantify

bias-variance trade-offs in MCMC procedures, and demonstrate how to use the

test to verify whether MCMC samples are drawn from a stationary distribution.

Fast Analytic Functions Based Two Sample Test. We introduce two novel

distance-like discrepancies between distributions, which both use a parsimo-

nious representation of probability measures. The first discrepancy builds on

the notion of differences in characteristic functions with the introduction of

smooth characteristic functions, which can be thought of as the analytic ana-

logues of the characteristics functions. A distance between smooth characteris-

tic functions evaluated at a single random frequency is almost surely a distance

(Definition 4 formalizes this concept) between these two distributions. In other

words, there is no need to calculate the whole infinite dimensional representa-
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tion - it is almost surely sufficient to evaluate it at a single random frequency

(although checking more frequencies will generally result in more powerful

tests) The second distance is based on analytic mean embeddings of two distri-

butions in a characteristic RKHS; again, it is sufficient to evaluate the distance

between mean embeddings at a single randomly chosen point to obtain a ran-

dom variable that behaves almost surely like a distance. To our knowledge, this

representation is the first mapping of the space of probability measures into a

finite dimensional Euclidean space (in the simplest case, the real line) that is

almost surely an injection. This injection is very appealing from a computa-

tional viewpoint, since the statistics based on it have linear time complexity (in

the number of samples) and constant memory requirements.

In the section 5.2 we construct statistical tests based on empirical estimates

of differences in the analytic representations of the two distributions. Our

tests have a number of theoretical and computational advantages over previous

approaches. The test based on differences between analytic mean embeddings

is almost surely consistent for all distributions, and the test based on differences

between smoothed characteristic functions is almost surely consistent for all

distributions with integrable characteristic functions.

In the section A.4 we provide several experimental benchmarks for our tests.

First, we compare test power as a function of computation time for two real-life

testing settings: amplitude modulated audio samples, and the Higgs dataset,

which are both challenging multivariate testing problems. Our tests give a

better power/computation tradeoff than the characteristic function-based tests

of Epps and Singleton [31], the previous sub-quadratic-time MMD tests Gret-

ton et al. [48], Zaremba et al. [114], and the quadratic-time MMD test. In

terms of power when unlimited computation time is available, we might ex-

pect worse performance for the new tests, in line with findings for linear- and

sub-quadratic-time MMD-based tests [56, 45, 48, 114]. Remarkably, such a

loss of power is not the rule: for instance, when distinguishing signatures

of the Higgs boson from background noise [5] (’Higgs dataset’), we observe

that a test based on differences in smoothed empirical characteristic functions

outperforms the quadratic-time MMD. This is in contrast to linear- and sub-

quadratic-time MMD-based tests, which by construction are less powerful than

the quadratic-time MMD.
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Structure of the Thesis

The thesis are divided into six chapters Introduction, Background and Literature

Review, Wild Bootstrap for Degenerate Kernel Tests, A Kernel Test of Goodness of

Fit, Fast Analytic Functions Based Two Sample Test. and Conclusions and Future

Work.

In the Background and Literature Review chapter we review some useful statical

concepts, namely: V statistics, mixing processes, dependent wild bootstrap,

bootstrapped V statistics and kernel hypothesis tests. Then we discuss in more

detail the previous work that is relevant to this thesis.

We begin our technical discussion in the third chapter (Wild Bootstrap for De-

generate Kernel Tests), in the section 3.1, where we establish a general consis-

tency result for the wild bootstrap procedure on V -statistics, which we apply

to MMD and to HSIC in Section 3.3. In the Section 3.4, we present a number

of empirical comparisons, including experiments on financial time series and

Markov chains convergance. The experiments concerning kernel goodness of

fit test for time series are presented in the next chapter.

In the fourth chapter (A Kernel Test of Goodness of Fit) we begin our presenta-

tion in the section 4.1 with a high-level construction of the RKHS-based Stein

discrepancy and associated statistical test. In section 4.2, we provide additional

details and prove the main results. Section 4.3 contains experimental illustra-

tions on synthetic examples, statistical model criticism, bias-variance trade-offs

in approximate MCMC, and convergence in nonparametric density estimation.

In the fifth chapter (Fast Analytic Functions Based Two Sample Test) we first

introduce two novel distances between distributions (5.1), which both use a

parsimonious representation of the probability measures. We construct statisti-

cal tests in section 5.2, based on empirical estimates of differences in the ana-

lytic representations of the two distributions. We provide several experimental

benchmarks (Section A.4) for our tests on various problems: audio samples,

the Higgs dataset and artificial data high-dimensional distributions.

In the chapter Conclusions and Future Work we make some final remarks and

discuss work that has been build upon this thesis as well as outline some further

research directions.



Chapter 2

Background and Literature Review

In this chapter, we describe the application domain of the tests developed,

outline modelling assumptions and discuss the relevant exiting results that are

related to this thesis.

Application Domain

To put this thesis into a practical context we briefly comment on the application

domain of statistical tests. Two-sample tests have been used e.g. in bioinfor-

matics in comparing microarray data, in database matching and attempts have

been made to use it for an unsupervised speaker verification. Independence

tests have been used as a building component to algorithms that fit causal net-

works, to reveal features of data which might have high discriminative value,

and in the independent component analysis. Goodness of fit tests are com-

monly used to verify whether residuals from regression, linear or non-linear,

coincidence with the modelling assumptions. More generally they can be used

for a statistical model criticism. In this thesis we show how to use them for the

Markov Chain Monte Carlo algorithms convergence diagnostics.

Modeling techniques

We introduce necessary statistical models and tools.

Models of temporal dependence

First, we introduce the probabilistic tools which formalize notion of temporal

dependence patterns. Let (Xt,Ft)t∈N be a strictly stationary sequence of ran-

dom variables defined on a probability space Ω with a probability measure P
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and natural filtration Ft. Each Xt takes values in a real coordinate space X
(the probability space is (X,B(Z),PX), where B is Borel sigma algebra).

There are many ways to formalize the concept of the temporal dependence, all

of which require some measure of similarity of random variables and notion of

decay of the similarity as the distance in time grows. The simplest example is

autocorrelation i.e.

Cov(Xt,X0),

In this work we need more expressive notions of temporal dependence.

τ -mixing. The notion of τ -mixing is used to characterise weak dependence. It

is a less restrictive alternative to classical mixing coefficients (which we dis-

cuss latter), and is covered in depth in [26]. For a random variable X on a

probability space (Ω,F ,PX) andM⊂F we define

τ(M,X) = E

(
sup
g∈Λ
|Eg(X|M)−Eg(X)|

)
,

where Λ is the set of all one-Lipschitz continuous real-valued functions on the

domain of X. A process is called τ -dependent if

τ(r) = sup
l∈N

1
l

sup
r≤i1≤...≤il

τ(F0,(Xi1 , ...,Xil))
r→∞−→ 0,

where r is a delay between F0 and random variables with indexes greater than

r. τ(M,X) can be interpreted as the minimal L1 distance between X and X∗

such that X d=X∗ and X∗ is independent ofM⊂F . Furthermore, if F is rich

enough, this X∗ can be constructed [26, Lemma 5.3] .

We briefly discuss relation between classical strong mixing coefficient β and τ

mixing.

Strong mixing coefficients. Strong mixing is historically the most studied

type of temporal dependence – a lot of models, example being Markov Chains,

are proved to be strongly mixing, therefore it’s useful to relate weak mixing to

strong mixing. For a random variable X on a probability space (Ω,F ,PX) and

M⊂F we define

β(M,σ(X)) = ‖ sup
A∈B(R)

|PX|M(A)−PX(A)|‖1.
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A process is called β-mixing or absolutely regular if

β(r) = sup
l∈N

1
l

sup
r≤i1≤...≤il

β(F0,(Xi1 , ...,Xil))
r→∞−→ 0,

[27, Equation 7.6] relates τ -mixing and β-mixing , as follows: if Qx is the

generalized inverse of the tail function

Qx(u) = inf
t∈R
{P (|X|> t)≤ u},

then

τ(M,X)≤ 2
∫ β(M,σ(X))

0
Qx(u)du.

While this definition can be hard to interpret, it can be simplified in the case

E|X|p =M for some p > 1, since via Markov’s inequality P (|X|> t)≤ M
tp , and

thus Mtp ≤ u implies P (|X|> t)≤ u. ThereforeQ′(u) = M
p√u ≥Qx(u). As a result,

we have the following inequality

p
√
β(M,σ(X))

M
≥ Cτ(M,X) (2.1)

Models that satisfy τ -mixing. Dedecker and Prieur [27] provides examples of

systems that are tau-mixing. In particular, given that certain assumptions are

satisfied causal functions of stationary sequences, iterated random functions,

Markov chains, expanding maps are all τ -mixing.

Of particular interest to this work are Markov chains. The assumptions pro-

vided by Dedecker and Prieur [27], under which Markov chains are tau-mixing

are somehow difficult to check but we can use classical theorems about the β-

mixing). In particular [17, Corollary 3.6] states that a Harris recurrent (chain

returns to a fixed set of the state space an infinite number of times) and ape-

riodic Markov chain satisfies absolute regularity. [17, Theorem 3.7] states that

geometric ergodicity 1 implies geometric decay of the β coefficient. Interest-

ingly [17, Theorem 3.3] describes situations in which a non-stationary chain

β-mixes exponentially.

Using inequality 2.1 between τ -mixing coefficient and strong mixing coeffi-

1 ∀x‖Pn(x, ·)−π‖TV ≤ Cqn,0< q < 1
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cients one can use those classical theorems show that e.g for p= 2 we have

√
β(M,σ(X))≥ τ(M,X).

V -statistics.

V statistics appear in the context of statistical testing, whenever a property of

a probability measure p can be expressed as an expected value with respect to

k independent random variables X1, · · · ,Xk ∼ p. For instance, variance of a

measure p is given as the expected value of the function h(x,y) = (x−y)2

Eh(X1,X2) where X1,X2 ∼ p.

An estimate of variance is given by a V -statistic of order 2, namely

1
n2

n∑
i,j=1

h(Xi,Xj).

In general, a V -statistic [90, Section 5.1.5] of a k-argument, symmetric func-

tion h is written

Vn(h) = 1
nm

∑
i∈Nm

h(Xi1 , ...,Xim), (2.2)

where Nm is a Cartesian power of a set N = {1, ...,n}. For simplicity, from time

to time, we will drop the argument and simply write V or, Vn if we need to

emphasize an aspects of the V -statistic that depends on n or, Vn(h) if we want

to emphasize an aspect of the V -statistic that depends on h. We will refer to

the function h as to the core of the V -statistic Vn(h). While such functions are

usually called kernels in the literature, in this work we reserve the term kernel

for positive-definite functions taking two arguments. The asymptotic behaviour

of V -statistic depends on the degeneracy of the core. We say that a k-argument,

symmetric function h is j-degenerate (j < k) if for each x1, · · · ,xj ∈X,

Eh(x1, · · · ,xj ,Xj+1, · · · ,Xk) = 0,

where Xj+1, · · · ,Xk are i.i.d. random variables. If j = k− 1 we say that the

function is canonical.

As shown in [90, Section 5.1.5], using so called Hoeffding decomposition, any
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core h can be written as a sum of canonical cores h1, ...,hm and a constant h0

h(x1, ...,xm) = hm(x1, ...,xm) +
∑

1≤i1<...<im−1≤m
hm−1(xi1 , ...,xim−1)

+ ...+
∑

1≤i1<i2≤m
h2(xi1 ,xi2) +

∑
1≤i≤m

h1(xi) +h0

We call h0, ...,hm components of a core h. The components are defined in terms

of auxiliary functions gc

gc(x1, ...xc) = Eh(x1, ...,xc,Xc+1, ...,Xm), (2.3)

where X1, · · · ,Xc are i.i.d. random variables, for each c = 0, ...,m− 1 and we

put gm = h. We define components as follows

h0 = g0,

h1(x1) = g1(x1)−h0,

h2(x1,x2) = g2(x1,x2)−h1(x1)−h1(x2)−h0,

h3(x1,x2,x3) = g3(x1,x2,x3)−
∑

1≤i<j≤3
h2(xi,xj)−

∑
1≤i≤3

h1(xi)−h0,

· · ·,

hm(x1, ...,xm) = gm(x1, ...,xm)−
∑

1≤i1<...<im−1≤m
hm−1(xi1 , ...,xim−1)

− ...−
∑

1≤i1<i2≤m
h2(xi1 ,xi2)−

∑
1≤i≤m

h1(xi)−h0.

[90, Section 5.1.5] shows that components hc are symmetric (and therefore

cores) and canonical. Finally a V-statistic of a core function h can be written as

a sum of V-statistics with canonical cores

Vn(h) = Vn(hm) +
(
m

1

)
Vn(hm−1) + ...+

(
m

m−2

)
Vn(h2) +

(
m

m−1

)
Vn(h1) +h0.

Note that for a one-degenerate core h, the constant h0 and the first component
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h1 are identically equal to zero

h0 = g0 = Eh(X1,X2, ...,Xm) = 0,

h1(x1) = g1(x1)−h0 = Eh(x1,X2,X3, ...,Xm) = 0.

In this case it turns out that the second component of the core h2 is the one

that governs the asymptotic distribution of the V-statistic. We say that a V -

statistic with a one-degenerate core is a degenerate V -statistic and that nVn is

a normalized V -statistic. This type of degeneracy is common to many kernel

statistics, when the null hypothesis holds [47, 44, 87].

Finally, we remark that asymptotic distribution of the degenerate, normalized

V -statistic is known to be an infinite weighted sum of χ2-variables [90, Section

5.4], where the weights depend on the core and random variables in the V -

statistic. To our knowledge there is no close form expression for calculating

quantiles of this limiting distributions and so a suitable bootstrap is used to

obtain the empirical quantiles.

An Introduction to the Wild Bootstrap

Bootstrap methods aim to evaluate the accuracy of the sample estimates - they

are particularly useful when dealing with complicated distributions, or when

the assumptions of a parametric procedure are in doubt. Bootstrap meth-

ods randomize the dataset used for the sample estimate calculation, so that

a new dataset with a similar statistical properties is obtained, e.g. one popular

method is resampling. In the wild bootstrap method the observations in the

dataset are multiplied by appropriate random numbers. To present the idea

behind the wild bootstrap we will discuss a toy example similar to that in Shao

[93], and then relate it to the wild bootstrap method used in this thesis.

Consider the following autoregressive model

Xt = aXt−1 +C+ εt

where εt are i.i.d. Student’s t random variables and |a| < 1, C are unknown

constants. We wish to test if C = 0. By [72, Theorem 1] sequence Xt is ge-

ometrically strongly mixing, which means that β(m) = O(exp−dm) for some
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positive d. By [18, Theorem 0] if C = 0, the normalized sample mean of the

process Xt has asymptotically normal distribution

∑N
i=1Xi√
n

d→N(0,σ2
∞),

where σ2
∞ =

∑j=∞
j=−∞ cov(X0,Xj). We note here that using cov(X0,X0) instead

of σ2
∞ in the testing procedure based on the asymptotic distribution N(0,σ2

∞)
would result in too conservative test. The variance σ2

∞ is not easy to estimate.

Using the wild bootstrap method we will construct process Yt that mimics be-

haviour of the Xt process and use it to approximate the distribution of the

normalized sample mean,
∑N

i=1Xi√
n

. Consider a triangular array of autoregres-

sive processes, starting from W1,n =N(0,1),

Wt,n = e−1/lnWt−1,n+
√

1−e−2/lnεt,n

where εt,n are i.i.d. standard normal random variables. We call Wt,n a wild

bootstrap process.

Define Yt,n =Wt,nXt.

We need to show that the distribution of the normalized sample mean of the

process Yt,n, mimics the distribution N(0,σ2
∞). For that is is necessary that the

expected value and correlations of Yt and Xt agree:

EYt,n = EWt,nXt = 0,

cov(Y0,n,Yt,n) = cov(X0,Xt)cov(W0,n,Wt,n) = cov(X0,Xt)e−t/ln

The auto-covariance structure of the process Yt is similar to the auto-covariance

structure of the process Xt. Indeed if we let ln grow with n, we recover the

same covariance structure

cov(Y0,n,Yt,n) = cov(X0,Xt)e−t/ln → cov(X0,Xt),

and so we expect that ∑N
i=1Yi√
n

d→N(0,σ∞). (2.4)

This has been proved in the Leucht and Neumann [67, Theorem 6.1]. This

central limit theorem was used in Leucht and Neumann [67] to study some
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normalized V-statistic. Suppose that h is a positive definite, degenerate kernel

which allows finite Mercer decomposition [13, Theorem 40] with respect to

distribution of X i.e.

h(x,y) =
M∑
k

λkφk(x)φk(y),

λkφk(x) = Eh(x,Y )φk(Y )

where M <∞. In this case a V -statistic of order two, can be written as

M∑
k=0

λk

(∑n
i=1φk(Xi)√

n

)2
= 1
n

∑
1≤i,j≤n

h(Xi,Xj)

where λk are eigenvalues and φk are eigenfunction of the kernel h, respectively.

Since

Eφk(X) = Eh(X,Y )φk(Y ) = E
(
φk(Y )[Eh(X,Y )|Y ]

)
= E[φk(Y ) ·0|Y ] = 0.

one may replace ∑n
i=1φk(Xi)√

n

with a bootstrapped version ∑n
i=1W

n
t φk(Xi)√
n

,

and conclude, as in the toy example, that the limiting distribution of the single

component of the sum
∑
k λk... remains the same. One of the main contribu-

tions of Leucht and Neumann is in showing that the distribution of the whole

sum
∑
k λk

(∑n

i=1W
n
t φk(Xi)√
n

)2
, even with M =∞, converges to the same dis-

tribution as the normalized V-statistic, nVn(h).

Bootstrapped V -statistic.

As noted above the quantiles of the asymptotic distribution of V -statistics ap-

pear to be not tractable and so the common strategy is to estimate them using

some sort of bootstrap. In this work we will study two versions of the boot-
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strapped V -statistics

B1(h)n = 1
nm

∑
i∈Nm

Wi1,nWi2,nh(Xi1 , ...,Xim), (2.5)

B2(h)n = 1
nm

∑
i∈Nm

W̃i1,nW̃i2,nh(Xi1 , ...,Xim), (2.6)

where {Wt,n}1≤t≤n is an auxiliary wild bootstrap process and W̃t,n = Wt,n−
1
n

∑n
j=1Wj,n. This auxiliary process, proposed by [93, 67], satisfies the follow-

ing assumption:

Definition 1 (Bootstrap process assumptions).

{Wt,n}1≤t≤n

is a row-wise strictly stationary triangular array independent of all Xt such

that EWt,n = 0 and supnE|W 4
t,n| <∞ . The autocovariance of the process is

given by EWs,nWt,n = ρ(|s− t|/ln) for some non-negative function ρ, such that

limu→0 ρ(u) = 1 and
∑n−1
r=1 ρ(|r|/ln) = O(ln). The sequence {ln} is taken such

that ln = o(
√
n) but limn→∞ ln =∞. The variables Wt,n are τ -weakly dependent

with coefficients τ(r)≤ Cζ
r
ln for r = 1, ...,n, ζ ∈ (0,1) and C ∈ R.

As noted in in [67, Remark 2], a simple realization of a process (introduced in

the previous section) that satisfies this assumption is Wt,n = e−1/lnWt−1,n +√
1−e−2/lnεt where W0,n and ε1, . . . , εn are independent standard normal ran-

dom variables. For simplicity, we will drop the index n and write Wt instead

of Wt,n. A process that fulfils the bootstrap assumption will be called bootstrap

process.

The versions of the bootstrapped V -statistics in (2.5) and (2.6) were previously

studied in Leucht and Neumann [67] for the case of canonical cores of degree

m = 2. We extend their results to higher degree cores (common within the

kernel testing framework), which are not necessarily one-degenerate. When

stating a fact that applies to both B1 and B2, we will simply write B, and the

argument h or index n will be dropped when there is no ambiguity.

Kernel Embedding Tests

For every symmetric, positive definite function, i.e., kernel k : E×E→R, there

is an associated reproducing kernel Hilbert space H [12, p. 19]. The kernel
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embedding of a probability measure P on E is an element µ(P ) ∈ H, given

by µp =
∫
E k(·,x)dP (x) [12, 95]. If a measurable kernel k is bounded, the

mean embedding µP exists for all probability measures on E, and for many

interesting bounded kernels k, including the Gaussian, Laplacian and inverse

multi-quadratics, the kernel embedding P 7→ µP is injective. Such kernels are

said to be characteristic [97].

The Maximum Mean Discrepancy (MMD) [45] is defined as

MMD(P,Q) = sup
f∈Bk

[∫
X
fdP −

∫
X
fdQ

]
, (2.7)

where P and Q are probability measures on X, and Bk is the unit ball in the

RKHS H associated with a positive definite kernel k. It can be shown that the

MMD is equal to the RKHS distance between so called mean embeddings,

MMD(P,Q) = ‖µP −µQ‖H, (2.8)

where ‖ ·‖H denotes the norm in the RKHS H. When k is translation invariant,

i.e., k (x,y) = κ(x−y), the squared MMD can be written [97, Corollary 4]

MMD2(P,Q) =
∫

Rd
|ϕP (t)−ϕQ(t)|2F−1κ(t)dt, (2.9)

where F denotes the Fourier transform, F−1 is the inverse Fourier transform,

and ϕP , ϕQ are the characteristic functions of P , Q, respectively. From [97,

Theorem 9], if the kernel k is characteristic then MMD satisfies

MMD(P,Q) = 0 iff P =Q. (2.10)

Any bounded, continuous, translation-invariant kernel whose inverse Fourier

transform is almost everywhere non-zero is characteristic [97]. By represen-

tation (2.11), it is clear that the MMD with a characteristic kernel is a metric.

Finally, MMD can expressed in terms of expected value, let zi = xi,yi,

MMD(P,Q) = Eh(Z1,Z2) where Z1,Z2 ∼ (P,Q) and,

h(z1,z2) = k(x1,x2)−k(x1,y2)−k(x2,y1) +k(y1,y2).

The Hilbert Schmidt Independence Criterion (HSIC) [43, 44], measure of sta-
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tistical dependence, is simply MMD between join distribution and product of

marginals. Given a measure PXY over a product space, HSIC is defined

HSIC(PXY ) = ‖µPXY −µPX ⊗µPY ‖H. (2.11)

Again, if mean embedding are injective, HSIC is zero if and only if PX,Y is

a product measure. Not surprisingly, Hilbert-Schmidt Independence Criterion

(HSIC), can be expressed in terms of expectations of RKHS kernels [43, 44]

HSIC(PXY ) = Ek(X1,X2)(l(Y1,Y2)−2l(Y1,Y3) + l(Y3,Y4)),

where Xi,Yi ∼ PXY . Denote a group of permutations over 4 elements by S4,

with π one of its elements, i.e., a permutation of four elements. Let zi = xi,yi

and define a symmetric function h

h(z1,z2,z3,z4) = 1
4!
∑
π∈S4

k(xπ(1),xπ(2))[l(yπ(1),yπ(2))

+ l(yπ(3),yπ(4))−2l(yπ(2),yπ(3))].
(2.12)

The V -static Vn(h) is an estimator of HSIC. This estimator can be also written as
1
n2 Tr(KHLH) ([43]) for kernel matrices Ki,j = k(Xi,Xj) and Li,j = l(Yi,Yj)
and the centering matrix H = I− 1

n11> .

Related work

Wild Bootstrap for Degenerate Kernel Tests

Independence testing. Prior work on testing independence in time series may

be categorized in two branches: testing serial dependence within a single time

series, and testing dependence between one time series and another. The case

of serial dependence turns out to be relatively straightforward, as under the

null hypothesis, the samples become independent: thus, the analysis reduces

to the i.i.d. case. Pinkse [77], Diks and Panchenko [29] provide a quadratic

forms function-based serial dependence test which employs the same statistic

as HSIC. Due to the simple form of the null hypothesis, the analysis of [91,

Ch. 5] applies. Further work in the context of the serial dependency testing

includes simple approaches based on rank statistics e.g. Spearman’s correlation

or Kendall’s tau, correlation integrals e.g. [19]; criteria based on integrated
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squared distance between densities e.g [84]; KL-divergence based criteria e.g.

[83, 58]; and generalizations of KL-divergence to so called q-class entropies

e.g. [41, 78].

In most of the tests of independence of two time series, specific conditions have

been enforced, e.g that processes follow a moving average specification or the

dependence is linear. Prior work in the context of dependency tests of two time

series includes cross covariance based tests e.g. [53, 57, 92]; and a Generalized

Association Measure based criterion [32]. Some work has been undertaken in

the nonparametric case, however. A nonparametric measure of independence

for time series, based on the Hilbert-Schmidt Independence Criterion, was pro-

posed by Zhang et al. [116]. While this work established the convergence in

probability of the statistic to its population value, no asymptotic distributions

were obtained, and the statistic was not used in hypothesis testing. To our

knowledge, the only nonparametric independence test for pairs of time series

is due to Besserve et al. [14], which addresses the harder problem of testing

independence across all time lags simultaneously. 2 The procedure is to com-

pute the Hilbert-Schmidt norm of a cross-spectral density operator (the Fourier

transform of the covariance operator at each time lag). The resulting statistic is

a function of frequency, and must be zero at all frequencies for independence,

so a correction for multiple hypothesis testing is required. It is not clear how

the asymptotic analysis used in the present work would apply to this statistic,

and this remains an interesting topic of future study.

Two sample testing. A two-sample test for τ -dependent time series was pro-

posed in Leucht [66][Section 4.2]. It is a variation on the Cramer–von Mises

type of test, which has a core that is a positive definite kernel and therefore the

test can be thought of as a mean discrepancy test (in the Chapter 3 we provide

general MMD test for time series).

In a slightly different setting, two sample problem of equality of intensities of

Poisson processes was studied in [36]. While the statistical analysis involved

in that work is somehow similar to ours, the formulation of the problem is

different and results are not equivalent.

2 Let Xt follow a MA(2) model and put Yt =Xt−20. This is a case addressed by Besserve et al.
[14], who will reject their null hypothesis, whereas our null is accepted
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A Kernel Test of Goodness of Fit.

Several alternative approaches exist in the statistics literature to goodness-of-

fit testing. A first strategy is to partition the space, and to conduct the test on a

histogram estimate of the distribution [9, 11, 51, 50]. Such space partitioning

approaches can have attractive theoretical properties (e.g. distribution-free

test thresholds) and work well in low dimensions, however they are much

less powerful than alternatives once the dimensionality increases [42]. Similar

approach are testing procedures based on L2 distance between target density

and samples, an [35].

Another popular approach has been to use the smoothed L2 distance between

the empirical characteristic function of the sample, and the characteristic func-

tion of the target density. This dates back to the test of Gaussianity of Bar-

inghaus and Henze [8], who used a squared exponential smoothing function

(see Eq. 2.1 in their paper). Fan and Ullah proposed similar test for weakly

depended observations. For this choice of smoothing function, their statistic

is identical to the maximum mean discrepancy (MMD) with the squared ex-

ponential kernel, which can be shown using the Bochner representation of the

kernel (compare with Sriperumbudur et al. 97, Corollary 4). It is essential in

this case that the target distribution be Gaussian, since the convolution with

the kernel (or in the Fourier domain, the smoothing function) must be avail-

able in close form. An L2 distance between Parzen window estimates can also

be used [16], giving the same expression again, although the optimal choice of

bandwidth for consistent Parzen window estimates may not be a good choice

for testing [1]. A different smoothing scheme in the frequency domain results

in an energy distance statistic [this likewise being an MMD with a particular

choice of kernel; see 88], which can be used in a test of normality [109]. The

key point is that the required integrals are again computable in closed form for

the Gaussian, although the reasoning may be extended to certain other families

of interest, e.g. [82]. The requirement of computing closed-form integrals with

respect to the test distribution severely restricts this testing strategy. Finally, a

problem related to goodness-of-fit testing is that of model criticism [70]. In

this setting, samples generated from a fitted model are compared via the max-

imum mean discrepancy with samples used to train the model, such that a

small MMD indicates a good fit. There are two limitation to the method: first,

it requires samples from the model (which might not be easy if this requires a
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complex MCMC sampler); second, the choice of number of samples from the

model is not obvious, since too few samples cause a loss in test power, and too

many are computationally wasteful. Neither issue arises in the test proposed

in the chapter 4, since we do not require model samples.

Fast Analytic Functions Based Two Sample Test.

The earliest work in the linear time two-sample tests includes the point wise

difference between characteristic functions [54, 55]. It was shown that the

power of such tests can be maximized against fully specified alternative hy-

potheses, where test power is the probability of correctly rejecting the null

hypothesis that the distributions are the same. In other words, if the class of

distributions being distinguished is known in advance, then the tests can focus

only at those particular frequencies where the characteristic functions differ

most. This approach was generalized to evaluating the empirical characteristic

functions at multiple distinct frequencies by [31], thus improving on tests that

need to know the single “best” frequency in advance (the cost remains linear

in the sample size, albeit with a larger constant). This approach still fails to

solve the consistency problem, however: two distinct characteristic functions

can agree on an interval, and if the tested frequencies fall in that interval, the

distributions will be indistinguishable.

Another alternative to the quadratic-time MMD test is a B-test [114] (block-

based test): the idea is to break the data into blocks, compute a quadratic-

time statistic on each block, and average these quantities to obtain the test

statistic. The B-test is a variation of the MMD test in which the complexity can

controlled by choosing the size of blocks used to calculate the test statistics. At

one extreme is the linear-time MMD suggested by [45, 48] where we have n/2
blocks of size B = 2, and at the other extreme is the usual full MMD with 1
block of size n, which requires calculating the test statistic on the whole kernel

matrix in quadratic time.



Chapter 3

Wild Bootstrap for Degenerate Kernel Tests

This chapter is based on Kacper Chwialkowski, Dino Sejdinovic, and

Arthur Gretton. A wild bootstrap for degenerate kernel tests. In

Advances in Neural Information Processing Systems 27, pages 3608–

3616. Curran Associates, Inc., 2014.

In this chapter a wild bootstrap method for nonparametric hypothesis tests

based on kernel distribution embeddings is proposed. This bootstrap method

is used to construct provably consistent tests that apply to random processes,

for which other bootstraps methods are not directly applicable. It applies to a

large group of kernel tests based on V-statistics, which are degenerate under

the null hypothesis, and non-degenerate elsewhere. To illustrate this approach,

we construct a two-sample test, an instantaneous independence test and a mul-

tiple lag independence test for time series. We also use the results of this chap-

ter in construction of a kernel goodness of fit test. In experiments, the wild

bootstrap gives strong performance on synthetic examples and in performance

benchmarking for the Gibbs sampler.

The main results of the chapter are based around two concepts: τ -mixing,

which describes the dependence within the time series, and V -statistics, which

constitute our test statistics. These topics were reviewed in the Section 2.2.

Asymptotic distribution of wild bootstrapped V statistics

In this section, we present main results that describe asymptotic behaviour

of V -statistics and bootstraped V -statistics for random processes. While this

section aims to communicate the main ideas, we provide details and proofs

in the Section 3.2. In the Section 3.3, these results will be used to construct
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kernel-based statistical tests applicable to dependent observations. Tests are

constructed so that the V -statistic is degenerate under the null hypothesis and

non-degenerate under the alternative. Theorem 1 guarantees that the boot-

strapped V -statistic will converge to the same limiting null distribution as the

V -statistic. Following Leucht and Neumann [67], we will establish the conver-

gence of the bootstrapped distribution to the desired asymptotic distribution.

Throughout this chapter we will make one mild assumption

sup
i∈Nm

Eh(Zi)2 <∞,

where Zi = (Zi1 , · · ·Zim). This assumption is almost always automatically sat-

isfied, since most of the kernels used in practice are bounded.

Theorem 1. Assume that the stationary process Zt is τ -dependent with∑∞
r=1 r

2√τ(r) < ∞. If the core h is a Lipschitz continuous, one-degenerate

and its h2-component is a positive definite kernel, such that Eh2(Z0,Z0) <∞,

then nBn (2.5), (2.6), and nVn (2.2) converge weakly to the same distribution

V . Moreover nBn(h2) and nVn(h2) converge weakly to
(m

2
)−1

V .

On the other hand, if the V -statistic is not degenerate, which is usually true

under the alternative, it converges to some non-zero constant.

Theorem 2. Assume that the stationary process Zt is τ -dependent with τ(r) =
o(r−4). If the core h is a Lipschitz continuous, and h0 component is positive then

Vn converges in mean squared to h0.

In this setting, Theorem 3 guarantees that the bootstrapped V -statistic will

converge to zero in probability. This property is necessary in testing, as it

implies that the test thresholds computed using the bootstrapped V -statistics

will also converge to zero, and so will the corresponding Type II error.

Theorem 3. Assume that the stationary process {Zt} is τ -dependent with a coef-

ficient τ(r) = o(r−4). If the core h is a function of m> 1 arguments then B1(h)
and o(n)B2(h) converge to zero in mean squared.

Although both B2 and B1 converge to zero, the rate does not seem to be that

same. As a consequence, tests that utilize B2 usually give lower Type II error

than the ones that use B1. On the other hand, B1 seems to better approximate
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V -statistic distribution under the null hypothesis. This agrees with our experi-

ments in Section 3.4 as well as with those in [67, Section 5]). These results are

sufficient for adopting kernel tests developed for i.i.d. data to tests that work

on random processes. In particular Theorem 1 justifies usage of bootstraped

V -statistics for estimating quantiles of the null distribution, while Theorems 23

guarantee consistency.

The general testing procedure is

• Calculate the test statistic nVn(h).

• Obtain wild bootstrap samples {Bn(h)}Di=1 and estimate the 1−α empir-

ical quantile of these samples.

• If nVn(h) exceeds the quantile, reject.

Proofs

In this section we prove the main theorems. As for the notation, n denotes

number of observations, N = {1, · · · ,n}, if h is function then h×h denotes a

product of h with itself, limn→∞Xn
L2= X denotes convergence in mean square

Proof of the Theorem 1

Hoeffding decomposition reduces any V -statistic to a sum of canonical V -

statistics with canonical cores hc, which are easier to study in context of non-

iid data. As an illustration, consider a canonical core h of m arguments and fix

some indexes i1 ≤ ·· · ≤ im−1� im, for a sake of example we may assume that

indexes represent time. If observations Zi1 , · · · ,Zim−1 are independent of the

observation Zim , then the expected value of h(Zi1 , · · · ,Zim), by degeneracy, is

equal to zero. If it is reasonable to assume that Zim is almost independent of

Zi1 , · · · ,Zim−1 , maybe because it is so distant in time, then it is also reasonable

to expect that for a canonical core h (which is not too complicated )

Eh(Zi1 , ·,Zim)≈ 0.

which follows from the following approximate calculation∫
h(zi1 , ·,zim)dPZi1 ,··· ,Zim ≈

∫
h(zi1 , · · · ,zim)dPZi1 ,··· ,Zim−1

dPZim = 0
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We formalize this intuition.

Definition 2. Associate with any set of indexes i1, · · · , im its nearest neighbor

within the set. Suppose ir is is an index with the most distant nearest neighbor.

We will call ir the most isolated index, and we will refer to its distance to the

nearest neighbor as an isolation distance.

Consider a following example, for the set {1,5,7}, 1 is the most isolated index

and the isolation distance is 4.

Definition 3. Given a sequence of random variables Zt and a function h, if for

all sets of indexes i1, · · · , im, with the isolation distance equal to r

|Eh(Zi1 , · · · ,Zim)| ≤∆(h,r)

for a function ∆, then we say that the pair (h,Zt) is of type ∆.

The next theorem shows a growth rate of a canonical V -statistic when a pair

h,Zt is of type ∆.

Theorem 4. Let (Zt,h), where h is a function of m> 1 arguments, be of type ∆,

with ∆(h,r) = o(r−k) for some k, then

∑
i∈Nm

|Eh(Zi)|=O
(
nb

m
2 c
)

+o
(
n2bm2 c+2−k

)
.

Proof. The proof uses a technique similar to [4, Lemma 3]. We will focus

on ordered m-tuples 1 ≤ i1 ≤ . . . ≤ im ≤ n, and by considering all possible

permutations of their indices, we obtain an upper bound

∑
i∈Nm

|Eh(Zi1 , . . . ,Zim)|<
∑

1≤i1≤...≤im≤n

∑
π∈Sm

∣∣∣Eh(Ziπ(1) , . . . ,Ziπ(m)

)∣∣∣ ,
where (strict) inequality stems from the fact that the m-tuples with some coin-

ciding entries appear multiple times on the right.

Since (h,Zt) is a of type ∆

∀i ∈Nm
∑
π∈Sm

∣∣∣Eh(Ziπ(1) , . . . ,Ziπ(m)

)∣∣∣=O(∆(h,w(i))),
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where w(i) is an isolating distance of the index set i = i1, · · · im. We need to

estimate order of the sum

∑
1≤i1≤...≤im≤n

O(∆(h,w(i))).

Let us upper bound the number of ordered m-tuples i with w(i) = w. De-

note s =
⌊
m
2
⌋

+ 1. i1 can take n different values, but since i2 ≤ i1 +
w, i2 can take at most w + 1 different values. For 2 ≤ l ≤ s− 1, since

min{i2l− i2l−1, i2l−1− i2l−2}≤w, we can either let i2l−1 take up to n different

values and let i2l take up to w+1 different values (if i2l− i2l−1 ≤ i2l−1− i2l−2)

or let i2l−1 take up to w+1 different values and let i2l take up to n different val-

ues (if i2l− i2l−1 > i2l−1− i2l−2), upper bounding the total number of choices

for [i2l−1, i2l] by 2n(w+ 1). Finally, the last term im can always have at most

w+ 1 different values. This brings the total number of m-tuples with w(i) = w

to at most 2s−2ns−1(w+ 1)s. Thus, the number of m-tuples with w(i) = 0 is

O(ns−1) and since Eh(Zi1 , . . . ,Zim)<∞, we have

∑
1≤i1≤...≤im≤n

O(∆(h,w(i)))

≤O(ns−1) +
n−1∑
w=1

∑
1≤i1≤...≤im≤n

w(i)=w
:
O(∆(h,w(i)))

≤O(ns−1) +ns−1
n−1∑
w=1

(w+ 1)sO(∆(h,w))

≤O(ns−1) +ns−1
n−1∑
w=1

o(ws−k)

≤O(ns−1) +ns−1 max(o(ns−k+1),O(1))

≤O(ns−1) +o(n2s−k) +O(ns−1))

=O(ns−1) +o(n2s−k),

which proves the claim. We have used ∆(h,w) = o(w−k).

The previous theorem states sufficient conditions for a V -statistic or a boot-

strapped V -statistic to converge to zero.

Lemma 1. Let h be a function ofm> 1 arguments and let ({Zt}t∈N ,h×h) be a of

type ∆, with ∆(h×h,r) = o(r−4). If {Gi}i∈N is a random process, independent
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of Zt, such that supiEG4
i <∞, with notation Tn = 1

nm−1
∑
i∈NmGi1Gi2h(Zi),limn→∞ o(1)Tn

L2= 0 m= 2,

limn→∞Tn
L2= 0 m> 2

since, ET
2
n =O(1) m= 2,

ET 2
n = o(1) m> 2.

Proof. First we verify that for i, j ∈Nm

ai,j = EGi1Gi2Gj1Gj2

is uniformly bounded. We get the bound by applying Cauchy-Schwarz itera-

tively and using assumption supiEG4
i <∞.

We check that the second non-central moment converges to zero,

E (Tn)2

= 1
n2m−2

∑
i,j∈Nm

EGi1Gi2Gj1Gj2Eh(Zi)h(Zj)

≤ 1
n2m−2

∑
i,j∈Nm

|ai,jEh(Zi)h(Zj)|

≤

(
sup
n

sup
i,j∈Nm

|ai,j |

)
1

n2m−2

∑
i,j∈Nm

|Eh(Zi)h(Zj)|.

Supremum over n is needed since EGi1Gi2Gj1Gj2 might change with n.

Lemma 4, by the assumption that (h(· · ·)×h(· · ·),Zt) is of type ∆, the growth

of the inner sum
∑
i,j∈Nm |Eh(Zi)h(Zj)| is at most of order

O(nm) +o(n2m+2−k).

Since ∆(h×h,r) = o(r−4), the growth rate is

E (Tn)2 =
O
(
nm) +o(n2m−2)

n2m−2 =

O(1) m= 2

o(1) m> 2
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For m = 2 we have assumed existence of an extra term o(1), which concludes

the proof.

We next prove that the asymptotic distribution of a V -statistic depends on num-

ber of terms in the Hoeffding decomposition that are equal to zero.

Lemma 2. Let h be a core with m arguments. If h0 = h1 = 0, and for all c > 2
component (hc×hc,Zt) is of type ∆, with ∆(hc×hc, r) = o(r−4) then

lim
n→∞

(
nVn(h)−

(
m

2

)
nVn(h2)

)
L2= 0

Proof. Using Hoeffding decomposition we write the core h as a sum of the

components hc ,

nVn(h) =nVn(hm) +
(
m

1

)
nVn(hm−1) + ...

+
(

m

m−2

)
nVn(h2) +

(
m

m−1

)
nVn(h1) +h0.

h0 = 0 and h1 = 0. By Lemma 1, for c≥ 3, nVn(hc) converges to zero in mean

squared. To see that it suffices to put Q= 1 and verify that (hc×hc,Zt) is of ∆

type, which is explicitly assumed.

Before we study the asymptotic distribution of a bootstrapped statistic Bn we

need to state three simple lemmas that will be frequently used.

Lemma 3. If Wi is a bootstrap process then

lim
n→∞

ln
n

n∑
i=1

Wi
L2= 0.

Proof. By the definition of Wi, E(
∑n
i=1Wi)2 ≤ n2

∑n
r=1Cov(W0,Wr) =

nO(ln), where
∑n
r=1Cov(W0,Wr) =O(ln) follows from bootstrap assumption.

Also, by the bootstrap assumptions (Definition 1) we have limn→∞
l3n
n2 = 0.

Therefore 1
n

∑n
i=1Wi converges to zero in mean squared.

Lemma 4. If {Wi} is a bootstrap process then

n∑
i=1

W̃i =
n∑
i=1

Wi−
1
n

n∑
j=1

Wj

= 0.
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Lemma 5. Let f be a function and let j = {j1, . . . , jq} be a subset of {1, . . . ,m}.
Then

∑
i∈Nm

f(Zij1 , ...,Zijq ) = nm−q
∑
i∈Nq

f(Zi1 , ...,Ziq )

Proof. Each element f(Zij1 , ...,Zijq ) is repeated exactly nm−q times.

We now prove an analogue of the Lemma 2 for bootstrapped statistics B.

Lemma 6. Let h be a core of a m arguments and let Qi denote Wi or W̃i. If

1
n2

∑
i∈N2

Qi1Qi2h0 = 0,

1
nm

∑
i∈Nm

∑
1≤j≤m

Qi1Qi2h1(Zij ) = 0.

and (hc,Zt) for c > 2 are of type ∆, with ∆(hc×hc, r) = o(r−4) then

lim
n→∞

(
nB(h)−

(
m

2

)
nB(h2)

)
L2= 0

Proof. Where it is necessary, we check claims for both Wi and W̃i separately.

We will frequently use the fact that lnn
∑n
i=1Qi,

1
n

∑n
i=1Qi converge to zero in

mean square.

Using Hoeffding decomposition we write core h as a sum of components hc

(the ones with h0,h1 are equal to zero and therefore omitted)

nB1(h) = 1
nm−1

∑
i∈Nm

[
Qi1Qi2hm(Zi1 , ...,Zim)+

∑
1≤j1<...<jm−1≤m

Qi1Qi2hm−1(Zij1 , ...,Zijm−1
) + ...+

∑
1≤j1<j2≤m

Qi1Qi2h2(Zij1 ,Zij2 )
]
.

Consider the sum associated with hc

1
nm−1

∑
i∈Nm

∑
1≤j1<...<jc≤m

Qi1Qi2hc(Zij1 , ...,Zijc ). (3.1)

We will show that for almost all fixed j1 < · · · < jc the sum 3.1 converges to

zero.
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Suppose j1 > 2. The sum 3.1 can be written

1
nm−1

∑
i∈Nm

Qi1Qi2hc(Zij1 , ...,Zijc ) L.5== 1
nc+1

∑
i∈Nc+2

Qi1Qi2hc(Zi3 , ...,Zic+2)

=
(

1
nc−1

∑
i∈Nc

hc(Zi1 , ...,Zic)
)(

1
n

n∑
i=1

Qi

)2

= n

ln
Vn(hc)

(
ln
n

n∑
i=1

Qi

)2

.

By Lemma 1, for c ≥ 3, n
ln
Vn(hc) converges to zero in mean squared. Indeed,

it is sufficient to put Gi = 1 and Tn = nVn(hc) and notice that n
ln
Vn(hc) = 1

ln
=

o(1)Tn, since ln→∞. Consequently, since ( 1
n

∑n
i=1Qi)2 converges to zero in

mean square 3, the product, converges to zero in mean square i.e.

Vn(hc)
(

1
n

n∑
i=1

Qi

)2
L2→ 0

Suppose j1 = 2. The sum 3.1 can be written

1
nm−1

∑
i∈Nm

Qi1Qi2hc(Zi2 , ...,Zijc ) L.5== 1
nc

∑
i∈Nc+1

Qi1Qi2hc(Zi2 , · · · ,Zijc ) =

(
1

lnnc−1

∑
i∈Nc

Qi1hc(Zi1 , · · · ,Zic)
)(

ln
n

n∑
i=1

Qi

)
.

(3.2)

The latter expression ln
n

∑n
i=1Qi converges to zero in mean square. The former

expression can be further decomposed

1
ln
n−c+1

∑
i∈Nc

Qi1hc(Zi1 , · · · ,Zic) = 1
4

1
ln

(T+−T−) where,

1
ln
T− = 1

ln
n−c+1

∑
i∈N2

(Qi1 −1)hc(Zi1 , · · · ,Zic)(Qi2 −1),

1
ln
T+ = 1

ln
n−c+1

∑
i∈N2

(Qi1 + 1)hc(Zi1 , · · · ,Zic)(Qi2 + 1),

We use Lemma 1 for 1
ln
T+ and 1

ln
T−, to show that they converge to zero. We

need to check that

sup
i
E(Qi+/−1)4 <∞

If Qi = Wi this follows from the bootstrap assumption (see Definition 1)
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supn supi≤nEW 4
i,n <∞. If Qi = W̃i we check that

E( 1
n

n∑
i=1

Wi)4 ≤ sup
n

sup
i≤n

EW 4
i,n,

and so ≤ supiE(W̃i) <∞. Now we conclude that both 1
ln
T+ and 1

ln
T− con-

verge to zero. Therefore their sum (even though they are not independent)

converges to zero.

Suppose j1 = 1 and j2 > 2. This case is identical to the previous case, up to

swapping i1, i2 in the equation 3.2.

Finally, suppose j1 = 1 and j2 = 2 and c > 2. The sum 3.1 can be written

1
nm−1

∑
i∈Nm

Qi1Qi2hc(Zi1 ,Zi2 , ...,Zijc ) L.5== 1
nc

∑
i∈Nc+1

Qi1Qi2hc(Zi1 ,Zi2 , ...,Zijc )

We again use Lemma 1 to see that this sum converges to zero in mean squared

(we checked the assumptions above). We have proved that

lim
n→∞

(
nB(h)−

(
m

2

)
nB(h2)

)
L2= 0

So far we avoided expressing results in terms of τ -mixing and degeneracy of a

core, now we relate ∆ formalism to those concepts. We start with a technical

lemma.

Lemma 7. If h is a Lipschitz continuous core then its components are also Lips-

chitz continuous.

Proof. Note that the auxiliary function 2.3 used in the Hoeffding decomposition

gc(z1, ...zc) = Eh(z1, ...,zc,Z
∗
c+1, ...,Z

∗
m).
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is Lipschitz, since h is Lipschitz continuous.

|gc(z1, ...zc)−gc(z′1, ...z′c)|

≤
∣∣∣∣∫ [h(z1, ...,zc,zc+1, ...,zm)−h(z′1, ...,z′c,zc+1, ...,zm)]dP (zc+1) · · ·dP (zm)

∣∣∣∣
≤

∣∣∣∣∣
∫
Lip(h)

(
c∑
i=1
|zi−z′i|+

m∑
i=c+1

|zi−zi|

)
dP (zc+1) · · ·dP (zm)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Lip(h)

(
c∑
i=1
|zi−z′i|

)
dP (zc+1) · · ·dP (zm)

∣∣∣∣∣
= |Lip(h)

c∑
i=1
|zi−z′i|

∫
dP (zc+1) · · ·dP (zm)|

= |Lip(h)
c∑
i=1
|zi−z′i||.

h0 is obviously Lipschitz continuous. If hk for k < c are Lipschitz continuous

then, since gc is Lipschitz continuous, hc is also Lipschitz continuous as a sum

of Lipschitz continuous functions.

Lemma 8. Let {Zt} be a τ -dependent stationary process and h be a Lipschitz core

of m arguments, If for all c > 0 (hc×hc,Zt) and (h,Zt) are of type ∆ with the

rate O(τ(d)) then

∆(h,d) =∆(hc×hc,d) =O(τ(d))

Proof. Let f = hc× hc or f = h. f is canonical and Lipschitz continuous (if

f = hc×hc it follows from Lemma 7). Suppose ir is the isolating index. Further

suppose there are k indexes a1, · · · ,ak smaller than ir and m− k− 1 indexes

greater than ir, namely ak+2, · · · ,am. In this notation ak+1 = ir.

Let us partition the vector (Zi1 , . . . ,Zim) into three parts:

A=
(
Za1 , . . . ,Zak

)
, B = Zak+1 , C =

(
Zak+2 , . . . ,Zam

)
.

where ak+1 is the isolating index. If k = 0, A is empty and if k = m− 1, C

is empty but this does not change our arguments below. Using Lemma [26,

Lemma 5.3], we will construct B∗ and C∗∗ that are independent of A and
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independent of each other and

E ‖(A,B,C)− (A,B∗,C∗∗)‖1 =O(τ (w)), (3.3)

where w is an isolating distance 1. Let D = (B,C) The [26, Lemma 5.3] guar-

antees that there exists D∗ independent of A, such that

‖Ed(D,D∗)|σ(A)‖1 = E|Ed(D,D∗)|σ(A)|

= E(Ed(D,D∗)|σ(A)) = Ed(D,D∗) =O(τ(w)),

where d is the L1 distance on Euclidean space (non-negativity justifies drop-

ping absolute value). By definition of τ -mixing, τ(w) ≥ τ(σ(A),D). Since

D∗ = (B∗,C∗) has the same distribution as D (in particular it has the same

τ dependence structure) we use the lemma again to construct C∗∗, indepen-

dent of A and B∗, such that

Ed(C,C∗∗) =O(τ(w)).

By the triangle inequality we obtain equation 3.3.

Ed
(
(A,B,C)− (A,D∗) + (A,D∗)− (A,B∗,C∗∗)

)
≤

Ed
(
(A,B,C)− (A,D∗)

)
+Ed

(
(A,D∗)− (A,B∗,C∗∗)

)
=

Ed(D,D∗) +Ed(C,C∗∗) =O(τ(w)).

Since B∗ is a singleton, independent of both A and C∗∗, by degeneracy of f

Ef(A,B∗,C∗∗) = 0. (3.4)

Note that f(A,B∗,C∗∗) is just a shorthand, random variables A,B∗,C∗∗ are

inserted in the right order. Thus, we have that

|Ef (Zi1 , . . . ,Zim)| ≤ E |f (A,B,C)−f (A,B∗,C∗∗)|+ |Ef(A,B∗,C∗∗)|

≤ Lip(f)E ‖(A,B,C)− (A,B∗,C∗∗)‖1 + 0

=O(τ(w)).

1 [26, Lemma 5.3] assumes that there exists a random variable δ independent of the vector
(A,B,C). This assumption is important only if CDF of the vector is not continuous, we can assume
that our space is endowed with such δ.
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Finally we can prove Theorem 1.

Proof. In the proof we are going to use [67][Theorems 2.1, 3.1], which charac-

terise asymptotic properties of nVn(h2) and nB(h2). Both theorems use similar

set of assumptions which we verify upfront.

Assumption A2.

• (i) h2 is one-degenerate and symmetric - this follows from the Hoeffding

decomposition;

• (ii) h2 is a kernel - is one of the assumptions of this theorem;

• (iii) Eh2(Z1,Z1)<∞ – follows from supi∈N6 |Eh(Zi)|<∞ ;

• (iv) h2 is Lipschitz continuous - follows from the Lemma 7.

Assumption B1, A1. Assumption B1,
∑n
r=1 r

2√τ(r) <∞, is the same as ours,

assumption A1,
∑n
r=1

√
τ(r)<∞ is implied.

Assumption B2. This assumption about the bootstrap process Wt is the same as

our Definition 1.

Denote by V the weak limit of nVn(h2), which exits by the [67][Theorem 2.1],

and let F = σ(Z1, · · · ,Zn). By Leucht and Neumann [67, Theorem 3.1], since

the distribution of V is continuous, we have

sup
x∈R
|P (nBn(h2)< x|F)−P (V < x)| → 0

in probability. We show that nBn(h2) converges to V weakly, by showing point-

wise convergence of CDF

lim
n→∞

P (nBn(h2)< x) = lim
n→∞

EP (nBn(h2)< x|F)

= E lim
n→∞

P (nBn(h2)< x|F) = EP (V < x) = P (V < x)

To change the order of limit and expectation we have dominated convergence

Theorem, justified since P (nBn(h) < x|F) are bounded by 1. The difference
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n(Bn(h)−Vn(h)) is

n

(
Bn(h)−

(
m

2

)
Bn(h2)

)
+
(
m

2

)
(nBn(h2)−V ) +

((
m

2

)
V −nVn(h)

)
By Lemma 6 and Lemma 2 respectively, both

n(B(h)−
(
m

2

)
B(h2)),n(Vn(h)−n

(
m

2

)
Vn(h2))

converge to zero in mean square. We check assumptions: since Zt is tau mixing

and h is Lipschitz continuous, by Lemma 8 all self products of components and

Zt, (hc×hc,Zt) for c > 0, are ∆ type of order τ(r), of order at least o(r−4)
(since

∑n
r=1 r

2√τ(r) <∞). Since h is one degenerate, first and zero compo-

nent h0,h1 are equal to zero (and so are B(h0),B(h1)).

This shows that nBn(h2) converges weakly to V .

Proof of Theorem 2

Proof. Using Hoeffding decomposition we write the core h as a sum of the

components hc ,

nVn(h) =nVn(hm) +
(
m

1

)
nVn(hm−1) + ...

+
(

m

m−2

)
nVn(h2) +

(
m

m−1

)
nVn(h1) +h0.

By the Lemma 1, for c ≥ 1, Vn(hc) converges to zero in probability. The sum

associated with h1 is

Vn(h1) = 1
n

N∑
i=1

h1(Zi).

By Lemma 8 (h1×h1,Zt) is ∆ type of order o(r−4). Using Lemma 1 we get the

growth rate of E(Vn(h1))2 = O( 1
n ), thus Vn(h1) converges in mean square to

zero.
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Proof of Theorem 3

Proof. We show that the second non central moment of B1 converges to 0. The

second non central moment is

EB1 = E
1

n2m

∑
i∈N2m

Wi1Wi2Wim+1Wim+2Eh(Zi1 , ...,Zim)h(Zim+1 , ...,Zi2m)

= 1
n2m

∑
i∈N2m

EWi1Wi2Wim+1Wim+2Eh(· · ·)h(· · ·)

≤ CE 1
n4

∑
i∈N4

|EWi1Wi2Wim+1Wim+2 |

= CE

(
1
n

n∑
i=1

Wi

)4

.

The inequality in the third line follows from the fact that correlations of the

bootstrap process Wi are positive (Definition 1) and

C = sup
n

sup
i∈Nm

Eh(Zi1 , ...,Zim)h(Zim+1 , ...,Zi2m),

is finite. By Lemma 3
1
n

n∑
i=1

Wi→ 0,

and therefore EC
( 1
n

∑n
i=1Wi

)4→ 0.

We now prove that o(n)B2(h) converges to zero. Using Hoeffding decomposi-

tion we write core h as a sum of components hc and h0

nB2(h) = 1
nm−1

∑
i∈Nm

[
h0W̃i1W̃i2 +

∑
1≤j≤m

W̃i1W̃i2h1(Zij ) (3.5)

∑
1≤j1<j2≤m

W̃i1W̃i2h2(Zij1 ,Zij2 ) + ...+W̃i1W̃i2hm(Zi1 , ...,Zim)
]
. (3.6)

We examine terms of the above sum starting form the one with h0 - it is equal

to zero

1
nm−1

∑
i∈Nm

h0W̃i1W̃i2
L.5== 1

n
h0
∑
i∈N2

W̃i1W̃i2 = 1
n
h0

(∑
i=1

W̃i

)2
L.4== 0.
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Term with h1 is zero as well, to see that fix j and consider

Tj = 1
nm−1

∑
i∈Nm

W̃i1W̃i2h1(Zij ).

If j = 1 then

T1
L.5== 1

n

∑
i∈N2

W̃i1W̃i2h1(Zi1) = 1
n

(
n∑
i=1

W̃ih1(Zi)
)(∑

i=1
W̃i

)
L.4== 0.

If j = 2 the same reasoning holds and if j > 2

Tj
L.5== 1

n2

∑
i∈N3

W̃i1W̃i2h1(Zi3) = 1
n

(
n∑
i=1

h1(Zi)
)(∑

i=1
W̃i

)2
L.4== 0.

By Lemma 6, since B(h0) = B(h1) = 0, (nB(h)−
(m

2
)
nB(h2))→ 0 in mean

square and the only term that remains is

Tn = 1
n

∑
i,j∈N

W̃iW̃jh2(Zi,Zj)

Now we can use the Lemma 1 to show that o(1)Tn converges to zero.

Applications to Kernel Tests

In this section, we describe how the wild bootstrap for V -statistics can be used

to construct kernel tests for independence and the two-sample problem, in

presence of weakly dependent observations. The main concepts underpinning

the kernel testing framework are reviewed in the section 2.2.

Wild Bootstrap For MMD

Denote the observations by {Xi}ni=1 ∼ Px, and {Yj}nj=1 ∼ Py. Our goal is to

test the null hypothesis H0 : Px = Py vs. the alternative H1 : Px 6= Py. The

empirical MMD can be written as a V -statistic with the core of degree two on

pairs zi = (xi,yi) given by

h(z1,z2) = k(x1,x2)−k(x1,y2)−k(x2,y1) +k(y1,y2).

It is clear that whenever k is Lipschitz continuous and supi,jEk(Xi,Xj),supi,jEk(Yi,Yj)
are finite, so is h. Moreover, h is a valid positive definite kernel, since it can be
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represented as an RKHS inner product

h(z1,z2) = 〈k(·,x1)−k(·,y1),k(·,x2)−k(·,y2)〉Hk .

Under the null hypothesis, h is also one-degenerate, i.e., Eh((x1,y1),(X2,Y2)) =
0. Therefore, by the Theorems 1, 3, we can use the bootstrapped statistics in

(2.5) and (2.6) to approximate the null distribution and attain a desired test

level.

Wild Bootstrap For HSIC

Recall (2.12) that the core of the test static for HSIC, with notation zi = (xi,yi),
is

h(z1,z2,z3,z4) = 1
4!
∑
π∈S4

k(xπ(1),xπ(2))[l(yπ(1),yπ(2))

+ l(yπ(3),yπ(4))−2l(yπ(2),yπ(3))].

One-degeneracy of the core under the null hypothesis was stated in [44, Theo-

rem 2], [44, Section A.2, following eq. (11)] shows that h2 is a kernel; h0 ≥ 0
follows from the fact that HSIC is a distance. Using Theorems 1,3,2 we can con-

struct an independence test using h. Drawback of this test, when implemented

in the most straightforward way, is its quadruple computational complexity. To

achieve quadratic time complexity, that matches time complexity of HSIC test

for i.i.d. data, we modify our bootstrapped statistic.

Quadratic time HSIC. In this section we assume that kernels k, l are positive

and bounded. We define empirical mean embedding µ̃X(x) = 1
n

∑n
i k(x,Xi)

and centred kernels

k̄(x,x′) =k(x′,x)−Ek(x,X)−Ek(X ′,x′) +Ek(X,X ′)

=〈k(x, ·)−µX ,k(x′, ·)−µX〉.

k̃(x,x′) =k(x,x′)− 1
n

n∑
i

k(x,Xi)−
1
n

n∑
i

k(x′,Xi) + 1
n2

n∑
i,j

k(Xj ,Xi)

=〈k(x, ·)− µ̃X ,k(x′, ·)− µ̃X〉.

where X,X ′ are i.i.d. copies of X1. Same definitions hold for the kernel l. Let

Qi denote Wi or W̃i (where it is necessary, we check claims for both Wi and
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W̃i separately). We further define

Sn = 1√
n

∑
i∈N

Qi(φ(Xi)− µ̃X)⊗ (φ(Yi)− µ̃Y ), (3.7)

Tn = 1√
n

∑
i∈N

Qi(φ(Xi)−µX)⊗ (φ(Yi)−µY ). (3.8)

First, we relate Tn to B(h2).

Statement 1. [44, section A.2, following eq. (11)] The second component of h is

h2(z1,z2) = 1
6 k̄(x1,x2)l̄(y1,y2).

Lemma 9. Squared norm of Tn is equal to 6B(h2).

Proof.

‖Tn‖2 = 1
n

∑
i,j∈N

QiQj

〈
(φ(Xi)−µX)⊗ (φ(Yi)−µY ),(φ(Xj)−µX)⊗ (φ(Yj)−µY )

〉
= 1
n

∑
i,j∈N

QiQj k̄(Xi,Xj)l̄(Yi,Yj)

=6B(h2).

Next we relate Sn to Tn – we show that the difference between them is asymp-

totically negligible. We start with a technical lemma.

Lemma 10. If (k̄× k̄,Zi) is of type ∆ of order O(r−4) (see Definition 3), then

lim
n→∞

E
∥∥√n(µ̃X −µX)

∥∥4 =O(1).

Proof.

E
∥∥√n(µ̃X −µX)

∥∥4 = E

∥∥∥∥∥ 1√
n

∑
i∈N

φ(Xi)−µX

∥∥∥∥∥
4

= E

(
1
n

∑
i∈N
〈φ(Xj)−µX ,φ(Xi)−µX〉

)2

= 1
n2E

∑
i∈N4

k̄× k̄(Zi).
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Since (k̄× k̄,Xi) is of type ∆, by Lemma 1, the expected value is of order

O(1).

Lemma 11. If (k̄× k̄,Zi), (l̄× l̄,Zi) are of type ∆ of order O(r−4), then, under

the null, ‖Sn‖2−‖Tn‖2 converges to zero in mean square. Under the alternative
1
n (‖Sn‖2−‖Tn‖2) converges to zero in mean square.

Proof. We first show that E‖Sn−Tn‖2→ 0 both under the null and the alter-

native. Then, using the fact that ‖Tn‖2 <∞ under the null and 1
n‖Tn‖

2 <∞
under alternative we will conclude the proof. The difference Sn−Tn is

1√
n

∑
i∈N

Qi

[
(φ(Xi)− µ̃X)⊗ (φ(Yi)− µ̃Y )− (φ(Xi)−µX)⊗ (φ(Yi)−µY )

]
= 1√

n

∑
i∈N

Qi

[
φ(Xi)⊗µY −φ(Xi)⊗ µ̃Y

]
+ 1√

n

∑
i∈N

Qi

[
φ(Yi)⊗µX −φ(Yi)⊗ µ̃X

]
+ 1√

n

∑
i∈N

Qi(µ̃X ⊗ µ̃Y −µY ⊗µX).

We examine differences separately – it is sufficient to show that each difference

converges to zero in mean square.

The expected norm of the first difference is

E

∥∥∥∥ 1√
n

∑
i∈N

Qi

[
φ(Xi)⊗µY −φ(Xi)⊗ µ̃Y

]∥∥∥∥2

= E

∥∥∥∥√n(µY − µ̃Y )⊗ 1√
n

∑
i∈N

Qiφ(Xi)
∥∥∥∥2

≤

√√√√E

∥∥∥∥√n(µ̃Y −µY )
∥∥∥∥4
E

∥∥∥∥ 1√
n

∑
i∈N

Qiφ(Xi)
∥∥∥∥4
.

We used ‖v⊗u‖ = ‖v‖‖u‖ and Cauchy-Schwarz inequality. By Lemma 10 the

first term is O(1). The second term is equal to

E‖ 1
n

∑
i∈N

Qiφ(Xi)‖4 = E

 1
n2

∑
i,j

k(Xi,Xj)QiQj

2

.

The expected value converges to zero in mean square by Lemma 1 (the assump-
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tion supi,j k(Xi,Xj)<∞ is satisfied). Using similar reasoning, the second term

E

∥∥∥∥ 1√
n

∑
i∈N

Qi

[
φ(Yi)⊗ µ̃X −φ(Yi)⊗µX

]∥∥∥∥2

also converges to zero. The final term is

E

∥∥∥∥ 1√
n

∑
i∈N

Qi(µ̃X ⊗ µ̃Y −µY ⊗µX)
∥∥∥∥2

= E

∣∣∣∣∣ 1n∑
i∈N

Qi

∣∣∣∣∣E
∥∥∥∥√n(µ̃X ⊗ µ̃Y −µY ⊗µX)

∥∥∥∥2

1
n

∑
i∈N Qi converges in mean square to zero (Lemmas 3, 4). We rewrite the

second term

E

∥∥∥∥√n(µ̃X ⊗ µ̃Y − µ̃Y ⊗µX + µ̃Y ⊗µX −µY ⊗µX)
∥∥∥∥2

It is sufficient to bound

E

∥∥∥∥√nµ̃Y ⊗ (µ̃X −µX)
∥∥∥∥2
≤ E

√∥∥∥∥µ̃Y ∥∥∥∥4
E

∥∥∥∥√n(µ̃X −µX)
∥∥∥∥4

E

∥∥∥∥√nµX ⊗ (µ̃Y −µY )
∥∥∥∥2

=
∥∥∥∥µX∥∥∥∥2

E

∥∥∥∥√n(µ̃Y −µY )
∥∥∥∥2

E‖µ̃Y ‖4 = E 1
n4
∑
i∈N4(l× l)(Yi) = O(1), since l is bounded. By Lemma 10

E
∥∥√n(µ̃X −µX)

∥∥4 and E
∥∥√n(µ̃Y −µY )

∥∥2 are finite. Thus, the whole expres-

sion converges to zero. We proved that Tn−Sn converges in mean square to

zero. We have

E|‖Tn‖2−‖Sn‖2| ≤ E
∣∣‖Tn‖−‖Sn‖∣∣∣∣‖Tn‖+‖Sn‖

∣∣
≤
√
E
∣∣‖Tn‖−‖Sn‖∣∣2E∣∣‖Tn‖+‖Sn‖

∣∣2

To show that the above expression converges to zero it is sufficient to show

that E‖Tn‖2 <∞ and E‖Sn‖2 <∞. Under the null hypothesis, by Lemma

1, expected value of E‖Tn‖2 = nBn(h2) is finite. Since E‖Tn−Sn‖2 → 0 we
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also have E‖Tn−Sn‖ → 0. Therefore we have (by simply squaring triangle

inequality)

E‖Sn‖2 ≤ E‖Sn−Tn+Tn‖2

≤ E‖Sn−Tn‖2 +E‖Tn−Sn‖E‖Tn‖+E‖Tn‖2 <∞

Under the alternative we have

n−1E|‖Tn‖2−‖Sn‖2| ≤ n−1E
∣∣‖Tn‖−‖Sn‖∣∣∣∣‖Tn‖+‖Sn‖

∣∣
≤
√
E
∣∣‖Tn‖−‖Sn‖∣∣2n−1E

∣∣‖Tn‖+‖Sn‖
∣∣2

it is sufficient to show that n−1E‖Tn‖2 <∞ and n−1E‖Sn‖2 <∞. By Theorem

3, n−1E‖Tn‖2 <∞ is finite and, using the reasoning similar to the one above,

we have that n−1E‖Sn‖2 <∞.

This shows that we can use squared norm of Sn as a bootstrapped test statistic.

For HSIC we redefine Bn

B∗n := ‖Sn‖2 = 1
n

∑
i,j∈N

Qi,Qj k̃(Xi,Xj)l̃(Xi,Xj). (3.9)

B∗1 corresponds to Qi = Wi, B∗2 corresponds to Qi = W̃i . This bootstrapped

statistic interestingly coincides with Vn(h). Gretton et al. [44] showed that

Vn(h) = 1
n

∑
i,j∈N

k̃(Xi,Xj)l̃(Xi,Xj). (3.10)

Finally, notice that both statistics 3.9 and 3.10 can be calculated in quadratic

time.

Proposition 1. Let Zt = (Xt,Yt) be a stationary process that is τ -dependent

such that
∑∞
r=1 r

2√τ(r) <∞. Under the null hypothesis B∗n (3.9) and nVn(h)
(3.10)converge weakly to the same distribution. Under the alternative hypothesis

B∗n converges to zero in probability, while Vn(h) converges to a positive constant.

Proof. We calculate

nVn(h)−B∗n = nVn(h)−6nBn(h2) + 6nBn(h2)−B∗n.
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By Lemma 9, 6nBn(h2) = ‖Tn‖2. By definition (3.9), B∗n = ‖Sn‖2 . By Lemma

11, 6nBn(h2)−B∗n converges to zero in mean square. We check assumptions;

since process Zt is τ -mixing (of order o(r−4) ) and both k̄, l̄ are canonical,

Lemma 8 guarantees that (k̄,Zi), (l̄,Zi) are of type ∆ of order O(r−4).

Under the null hypothesis, by Theorem 1, nVn(h)− 6nBn(h2) converges to

zero. We check assumptions; by Lemma 1, h2 is a symmetric, one-degenerate,

bounded kernel, assumptions concerning τ -mixing are satisfied.

Under the alternative, by Theorem 3 and Lemma 11 respectively, 6Bn(h2) and
1
nB
∗
n− 6Bn(h2) converge to zero in mean square. By Theorem 3, Vn(h) con-

verges to a positive constant.

We consider two types of tests: instantaneous independence and independence

at multiple time lags.

Test of instantaneous independence Here, the null hypothesis H0 is that Xt

and Yt are independent at all times t, and the alternative hypothesis H1 is that

they are dependent. We use Proposition1 directly to bootstrap an appropriate

quantile and compare it with a test statistic.

Lag-HSIC Proposition 1 allows us to construct a test of time series indepen-

dence that is similar to one designed by [14]. Here, we will be testing against

a broader null hypothesis: Xt and Yt′ are independent for |t− t′| <M for an

arbitrary large but fixed M .

Since the time series Zt = (Xt,Yt) is stationary, it suffices to check whether

there exists a dependency between Xt and Yt+m for −M ≤m≤M . Since each

lag corresponds to an individual hypothesis, we will require a Bonferroni cor-

rection to attain a desired test level α. We therefore define q = 1− α
2M+1 . The

shifted time series will be denoted Zmt = (Xt,Yt+m). Let Sm,n = nVn(h,Zm)
denote the value of the normalized HSIC statistic calculated on the shifted

process Zmt . Let Fb,n denote the empirical cumulative distribution function

obtained by the bootstrap procedure using B∗n (3.9). The test will then reject

the null hypothesis if the event An =
{

max−M≤m≤M Sm,n > F−1
b,n (q)

}
occurs.

By a simple application of the union bound, it is clear that the asymptotic

probability of the Type I error will be limn→∞PH0 (An) ≤ α. On the other

hand, if the alternative holds, there exists some m with |m| ≤M for which
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Vn(h,Zm) = n−1Sm,n converges to a non-zero constant. In this case

PH1(An)≥ PH1(Sm,n > F−1
b,n (q)) = PH1(n−1Sm,n > n−1F−1

b,n (q))→ 1
(3.11)

as long as n−1F−1
b,n (q)→ 0, which follows from the convergence of B∗n (3.9) to

zero in probability shown in Proposition 1. Therefore, the Type II error of the

multiple lag test is guaranteed to converge to zero as the sample size increases.

Our experiments in the next Section demonstrate that while this procedure is

defined over a finite range of lags, it results in tests more powerful than the

procedure for an infinite number of lags proposed in [14]. We note that a

procedure that works for an infinite number of lags, although possible to con-

struct, does not add much practical value under the present assumptions. In-

deed, since the τ -mixing assumption applies to the joint sequence Zt = (Xt,Yt),
dependence between Xt and Yt+m is bound to disappear at a rate of o(m−6),
i.e., the variables both within and across the two series are assumed to become

gradually independent at large lags.

Experiments

The MCMC M.D. We employ MMD in order to diagnose how far an MCMC

chain is from its stationary distribution [89, Section 5], by comparing the

MCMC sample to a benchmark sample. Note that in next chapter we develop

more realistic test that does not require benchmark sample. A hypothesis test

of whether the sampler has converged based on the standard permutation-

based bootstrap leads to too many rejections of the null hypothesis, due to

dependence within the chain. Thus, one would require heavily thinned chains,

which is wasteful of samples and computationally burdensome. Our experi-

ments indicate that the wild bootstrap approach allows consistent tests directly

on the chains, as it attains a desired number of false positives.

To assess performance of the wild bootstrap in determining MCMC conver-

gence, we consider the situation where samples {Xi} and {Yi} are bivariate,

and both have the identical marginal distribution given by an elongated normal

P =N

[ 0 0
]
,

 15.5 14.5
14.5 15.5

. However, they could have arisen either

as independent samples, or as outputs of the Gibbs sampler with stationary

distribution P . Table 3.1 shows the rejection rates under the significance level
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Table 3.1: Rejection rates for two-sample experiments. MCMC: sample size=500; a
Gaussian kernel with bandwidth σ = 1.7 is used; every second Gibbs sample
is kept (i.e., after a pass through both dimensions). Wild bootstrap uses
blocksize of ln = 20; averaged over at least 200 trials. The Type II error for
all tests was zero

experiment \ method permutation M̂MDk,b B1 B2

MCMC i.i.d. vs i.i.d. (H0) .040 .025 .012 .070
i.i.d. vs Gibbs (H0) .528 .100 .052 .105
Gibbs vs Gibbs (H0) .680 .110 .060 .100

X
t

Y
t

X
t

Y
t

Figure 3.1: Xt and Yt, described in the instantaneous independence experiment, with
extinction rates 50% (left) and 99.8% (right), respectively.

α = 0.05. It is clear that in the case where at least one of the samples is a

Gibbs chain, the permutation-based test has a Type I error much larger than

α. The wild bootstrap using B1 (without artificial degeneration) yields the cor-

rect Type I error control in these cases. Consistent with findings in [67, Section

5], B1 mimics the null distribution better than B2. In the alternative scenario

where {Yi} was taken from a distribution with the same covariance structure

but with the mean set to µ=
[

2.5 0
]
, the Type II error for all tests was zero.

Instantaneous independence To examine instantaneous independence test

performance, we compare it with the Shift-HSIC procedure. The shift proce-

dure is a type of a block bootstrap, that we have proposed in the preliminary

work, in which two times series are shifted with respect to each other. Shifting

preserves most of the temporal dependence and removes some of the instan-

taneous defence, since Xt,Yt+k, for large k, are likely to be almost indepen-

dent. The quantiles approximated by calculating the the test statistic on series

{Xt,Y(t+k)modn}nt=1 for k in some range K1 < K2 < n where K1 obviously

must be quite large. We compare two procedures on the ’Extinct Gaussian’
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Figure 3.2: Comparison of Shift-HSIC (A) and tests based on B∗1 and B∗2 . The left
panel shows the performance under the null hypothesis, where a larger AR
coefficient implies a stronger temporal dependence. The right panel show
the performance under the alternative hypothesis, where a larger extinction
rate implies a greater dependence between processes. n= 500
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Figure 3.3: In both panel Type II error is plotted. The left panel presents the error of
the lag-HSIC and KCSD algorithms for a process following dynamics given
by the equation (3.13). The errors for a process with dynamics given by
equations (3.14) and (3.15) are shown in the right panel. The X axis is
indexed by the time series length, i.e., sample size. The Type I error was
around 5%.
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Algorithm 1 Generate innovations

Input: extinction rate 0≤ p≤ 1, radius r.
repeat

Initialize ηt, εt to N(0,1) and d to a number uniformly distributed on [0,1]
.
if η2

t + ε2t > r2 or d > p then
return ηt, εt

end if
until true

autoregressive process, specified by equations

Xt = aXt−1 + εt Yt = aYt−1 +ηt, (3.12)

with an autoregressive component a. The coupling of the processes is a result of

the dependence in the innovations εt,ηt. These εt,ηt are drawn from an Extinct

Gaussian distribution, defined in Algorithm 2 (top of this page). The parameter

p controls how often a point drawn form a ball B(0, r) dies off. According to

Algorithm 2, the probability of seeing a point inside the ball B(0, r) is different

than for a two dimensional Gaussian N(0, Id). On the other hand, as p goes

to zero, the Extinct Gaussian converges in distribution to N(0, Id). Figure 3.1

illustrates the joint distribution of Xt,Yt. The left scatter plot in Figure 3.1

presents Xt and Yt generated with an extinction rate of 50%, while the right

hand plot is generated with an extinction rate of 99.87%. Processes used in

this experiment had an autoregressive component of 0.2, and the radius of the

innovation process was 1.

We compute type I error as a function of the temporal dependence and type

II error as a function of extinction rate. Figure 3.2 shows that all three tests

(Shift-HSIC and tests based on B1 and B2 (1)) perform similarly.

Lag-HSIC The KCSD Besserve et al. [14] is, to our knowledge, the only test

procedure to reject the null hypothesis if there exist t,t′ such that Zt and Zt′

are dependent. In the experiments, we compare lag-HSIC with KCSD on two

kinds of processes: one inspired by econometrics and one from Besserve et al.

[14].

In lag-HSIC, the number of lags under examination was equal to max{10, logn},
where n is the sample size. We used Gaussian kernels with widths estimated

by the median heuristic. The cumulative distribution of the V -statistics was
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approximated by samples from nB∗2 . To model the tail of this distribution,

we have fitted the generalized Pareto distribution to the bootstrapped samples

([76] shows that for a large class of underlying distribution functions such an

approximation is valid).

The first process is a pair of two time series which share a common variance,

Xt = ε1,tσ
2
t ,

Yt = ε2,tσ
2
t ,σ

2
t = 1 + 0.45(X2

t−1 +Y 2
t−1),

εi,t
i.i.d.∼ N (0,1), i ∈ {1,2}.

(3.13)

The above set of equations is an instance of the VEC dynamics [10] used

in econometrics to model market volatility. The left panel of the Figure 3.3

presents the Type II error rate: for KCSD it remains at 90% while for lag-HSIC

it gradually drops to zero. The Type I error, which we calculated by sampling

two independent copies (X(1)
t ,Y

(1)
t ) and (X(2)

t ,Y
(2)
t ) of the process and per-

forming the tests on the pair (X(1)
t ,Y

(2)
t ), was around 5% for both of the tests.

Our next experiment is a process sampled according to the dynamics proposed

by [14],

Xt = cos(φt,1), φt,1 = φt−1,1 + 0.1ε1,t+ 2πf1Ts (3.14)

Yt = [2 +C sin(φt,1)]cos(φt,2), φt,2 = φt−1,2 + 0.1ε2,t+ 2πf2Ts (3.15)

with parameters C = .4, f1 = 4Hz,f2 = 20Hz, and frequency 1
Ts

= 100Hz and

ε1,t, ε2,t
i.i.d.∼ N (0,1). We compared performance of the KCSD algorithm, with

parameters set to vales recommended in [14], and the lag-HSIC algorithm.

The Type II error of lag-HSIC, presented in the right panel of the Figure 3.3, is

substantially lower than that of KCSD. The Type I error (C = 0) is equal or lower

than 5% for both procedures. Most oddly, KCSD error seems to converge to zero

in steps. This may be due to the method relying on a spectral decomposition of

the signals across a fixed set of bands. As the number of samples increases, the

quality of the spectrogram will improve, and dependence will become apparent

in bands where it was undetectable at shorter signal lengths.



Chapter 4

A Kernel Test of Goodness of Fit.

This chapter is based on Kacper Chwialkowski, Heiko Strathmann,

and Arthur Gretton. A kernel test of goodness of fit. In ICML, 2016.

In this chapter we propose a nonparametric statistical test for goodness-of-fit:

given a set of samples, the test determines how likely it is that these were

generated from a target density function. The measure of goodness-of-fit is a

divergence constructed via Stein’s method using functions from a Reproducing

Kernel Hilbert Space. Our test statistic is based on an empirical estimate of

this divergence, taking the form of a V-statistic in terms of the log gradients

of the target density and the kernel. We derive a statistical test, both for i.i.d.

and non-i.i.d. samples, where we estimate the null distribution quantiles using

a wild bootstrap procedure. We apply our test to quantifying convergence of

approximate Markov Chain Monte Carlo methods, statistical model criticism,

and evaluating quality of fit vs model complexity in nonparametric density

estimation.

Test Definition: Statistic and Threshold

We begin with a high-level construction of our divergence discrepancy and the

statistical test. While this section aims to outline the main ideas, we provide

details and proofs in Section 4.2.

Stein Operator in RKHS

Our goal is to write the maximum discrepancy between target distribution p

and observed sample distribution q in a RKHS. Denote by F the RKHS of real-

valued functions on Rd with reproducing kernel k, and by Fd the product
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RKHS consisting of elements f := (f1, . . . ,fd) with fi ∈ F , and with a standard

inner product 〈f,g〉Fd =
∑d
i=1 〈fi,gi〉F . We further assume that all measures

considered in this paper are supported on an open set, equal to zero on the

border, and strictly positive1 (so logarithms are well defined). Similarly to

Stein [101], Gorham and Mackey [40], Oates et al. [74], we begin by defining

a Stein operator Tp acting on f ∈ Fd

(Tpf)(x) :=
d∑
i=1

(
∂ logp(x)
∂xi

fi(x) + ∂fi(x)
∂xi

)
.

Suppose a random variable Z is distributed according to a measure2 q and X

is distributed according to the target measure p. As we will see, the operator

can be expressed by defining a function that depends on gradients of the log-

density and the kernel,

ξp(x, ·) := [∇ logp(x)k(x, ·) +∇k(x, ·)] , (4.1)

whose expected inner product with f gives exactly the expected value of the

Stein operator

EqTpf(Z) = 〈f,Eqξp(Z)〉Fd =
d∑
i=1
〈fi,Eqξp,i(Z)〉F ,

where ξp,i(x, ·) is the i-th component of ξp(x, ·). ForX from the target measure,

we have Ep(Tpf)(X) = 0, which can be seen using integration by parts, c.f.

Lemma 12 in the supplement. We can now define a Stein discrepancy and

express it in the RKHS,

Sp(Z) := sup
‖f‖<1

Eq(Tpf)(Z)−Ep(Tpf)(X)

= sup
‖f‖<1

Eq(Tpf)(Z)

= sup
‖f‖<1

〈f,Eqξp(Z)〉Fd

= ‖Eqξp(Z)‖Fd ,

1An example of such a space is the real line
2Throughout the article, all occurrences of Z, e.g. Z′,Zi,Z♥, are understood to be distributed

according to q.
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This makes it clear why Ep(Tpf)(X) = 0 is a desirable property: we can com-

pute Sp(Z) by computing ‖Eqξp(Z)‖, without the need to access X in the form

of samples from p. To state our first result we define

hp(x,y) :=∇ logp(x)>∇ logp(y)k(x,y)

+∇ logp(y)>∇xk(x,y)

+∇ logp(x)>∇yk(x,y)

+ 〈∇xk(x, ·),∇yk(·,y)〉Fd ,

where the last term can be written as a sum
∑d
i=1

∂k(x,y)
∂xi∂yi

. The following the-

orem gives a simple closed form expression for ‖Eqξp(Z)‖Fd in terms of hp.

Theorem 5. If Ehp(Z,Z)<∞, then S2
p(Z) = ‖Eqξp(Z)‖2Fd = Eqhp(Z,Z′).

The second main result states that the discrepancy Sp(Z) can be used to distin-

guish two distributions.

Theorem 6. Let q,p be probability measures and Z ∼ q. If the kernel k is cc-

universal [20, Definition 4.1], Eqhq(Z,Z) <∞ and Eq

∥∥∥∇(log p(Z)
q(Z)

)∥∥∥2
<∞

then Sp(Z) = 0 if and only if p= q.

Section 4.2 contains all necessary proofs. We now proceed to construct an

estimator for S(Z)2, and outline its asymptotic properties.

Wild Bootstrap Testing

It is straightforward to estimate the squared Stein discrepancy S(Z)2 from sam-

ples {Zi}ni=1: a quadratic time estimator is a V-Statistic, and takes the form

Vn = 1
n2

n∑
i,j=1

hp(Zi,Zj).

The asymptotic null distribution of the normalised V-Statistic nVn, however,

has no computable closed form.

Furthermore, care has to be taken when the Zi exhibit correlation structure,

as the null distribution significantly changes, impacting test significance. To

model temporal structure of the observations we use τ -mixing, discussed in

Section 2.2. τ -mixing is a notion of dependence within the observations,
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weak enough for most practical applications. Trivially, i.i.d. observations

are τ -mixing. As for Markov chains, whose convergence we study in the ex-

periments, the property of geometric ergodicity implies τ -mixing cf. Section

2.2 for more discussion. For this work we will assume a technical condition∑∞
t=1 t

2√τ(t)≤∞.

We will use the wild bootstrap technique to addresses both, lack of a close form

expression for the quantiles of the null distribution and temporal dependence.

First, it allows us to estimate quantiles of the null distribution in order to com-

pute test thresholds. Second, it accounts for correlation structure in the Zi by

mimicking it with an auxiliary random process: a simple Markov chain taking

values in {−1,1}, starting from W1,n = 1,

Wt,n = 1(Ut > an)Wt−1,n−1(Ut < an)Wt−1,n,

where the Ut are uniform [0,1] i.i.d. random variables and an is the probability

of Wt,n changing sign (for i.i.d. data we may set an = 0.5). This leads to a

bootstrapped V-statistic (cf. Section 2.2).

Bn = 1
n2

n∑
i,j=1

Wi,nWj,nh(Zi,Zj).

Proposition 2, based of the Theorems 1, 2, 3 from Chapter 3, establishes that,

under the null hypothesis, nBn is a good approximation of nVn, so it is possible

to approximate quantiles of the null distribution by sampling from it. Under

the alternative, however, Vn dominates Bn – resulting in almost sure rejection

of the null hypothesis.

Proposition 2. Suppose h is Lipschitz continuous and Ehp(Z,Z)<∞. Under

the null hypothesis nVn and nBn have the same limiting distribution (in a

weak sense). Under the alternative hypothesis, Bn converges to zero, while Vn

converges to a positive constant.

We propose the following test procedure for testing the null hypothesis that the

Zi are distributed according to the target distribution p.

• Calculate the test statistic nVn.

• Obtain wild bootstrap samples {nBn}Di=1 and estimate the 1−α empirical
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quantile of these samples.

• If nVn exceeds the quantile, reject.

Proofs of the Main Results

We now prove the claims made in the previous Section.

Stein Operator in RKHS

We show in Lemma 12 that the expected value of the Stein operator is zero on

the target measure.

Lemma 12. Oates et al. [74, Lemma 1] If a random variable X is distributed

according to p, under conditions on the kernel

0 =
∮
∂X

k(x,x′)q(x)n(x)dS(x′),

0 =
∮
∂X
∇xk(x,x′)>n(x′)q(x′)dS(x′),

and then for all f ∈ F , the expected value of T is zero, i.e. Ep(Tf)(X) = 0.

This result was proved on bounded domains X ⊂Rd by Oates et al. [74, Lemma

1], where n(x) is the unit vector normal to the boundary at x, and
∮
∂X is the

surface integral over the boundary ∂X . The case of unbounded domains was

discussed by Oates et al. [74, Remark 2]. Here we provide an alternative,

elementary proof for the latter case.

Proof. First we show that the function p · fi vanishes at infinity, by which we

mean that for all dimensions j

lim
xj→∞

p(x1, · · · ,xd) ·fi(x1, · · · ,xd) = 0.

The density function p vanishes at infinity. The function f is bounded, which

is implied by Cauchy-Schwarz inequality, |f(x)| ≤ ‖f‖
√
k(x,x). This implies

that the function p · fi vanishes at infinity. We check that the expected value
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Eq(Tq)f(Z) is zero. For all dimensions i

Epξp(X)

Ep

(
∂ logp(X)

∂xi
fi(X) + ∂fi(X)

∂xi

)
=
∫
Rd

[
∂ logp(x)
∂xi

fi(x) + ∂fi(x)
∂xi

]
p(x)dx

=
∫
Rd

[
1

p(x)
∂p(x)
∂xi

f(x) + ∂f(x)
∂xi

]
p(x)dx

=
∫
Rd

[
∂p(x)
∂xi

fi(x) + ∂fi(x)
∂xi

p(x)
]
dx

(a)=
∫
Rd−1

(
lim
R→∞

p(x)fi(x)
∣∣∣∣xi=R
xi=−R

)
dx1 · · ·dxi−1 · · ·dxi+1 · · ·dxd

=
∫
Rd−1

0dx1 · · ·dxi−1 · · ·dxi+1 · · ·dxd

= 0.

For the equation (a) we have used integration by parts, the fact that p(x)fi(x)
vanishes at infinity and Fubini-Toneli theorem to show that we can do iter-

ated integration. The sufficient condition for the Fubini-Toneli theorem is that

Eq〈f,ξp(Z)〉2 <∞. This is true since Ep‖ξp(X)‖2 ≤ Ephp(X,X)<∞.

Proof of Theorem 5. ξp(x, ·) is an element of the reproducing kernel Hilbert

space Fd – by Steinwart and Christmann [102, Lemma 4.34] ∇k(x, ·) ∈ F ,

and ∂ logp(x)
∂xi

is just a scalar. We first show that hp(x,y) = 〈ξp(x, ·), ξp(y, ·)〉.
Using notations

∇xk(x, ·) =
(
∂k(x, ·)
∂x1

, · · · , ∂k(x, ·)
∂xd

)
∇yk(·,y) =

(
∂k(·,y)
∂y1

, · · · , ∂k(·,y)
∂yd

)
,

we calculate

〈ξp(x, ·), ξp(y, ·)〉=∇ logp(x)>∇ logp(y)k(x,y)

+∇ logp(y)>∇xk(x,y)

+∇ logp(x)>∇yk(x,y)

+ 〈∇xk(x, ·),∇yk(·,y)〉Fd .
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Next we show that ξp(x, ·) is Bochner integrable (see [102, Definition A.5.20]),

which allows us to change order of the integration

Eq‖ξp(Z)‖Fd ≤ Eq‖ξp(Z)‖2Fd = Eqhp(Z,Z)<∞.

We next relate the expected value of the Stein operator to the inner product of

f and the expected value of ξq(Z),

EqTpf(Z) = 〈f,Eqξp(Z)〉Fd =
d∑
i=1
〈fi,Eqξp,i(Z)〉F . (4.2)

We check the claim for all dimensions

〈fi,Eqξp,i(Z)〉F

=
〈
fi,Eq

[
∂ logp(Z)

∂xi
k(Z, ·) + ∂k(Z, ·)

∂xi

]〉
F

= Eq

〈
fi,

∂ logp(Z)
∂xi

k(Z, ·) + ∂k(Z, ·)
∂xi

〉
F

= Eq

[
∂ logp(Z)

∂xi
fi(Z) + ∂fi(Z, ·)

∂xi

]
.

The second equality follows from the fact that a linear operator 〈fi, ·〉F can

be interchanged with the Bochner integral, and the fact that ξp is Bochner

integrable. Using definition of S(Z), Lemma (12) and Equation (4.2) we have

Sp(Z) := sup
‖f‖<1

Eq(Tpf)(Z)−Ep(Tpf)(X)

= sup
‖f‖<1

Eq(Tpf)(Z)

= sup
‖f‖<1

〈f,Eqξp(Z)〉Fd

= ‖Eqξp(Z)‖Fd .

We now calculate closed form formula for S2
p(Z),

S2
p(Z) = 〈Eqξp(Z),Eqξp(Z)〉Fd = Eq〈ξp(Z),Eqξp(Z)〉Fd

= Eq〈ξp(Z), ξp(Z′)〉Fd = Eqhp(Z,Z′),

where Z′ is an independent copy of Z.
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Next, we prove that the discrepancy S discriminates different probability mea-

sures.

Proof of Theorem 6. If p = q then Sp(Z) is 0 by Lemma (12). Suppose p 6= q,

but Sp(Z) = 0. If Sp(Z) = 0 then, by Theorem 5, Eqξp(Z) = 0. In the following

we substitute logp(Z) = logq(Y ) + [logp(Z)− logq(Y )],

Eqξp(Z)

= Eq (∇ logp(Z)k(Z, ·) +∇k(Z, ·))

= Eqξq(Z) +Eq (∇[logp(Z)− logq(Y )]k(Z, ·))

= Eq (∇[logp(Z)− logq(Y )]k(Z, ·))

We have used Theorem 5 and Lemma (12) to see that Eqξq(Z) = 0, since

‖Eqξq(Z)‖2 = Sq(Z) = 0.

We recognise that the expected value of ∇(logp(Z)− logq(Z))k(Z, ·) is the

mean embedding of a function g(y) = ∇
(

log p(y)
q(y)

)
with respect to the mea-

sure q. By the assumptions function g is square integrable, therefore, since the

kernel k is cc-universal, by Carmeli et al. [20, Theorem 4.4 c] its embedding

is zero if and only if g = 0. This implies that

∇ log p(y)
q(y) = (0, · · · ,0).

A constant vector field of derivatives can only be generated by a constant func-

tion, so log p(y)
q(y) =C, for some C, which implies that p(y) = eCq(y). Since p and

q both integrate to one, C = 0 then p= q, which is a contradiction.

Wild Bootstrap Testing

Proof of proposition 2. We show that, under the alternative hypothesis, Bn con-

verges to zero. We use Theorem 3, the assumption τ(r) = o(r−4) is satisfied

since
∑∞
t=1 t

2√τ(t)≤∞. We check the assumption

sup
n

sup
i,j<n

Eqhp(Zi,Zj)2 <∞.
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We have Eqhp(Z,Z′)2 ≤
(
Eq‖ξp(Z)‖2

)2 = (Eqhp(Z,Z))2 <∞ .

We show that, under the alternative hypothesis, Vn converges to a positive

constant. We use Theorem 2, the zero component of h is positive since S(Z)2 >

0. We checked the assumption supn supi∈N2 Eh(Zi)2 <∞ above.

We show that, under the null hypothesis Vn and Bn have the same limiting dis-

tribution. We use Theorem 2, by the assumptions h is Lipschitz continuous. h

is kernel since it can be written as h(x,y) = 〈ξ(x), ξ(y)〉 and it is one degenerate

under the null, since

Eh(Z,y) = 〈Eξ(Z), ξ(y)〉= 0.

We checked the assumption supn supi,j<nEqhp(Zi,Zj)2 <∞. above.

Finally we check the bootstrap assumption (Definition 1) : {Wt,n}1≤t≤n is a

row-wise strictly stationary triangular array independent of all Zt such that

EWt,n = 0 and supnE|W 2+σ
t,n | = 1 <∞ for some σ > 0. The auto-covariance

of the process is given by EWs,nWt,n = (1−2an)−|s−t|, so the function ρ(x) =
exp(−x), and ln = log(1− 2an)−1. We verify that limu→0 ρ(u) = 1. If we set

an = w−1
n , such that wn = o(

√
n) and limn→∞wn =∞, then ln = O(wn) and∑n−1

r=1 ρ(|r|/ln) = 1−(1−2an)n+1

pn
=O(wn) =O(ln).

As a consequence, if the null hypothesis is true, we can approximate any quan-

tile; while under the alternative hypothesis, all quantiles of Bn collapse to zero

while P (Vn > 0)→ 1.

Experiments

We provide a number of experimental applications for our test. We begin with a

simple check to establish correct test calibration on non-i.i.d. data, followed by

a demonstration of statistical model criticism for Gaussian process (GP) regres-

sion. We then apply the proposed test to quantify bias-variance trade-offs in

MCMC, and demonstrate how to use the test to verify whether MCMC samples

are drawn from the desired stationary distribution. In the final experiment, we

move away from the MCMC setting, and use the test to evaluate the conver-

gence of a nonparametric density estimator.
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Figure 4.1: Large autocovariance, unsuitable bootstrap. The parameter an is too large
and the bootstrapped V-statistics Bn are too low on average. Therefore, it
is very likely that Vn >Bn and the test is too conservative.
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Figure 4.2: Large autocovariance, suitable bootstrap. The parameter anis chosen suit-
ably, but due to a large autocorrelation within the samples, the power of
the test is small (effective sample size is small).

Student’s t vs Normal

In our first task, we modify experiment 4.1 from Gorham and Mackey 40. The

null hypothesis is that the observed samples come from a standard normal dis-

tribution. We study the power of the test against samples from a Student’s t

distribution. We expect to observe low p-values when testing against a Stu-

dent’s t distribution with few degrees of freedom. We consider 1, 5, 10 or ∞
degrees of freedom, where∞ is equivalent to sampling from a standard normal

distribution. For a fixed number of degrees of freedom we draw 1400 samples

and calculate the p-value. This procedure is repeated 100 times, and the bar

plots of p-values are shown in Figures 4.1,4.2,4.3.
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Figure 4.3: Thinned sample, suitable bootstrap. Most of the autocorrelation within the
sample is canceled by thinning. To guarantee that the remaining autocor-
relation is handled properly, the flip probability is set at 0.1.

Our twist on the original experiment 4.1 by Gorham and Mackey 40 is that the

draws from the Student’s t distribution exhibit temporal correlation. We gen-

erate samples using a Metropolis–Hastings algorithm, with a Gaussian random

walk with variance 1/2. We emphasise the need for an appropriate choice of

the wild bootstrap process parameter an. In Figure 4.1 we plot p-values for an

being set to 0.5. Such a high value of an is suitable for i.i.d. observations, but

results in p-values that are too conservative for temporally correlated observa-

tions. In Figure 4.2, we set an = 0.02, which gives a well calibrated distribution

of the p-values under the null hypothesis, however, the test power is reduced.

Indeed, p-values for five degrees of freedom are already large. The solution

that we recommend is a mixture of thinning and adjusting an, as presented in

the Figure 4.3. We thin the observations by a factor of 20 and set an = 0.1,

thus preserving both good statistical power and correct calibration of p-values

under the null hypothesis. In a general, we recommend to thin a chain so that

Cor(Xt,Xt−1)< 0.5, set an = 0.1/k, and run test with at least max(500k,d100)
data points, where k < 10.

Comparing to a parametric test in increasing dimensions.

In this experiment, we compare with the test proposed by [8], which essentially

is an MMD test for normality, i.e. the null hypothesis is that Z is a d-dimensional

standard normal random variable. We set the sample size to n= 500,1000 and

an = 0.5, generate

Z ∼N (0, Id) Y ∼ U [0,1]
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d 2 5 10 15 20 25
B&H

n= 500 1 1 1 0.86 0.29 0.24
Stein 1 1 0.86 0.39 0.05 0.05
B&H

n= 1000 1 1 1 1 0.87 0.62
Stein 1 1 1 0.77 0.25 0.05

Table 4.1: Test power vs. sample size for the test by [8] (B&H) and our Stein based
test.
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Figure 4.4: Fitted GP and data used to fit (blue) and to apply test (red).

and modify Z0←Z0 +Y . Table 4.1 shows the power as a function of the sample

size. We observe that for higher dimensions, and where the expectation of the

kernel exists in closed form, an MMD-type test like [8] is a better choice.

Statistical Model Criticism on Gaussian Processes

This experiment was conducted by co-author of the article on which this chap-

ter is based, Heiko Strathmann.

We next apply our test to the problem of statistical model criticism for GP

regression. Our presentation and approach are similar to the non i.i.d. case of

Lloyd and Ghahramani [Section 6 70]. We use the solar dataset, consisting of

a d = 1 regression problem with N = 402 pairs (X,y). We fit Ntrain = 361 data

using a GP with an exponentiated quadratic kernel and a Gaussian noise model,

and perform standard maximum likelihood II on the hyperparameters (length-

scale, overall scale, noise-variance). We then apply our test to the remaining

Ntest = 41 data. The test attempts to falsify the null hypothesis that the solar

dataset was generated from the plug-in predictive distribution (conditioned on
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Figure 4.5: Bootstrapped Bn distribution with the test statistic Vn marked.

training data and predicted position) of the GP. Lloyd and Ghahramani refer to

this setup as non i.i.d., since the predictive distribution is a different univariate

Gaussian for every predicted point. Our particular Ntrain,Ntest were chosen to

make sure the GP fit has stabilised, i.e. adding more data did not cause further

model refinement.

Figure 4.4 shows training and testing data, and the fitted GP. Clearly, the Gaus-

sian noise model is a poor fit for this particular dataset, e.g. around X = −1.

Figure 4.5 shows the distribution over D = 10000 bootstrapped V-statistics Bn

with n = Ntest. The test statistic lies in an upper quantile of the bootstrapped

null distribution, correctly indicating that it is unlikely the test points were gen-

erated by the fitted GP model, even for the low number of test data observed,

n= 41.

In a second experiment, we compare against Lloyd and Ghahramani: we com-

pute the MMD statistic between test data (Xtest,ytest) and (Xtest,yrep), where

yrep are samples from the fitted GP. We draw 10000 samples from the null

distribution by repeatedly sampling new ỹrep from the GP plug-in predictive

posterior, and comparing (Xtest, ỹrep) to (Xtest,yrep). When averaged over 100

repetitions of randomly partitioning (X,y) for training and testing, our good-

ness of fit test produces a p-value that is statistically not significantly different

from the MMD method (p≈ 0.1, note that this result is subject to Ntrain,Ntest).

We emphasise, however, that Lloyd and Ghahramani’s test requires to sam-

ple from the fitted model (here 10000 null samples were required in order

to achieve stable p-values). Our test does not sample from the GP at all and

completely side-steps this more costly approach.



72

0.001 0.04 0.08 0.13 0.17

epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
va

lu
es

Figure 4.6: Distribution of p-values as a function of ε for austerity MCMC.
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Figure 4.7: Average number of likelihood evaluations a function of ε for austerity
MCMC (the y-axis is in millions of evaluations).

Bias quantification in Approximate MCMC

We now illustrate how to quantify bias-variance trade-offs in an approximate

MCMC algorithm austerity MCMC [64]. For the purpose of illustration we use

a simple generative model from Gorham and Mackey [40], Welling and Teh

[112],

θ1 ∼N (0,10);θ2 ∼N (0,1)

Xi ∼
1
2N (θ1,4) + 1

2N (θ2,4).

Austerity MCMC is a Monte Carlo procedure designed to reduce the number

of likelihood evaluation in the acceptance step of the Metropolis-Hastings al-

gorithm. The crux of method is to look at only a subset of the data, and make

an acceptance/rejection decision based on this subset. The probability of mak-
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Figure 4.8: Density estimation: P-values for an increasing number of data N for the
nonparametric model.

ing a wrong decision is proportional to a parameter ε ∈ [0,1] . This parameter

influences the time complexity of austerity MCMC: when ε is larger, i.e., when

there is a greater tolerance for error, the expected computational cost is lower.

We simulate {Xi}1≤i≤400 points from the model with θ1 = 0 and θ2 = 1. In

our experiment, there are two modes in the posterior distribution: one at (0,1)
and the other at (1,−1). We run the algorithm with ε varying over the range

[0.001,0.2]. For each ε we calculate an individual thinning factor, such that

correlation between consecutive samples from the chains is smaller than 0.5
(greater ε generally required more thinning). For each ε we test the hypothesis

that {θi}1≤i≤500 is drawn from the true stationary posterior, using our good-

ness of fit test. We generate 100 p-values for each ε , as shown in Figure 4.6.

ε = 0.4 yields a good approximation of the true stationary distribution, while

being parsimonious in terms of likelihood evaluations, as shown in Figure 4.7.

Convergence in nonparametric density estimation

In our final experiment, we apply our goodness of fit test to measuring quality-

of-fit in nonparametric density estimation. We evaluate two density models:

the infinite dimensional exponential family [100], and a recent approximation

to this model using random Fourier features [106]. Our implementation of

the model assumes the log density to take the form f(x), where f lies in a

RKHS induced by a Gaussian kernel with bandwidth 1. We fit the model using

N observations drawn from a standard Gaussian, and perform our quadratic

time test on a separate evaluation dataset of fixed size n = 500. Our goal is
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Figure 4.9: Approximate density estimation: P-values for an increasing number of ran-
dom features m.

to identify N sufficiently large that the goodness of fit test does not reject

the null hypothesis (i.e., the model has learned the density sufficiently well,

bearning in mind that it is guaranteed to converge for sufficiently large N).

Figure 4.8 shows how the distribution of p-values evolves as a function of N ;

this distribution is uniform for N = 5000, but at N = 500, the null hypothesis

would very rarely be rejected.

We next consider the random Fourier feature approximation to this model,

where the log pdf f , is approximated using a finite dictionary of random Fourier

features [79]. The natural question when using this approximation is: “How

many random features are needed?” Using the same test set size n = 500 as

above, and a large number of available samples N = 5 · 104, Figure 4.9 shows

the distributions of p-values for an increasing number of random features m.

From m= 50, the null hypothesis would rarely be rejected, given a reasonable

choice of test level. Note, however, that the p-values do not have a uniform

distribution, even for a large number of random features. This subtle effect is

caused by over-smoothing due to the regularisation approach taken in [106,

KMC finite], which would not otherwise have been detected.



Chapter 5

Fast Analytic Functions Based Two Sample Test.

This chapter is based on Kacper Chwialkowski, Aaditya Ramdas,

Dino Sejdinovic, and Arthur Gretton. Fast two-sample testing with

analytic representations of probability measures. In Advances in

Neural Information Processing Systems, pages 1972–1980, 2015.

In this chapter we propose a class of nonparametric two-sample tests with a

cost linear in the sample size. Two tests are given, both based on an ensem-

ble of distances between analytic functions representing each of the distribu-

tions. The first test uses smoothed empirical characteristic functions to rep-

resent the distributions, the second uses distribution embeddings in a repro-

ducing kernel Hilbert space. Analyticity implies that differences in the distri-

butions may be detected almost surely at a finite number of randomly chosen

locations/frequencies. The new tests are consistent against a larger class of

alternatives than the previous linear-time tests based on the (non-smoothed)

empirical characteristic functions, while being much faster than the current

state-of-the-art quadratic-time kernel-based or energy distance-based tests. Ex-

periments on artificial benchmarks and on challenging real-world testing prob-

lems demonstrate that our tests give a better power/time tradeoff than compet-

ing approaches, and in some cases, better outright power than even the most

expensive quadratic-time tests. This performance advantage is retained even

in high dimensions, and in cases where the difference in distributions is not

observable with low order statistics.
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Analytic embeddings and distances

In this section we consider mappings from the space of probability measures

into a sub-space of real valued analytic functions. We will show that evaluating

these maps at J randomly selected points is almost surely injective for any

J > 0. Using this result, we obtain a simple (randomized) metrization of the

space of probability measures. This metrization is used in the next section to

construct linear-time nonparametric two-sample tests.

Pseudometrics based on characteristic functions. A practical limitation

when using the MMD in testing is that an empirical estimate is expensive to

compute, this being the sum of two U-statistics and an empirical average, with

cost quadratic in the sample size [45, Lemma 6]. We might instead consider

a finite dimensional approximation to the MMD, achieved by estimating the

integral (2.9), with the random variable

d2
ϕ,J (P,Q) = 1

J

J∑
j=1
|ϕP (Tj)−ϕQ(Tj)|2, (5.1)

where {Tj}Jj=1 are sampled independently from the distribution with a density

function F−1κ. This type of approximation is applied to various kernel algo-

rithms under the name of random Fourier features [79, 65]. In the statistical

testing literature, the quantity dϕ,J (P,Q) predates the MMD by a considerable

time, and was studied in [54, 55, 31], and more recently revisited in [117].

Our first proposition is that d2
ϕ,J (P,Q) can be a poor choice of distance be-

tween probability measures, as it fails to distinguish a large class of measures.

The following result is proved in the Appendix.

Proposition 3. Let J ∈ N and let {Tj}Jj=1 be a sequence of real valued i.i.d.

random variables with a distribution which is absolutely continuous with respect

to the Lebesgue measure. For any 0 < ε < 1, there exists an uncountable set A
of mutually distinct probability measures (on the real line) such that for any

P,Q ∈ A, P
(
d2
ϕ,J (P,Q) = 0

)
≥ 1− ε.

We are therefore motivated to find distances of the form (5.1) that can dis-

tinguish larger classes of distributions, yet remain efficient to compute. These

distances are characterized as follows:

Definition 4 (Random Metric). A random process d with values in R, indexed
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with pairs from the set of probability measuresM, i.e., d= {d(P,Q) : P,Q∈M},
is said to be a random metric if it satisfies all the conditions for a metric with

qualification ‘almost surely’. Formally, for all P,Q,R ∈ M, random variables

d(P,Q),d(P,R),d(R,Q) must satisfy

1. d(P,Q)≥ 0 a.s.

2. if P =Q, then d(P,Q) = 0 a.s, if P 6=Q then d(P,Q) 6= 0 a.s.

3. d(P,Q) = d(Q,P ) a.s.

4. d(P,Q)≤ d(P,R) +d(R,Q) a.s. 1

From the statistical testing point of view, the coincidence axiom of a metric

d, d(P,Q) = 0 if and only if P = Q, is key, as it ensures consistency against

all alternatives. The quantity dϕ,J (P,Q) in (5.1) violates the coincidence ax-

iom, so it is only a random pseudometric (other axioms are trivially satisfied).

We remedy this problem by replacing the characteristic functions by smooth

characteristic functions:

Definition 5. A smooth characteristic function φP (t) of a measure P is a charac-

teristic function of P convolved with an analytic smoothing kernel l, i.e.

φP (t) =
∫

Rd
ϕP (w)l(t−w)dw, t ∈Rd. (5.2)

Proposition 5 shows that smooth characteristic function can be estimated in a

linear time. The analogue of dϕ,J (P,Q) for smooth characteristic functions is

simply

d2
φ,J (P,Q) = 1

J

J∑
j=1
|φP (Tj)−φQ(Tj)|2,

where {Tj}Jj=1 are sampled independently from the absolutely continuous dis-

tribution (returning to our earlier example, this might be F−1κ(t) if we believe

this to be an informative choice). The following theorem, proved in the Ap-

pendix, demonstrates that the smoothing greatly increases the class of distri-

butions we can distinguish.

Theorem 7. Let l be an analytic, integrable kernel with an inverse Fourier trans-

form that is non-zero almost everywhere. Then, for any J > 0, dφ,J is a random
1 Note that this does not imply that realizations of d are distances onM, but it does imply that

they are almost surely distances for all arbitrary finite subsets ofM.
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metric on the space of probability measures with integrable characteristic func-

tions, and φP is an analytic function.

This result is primarily a consequence of analyticity of smooth characteristic

functions and the fact that analytic functions are ’well behaved’. There is an

additional, practical advantage to smoothing: when the variability in the dif-

ference of the characteristic functions is high, and these differences are local,

smoothing distributes the difference in CFs more broadly in the frequency do-

main (a simple illustration is in Fig. 5.1), making it easier to find by mea-

surement at a small number of randomly chosen points. This accounts for the

observed improvements in test power in Section A.4, over differences in un-

smoothed CFs.
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Figure 5.1: Smooth vs non-smooth. Left: pseudo-distance dϕ,1(P,Q) which uses a
single frequency t ∈R2 as a function of this frequency; Middle: dφ,1(P,Q)
depicted in the same way; Right: dµ,1(P,Q) which uses a single location
t∈R2 as a function of this location. The measures P,Q used are illustrated
in Figure 5.6 - these are grids of Gaussian distributions discussed in detail
in Section 5.4.

Metrics based on mean embeddings. The key step which leads us to the

construction of a random metric dφ,J is the convolution of the original char-

acteristic functions with an analytic smoothing kernel. This idea needs not

be restricted to the representations of probability measures in the frequency

domain. We may instead directly convolve the probability measure with a pos-

itive definite kernel k (that needs not be translation invariant), yielding its

mean embedding into the associated RKHS,

µP (t) =
∫
E
k(x,t)dP (x).

We say that a positive definite kernel k : RD×RD →R is analytic on its do-

main if for all x ∈RD, the feature map k(x, ·) is an analytic function on RD.

By using embeddings with characteristic and analytic kernels, we obtain partic-
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ularly useful representations of distributions. As for the smoothed CF case, we

define

d2
µ,J (P,Q) = 1

J

J∑
j=1

(µP (Tj)−µQ(Tj))2.

The following theorem ensures that dµ,J (P,Q) is also a random metric.

Theorem 8. Let k be an analytic, integrable and characteristic kernel. Then for

any J > 0, dµ,J is a random metric on the space of probability measures (and µP
is an analytic function).

Note that this result is stronger than the one presented in Theorem 7, since it is

not restricted to the class of probability measures with integrable characteristic

functions. Indeed, the assumption that the characteristic function is integrable

implies the existence and boundedness of a density. Recalling the representa-

tion of MMD in (2.11), we have proved that it is almost always sufficient to

measure difference between µP and µQ at a finite number of points, provided

our kernel is characteristic and analytic. In the next section, we will see that

metrization of the space of probability measures using random metrics dµ,J ,

dφ,J is very appealing from the computational point of view. It turns out that

the statistical tests that arise from these metrics have linear time complexity

(in the number of samples) and constant memory requirements.

Hypothesis Tests Based on Distances Between Analytic Functions

In this section, we provide two linear-time two-sample tests: first, a test based

on analytic mean embeddings, and next a test based on smooth characteristic

functions. We further describe the relation with competing alternatives. Proofs

of all propositions are in Appendix 5.3.

Difference in analytic functions In the previous section we described the ran-

dom metric based on a difference in analytic mean embeddings, d2
µ,J (P,Q) =

1
J

∑J
j=1(µP (Tj)−µQ(Tj))2. If we replace µP with the empirical mean embed-

ding µ̂P = 1
n

∑n
i=1 k(Xi, ·) it can be shown that for any sequence of unique

{tj}Jj=1, under the null hypothesis, as n→∞,

√
n

J∑
j=1

(µ̂P (tj)− µ̂Q(tj))2 (5.3)

converges in distribution to a sum of correlated chi-squared variables. Even
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for fixed {tj}Jj=1, it is very computationally costly to obtain quantiles of this

distribution, since this requires a bootstrap or permutation procedure. We

will follow a different approach based on Hotelling’s T 2-statistic [59]. The

Hotelling’s T 2-squared statistic of a normally distributed, zero mean, Gaussian

vector W = (W1, · · · ,WJ ), with a covariance matrix Σ, is T 2 = WΣ−1W . The

compelling property of the statistic is that it is distributed as a χ2-random vari-

able with J degrees of freedom. To see a link between T 2 and equation (5.3),

consider a random variable
∑J
i=jW

2
j : this is also distributed as a sum of cor-

related chi-squared variables. In our case W is replaced with a difference of

normalized empirical mean embeddings, and Σ is replaced with the empirical

covariance of the difference of mean embeddings. Formally, let Zi denote the

vector of differences between kernels at tests points Tj ,

Zi = (k(Xi,T1)−k(Yi,T1), · · · ,k(Xi,TJ )−k(Yi,TJ )) ∈RJ .

We define the vector of mean empirical differences Wn = 1
n

∑n
i=1Zi, and its

covariance matrix Σn = 1
n

∑
i(Zi−Wn)(Zi−Wn)T . The test statistic is

Sn = nWnΣ−1
n Wn.

The computation of Sn requires inversion of a J ×J matrix Σn, but this is fast

and numerically stable: J will typically be small, and is less than 10 in our

experiments. The next proposition demonstrates the use of Sn as a two-sample

test statistic.

Proposition 4 (Asymptotic behavior of Sn). Let d2
µ,J (P,Q) = 0 a.s. and let

{Xi}ni=1 and {Yi}ni=1 be i.i.d. samples from P and Q respectively. If Σ−1
n exists

for n large enough, then the statistic Sn is a.s. asymptotically distributed as

a χ2-random variable with J degrees of freedom (as n→∞ with d fixed). If

d2
µ,J (P,Q)> 0 a.s., then a.s. for any fixed r, P(Sn > r)→ 1 as n→∞ .

We now apply the above proposition to obtain a statistical test.

Test 1 (Analytic mean embedding ). Calculate Sn. Choose a threshold rα corre-

sponding to the 1−α quantile of a χ2 distribution with J degrees of freedom, and

reject the null hypothesis whenever Sn is larger than rα.

There are a number of valid sampling schemes for the test points {Tj}Jj=1 to

evaluate the differences in mean embeddings: see Section 5.5 for a discussion.
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Difference in smooth characteristic functions From the convolution defini-

tion of a smooth characteristic function (5.2) it is not immediately obvious how

to calculate its estimator in linear time. In the next proposition, however, we

show that a smooth characteristic function is an expected value of some func-

tion (with respect to the given measure), which can be estimated in a linear

time.

Proposition 5. Let k be an integrable translation-invariant kernel and f its in-

verse Fourier transform. Then the smooth characteristic function of P can be

written as φP (t) =
∫

Rd e
it>xf(x)dP (x).

It is now clear that a test based on the smooth characteristic functions is similar

to the test based on mean embeddings. The main difference is in the definition

of the vector of differences Zi:

Zi = (f(Xi)sin(XiT1)−f(Yi)sin(YiT1),f(Xi)cos(XiT1)−f(Yi)cos(YiT1), · · ·)∈R2J

The imaginary and real part of the e
√
−1T>j Xif(Xi)− e

√
−1T>j Yif(Yi) are

stacked together, in order to ensure that Wn, Σn and Sn as all real-valued

quantities.

Proposition 6. Let d2
φ,J (P,Q) = 0 and let {Xi}ni=1 and {Yi}ni=1 be i.i.d. samples

from P and Q respectively. Then the statistic Sn is almost surely asymptotically

distributed as a χ2-random variable with 2J degrees of freedom (as n→∞ with

J fixed). If d2
φ,J (P,Q)> 0 , then almost surely for any fixed r, P (Sn > r)→ 1 as

n→∞.

Other tests. The test [31] based on empirical characteristic functions was

constructed originally for one test point and then generalized to many points -

it is quite similar to our second test, but does not perform smoothing (it is also

based on a T 2-Hotelling statistic). The block MMD [114] is a sub-quadratic

test, which can be trivially linearized by fixing the block size, as presented in

the Appendix. Finally, another alternative is the MMD, an inherently quadratic

time test. We scale MMD to linear time by sub-sampling our data set, and

choosing only
√
n points, so that the MMD complexity becomes O(n). Note,

however, that the true complexity of MMD involves a permutation calculation

of the null distribution at cost O(bnn), where the number of permutations bn

grows with n. See Appendix 5.4 for a detailed description of block MMD.
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Proofs

Proof of Proposition 3

Proof. Since Ti are supported on the whole real line, for each ε there exists real

number I such that P (Ti ∈ [−I,I]) < 1− (1− ε) 1
J . We now construct a family

of triangle characteristic functions, centered around zero, that differ only on

the interval [−I,I].

Define a triangle function fw(t) = max(1−w|t|,0). By Polya’s theorem, A =
{fw}w> 1

I
is an uncountable family of different characteristic functions.

These functions are the same (equal to zero) on the complement of [−I,I]. The

probability P (Ti /∈ [−I,I]) > (1− ε) 1
J . The probability that all Ti sit outside of

the interval [−I,I] is greater than
(

(1− ε) 1
J

)J
= 1− ε. If all Ti sit outside of

the interval [−I,I], S2
ϕ,J = 0. Therefore P (S2

ϕ,J = 0)> 1− ε.

Proof of Theorem 8

First we give a proposition that characterizes limits of analytic functions.

Proposition 7 ( [25, Proposition 3] ). If {fn} is a sequence of real valued,

uniformly bounded analytic functions on Rd converging pointwise to f , then f is

analytic.

Now we characterize the RKHS of an analytic kernel. Similar results were

proved for specific classes of kernels in [108, Theorem 1], [105, Corollary 3.5].

Lemma 13. If k is a bounded, analytic kernel on Rd×Rd, then all functions in

the RKHS Hk associated with this kernel are analytic.

Proof. Since Rd is separable then by [103, Lemma 4.33] Hilbert Space Hk is

separable. Therefore, by Moore-Aronszajn Theorem [13] there exist a set H0

of linear combinations of functions k(·,x),x ∈ Rd, which is dense in Hk and

Hk is a set of functions which are limits of Cauchy sequences in H0. For f ∈Hk
let {fn} ∈ H0 be a sequence of functions converging in the RKHS norm to f .

Since {fn} is convergent there exists N such that ∀n > N ‖fn−f‖ ≤ 1. For all
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n there exist a uniform bound max(1,max1≤i≤N ‖fi‖) +‖f‖ on norm of fn

‖fn‖= ‖fn−f +f‖ ≤ ‖fn−f‖+‖f‖ ≤max(1, max
1≤i≤N

‖fi‖) +‖f‖.

Since k is bounded, by the [103, Lemma 4.33], there exists C such that for any

f ∈Hk, ‖f‖∞ ≤ C‖f‖. Therefore for all n

‖fn‖∞ ≤ Cmax(1, max
1≤i≤N

‖fi‖) +C‖f‖.

Finally, using Proposition 7 we conclude that f is analytic. We check assump-

tions – convergence in norm in RKHS implies pointwise convergence, the se-

quence is uniformly bounded by Cmax(1,max1≤i≤N ‖fi‖) +C‖f‖ and each

element of the sequence fn is analytic as a linear combinations of analytic

functions k(·,x),x ∈Rd.

Next, we show that analytic functions are ’well behaved’.

Lemma 14. Let µ be absolutely continuous measure on Rd (wrt. the Lebesgue

measure). Non-zero, analytic function f can be zero at most at the set of measure

0, with respect to the measure µ.

Proof. If f is zero at the set with a limit point then it is zero everywhere.

Therefore f can be zero at most at a set A without a limit point, which by

definition is a discrete set (distance between any two points in A is greater

then some ε > 0). Discrete sets have zero Lebesgue measure (as a countable

union of points with zero measure). Since P is absolutely continuous then

µ(A) is zero as well.

Next, we show how to construct random distances.

Lemma 15. Let Λ be an injective mapping from the space of the probability

measures into a space of analytic functions on Rd. Define

d2
Λ,J (P,Q) =

J∑
j=1

∣∣∣ [ΛP ] (Tj)− [ΛQ] (Tj)
∣∣∣2

where {Tj}Jj=1 are real valued i.i.d. random variables from a distribution which

is absolutely continuous with respect to the Lebesgue measure. Then, d2
Λ,J (P,Q)

is a random metric.
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Proof. Let ΛP and ΛQ be images of measures P and Q respectively. We want

to apply Lemma 14 to the analytic function f = ΛP −ΛQ, with the measure

µ = µTi , to see that if P 6= Q then f 6= 0 a.e. To do so, we need to show that

P 6= Q implies that f is non-zero. Since mapping to Λ is injective, there must

exists at least one point o where f is non-zero. By continuity of f , there exists

a ball around o in which f is non-zero. Now we use Lemma 14 to infer that

f 6= 0 a.e.

f 6= 0 a.e. implies that dΛ,J (P,Q)> 0 a.s. If P =Q then f = 0 and dΛ,J (P,Q) =
0.

By the construction dΛ,J (P,Q) = dΛ,J (Q,P ) and for any measure U ,

dΛ,J (P,Q) ≤ dΛ,J (P,U) + dΛ,J (U,Q) a.s. since the triangle inequality holds

for any vectors in RJ .

We are ready to prove Theorem 8.

Proof of Theorem 8. Since k is characteristic, the mapping Λ : P → µP is in-

jective. µP is an element of RKHS associated with k. Since k is a bounded,

analytic kernel on Rd×Rd, Lemma 13 guarantees that µP is analytic, hence

the image of Λ is a subset of analytic functions. Therefore, we can use Lemma

15 to see that dΛ,J (P,Q)2 = dµ,J (P,Q)2 is a random metric.

Proof of Theorem 7

We first show that smooth characteristic functions are unique to distributions.

Lemma 16. If l is an analytic, integrable, translation invariant kernel with an

inverse Fourier transform strictly greater then zero and P has integrable charac-

teristic function, then the mapping

Λ : P → φP

is injective and φP is element of the RKHS Hl associated with l.

Proof. For the integrable characteristic function ϕ we define a functional L :
Hl→R given by formula

Lf =
∫

Rd
ϕ(x)f(x)dx
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Since L(f + g) = L(f) +L(g), L is linear. We check that L is bounded; let

B = {f ∈Hl :‖ f ‖≤ 1} be a unit ball in the Hilbert Space.

sup
f∈B
|Lf | ≤ sup

f∈B

∫
Rd

ϕ(x)f(x)dx≤ sup
f∈B

∫
Rd

ϕ(x)‖f‖l(x,x)dx=
∫

Rd
ϕ(x)l(x,x)dx <∞

By Riesz representation Theorem there exist φ ∈ H such that 〈φ,f〉 =∫
Rd ϕ(x)f(x)dx. By reproducing property φ is given by equation φ(x) =
〈φ, l(t,)〉 =

∫
Rd l(x,t)ϕ(x)dx. With each probability measure P with an in-

tegrable characteristic function ϕP we associate the smooth characteristic

function with

P → φP (x) =
∫

Rd
l(x,t)ϕP (x)dx

We will prove that P → φP is injective. We will show that , ∀xφQ(x) = φP (x)
implies P =Q.

φQ = φP ⇒
∫

Rd
l(x− t)ϕP (x)dx=

∫
Rd

l(x− t)ϕQ(x)dx. (5.4)

We apply inverse Fourier transform to this convolution and get

g(x)fX(x) = fY (x)g(x)

Where Tg = l, TfY = ϕQ and TfX = ϕP . Since inverse Fourier transform is

injective on the space of continuous, integrable functions, and both φQ,φP are

continuous and integrable, then application of the inverse Fourier transform

does not enlarge the null space of Eq. (5.4). Since g(x) > 0, fX(x) = fY (x)
everywhere, implying that the mapping P → φP is injective.

Next, we show that smooth characteristic function is analytic.

Lemma 17. If l is an analytic, integrable kernel with an inverse Fourier transform

strictly greater then zero and P has an integrable characteristic function then the

smooth characteristic function φP is analytic.

Proof. By lemma 5, all functions in the RKHS associated with l are analytic,

and by Lemma 16 φP is an element of this RKHS.

We are ready to prove Theorem 7.
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Proof of Theorem 7. Since l is an analytic, integrable kernel with an inverse

Fourier transform strictly greater then zero then by the Lemma 16 the mapping

Λ : P → φP is injective and Λ(P ) is an element of the RKHS associated with l.

Lemma 17 shows that µP is analytic. Therefore we can use Lemma 15 to see

that dΛ,J (P,Q)2 = dφ,J (P,Q)2 is a random metric.

Proof of Lemma 5

Proof. By Fubini’s theorem we get

φP (t) =
∫

Rd
ϕP (t−w)f(w)dw

=
∫

Rd

(∫
Rd

ei(t−w)>xdP (x)
)
f(w)dw

=
∫

Rd
eit
>x
(∫

Rd
e−iw

>xf(w)dw
)
dP (x)

= E[eit
>XFf(X)].

Use of Fubini’s theorem is justified, since the iterated integral is finite

[86][Theorem 8.8 b] i.e.∫
Rd

∫
Rd
|ei(t−w)>xf(w)|dP (x)dw

=
∫

Rd
|f(w)|

∫
Rd

1dP (x)dw <∞.

Proof of Proposition 4

Proof. The probability spaces of random variables {Tj}1≤j≤J and {Xi}1≤i≤n
are (Ω1,F1,P1) and (Ω2,F2,P2), respectively. We will show that for almost all
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ω ∈ Ω1, Sn converges to χ2 distribution with J degrees of freedom. We define

Zωi = (k(Xi,T1(ω))−k(Yi,T1(ω)), · · · ,k(Xi,TJ (ω))−k(Yi,TJ (ω))) ∈RJ ,

Wω
n = 1

n

n∑
i=1

Zωi

Σωn = 1
n

∑
i

(Zωi −Wω
n )(Zωi −Wω

n )T

Sωn = nWω
n Σ−1

n Wω
n .

If there exists a 6= b, such that Ta(ω) = Tb(ω), then we redefine Zωi =N(0, IdJ ).

Suppose dωµ,J (P,Q) = 0. Then, by theorem 8, for all j, µP (Tj(ω)) = µQ(Tj(ω).
This implies that EZωi = 0, which in turn implies, by [2][5.2.3], that Sωn is

asymptotically χ2 distributed with J degrees of freedom.

If EZωi 6= 0 then

P (Sωn > r) = P
(

(Wω
n )>(Σ−1

n )ωWω
n −

r

n
> 0
)
→ 1.

To see that, first we show that (Σ−1
n )ω converges in probability to the positive

definite matrix (Σ−1)ω. Indeed, each entry of the matrix Σωn converges to the

matrix Σω, hence entires of the matrix (Σ−1)ω, given by a continuous function

of the entries of Σω, are limit of the sequence (Σ−1
n )ω. Similarly Wω

n converges

in probability to the vector Wω. Since (Wω)>(Σ−1)ωWω = aω > 0 ((Σ−1)ω is

positive definite), then (Wω
n )>(Σ−1

n )ωWω
n , being a continuous function of the

entries of Wω
n and (Σ−1

n )ω, converges to aω. On the other hand r
n converges

to zero and the proposition follows. Finally since dωµ,J (P,Q)> 0 almost surely

then EZωi 6= 0 for almost all ω ∈ Ω1.

We have showed that the proposition holds for almost all ω, and thus Sωn con-

verges for almost all ω. Indeed it does not hold if it happens that for some

a 6= b, Ta(ω) = Tb(ω) or dωµ,J (P,Q) = 0 for P 6= Q. But both those events have

zero measure.

Proof of Proposition 6 The poof is analogue to the proof of the Proposition 4.
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Experiments

In this section we compare two-sample tests on both artificial benchmark

data and on real-world data. We denote the smooth characteristic function

test as ‘Smooth CF’, and the test based on the analytic mean embeddings

as ‘Mean Embedding’. We compare against several alternative testing ap-

proaches: block MMD (‘Block MMD’), a characteristic functions based test

(‘CF’), a sub-sampling MMD test (‘MMD(
√
n)’), and the quadratic-time MMD

test (‘MMD(n)’). We discuss Block MMD below.

Block MMD

An alternative to the quadratic-time MMD test is a B-test (block-based test):

the idea is to break the data into blocks, compute a quadratic-time statistic

on each block, and average these quantities to obtain the test statistic. More

specifically, for an individual block, laying on the main diagonal and starting at

position (i−1)B+ 1, the statistic η(i) is calculated as

η(i) = 1(B
2
) iB∑
a=(i−1)B+1

iB∑
b=(i−1)B+1 6=a

h(Xa,Xb,Ya,Yb).

The overall test statistic is then

η = B

n

n
B∑
i=1

η(i). (5.5)

The choice of B determines computation time - at one extreme is the linear-

time MMD suggested by [45, 48] where we have n/2 blocks of size B = 2,

and at the other extreme is the usual full MMD with 1 block of size n, which

requires calculating the test statistic on the whole kernel matrix in quadratic

time. In our case, the size of the block remains constant as n increases, and

is greater than 2. This is very similar to the case proposed by [114], and the

consistency of the test is not affected.

B-test of [114] assumes that B →∞ together with n, which implies that the

statistic η̂ defined in (5.5) under the null distribution satisfies

√
nBη̂

D→N
(
0,4σ2

0
)
, (5.6)
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for asymptotic variance σ2
0 =EXX′k2(X,X ′)+(EXX′k(X,X ′))2−2EX

[
(EX′k(X,X ′))2

]
that can easily be estimated directly or by considering the empirical variance

of the statistics computed within each of the blocks. Note that the same

asymptotic variance σ2
0 is obtained in the case of a quadratic-time statistic

[45] – albeit convergence rate being a faster O(1/n) in that case. Indeed,

(5.6) is obtained directly from the leading term of the variance of each block-

based statistic being 4σ2
0

B2 . Therefore, the p-value for B-test is approximated as

Φ
(
−
√
nBη̂
2σ̂0

)
, where Φ is the standard normal cdf. When B remains constant

as n increases, it can be shown that the variance of each block-based statistic

is exactly 4σ2
0

B(B−1) , and thus we obtain by CLT that

√
nη̂

D→N
(

0, 4σ2
0

B−1

)
.

Therefore, a slight change to p-value needs to be applied when σ2
0 is estimated

directly: Φ
(
−
√
n(B−1)η̂

2σ̂0

)
. If, however, one simply uses the empirical vari-

ance of the individual statistics computed within each block, the procedure is

unaffected.

Experimental setup. For all the experiments, D is the dimensionality of sam-

ples in a dataset, n is a number of samples in the dataset (sample size) and

J is number of test frequencies. Parameter selection is required for all the

tests. The table summarizes the main choices of the parameters made for the

experiments. The first parameter is the test function, used to calculate the

particular statistic. The scalar γ represents the length-scale of the observed

data. Notice that for the kernel tests we recover the standard parameterization

exp(−‖xγ −
y
γ ‖

2) = exp(−‖x−y‖
2

γ2 ). The original CF test was proposed without

any parameters, hence we added γ to ensure a fair comparison - for this test

varying γ is equivalent to adjusting the variance of the distribution of frequen-

cies Tj . For all tests, the value of the scaling parameter γ was chosen so as to

minimize a p-value estimate on a held-out training set: details are described in

Appendix 5.5. We chose not to optimize the sampling scheme for the Mean Em-

bedding and Smooth CF tests, since this would give them an unfair advantage

over the Block MMD, MMD(
√
n) and CF tests. The block size in the Block MMD

test and the number of test frequencies in the Mean Embedding, Smooth CF,

and CF tests, were always set to the same value (not greater than 10) to main-

tain exactly the same time complexity. Note that we did not use the popular

median heuristic for kernel bandwidth choice (MMD and B-test), since it gives
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poor results for the Blobs and AM Audio datasets [48]. We do not run MMD(n)

test for ’Simulation 1’ or ’Amplitude Modulated Music’, since the sample size is

10000, and too large for a quadratic-time test with permutation sampling for

the test critical value.

It is important to verify that Type I error is indeed at the design level, set at

α= 0.05 in this paper. This is verified in the Figure 5.2. Also shown in the plots

is the 95% percent confidence intervals for the results, as averaged over 4000

runs.
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Figure 5.2: Type I error of the blobs dataset (left) and the dimensions dataset (right).
The dashed line is the 99% Wald interval α±2.57

√
α(1−α)/4000 (4000 is

number of repetitions) around the design test size of α= 0.05.

Test Test Function Parameters

Mean Embedding exp(−‖γ−1(x− t)‖2)
Tj ∼N(0D, ID)
J - no. of test frequencies

Smooth CF exp(it>γ−1x−‖γ−1x− t‖2)
Tj ∼N(0D, ID)
J - no. of test frequencies

MMD(n),MMD(
√
n) exp(−‖γ−1(x− t)‖2) b -bootstraps

Block MMD exp(−‖γ−1(x− t)‖2) B-block size

CF exp(it>γ−1x)
Tj ∼N(0D, ID)
J - no. of test frequencies

Real Data 1: Higgs dataset, D = 4, n varies, J = 10. The first experiment we

consider is on the UCI Higgs dataset [68] described in [5] - the task is to dis-

tinguish signatures of processes that produce Higgs bosons from background

processes that do not. We consider a two-sample test on certain extremely low-

level features in the dataset - kinematic properties measured by the particle

detectors, i.e., the joint distributions of the azimuthal angular momenta ϕ for

four particle jets. We denote by P the jet ϕ-momenta distribution of the back-

ground process (no Higgs bosons), and by Q the corresponding distribution

for the process that produces Higgs bosons (both are distributions on R4). As

discussed in [5, Fig. 2], ϕ-momenta, unlike transverse momenta pT , carry very
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Figure 5.3: Higgs dataset. Left: Test power vs. sample size. Right: Test power vs.
execution time.

little discriminating information for recognizing whether Higgs bosons were

produced. Therefore, we would like to test the null hypothesis that the distri-

butions of angular momenta P (no Higgs boson observed) and Q (Higgs boson

observed) might yet be rejected. The results for different algorithms are pre-

sented in the Figure 5.3. We observe that the joint distribution of the angular

momenta is in fact discriminative. Sample size varies from 1000 to 12000.

The Smooth CF test has significantly higher power than the other tests, includ-

ing the quadratic-time MMD, which we could only run on up to 5100 samples

due to computational limitations. The leading performance of the Smooth CF

test is especially remarkable given it is several orders of magnitude faster than

the quadratic-time MMD(n), even though we used the fastest quadratic-time

MMD implementation, where the asymptotic distribution is approximated by a

Gamma density .

Real Data 2: Amplitude Modulated Music, D = 1000, n = 10000, J = 10.

Amplitude modulation is the earliest technique used to transmit voice over the

radio. In the following experiment observations were one thousand dimen-

sional samples of carrier signals that were modulated with two different input

audio signals from the same album, song P and song Q (further details of these

data are described in [48, Section 5]). To increase the difficulty of the testing

problem, independent Gaussian noise of increasing variance (in the range 1
to 4.0) was added to the signals. The results are presented in the Figure 5.4.

Compared to the other tests, the Mean Embedding and Smooth CF tests are

more robust to the moderate noise contamination.

Simulation 1: High Dimensions, D varies, n = 10000, J = 3. It has recently

been shown, in theory and in practice, that the two-sample problem gets more

difficult for an increasing number of dimensions increases on which the dis-

tributions do not differ [80, 81]. In the following experiment, we study the
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Figure 5.5: Power vs. redundant dimensions comparison for tests on high dimensional
data.

power of the two-sample tests as a function of dimension of the samples. We

run two-sample tests on two datasets of Gaussian random vectors which differ

only in the first dimension,

Dataset I: P =N(0D, ID) vs. Q=N ((1,0, · · · ,0), ID)

Dataset II: P =N(0D, ID) vs. Q=N (0D,diag((2,1, · · · ,1))) ,

where 0d is a D-dimensional vector of zeros, ID is a D-dimensional identity

matrix, and diag(v) is a diagonal matrix with v on the diagonal. The number

of dimensions (D) varies from 50 to 2500 (Dataset I) and from 50 to 1200

(Dataset II). The power of the different two-sample tests is presented in Fig-

ure 5.5. The Mean Embedding test yields best performance for both datasets,

where the advantage is especially large for differences in variance.

Simulation 2: Blobs, D = 2, n varies, J = 5. The Blobs dataset is a grid

of two dimensional Gaussian distributions (see Figure 5.6), which is known

to be a challenging two-sample testing task. The difficulty arises from the

fact that the difference in distributions is encoded at a much smaller length-

scale than the overall data. In this experiment both P and Q are four by four

grids of Gaussians, where P has unit covariance matrix in each mixture com-

ponent, while each component of Q has direction of the largest variance ro-
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Figure 5.6: Blobs Dataset. Left: test power vs. sample size. Center: test power vs.
execution time. Right: illustration of the blob dataset.

tated by π/4 and amplified to 4. It was demonstrated by [48] that a good

choice of kernel is crucial for this task. Figure 5.6 presents the results of two-

sample tests on the Blobs dataset. The number of samples varies from 50 to

14000 ( MMD(n) reached test power one with n = 1400). We found that the

MMD(n) test has the best power as function of the sample size, but the worst

power/computation tradeoff. By contrast, random distance based tests have

the best power/computation tradeoff.

Parameters Choice

We split our data into disjoint training and testing sets, and optimized param-

eters on the training set. To evaluate different data scalings λ, we plotted the

associated p-values of tests on the training data. Figure 5.7 presents such a plot

for three different tests. The p-values were obtained by running the test several

times (20 to 50) for each λ. In the case of simulated data, we generated a new

training dataset for each repetition at a given λ. For the amplitude modulated

audio dataset, we added different independent noise to the training samples

for each repetition (note that this was in retrospect not an ideal choice: a bet-

ter approach would have been to draw bootstrap samples from the training

data, possibly using additional tracks from the CD to provide sufficient training

samples). For the Higgs dataset, we had an abundance of training data, hence

we were able to use bootstrap samples without repetition from the training set.

This last approach is the recommended strategy for real-life data. We empha-

size that p-value optimization is a successful heuristic, but is not a substitute

for a choice of parameters that optimizes test power. Better parameter choice

might be accomplished following a strategy analogous to [48].
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Figure 5.7: Box plot of p-values used for parameter selection. The X axis shows the
binary logarithm of the scaling parameter applied to data. We chose the
scaling with the smallest median p-value. If the medians were similar we
used a scaling that had few outliers and was surrounded by other scalings
with small p-values. In this example we chose scalings λ = 20 = 1 for the
B-test, λ= 2−8 for the Smoothed CF test, and λ= 2−10 for the CF test.
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Chapter 6

Conclusions and Future Work

In this thesis we discuss some topics in nonparametric, kernel based, statisti-

cal hypothesis testing. We showed that the wild bootstrap is a valid bootstrap

method for degenerate kernel tests. We applied wild bootstrap method to con-

struct Maximum Mean Discrepancy two-sample test and Hilbert Schmidt Inde-

pendence Criterion test for time series. We constructed a kernel goodness of

fit test that requires knowledge of density only up to a normalizing constant,

which is a common setting in machine learning. We used the wild bootstrap

method to adopt the kernel goodness of fit test for MCMC convergence diag-

nostics. Finally, we constructed a linear time, almost surely consistent, kernel

two sample test using properties of homomorphic, injective mean embeddings

and smoothed characteristic functions.

Existing Extensions

Some results presented in this thesis were used by other researchers in their

work. Wild Bootstrap for Degenerate Kernel Tests. Methods developed in Chap-

ter 3 were used by Rubenstein et al. [85] to adopt Lancaster three-variable

interaction test by Sejdinovic et al. [87] for time-series. The test is based on a

Lancaster interaction measure, which kernel mean embedding is equal to zero

if the measure of the three random variables factorizes in any way. This prop-

erty makes Lancaster test useful is discovering so called V -structures or triples

of random variables that are totally independent. The analysis of a degener-

ate V -statistic presented in that work is similar to the one that we present for

HSIC test in Section 3.3 (since the core is a function of 10 arguments and a

naive implementation would results in time complexity O(n10)).

Fast Analytic Functions Based Two Sample Test. Jitkrittum et al. [61] propose
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an objective function for optimizing test locations, and show that maximizing

this objective corresponds to maximizing the test power of the test that we

have proposed in Chapter 5. They derive a finite-sample probabilistic bound

guaranteeing the convergence of the objective to the corresponding population

quantity. Benchmarks confirm that the approach significantly increases the test

power, while keeping the false positive rate to the specified significance level.

Extensions and Future work.

Reduction for HSIC. It might be possible to reduce the problem of the HSIC

degenerate V -statistic convergence to a simple application of CLT for real val-

ued random variables.

In Section 3.3 we represent HSIC test statistic as a squared norm of normalized

sum of features in RKHS, recall definition of Tn from Equation 3.7

Tn = 1√
n

∑
i∈N

Wi(φ(Xi)−µX)⊗ (φ(Yi)−µY ).

and further define

Hn = 1√
n

∑
i∈N

(φ(Xi)−µX)⊗ (φ(Yi)−µY ).

We showed in Lemma 9 that the squared norm of Tn is equal to bootstraped

V-statistic of h2, Bn(h2). Similarly, squared norm of Hn is equal to Vn(h2).
Under the null hypothesis

E〈f ⊗g,Tn〉= E〈f ⊗g,Hn〉= 0.

where H RKHS associated with the kernel given by the feature map φ⊗φ. This

means that both Tn and Hn must converge weakly to the same distribution,

provided they converge at all (it is sufficient to check expected values along

linear bounded maps in RKHS). Using Continuous Mapping Theorem ‖Tn‖2

and ‖Hn‖2 must converge to the same distribution. Sufficient conditions for

Hn and Tn to converge are that

∀f ⊗g ∈H 1√
n

∑
i∈N

(f(Xi)−Ef(Xi))(g(Xi)−Eg(Xi))
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converges weakly and tightness (For each ε > 0, there exists a compact set

K ⊂H such that P (Tn ∈K)≥ 1− ε). Note that the rest of the reasoning form

Section 3.3 must be accordingly adjusted.

A Kernel Test of Goodness of Fit. It would be interesting to use Stein based

discrepancy to generate points from the stationary distribution. Currently, we

use Stein discrepancy to verify if a set of points is drawn form the target dis-

tribution. It seems that if points are not drawn from the target distribution,

moving them around as to minimize the Stein divergence, can produce a set of

points that resembles points drawn form the target distribution. This could be

implemented using an algorithm similar to a particle filter. Another approach

would be to use kernel herding. The feature map associated with goodness of

fit test (4.1) is

ξp(x, ·) := [∇ logp(x)k(x, ·) +∇k(x, ·)] ,

The kernel herding algorithm is in this case very simple

xt+1 = argmaxx∈X〈ξp(x, ·),wt〉

wt+1 =wt− ξ(xt+1),

since EX∼pξp(X) = 0!

Linear Time Kernel Test of Goodness of Fit. It would be interesting to modify

the kernel goodness of fit test in spirit of Chapter 5. For a fixed location y and

a random variable X, we define s(X,y) to be

sp(X,y) =∇ logp(X)g(X,y)−∇g(X,y).

For a number of random locations Y1, · · · ,YJ and a dataset {Xi}1≤i≤n we de-

fine random vector Zi

Zi = (sp(Xi,Y1), · · · ,sp(Xi,YJ )).

Let Wn be a mean of Zi’s, Wn = 1
n

∑n
i=1Zi, and Σn its covariance matrix Σn =

1
nZZ

T . Consider the test statistic

Sn = nWnΣ−1
n Wn.
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The computation of Sn requires inversion of a J ×J matrix Σn, but this is fast

and numerically stable for small J . It is easy to see that if Xi ∼ p (under the

null hypothesis) Sn is asymptotically distributed as ξ-squared random variable

with J degrees of freedom. In this way one could even go outside the class of

RKHS functions and use e.g. neural networks to construct test functions. Those

functions can be also optimized similarly to what was done in [61].
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[80] A. Ramdas, S. Reddi, B. Póczos, A. Singh, and L. Wasserman. On the de-

creasing power of kernel- and distance-based nonparametric hypothesis

tests in high dimensions. AAAI, 2015.
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[110] G. J Székely, M. L Rizzo, et al. Brownian distance covariance. The annals

of applied statistics, 3(4):1236–1265, 2009.
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Appendix A

Preliminary article on HSIC for time series

Introduction

Measures of statistical dependence between pairs of random variables (X,Y )
are well established, and have been applied in a wide variety of areas, including

fitting causal networks [75], discovering features which have significant depen-

dence on a label set [96], and independent component analysis [60]. Where

pairs of observations are independent and identically distributed, a number of

non-parametric tests of independence have been developed [34, 44, 110, 42],

which determine whether the dependence measure value is statistically signif-

icant. These non-parametric tests are consistent against any fixed alternative -

they make no assumptions as to the nature of the dependence.

For many data analysis tasks, however, the observations being tested are drawn

from a time series: each observation is dependent on its past values. Examples

include audio signals, financial data, and brain activity. Given two such ran-

dom processes, we propose a hypothesis test of instantaneous dependence, of

whether the two signals are dependent at a particular time t. Our test satisfies

two important properties: it is consistent against any fixed alternatives, and it

is non-parametric - we do not assume the dependence takes a particular form

(such as linear correlation), nor do we require parametric models of the time

series. We further avoid making use of a density estimate as an intermediate

step, so as to avoid the assumption that the distributions have densities (for

instance, when dealing with text or other structured data).

We use as our test statistic the Hilbert-Schmidt Independence Criterion (HSIC)

[43, 44], which can be interpreted as the distance between embeddings of

the joint distribution and the product of the marginals in a reproducing kernel
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Hilbert space (RKHS) [46, Section 7]. When characteristic RKHSs are used, the

HSIC is zero iff the variables are independent [97]. Under the null hypothesis

of independence, PXY = PXPY , the minimum variance estimate of HSIC is a

degenerate U-statistic. The distribution of the empirical HSIC under the null is

an infinite sum of independent χ2 variables [44], which follows directly from

e.g. [91, Ch. 5]. In practice, given a sample (xi,yi)ni=1 of pairs of variables

drawn from PXY , the null distribution is approximated by a bootstrap proce-

dure, where a histogram is obtained by computing the test statistic on many

different permutations {xi,yπ(i)}ni=1, to decouple X and Y .

In the case where the samples Zt = (Xt,Yt) are drawn from a random process,

the analysis of the asymptotic behaviour of HSIC requires substantially more

effort than in the i.i.d. case. As our main contribution, we obtain both the

null and alternative distributions of HSIC for random processes, where the null

distribution is defined as Xt being independent of Yt at time t. Such a test may

be used for rejecting causal effects (i.e., whether one signal is not dependent

on the values of another signal at a particular delay) or instant coupling (see

our first experiment in Section A.4).1 The null distribution is again an infinite

weighted sum of χ2 variables, however these are now correlated, rather than

independent. Under the alternative hypothesis, the statistic has an asymptoti-

cally normal distribution.

For the test to be used in practice, we require an empirical estimate of the

null distribution, which gives the correct test threshold when Zt = (Xt,Yt) is

a random process. Evidently, the bootstrap procedure used in the i.i.d. case is

incorrect, as the temporal dependence structure within the Yt will be removed.

This turns out to cause severe problems in practice, since the permutation pro-

cedure will give an increasing rate of false positives as the temporal depen-

dence of the Yt increases (i.e., dependence will be detected between Xt and

Yt, even though none exists, this is also known as a Type I error). Instead, our

null estimate is obtained by making shifts of one signal relative to the other,

so as to retain the dependence structure within each signal. Consequently, we

are able to keep the Type I error at the designed level α = 0.05. In our experi-

ments, we address three examples: one artificial case consisting of two signals

which are dependent but have no correlation, and two real-world examples

on forex data. HSIC for random processes reveals dependencies that classical
1We distinguish our case from the problem of ensuring time series are independent simultane-

ously across all time lags, e.g the null will hold even if Xt = Yt−1 where Yt is white noise.
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approaches fail to detect. Moreover, our new approach gives the correct Type

I error rate, whereas a bootstrap-based approach designed for i.i.d. signals

returns too many false positives.

Related work Prior work on testing independence in time series may be cat-

egorized in two branches: testing serial dependence within a single time se-

ries, and testing dependence between one time series and another. The case

of serial dependence turns out to be relatively straightforward, as under the

null hypothesis, the samples become independent: thus, the analysis reduces

to the i.i.d. case. Pinkse [77], Diks and Panchenko [29] provide a quadratic

forms function-based serial dependence test which employs the same statistic

as HSIC. Due to the simple form of the null hypothesis, the analysis of [91,

Ch. 5] applies. Further work in the context of the serial dependency testing in-

cludes simple approaches based on rank statistics e.g. Spearman’s correlation

or Kendall’s tau, correlation integrals e.g. [19]; criteria based on integrated

squared distance between densities e.g [84]; KL-divergence based criteria e.g.

[83, 58]; and generalizations of KL-divergence to so called q-class entropies

e.g. [41, 78].

In most of the tests of independence of two time series, specific conditions have

been enforced, e.g that processes follow a moving average specification or the

dependence is linear. Prior work in the context of dependency tests of two time

series includes cross covariance based tests e.g. [53, 57, 92]; and a Generalized

Association Measure based criterion [32]. Some work has been undertaken in

the non-parametric case, however. A non-parametric measure of independence

for time series, based on the Hilbert-Schmidt Independence Criterion, was pro-

posed by Zhang et al. [116]. While this work established the convergence in

probability of the statistic to its population value, no asymptotic distributions

were obtained, and the statistic was not used in hypothesis testing. To our

knowledge, the only non-parametric independence test for pairs of time series

is due to Besserve et al. [14], which addresses the harder problem of testing

independence across all time lags simultaneously. 2 The procedure is to com-

pute the Hilbert-Schmidt norm of a cross-spectral density operator (the Fourier

transform of the covariance operator at each time lag). The resulting statistic is

a function of frequency, and must be zero at all frequencies for independence,

so a correction for multiple hypothesis testing is required. It is not clear how

2 Let Xt follow a MA(2) model and put Yt =Xt−20. This is a case addressed by Besserve et al.
[14], who will reject their null hypothesis, whereas our null is accepted
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the asymptotic analysis used in the present work would apply to this statistic,

and this remains an interesting topic of future study.

The remaining material is organized as follows. In Section A.2 we provide

a brief introduction to random processes and various mixing conditions, and

an expression for our independence statistic, HSIC. In Section A.3, we charac-

terize the asymptotic behaviour of HSIC for random variables with temporal

dependence, under the null and alternative hypotheses, and establish the test

consistency. We propose an empirical procedure for constructing a statistical

test, and demonstrate that the earlier bootstrap approach will not work for our

case. Section A.4 provides experiments on synthetic and real data.

Background

In this section we introduce necessary definitions referring to random pro-

cesses. We then go on to define a V-statistic estimate of the Hilbert-Schmidt

Independence Criterion, which applies in the i.i.d. case.

Random process. First, we introduce the probabilistic tools needed for pairs

of time series. Let (Zt,Ft)t∈N be a strictly stationary sequence of random

variables defined on a probability space Ω with a probability measure P and

natural filtration Ft. Assume that Zt denotes a pair of random variables i.e.

Zt = (Xt,Yt), where Xt is defined on X , and Yt on Y. Each Zt takes values in

a measurable Polish space (Z,B(Z),PZ). The space Z is a Cartesian product of

two Polish spaces X and Y, endowed with a natural Borel sigma field and a

probability measure.

We introduce a sequence of independent copies of Z0, i.e., (Z∗t )t∈N. Since Zt

is stationary, Z∗t retains the dependence between random variables Xt and Yt,

but breaks the temporal dependence.

Next, we formalize a concept of memory of a process. A process is called

absolutely regular (β-mixing) if β(m)→ 0, where

β(m) = 1
2 sup

n
sup

I∑
i=1

J∑
j=1
|P (Ai∩Bj)−P (Ai)P (Bj)|.

The second supremum in the β(m) definition is taken over all pairs of finite

partitions {A1, · · · ,AI} and {B1, · · · ,BJ} of the sample space such that Ai ∈An1
and Bj ∈ A∞n+m, and Acb is a sigma field spanned by a subsequence, Acb =
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σ(Zb,Zb+1, ...,Zc). A process is called uniform mixing (φ-mixing) if φ(m)→ 0,

where

φ(m) = sup
n

sup
A∈An1

sup
B∈A∞n+m

|P (B|A)−P (B)|.

Uniform mixing implies absolute regularity, i.e. β(m) ≤ φ(m) [17]. Under

technical assumptions, Autoregressive Moving Average processes — or more

generally Markov Chains — are absolutely regular or uniformly mixing [30].

Hilbert-Schmidt Independence Criterion Let k, l be positive definite kernels

associated with respective reproducing kernel Hilbert spacesHX on X , andHY
on Y. We assume that k and l are bounded and continuous. We associate to the

random variableX a mean embedding µX(x) := EXk(X,x), such that ∀f ∈HX ,

〈f,µX〉HX = EX(f(X)) [12, 95]. We assume k, l are characteristic kernels,

meaning the mappings µX and µY (y) := EY l(Y,y) are injective embeddings of

the probability measures to the corresponding RKHSs; i.e., distributions have

unique embeddings [38, 97].

We next recall a measure of statistical dependence, the Hilbert-Schmidt Inde-

pendence Criterion (HSIC), which can be expressed in terms of expectations

of RKHS kernels [43, 44]. Denote a group of permutations over 4 elements by

S4, with π one of its elements, i.e., a permutation of four elements. We define

h(z1,z2,z3,z4) = 1
4!
∑
π∈S4

k(xπ(1),xπ(2))[l(yπ(1),yπ(2))

+ l(yπ(3),yπ(4))−2l(yπ(2),yπ(3))].

Lemma 18. Let γ be an expected value of the function h, γ =Eh(Z∗1 ,Z∗2 ,Z∗3 ,Z∗4 ).
This expectation corresponds to HSIC, computed using a function symmetric in its

arguments. For k and l characteristic, continuous, translation invariant, and

vanishing at infinity, γ is equal to zero if and only if the null hypothesis holds (see

[71, Lemma 3.8], applying [98, Proposition 2], and the note at the end of Section

A.5).

The value of γ corresponds to a distance between embeddings of (X∗1 ,Y ∗2 )
and (X∗1 ,Y ∗1 ) to an RKHS with the product kernel κ = k · l [46, Section 7]. A

biased empirical estimate of the Hilbert-Schmidt Independence Criterion can

be expressed as a V -statistic (the unbiased estimate is a U-statistic, however the

difference will be accounted for when constructing a hypothesis test, through
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an appropriate null distribution).

V statistics. A V -statistic of a k-argument, symmetric function f is written

V (f,Z) = 1
nk

∑
1≤i1,··· ,ik≤n

f(Zi1 , ...,Zik). (A.1)

Gretton et al. [43] show that the biased estimator of γ is V (h,Z). The asymp-

totic behaviour of this statistic depends on the degeneracy of the function that

defines it. We say that a k-argument, symmetric function f is j-degenerate

(j < k) if for each z1, · · · ,zj ∈ Z,

Ef(z1, · · · ,zj ,Z∗j+1, · · · ,Z∗k) = 0.

If j = k− 1 we say that the function is canonical. We refer to a normalized V

statistic as a V -statistic multiplied by the sample size, n ·V .

HSIC for random processes

In this section we construct the Hilbert-Schmidt Independence Criterion for

random processes, and define its asymptotic behaviour. We then introduce an

independence testing procedure for time series.

We introduce two hypotheses: the null hypothesis H0 that Xt and Yt are inde-

pendent, and the alternative hypothesis H1 that they are dependent. To build

a statistical test based on n ·V (h,Z) we need two main results. First, if null

hypothesis holds, we show n ·V (h,Z) converges to a random variable. Second,

if the null hypothesis does not hold, the n ·V (h,Z) estimator diverges to in-

finity. Following these results, the Type I error (the probability of mistakenly

rejecting the null hypothesis) will stabilize at the design parameter α, and the

Type II error (the probability of mistakenly accepting the null hypothesis when

the variables are dependent) will drop to zero, as the sample size increases.

We begin by introducing an auxiliary kernel function s, and characterize the

normalized V -statistic distribution of s using a CLT introduced by [15]. We

then show that the normalized V -statistic associated with the function s has

the same asymptotic distribution as the n ·V (h,Z) distribution.
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Let s be an auxiliary function s(z1,z2) = k̃(x1,x2)l̃(y1,y2), where

k̃(x1,x2) =k(x1,x2)−Ek(x1,X2)

−Ek(X∗1 ,x2) +Ek(X∗1 ,X∗2 ),

and l̃ is defined similarly.

Both k̃ and l̃ are kernels, meaning that they are dot products between features

centred in their respective RKHSs [12]. Therefore s = k̃ · l̃ defines a kernel on

a product space of pairs Zt. Using Mercer’s Theorem we obtain an expansion

for s.

Statement 2. By Steinwart and Scovel [104] Corollary 3.5, the bounded, con-

tinuous kernel s has a representation3

s(za,zb) =
∞∑
i=1

λiei(za)ei(zb), (A.2)

where (ei)i∈N+ denotes an orthonormal basis of L2(Z,B(Z),PZ). The series

(
∑N
i=1 λi ei(za)ei(zb)) converges absolutely and uniformly. ei are eigenfunctions

of s and λi are eigenvalues of s.

We will henceforth assume that for every collection of pairwise distinct sub-

scripts (t1, t2), the distribution of (Zt1 ,Zt2) is absolutely continuous with re-

spect to the (Z∗t1 ,Z
∗
t2) distribution. This assumption prevents the occurrence

of degenerate cases, such that all Zt being the same. The following results are

proved in Section A.5.

Lemma 19. Let the process Zt have a mixing coefficient smaller than m−3

(β(m),φ(m)≤m−3) and satisfy either of the following conditions:

A Zt is φ-mixing.

B Zt is β-mixing. For some ε > 0 and for an even number c ≥ 2, the following

holds

1. supiE|ei(X1)|2+ε ≤∞, where ei is the basis introduced in the State-

ment 2 and | · | denotes an absolute value.

2.
∑∞
m=1β

ε/(2+ε)(m)<∞.
3A bounded kernel is compactly embedded into L2(Z,B(Z),PZ) [104].
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If the null hypothesis holds, then s is a canonical function and a kernel. What is

more,

lim
n→∞

n ·V (s,Z) D=
∞∑
j

λjτ
2
j ,

where τj is a centred Gaussian sequence with the covariance matrix

Eτaτb = Eea(Z1)eb(Z1)+

+
∞∑
j=1

[Eea(Z1)eb(Zj+1) +Eeb(Z1)ea(Zj+1)] .

We now characterize the asymptotics of V (h,Z).

Theorem 9. Under assumptions of Lemma 19, if H0 holds, then the asymptotic

distribution of the empirical HSIC (with scaling n) is the same as that of n ·
V (s,Z),

lim
n→∞

n ·V (h,Z) D= lim
n→∞

n ·V (s,Z).

Theorem 10. Under assumptions of the Lemma 19, if H1 holds, then γ > 0
and
√
n(V (h,Z)−γ) has asymptotically normal distribution with mean zero and

finite variance.

Consequently, if the null hypothesis does not hold then P (n ·V (h,Z) > C) =
P (V (h,Z) > C

n )→ 1 for any fixed C. Finally, we show that the γ estimator

is easy to compute. According to Gretton et al. [44, equation 4], V (h,Z) =
n−2trHKHL, where Kab = k(Xa,Xb), Lab = l(Ya,Yb) ,Hij = δij −n−1 and n

is a sample size.

Testing procedure We begin by showing that the H0 distribution of the γ

estimator obtained via the bootstrap approach of [29, 44] gives an incorrect

p-value estimate when used with independent random processes. In fact, the

null hypothesis obtained by permutation corresponds to the processes being

both i.i.d. and independent from each other. Recall the covariance structure of

the γ estimator from Theorem 9,

Eτaτb = Eea(Z1)eb(Z1)+

+
∞∑
j=1

[Eea(Z1)eb(Zj+1) +Eeb(Z1)ea(Zj+1)] .
(A.3)
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We can represent ea and eb as ea(z) = eXu (x)eYo (y), eb(z) = eXi (x)eYp (y), as a

decomposition of the Z basis into bases of X and Y, respectively. Consider a

partial sum Tn of series from the above equation (A.3), with Xt replaced with

its permutation Xπ(t),

Tn =
n∑
j=1

EeXu (Xπ(1))eXi (Xπ(j+1))EeYo (Y1)eYp (Yj+1). (A.4)

Using covariance inequalities from [30, Section 1.2.2] we conclude that

EeYo (Y1)eYp (Yj+1) = O(Λ(j) 1
2 ) and EeXu (Xπ(1))eXi (Xπ(j+1)) = O(Λ(|π(j) −

π(1)|) 1
2 ) where Λ is an appropriate mixing coefficient (β or φ). Recall that

0< Λ(j)<Cj−3.

We can therefore reduce the problem to the convergence of a random variable

Sn =
n∑
j=1

Λ(j)
1
2 Λ(|π(j)−π(1)|)

1
2 , (A.5)

where π is a random permutation drawn from the uniform distribution over

the set of n-element permutations. In the supplementary material we show

that this sum converges in probability to zero.

Since Sn > Tn > 0, then Tn converges to zero in probability, and consequently

the covariance matrix entry Eτaτb converges to unity for a = b, and to zero

otherwise. Indeed, the expected value Eea((Xπ(1),Y1))eb((Xπ(1),Y1)) = 0 if

a 6= b and is equal to one otherwise. Note that this is the covariance matrix

described by Gretton et al. [44].

A correct approach to approximating the asymptotic null distribution of n ·
V (h,Z) under H0 is by shifting of one time series relative to the other. Define

the shifted process Sct = Yt+c mod n for an integer c, 0 ≤ c ≤ n and 0 ≤ t ≤ n.

If we let c vary over 0 ≤ A ≤ B ≤ n for A such that the dependence between

Yt+A and Xt is negligible, then we can approximate the null distribution with

an empirical distribution calculated on points (V (h,Zk))A≤k≤B , where Zkt =
(Xt,Skt ). This is due to the fact that the shifted process Sct retains most of the

dependence, since it does not scramble the time index.4 We call this method

Shift HSIC. In the supplementary material we show that Shift HSIC samples

4As a illustration, consider Wt = Yt−10. If Yt is stationary then the dependence structure of
(Wt1 ,Wt2 ) and (Yt1 ,Yt2 ) is the same. If we set Wt = Yπ(t) this property does not hold.
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from the correct null distribution.

Experiments

In the experiments we compare Shift HSIC with the Bootstrap HSIC of Gretton

et al. [44]. We investigate three cases: an artificial dataset, where two time

series are coupled non-linearly; and two forex datasets, where in one case we

seek residual dependence after one time series has been used to linearly predict

another, and in the other case, we reveal strong dependencies between signals

that are not seen via linear correlation.

Artificial data

Non-linear dependence. We investigate two dependent, autoregressive ran-

dom processes Xt,Yt, specified by

Xt = aXt−1 + εt Yt = aYt−1 +ηt, (A.6)

with an autoregressive component a. The coupling of the processes is a re-

sult of the dependence in the innovations εt,ηt. These εt,ηt are drawn from

an Extinct Gaussian distribution, defined in Algorithm 2. The parameter p

(called extinction rate) controls how often a point drawn form a ball B(0, r)
dies off. According to Algorithm 2, the probability of seeing a point inside the

ball B(0, r) is different than for a two dimensional Gaussian N(0, Id). On the

other hand, as p goes to zero, the Extinct Gaussian converges in distribution

to N(0, Id). Figure A.1 illustrates the joint distribution of Xt,Yt. The left scat-

ter plot in Figure A.1 presents Xt and Yt generated with an extinction rate of

50%, while the right hand plot is generated with an extinction rate of 99.87%.

Processes used in this experiment had an autoregressive component of 0.2, and

the radius of the innovation process was 1.

Figure A.2 compares the power of the Shift HSIC test and the correlation test.

The X axis represents an extinction rate, while the Y axis shows the true pos-

itive rate. Shift HSIC is capable of detecting non-linear dependence between

Xt and Yt, which is missed by linear correlation. The red star depicts perfor-

mance of the KCSD algorithm developed by Besserve et al. [14], with param-

eters tuned by its authors: note that this result required using four times as

many data points as HSIC.
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Algorithm 2 Generate innovations

Input: extinction rate 0≤ p≤ 1, radius r.
repeat

Initialize ηt, εt to N(0,1) and d to a number uniformly distributed on [0,1]
.
if η2

t + ε2t > r2 or d > p then
return ηt, εt

end if
until true

X
t

Y
t

X
t

Y
t

Figure A.1: Xt and Yt, described in the Experiment A.4, with extinction rates 50% (left)
and 99.8% (right), respectively.

False positive rates. We next investigate the rate of false positives for Shift

HSIC and Bootstrap HSIC on independent copies of the AR(1) processes used

in the previous experiment. To generate independent processes, we first sam-

pled two pairs (Xt,Yt), (X ′t,Y ′t ) of time series using (A.6), and then constructed

Z by taking X from the first pair and Y from the second, i.e., Zt = (Xt,Y ′t ).
We set an extinction rate to 50%. 5 The AR component a in the model (A.6)

controls the memory of a processes - the larger this component, the longer the

memory. We performed the Shift HSIC and the Bootstrap HSIC tests on Zt

generated under H0 with different AR components. Figure A.3 illustrates the

results of this experiment. The X axis is indexed by the AR component and Y

axis shows the FP rate. As the temporal dependence increases, the Bootstrap

HSIC incorrectly gives an increasing number of false positives: thus, it cannot

be relied on to detect dependence in time series. The Shift HSIC false positive

rate remains at the targeted 5% p-value level.

Forex data

We use Foreign Exchange Market quotes to evaluate Shift HSIC performance

on the real life data. Practitioners point out that forex time series are noisy

5As a reviewer pointed out, the example for the FP rates can be simplified, however we decided
to be consistent with the marginal distribution of Xt,Yt across the experiments.
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Figure A.2: True positive rate for the Shift HSIC, the Bootstrap HSIC and correlation
based test: sample size 1200, results averaged over 300 repetitions. The
red star shows KCSD performance at 4× the HSIC sample size; see Section
A.4 for details.
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Figure A.3: False positive rate for the Shift HSIC and the Bootstrap HSIC. The sample
size was 1200, and results were averaged over 300 repetitions.

and hard to handle, especially at low granulations (smaller then 15 minutes).

We decided to work with forex time series to show that Shift HSIC can detect

dependence even on such a difficult dataset. The forex time series were gran-

ulated to obtain two minute sampling (the granulation function returned the

last price in the two minute window). Using the test of Diks and Panchenko

[29], we checked that serial dependence of the differentiated time series de-

cays fast enough to satisfy the assumed mixing conditions (by a differentiated

time series, we refer to (Xt−Xt−1)t∈N). The choice of the pairs and trading

day (21st January 2013) were arbitrary.

Instantaneous coupling and causal effect. Having one Australian dollar we

may obtain a quantity of Yen in two ways, either by using AUD/JPY exchange

rate explicitly or by buying Canadian dollars and then selling them at the

CAD/JPY rate. Let Xt be a differentiated AUD/JPY exchange rate and Yt be
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a differentiated product of exchange rates AUD/CAD×CAD/JPY. We will inves-

tigate the relation between these two. Common sense dictates that Yt should

behave similarly to Xt. After examining the cross-correlation of Xt and Yt,

we propose a simple regression model to describe the interaction between the

signals,

Ŷt = a0Xt+a1Xt−1 + · · ·+a6Xt−6.

We fit the model and see that a0 = 0.97, and the remaining coefficients are not

bigger then 0.06 in absolute value. This suggest that most of the dependence

is explained by an instantaneous coupling. We further investigate the cross-

correlation between residuals Rt = Yt− Ŷt and Xt. We observe no significant

correlations in the first 30 lags.

Next we investigate dependence of residuals with lagged values of the explana-

tory variables, i.e., Rt with Xt−k for k ∈ (0, · · · ,30). After calculating p-values

using the Bootstrap HSIC and the Shift HSIC, we discover dependence only at

lags 4, 5, 9, 13 and 29, as presented in the Figure A.4. Lack of the dependence

at lag zero suggests that the linear model for coupling is reasonable. However,

both the Bootstrap HSIC and the Shift HSIC support the hypothesis that there

is a strong relation at lag 5, which is not explained well by the linear model.

The questions remains whether test statistics at lags 4, 9, 13 and 29 indicate

further model misspecification. Under H0, at a significance level 94%, we ex-

pect 1.8 out of 30 statistics to be higher than the 94th percentile. Excluding the

statistic at lag 5, the Shift HSIC test reports two statistics above this percentile,

while Bootstrap HSIC reports four. Should the statistics at the different lags be

independent from each other, the probabilities of seeing two and four statis-

tics above the percentile are respectively 25% and 6%. Shift HSIC indicates

that the model fits the data well, while the Bootstrap HSIC suggests that some

non-linear dependencies remain unexplained.

Dependence structure. The data are five currency pairs. A correlation based

independence test, and the Shift HSIC test, were performed on each pair of

currencies. The dependencies revealed by these tests are depicted in Fig-

ure A.5 - nodes represent the time series and edges represent dependence. Shift

HSIC reveals a strong coupling between EUR/RUB and USD/JPY, HKD/JPY and

XAU/USD that was not found by simple correlation. All edges revealed by Shift

HSIC have p-values at most at level 0.03 - clearly, the Shift HSIC managed to
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Figure A.4: Instantaneous coupling. Results for 720 samples, null threshold of Shift
HSIC used 300 lags in range 100−400.
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Figure A.5: Differences between the dependence structure on the forex revealed by the
Shift HSIC and covariance. Parameter settings are as in Figure A.4.

find a strong non-linear dependence. Note that the obtained graphs are cliques.

Proofs

A U -statistic of a k-argument, symmetric function f , is written

U(f,Z) =
(
n

k

)−1 ∑
1≤i1<···<ik≤n

f(Zi1 , ...,Zik).

A decomposition due to Hoeffding allows us to decompose this U-statistic into a

sum of U -statistics of canonical functions, U(h,Z) =
∑l
k=1

( l
k

)
U(hk,Z), where

hk(z1, ...,zl) are components of the decomposition. According to Serfling [91,

section 5.1.5], each of h1,h2,h3,h4 is symmetric and canonical. Note that hk is

defined using independent samples Z∗ - this is because the CLT or LLN state

that U-statistics or V-statistics of mixing processes converge to their expected

value taken with respect to independent copies, i.e., Z∗. Under H0, h1 is equal

to zero everywhere and h2 = 1
6s, where these results were obtained by Gretton
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et al. [44].6 See supplementary material for details.

In order to characterize U(h,Z), we show that under null hypothesis U(h2,Z)
converges to a random variable, and both U(h3,Z),U(h4,Z) converge to zero

in a probability (the latter proof can be found in the supplementary material).

Bellow we characterise U(h2,Z) convergence.

Lemma 20. Under assumptions of Lemma 19,

lim
n→∞

n ·U(h2,Z) D= 1
6

∞∑
i1

λi1(τ2
i1 −1).

Proof. First recall that under null hypothesis h2 = 1
6s. We will check the condi-

tions of [15, Theorem 1] (also available in the supplementary).

First, from Mercer’s Theorem [104, Corollary 3.5], we deduce that the h2 coef-

ficients in L2(Z,BZ,PZ) are absolutely summable. In the supplementary mate-

rial we show that Eei(Z∗1 ) = 0.

Recall the assumptions of Lemma 19. If A holds then
∑∞
k=1φ(k) 1

2 <∞ and

supiE|ei(X1)|2 = 1 <∞ (ei is an orthonormal eigenfunction). Finally, if B

holds then the process Zt is α-mixing. The remaining assumptions concerning

uniform mixing in Borisov and Volodko [15] are exactly the same as in this

lemma.

Main body proofs

Proof. (Lemma 19) We use the fact that h2 is equal to s up to scaling

(6U(h2,Z) = U(s,Z)), and Lemma 20, to see that nU(s,Z) D→
∑∞
i λi(τ2

i − 1).
Since Es(Zt,Zt) = E

∑∞
i=1λiei(Zt)2 =

∑∞
i=1λi, then by the LLN for mixing

processes,

lim
n→∞

1
n

n∑
i

s(Zi,Zi)
P=
∞∑
i=1

λi. (A.7)

We use a relationship between U and V statistics,

lim
n→∞

nV (s,Z) D= lim
n→∞

nU(s,Z) + lim
n→∞

1
n

n∑
i

s(Zi,Zi)

D=
∞∑
i=1

λi+
∞∑
i

λi(τ2
i −1) D=

∞∑
i

λiτ
2
i .

6The second result is hard to locate - it is in appendix A.2, text between equations 12 and 13
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Proof. (Theorem 9) We operate under the null hypothesis. Recall that U(h,Z)
can be decomposed as U(h,Z) =

∑4
k=1

(4
k

)
U(hk,Z). Here h1 ≡ 0. We show in

the supplementary material that U(h3,Z) and U(h4,Z) tend to zero in proba-

bility. From Lemma 20,

lim
n→∞

nU(h,Z) D= lim
n→∞

nU(s,Z) D=
∞∑
i

λi(τ2
i −1). (A.8)

We define an auxiliary symmetric function w,

w(z1,z2,z3) = h(z1,z1,z2,z3) +h(z1,z2,z2,z3)

+h(z1,z2,z3,z3) +h(z1,z1,z3,z2)

+h(z3,z2,z2,z1) +h(z2,z1,z3,z3).

It is obvious that Ew(Z∗1 ,Z∗2 ,Z∗3 ) = 6Eh(Z∗1 ,Z∗1 ,Z∗2 ,Z∗3 ). We consider the dif-

ference between the unnormalized V and U statistics,

Sn =
∑

1≤i1,i2,i3,i4≤n
h(Zi1 , ...,Zi4)−

∑
i∈C4

h(Zi1 , ...,Zi4),

where
∑
i∈Cm denotes summation over all

(n
m

)
combinations of m distinct

elements {i1, · · · , im} from {1, · · · ,n}. The difference is equal to the sum over

4-tuples with at least one pair of equal elements. We can choose such tuples

in
(4
2
)

= 6 ways. Observe that w covers the choice of all these six tuples. Since

for any z1,z2 ∈ Z, h(z1,z1,z1,z2) = 0, then w is zero whenever more than two

indices are equal. Therefore we can sum w over distinct indices z1,z2,z3,

Sn =
∑
i∈C3

w(Zi1 ,Zi2 ,Zi3).

We see that Sn is almost a U -statistic (U(w,Z)). By the CLT for U -statistics

from Denker and Keller [28], Theorem 1(c), we obtain

lim
n→∞

1
n(n−1)(n−2)Sn

P= 6Eh(Z∗1 ,Z∗1 ,Z∗2 ,Z∗3 ).

On the other hand, via the relation h2 = 1
6s and the h2 definition, we get
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Es(Z∗1 ,Z∗1 ) = 6Eh(Z∗1 ,Z∗1 ,Z∗2 ,Z∗3 ), and therefore

lim
n→∞

1
n(n−1)(n−2)Sn

P= lim
n→∞

1
n

n∑
i

s(Zi,Zi). (A.9)

Finally, we rewrite Sn as∑
1≤i1,i2,i3,i4≤n

h(Zi1 , ...,Zi4) = Sn+
∑
i∈C4

h(Zi1 , ...,Zi4).

We normalize by 1
n(n−1)(n−2) , and take the limit in n,

lim
n→∞

n4

n(n−1)(n−2)V (h,Z) D=

= lim
n→∞

(
1

n(n−1)(n−2)Sn+ (n−4)U(h,Z)
)
.

We substitute (A.9) and (A.8) on the right hand side, and use equation (A.7)

from Lemma 19 to replace limn→∞
1
n

∑n
i s(Zi,Zi) with

∑∞
i=1λi, yielding

lim
n→∞

n ·V (h,Z) D=

D= lim
n→∞

1
n

n∑
i

s(Zi,Zi) + lim
n→∞

1
n

n∑
i,j

s(Zi,Zj)
D=

D=
∞∑
i=1

λi+
∞∑
i

λi(τ2
i −1) D=

∞∑
i

λiτ
2
i .

Proof. (Theorem 10) If the null hypothesis does not hold, then γ > 0 [43]. In

this case h is nondegenerate, and we can use Denker and Keller [28, Theorem

1(c)] to see that
√
n

4
√
σ

(V (h,Z)− γ) ∼ N(0,1), where σ is finite (see the note

below Theorem 1 of [28], stating that in case (c) σ2 is finite, and the note

above Theorem 1 stating that σ2 = limn→∞n
−1σ2

n ).

Proof. (Lemma 18) We use Lemma 1 and Theorem 4 from Gretton et al. [43]

to show that Eh(Z∗1 ,Z∗2 ,Z∗3 ,Z∗4 ) = 0 iff (X∗1 ,Y ∗1 ) has a product distribution.

Since Z∗1
D= Z1 and Zt

D= Z1, we infer that Xt is independent from Yt iff

Eh(Z∗1 ,Z∗2 ,Z∗3 ,Z∗4 ) = 0.
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A Kernel Independence Test for Random Processes - Supplementary

The sections in the supplementary material are in the same order those in the article.

In particular, the n-th reference to the supplementary in the article is n-th subsection in

the supplementary material.

The arXiv version of the report and supplementary may be found at: http://arxiv.

org/abs/1402.4501

Before we start, we cite [113, Lemma 1], which will be used below.

Lemma 21. [113] Let (Zt)t∈N+ be an absolutely regular process with a mixing coefficient

(β(n))n∈N+. Let (t1, t2, ·, tl) be a non-decreasing l-tuple, and let j be an integer such that

2≤ j ≤ l. Finally, let g : Rl→ R be a measurable function satisfying(
E|g(Zt1 , · · · ,Ztl)|

1+δ
)
≤M

for some δ > 0,M > 0. Then

∣∣Eg(Zt1 , · · · ,Ztl)−Eg(Zt1 , · · · ,Ztj−1 ,Z
∗
tj , · · · ,Z

∗
tl)
∣∣≤ 4M

1
1+δ β(tj − tj−1)

δ
1+δ .

Note that if a function g is symmetric, then we can always reorder its arguments if

necessary.

Testing procedure - convergence of Sn from equation (5).

Let π be a permutation drawn from a uniform distribution over the set of n-element

permutations. We will prove that the random variable

Qn =
n∑
i=1

1
i

3
2

1
|π(1)−π(i)| 32

converges to zero in probability at rate O(n−1). Since 0≤ Sn ≤Qn, then Sn converges

to zero in probability at the same rate.

Lemma 22. E|π(1)−π(i)|−
3
2 =O(n−1).

Proof. Let j be a positive integer smaller than n. Observe that the sum
∑n
i |j− i|

− 3
2 is

finite,
n∑
i

|j− i|−
3
2 ≤ 2

n∑
i

i−
3
2 ≤ 2ζ

(3
2

)
, (A.10)

http://arxiv.org/abs/1402.4501
http://arxiv.org/abs/1402.4501
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where ζ(·) is the Riemann zeta function. Now expand the expected value E|π(1)−
π(i)|−

3
2 using a conditional expected value,

E|π(1)−π(i)|−
3
2 = E(E|j−π(i)|−

3
2 |π(1) = j) =

n∑
j=1

1
n

(E|j−π(i)|−
3
2 |π(1) = j) =

=
n∑
j=1

1
n

n∑
j 6=1

1
n−1 |j− i|

− 3
2 ≤ 1

n(n−1)

n∑
j=1

2ζ
(3

2

)
= 2ζ

(3
2

) 1
n−1 .

(A.11)

Lemma 23. If k 6= j are positive integers smaller than n, then

E|π(k)−π(1)|−
3
2 |π(j)−π(1)|−

3
2 =O

( 1
n2

)

Proof. We use the inequality (A.10) and properties of a conditional expected value.

E|π(k)−π(1)|−
3
2 |π(j)−π(1)|−

3
2 = E

(
E|π(k)−a|−

3
2 |π(j)−a|−

3
2
∣∣π(1) = a

)
= 1
n

n∑
a=1

(
E|π(k)−a|−

3
2 |π(j)−a|−

3
2
∣∣π(1) = a

)
= 6
n(n−1)(n−2)

n∑
a 6=b,a6=c,b 6=c

1
|b−a| 32

1
|c−a| 32

≤ 1
n(n−1)(n−2)

n∑
a6=b

2ζ
( 3

2
)

|b−a| 32

≤ 1
n(n−1)(n−2)

n∑
a

4ζ
(3

2

)2

= 1
(n−1)(n−2)4ζ

(3
2

)2

=O
( 1
n2

)
(A.12)

Lemma 24. Qn converges to zero in probability. The convergence rate is 1
n .

Proof. First, using Lemma 22 , we compute the expected value of Qn

EQn =E

n∑
i=1

1
i

3
2

1
|π(1)−π(i)| 32

=
n∑
i=1

1
i

3
2
E

1
|π(1)−π(i)| 32

≤
n∑
i=1

1
i

3
2

1
n
C ≤ 1

n
Cζ
(3

2

)
=O

( 1
n

)
.
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Next, using Lemma 23, we compute the second moment

E

(
n∑
k=1

1
k

3
2

1
|π(k)−π(1)| 32

) n∑
j=1

1
j

3
2

1
|π(j)−π(1)| 32


≤ E

C 1
n2

n∑
k 6=j

1
k

3
2

1
j

3
2

+
n∑
k=1

1
k3

1
|π(k)−π(1)|3


≤ C 1

n2 ζ
(3

2

)2
+C′

1
n
ζ(3) =O

( 1
n

)
.

(A.13)

Using the Chebyshev’s inequality we obtain the required result.

Testing procedure - Shift HSIC samples from the right distribution

We will investigate the value of the V -statistic for a shifted process i.e. nV (h,Zk).

Null hypothesis holds. If the null hypothesis holds, then Xt and Yt+k are indepen-

dent for any k. To see this, suppose that there exists k for which Xt and Yt+k are

dependent (the processes are stationary, so this is true for all t). The observation Xt de-

pends on its past values: in particular, Xt−k is a parent of Xt. If in addition Xt−k→ Yt,

then Yt and Xt will be dependent, as they share a parent.

We will use this fact to show that the nV (h,Zk) has the same distribution as the

nV (h,Z). Recall the covariance structure of nV (h,Z) from Theorem 9,

Eτaτb = Eea(Z1)eb(Z1) +
∞∑
j=1

[
Eea(Z1)eb(Zj+1) +Eeb(Z1)ea(Zj+1)

]
. (A.14)

We represent ea and eb as ea(z) = eXu (x)eYo (y), eb(z) = eXi (x)eYp (y). This represents

a decomposition of the basis of Z into basis of X,Y, respectively. Consider one of the

above infinite sums with Yt replaced with the shifted process Skt ,

Tn =
n∑
j=1

Eea(Zk1 )eb(Zkj+1) =
n∑
j=1

EeXu (X1)eXi (Xj+1)eYo (Sk1 )eYp (Skj+1). (A.15)
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We obtain the following covariance structure for nV (h,Zk),

Tn =
n∑
j=1

EeXu (X1)eXi (Xj+1)EeYo (Sk1 )eYp (Skj+1)

=
n−k−1∑
j=1

EeXu (X1)eXi (Xj+1)eYo (Y1+k)eYp (Yj+1+k) +
n∑

j=n−k

EeXu (X1)eXi (Xj+1)eYo (Y1+k)eYp (Y1+n−k−j)

=
n−k−1∑
j=1

EeXu (X1)eXi (Xj+1)EeYo (Y1+k)eYp (Yj+1+k) +
n∑

j=n−k

EeXu (X1)eXi (Xj+1)EeYo (Y1+k)eYp (Y1+n−k−j)

≤
n−k∑
j=1

EeXu (X1)eXi (Xj+1)eYo (Y1)eYp (Yj+1) +O(k(n−k)−
3
2 ).

We have used the fact that Yt is stationary, EeYo (Y1+k)eYp (Yj+1+k) = eYo (Y1)eYp (Yj+1)
and that the pairs (X1,X1+j), (Y1+k,Yj+1+k) are independent (because Xt and Yt+k

are independent for all shifts k). For the second term,

n∑
j=n−k

EeXu (X1)eXi (Xj+1)EeYo (Y1+k)eYp (Y1+n−k−j),

we have used covariance inequalities from Doukhan [30, section 1.2.2] and our bounds

on mixing coefficients to obtain that when j ≥ n−k, then E|eXu (X1)eXi (Xj+1)| ≤ (n−
k)−

3
2 (and by e.g. Holders inequality, EeYo (Y1+k)eYp (Y1+(n−j)) is finite). The first

component takes the form

n−k∑
j=1

EeXu (X1)eXi (Xj+1)eYo (Y1)eYp (Yj+1) =
n−k∑
j=1

Eea(Z1)eb(Zj+1).

Here
∑n−k
j=1 Eea(Z1)eb(Zj+1) converges to

∑∞
j=1Eea(Z1)eb(Zj+1) from equation

(A.14). Since Eea(Zk1 )eb(Zk1 ) = Eea(Z1)eb(Z1), the covariance structure from equa-

tion (A.14) is recovered.

Null hypothesis does not hold. In this case, the dependence between Xt and Yt+k

decreases as k increases, since the mixing coefficients for each of the time series con-

verges to zero. In the limit of large k and n, the normalized V -statistic will converge to

the null distribution, where Xt and Yt are independent random processes. The proof

of this result under the assumed mixing conditions, with suitable conditions on the in-

crease of k with n, is a topic of future work (the next two sections give an outline of the

results that would need to be established for the shifted process).
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Proofs - Hoeffding decomposition

The Hoeffding decomposition [e.g. 91] allows us to decompose U-statistics into a sum

of simpler U -statistics that can be easier to analyse. In the following section we will

perform a Hoeffding decomposition of U(h,Z) and investigate some of its properties.

In the sequel we assume that k and l are bounded kernels. For the U statistic U(h,Z),
we call the function h a core.

Any U-statistic can be written as a sum of V-statistics with degenerate cores. To show

this, we define the auxiliary functions

gc(z1, ...zc) = Eh(z1, ...,zc,Z∗c+1, ...,Z
∗
m)

for each c= 1, ...,m−1 and put gm = h.

We assume the expected value of the core with respect to starred {Zt} is zero, i.e.,

Eh(Z∗1 , · · · ,Z∗m) = 0. The canonical functions that enable the core decomposition are

h1(z1) = g1(z1),

h2(z1,z2) = g2(z1,z2)−h1(z1)−h1(z2),

h3(z1,z2,z3) = g3(z1,z2,z3)−
∑

1≤i<j≤3

h2(zi,zj)−
∑

1≤i≤3

h1(zi),

...

hm(z1, ...,zm) = gm(z1, ...,zm)−
∑

1≤i1<...<im−1≤m

hm−1(zi1 , ...,zim−1 )

− ...−
∑

1≤i1<i2≤m

h2(zi1 ,zi2 )−
∑

1≤i≤m

h1(zi).

We call these functions components of a core.

Statement 3. The U-statistic of a core function h can be written as a sum of U-statistics

with degenerate cores,

U(h,Z) =U(hm,Z)+
(
m

1

)
U(hm−1,Z)+ ...+

(
m

m−2

)
U(h2,Z)+

(
m

m−1

)
U(h1,Z).

Proof. Recall that
∑
i∈Cm denotes summation over all

(
n
m

)
combinations of m distinct
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elements {i1, · · · , im} from {1, · · · ,n}.

U(h,Z) = 1
nm

∑
i∈Cm

h(Zi1 , ...,Zim)

= 1
nm

∑
i∈Cm

hm(Z1, ...,Zm) +
∑

1≤j1<...<jm−1≤m

hm−1(Zji1 , ...,Zijm−1
)

+...+
∑

1≤j1<j2≤m

h2(Zij1
,Zij2

) +
∑

1≤j≤m

h1(Zij )


= 1
nm

∑
i∈Cm

hm(Z1, ...,Zm) +
(
m

1

)
1

nm−1

∑
i∈Nm−1

hm−1(Zi1 , ...,Zim−1 )+

+ ...+
(

m

m−2

)
1
n2

∑
i∈N2

h2(Zi1 ,Zi2 ) +
(

m

m−1

)
1
n

∑
i∈N

h1(Zi)

= U(hm,Z) +
(
m

1

)
U(hm−1,Z) + ...+

(
m

m−2

)
U(h2,Z) +

(
m

m−1

)
U(h1,Z).

Lemma 25. Under H0, ∀z ∈ Z h1(z) = 0.

Proof. We use the shorthand notation k(a,b)≡ k(xa,xb), l(a,b)≡ l(ya,yb), such that

h(za,zb,zc,zd) = 1
4!
∑
π∈S4

k(π1,π2) [l(π1,π2) + l(π3,π4)−2l(π2,π3)] .

Let us expand this expression. By using the symmetry of k and l, and writing the
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arguments in lexicographical order, we obtain

h(za,zb,zc,zd) =

k(a,b)(l(a,b) + l(c,d)−2l(b,c)) +k(a,b)(l(a,b) + l(c,d)−2l(b,d))

k(a,c)(l(a,c) + l(b,d)−2l(b,c)) +k(a,c)(l(a,c) + l(b,d)−2l(c,d))+

k(a,d)(l(a,d) + l(b,c)−2l(b,d)) +k(a,d)(l(a,d) + l(b,c)−2l(c,d))+

k(a,b)(l(a,b) + l(c,d)−2l(a,c)) +k(a,b)(l(a,b) + l(c,d)−2l(a,d))+

k(b,c)(l(b,c) + l(a,d)−2l(a,c)) +k(b,c)(l(b,c) + l(a,d)−2l(c,d))+

k(b,d)(l(b,d) + l(a,c)−2l(a,d)) +k(b,d)(l(b,d) + l(a,c)−2l(c,d))+

k(a,c)(l(a,c) + l(b,d)−2l(a,b)) +k(a,c)(l(a,c) + l(b,d)−2l(a,d))+

k(b,c)(l(b,c) + l(a,d)−2l(a,b)) +k(b,c)(l(b,c) + l(a,d)−2l(b,d))+

k(c,d)(l(c,d) + l(a,b)−2l(a,d)) +k(c,d)(l(c,d) + l(a,b)−2l(b,d))+

k(a,d)(l(a,d) + l(b,c)−2l(a,b)) +k(a,d)(l(a,d) + l(b,c)−2l(a,c))+

k(b,d)(l(b,d) + l(a,c)−2l(a,b)) +k(b,d)(l(b,d) + l(a,c)−2l(b,c))+

k(c,d)(l(c,d) + l(a,b)−2l(a,c)) +k(c,d)(l(c,d) + l(a,b)−2l(b,c)) .

By grouping brackets we obtain

h(za,zb,zc,zd) =

k(a,b)(2l(a,b) + 2l(c,d)−2l(b,c)−2l(b,d))

k(a,c)(2l(a,c) + 2l(b,d)−2l(b,c)−2l(c,d))+

k(a,d)(2l(a,d) + 2l(b,c)−2l(b,d)−2l(c,d))+

k(a,b)(2l(a,b) + 2l(c,d)−2l(a,c)−2l(a,d))+

k(b,c)(2l(b,c) + 2l(a,d)−2l(a,c)−2l(c,d))+

k(b,d)(2l(b,d) + 2l(a,c)−2l(a,d)−2l(c,d))+

k(a,c)(2l(a,c) + 2l(b,d)−2l(a,b)−2l(a,d))+

k(b,c)(2l(b,c) + 2l(a,d)−2l(a,b)−2l(b,d))+

k(c,d)(2l(c,d) + 2l(a,b)−2l(a,d)−2l(b,d))+

k(a,d)(2l(a,d) + 2l(b,c)−2l(a,b)−2l(a,c))+

k(b,d)(2l(b,d) + 2l(a,c)−2l(a,b)−2l(b,c))+

k(c,d)(2l(c,d) + 2l(a,b)−2l(a,c)−2l(b,c)) .

Finally we introduce colours to picture grouping of terms that will cancel each other
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during integration.

h(za,zb,zc,zd) =[
k(a,b)(4l(a,b) + 4l(c,d)) +k(a,c)(4l(a,c) + 4l(b,d))+

k(a,d)(4l(a,d) + 4l(b,c)) +k(b,c)(4l(b,c) + 4l(a,d))+

k(b,d)(4l(b,d) + 4l(a,c)) +k(c,d)(4l(c,d) + 4l(a,b))
]
+[

k(a,b)(−2l(a,d)−2l(a,c)) +k(a,b)(−2l(b,d)−2l(b,c))+

k(a,c)(−2l(a,d)−2l(a,b)) +k(a,c)(−2l(c,d)−2l(b,c))+

k(a,d)(−2l(a,c)−2l(a,b)) +k(a,d)(−2l(c,d)−2l(b,d))+

k(b,c)(−2l(a,c)−2l(a,b)) +k(b,c)(−2l(c,d)−2l(b,d))+

k(b,d)(−2l(a,b)−2l(a,d)) +k(b,d)(−2l(b,c)−2l(c,d))+

k(c,d)(−2l(a,d)−2l(a,c)) +k(c,d)(−2l(b,d)−2l(b,c))
]

(A.16)

We will show that brown terms of equation (A.16) cancel each other. Recall that

h1(z1) = Eh(z1,Z∗2 ,Z∗3 ,Z∗4 ). Without loss of generality we may assume that we in-

tegrate with respect to all variables but xa and ya. Observe that

Ek(xa,X∗b ) = Ek(xa,X∗c ) = Ek(xa,X∗d )

El(ya,Y ∗b ) = El(ya,Y ∗c ) = El(ya,Y ∗d )

Define q = Ek(xa,X∗b ), p = El(ya,Y ∗b ). Therefore, after integration, the brown terms

of the equation can be written as

q4p+ q4p+ q4p+ q(−2p−2p) + q(−2p−2p) + q(−2p−2p) = 0

Similar reasoning shows that red, green and violet terms cancel out.

Statement 4. A component of a core function is a canonical core.

Proof. We will use induction by components’ index to show that hc is degenerate. The

expected value of the first component is zero, indeed Eh1(Z∗1 ) = Eh(Z∗1 , ...,Z∗m) = 0.

Suppose that for all c′ smaller then c degeneracy holds. Using component symmetry it

is enough to show that the expected value Ehc(z1, ...,Z∗c ) is equal to zero. We can write∑
1≤i1<...<ic′≤c

hc′(zi1 , ...,zic′ ) =
∑

1≤i1<...<ic′≤c−1

hc′(zi1 , ...,zic′ )+
∑

1≤i1<...<ic′−1<c

hc′(zi1 , ...,zc).

Now the first sum
∑

1≤i1<...<ic′≤c−1hc′(zi1 , ...,zic′ ) does not contain term zc so

integration with respect to Z∗c does not affect it. On the other hand, by induc-

tion assumption E
∑

1≤i1<...<ic′−1<c
hc′(zi1 , ...,Z

∗
c ) = 0. Obviously Egc(z1, ...,Z∗c ) =
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gc−1(z1, ...,zc−1). Using these observations we obtain

Ehc(z1, ...,Z∗c ) = gc−1(z1, ...,zc−1)−
∑

1≤i1<...<ic−1≤c−1

hc−1(zi1 , ...,zic−1 )

− ...−
∑

1≤i1<i2≤c−1

h2(zi1 ,zi2 )−
c−1∑
i=1

h1(zi)
(A.17)

Since the set {1≤ i1 < ... < ic−1 ≤ c−1} contains only one sequence,

Ehc(z1, ...,Z∗c ) =−hc−1(zi1 , ...,zic−1 ) + [gc−1(z1, ...,zc−1)

− ...−
∑

1≤i1<i2≤c−1

h2(zi1 ,zi2 )−
c−1∑
i=1

h1(zi)] = 0.
(A.18)

For this nice simplification we have used definition of the component hc−1.

Lemma 26. Under H0,

h2(z1,z2) = 1
6 k̃(x1,x2)l̃(y1,y2)

where

k̃(x1,x2) = k(x1,x2)−Ek(x1,X
∗
2 )−Ek(X∗1 ,x2) +Ek(X∗1 ,X∗2 ),

l̃(y1,y2) = l(y1,y2)−El(y1,Y
∗
2 )−El(Y ∗1 ,y2) +El(Y ∗1 ,Y ∗2 )

Proof. We use that h2 is canonial, and the exact form of Eh(z1,z2,Z∗3 ,Z∗4 ) from [44],

Section A.2, text between equation 12 and 13.

Corollary 1. Under H0, h2 = 1
6s.

Proofs - U(h4,Z) and U(h3,Z) converge to zero

Lemma 27. If (Zt)t∈N+ is an absolutely regular process with mixing coefficient decaying

faster than n−3 (β(n),θ(n)≤ n−3), then n ·U(h4,Z)) and n ·U(h3,Z)) converge to zero

in probability.

Proof. Let N := {1, · · · ,n}, and let B be a set of all strictly increasing 4-tuples, B ⊂N4.

A U -statistic can be expressed as sum over elements of B,

n ·U(h4,Z)) =

[
1
n4

(
n

4

)−1
]

1
n3

∑
b∈B

h4(Zb).
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If the variance of this random variable goes to zero,

lim
n→0

E

(
1
n3

∑
b∈B

h4(Zb)

)2
P= 0,

then using Chebyshev’s inequality we can conclude that it converges to a constant in

probability. To show this, we use Lemma 3 from Arcones [3]. We see that the first

condition of Theorem 1 from Arcones [3] is met, since h4 is bounded and the mixing

coefficient converges to zero. Therefore, by the fact that h4 is canonical, we can use

Lemma 3 from Arcones [3], which states that

E

(∑
b∈B

h4(Zb)

)2

≤ Cn4M

(
1 +

n−1∑
m=1

m3β(m)(p−2)/p

)

for some p > 2 and M =‖ h ‖∞ . Take p such that 3(p−2)
p = 2.5 and use inequality

β(m)≤m−3 to obtain

n−1∑
m=1

m3β(m)(p−2)/p ≤
n−1∑
m=1

√
m=O(n1.5).

Therefore

lim
n→0

E

(
1
n3

∑
b∈B

h4(Zb)

)2
P= lim
n→0

n5.5

n6
P= 0.

We now need to show that EnU(h4,Z) converges to zero. We will use Lemma 21 with

δ = 2, and that β(k)
2
3 ≤ k−2,

EnU(h4,Z) = n

n(n−1)(n−2)(n−3)E
∑

1≤a<b<c<d≤n

h4(Za,Zb,Zc,Zd)

≤ n

n(n−1)(n−2)(n−3)
∑

1≤a<b<c<d≤n

M
1
3

1
max(b−a,c− b,d− c)2 .

(A.19)

for some constant M as in Lemma 21. Next

∑
1≤a<b<c<d≤n

1
max(b−a,c− b,d− c)2 =

n−3∑
a=1

n∑
d=a+3

∑
a<b<c<d

1
max(b−a,c− b,d− c)2

≤
n−3∑
a=1

n∑
d=a+3

32

(d−a)2 ≤ 9
n−3∑
a=1

2ζ(2)≤ Cn.

(A.20)

We have used the fact that
∑n
d=a+3

1
(d−a)2 ≤ 2ζ(2).

The reasoning for U(h3,Z) is similar.
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Proofs - Borisov and Volodko [15, Theorem 1]

Theorem 11. Let m be the number of arguments of a symmetric kernel f . Let one of the

following two sets of conditions be fulfilled:

1. The stationary sequence Xi satisfies θ-mixing and

1.1.
∑∞
k=1φ(k)

1
2 <∞,

1.2. supiE|ei(X1)|2 <∞.

2. The stationary sequence Xi satisfies α-mixing. For some ε > 0 and for an even

number c≥ 2 the following holds:

2.1. supiE|ei(X1)|2+ε ≤∞,

2.2.
∑∞
k=1 k

c−2αε/(c+ε)(k)<∞

where ei(X1) are a basis of L2(X,F ). Then, for any degenerate kernel f(t1, ..., tm) ∈
L2(Xm,Fm), under conditions

•
∑∞
i1,...,im

|fi1,...,im |<∞, where fi1,...,im are the coefficient of f in L2(Xm,Fm),

• for every collection of pairwise distinct subscripts (j1, ..., jm), the distribution

of (Xj1 , ...,Xjm) is absolutely continuous with respect to the distribution of

(X∗1 , ...,X∗m), where Xi∗ is an independent copy of X1,

• e0 = 1 or Eei(Zj) = 0 for all i,

the following assertion holds:

n
m
2 U(f,Z)→

∞∑
i1,...,im

fi1,...,im

∞∏
j=1

Hνj(i1,...,im)(τj),

where τj is a centred Gaussian sequence with the covariance matrix

Eτkτl = Eek(X1)el(X1) +
∞∑
j=1

[
Eek(X1)el(Xj+1) +Eel(X1)ek(Xj+1)

]
,

νj(i1, ..., im) :=
∑m
r=1 δj,ir , and Hk(x) are the Hermite polynomials,

Hk(x) = (−1)ke(x
2/2) d

k

dxk
(e−x

2/2)



138

Proofs - Expected value of the eigenfunctions

From the eigenvalue equation λiEei(z) = Eh2(z,Z∗2 )ei(Z∗2 ), h2 degeneracy, and the

independence of Z∗1 and Z∗2 , we conclude that

Eei(Z∗1 ) = 1
λ i
Eh2(Z∗1 ,Z∗2 )ei(Z∗2 ) = 1

λ i
E[ei(Z∗2 )E(h2(Z∗1 ,Z∗2 )|Z∗2 = z2)] = 1

λ i
E[ei(Z∗2 ) ·0] = 0.
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