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A global genetic interaction network maps a wiring diagram of cellular function 
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Abstract (119 words) 
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing 
over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic 
interactions. This comprehensive network maps genetic interactions for essential gene pairs, 
highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled 
assembly of a hierarchical model of cell function, including modules corresponding to protein 
complexes and pathways, biological processes, and cellular compartments. Negative interactions 
connected functionally related genes, mapped core bioprocesses, and identified pleiotropic 
genes, whereas positive interactions often mapped general regulatory connections among gene 
pairs, rather than shared functionality. The global network illustrates how coherent sets of 
genetic interactions connect protein complex and pathway modules to map a functional wiring 
diagram of the cell. 
 
Introduction 

Genetic interaction networks highlight mechanistic connections between genes and their 
corresponding pathways (1). Genetic interactions can also determine the relationship between 
genotype and phenotype (2) and may contribute to the “missing heritability”, or the lack of 
identified genetic determinants underlying a phenotypic trait, in current genome-wide association 
studies (3, 4). To explore the general principles of genetic networks, we took a systematic 
approach to map genetic interactions among gene pairs in the budding yeast, Saccharomyces 
cerevisiae. Synthetic genetic array (SGA) analysis automates the combinatorial construction of 
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defined mutants and enables the quantitative analysis of genetic interactions (1, 5). A positive 
genetic interaction describes a double mutant that exhibits a fitness that is greater than expected 
based on the combination of the two corresponding single mutants. Conversely, a negative or 
synthetic lethal/sick genetic interaction is identified when a double mutant displays a fitness 
defect that is more extreme than expected (1). Synthetic lethal interactions are of particular 
interest as they can be harnessed to identify new antibiotic or cancer therapeutic targets (6, 7). In 
this study, we both expand upon our previous analysis of genetic interactions associated with 
nonessential genes (1) and also characterized genetic interactions involving the majority of 
essential genes to generate a global yeast genetic interaction network. 

 
A global and quantitative genetic network for yeast 

To map genetic interactions between nonessential yeast genes (8), we generated a 
genome-scale library of natMX-marked deletion mutant query strains and crossed them to an 
array composed of the corresponding kanMX-marked deletion mutant collection (9, 10). We also 
systematically examined genetic interactions between pairs of the well-defined set of essential 
genes (9). To do so, we generated temperature sensitive (TS) mutant alleles, carrying mutations 
that typically alter coding regions. Our essential gene mutant collection consists of 2,001 array 
and/or query strains harboring TS alleles corresponding to 868 unique essential genes including 
strains for ~140 essential genes that were not represented in previous strain collections (11, 12). 
TS mutants were screened at a semi-permissive temperature where cells were viable but partially 
compromised for gene function and associated with a reduced growth rate (8). We also 
constructed a set of essential gene query strains carrying Decreased Abundance of mRNA 
(DAmP) alleles, which can lead to reduced transcript levels (13); however, only a fraction of 
DAmP alleles (25%) compromised gene function enough to impact cellular fitness (> 5% fitness 
defect) and, consequently, most DAmP alleles exhibited fewer interactions compared to TS 
alleles of essential genes (fig. S1). Thus, TS alleles mediated the majority of the essential gene 
genetic interactions in our network and the analyses described exclude DAmP alleles, unless 
otherwise noted. 

We constructed three different genetic interaction maps. First, the collection of 
nonessential deletion mutant query strains was screened against the nonessential deletion mutant 
array to generate a nonessential x nonessential (NxN) network. Second, query strains carrying 
TS alleles of essential genes were also screened against the nonessential deletion mutant array to 
generate an essential x nonessential (ExN) network. Finally, both nonessential deletion mutant 
and TS query mutant strains were crossed to an array of TS strains of essential genes to generate 
an expanded ExN network and the first large-scale essential x essential (ExE) genetic network. 

Negative and positive genetic interactions were quantified and false negative/positive 
rates and data reproducibility were determined at defined confidence thresholds (1) from analysis 
of biological replicates and comparison of interactions for a subset of gene pairs represented on 
both mutant arrays (fig. S2)(8). A global genetic interaction network resulting from the 
combination of the NxN, ExN, and ExE networks was generated from analysis of ~23 million 
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double mutants encompassing 5,416 different genes. In total, we identified nearly 1 million 
genetic interactions, corresponding to ~550,000 negative and ~350,000 positive genetic 
interactions, including ~120,000 novel interactions between pairs of essential genes (fig. S3). 
The current global network involves ~90% of all yeast genes as query and/or array mutants and 
is accessible from http://thecellmap.org/costanzo2016/. We note that experiments and analyses 
described here were from a representative subset (> 80%) of the complete dataset (Files S1-S3), 
unless otherwise noted. 

 
A functional map of a cell 

The genetic interaction profile of a particular gene is composed of its specific set of 
negative and positive genetic interactions. Genes belonging to similar biological processes tend 
to share common genetic interactions, and genes encoding proteins that function together within 
the same pathway or complex display similar genetic interaction profiles (fig. S4)(1). Thus, 
genetic interaction profiles provide a quantitative measurement of functional similarity, and 
global similarity networks created from correlated genetic interaction profiles organize genes 
into clusters that highlight biological processes (1). We visualized networks of genetic profile 
similarity (Data File S3) between essential genes (Fig. 1A, Essential Similarity Network), 
nonessential genes (Fig. 1B, Nonessential Similarity Network), and a global similarity network 
(Fig. 1C, Global Similarity Network). Nodes in the similarity networks represent genes whereas 
edges connect gene pairs that share similar genetic interaction profiles (8). 

When evaluated at the same Pearson correlation coefficient (PCC) threshold, the essential 
gene similarity network (Fig. 1A) was more than 25-fold more densely connected compared to 
the corresponding nonessential network (Fig. 1B). For example, at PCC > 0.2, 3.12% of all 
tested gene pairs were connected in the ExE similarity network, whereas 0.12% of all tested gene 
pairs were connected in the NxN similarity network. Moreover, genes on the essential gene 
similarity network often showed a stronger functional relationship, because genes that encode 
members of the same essential protein complex exhibited significantly higher interaction profile 
similarity than gene pairs belonging to the same nonessential complex (fig. S5). By evaluating 
the predictive power of both essential and nonessential genetic interaction profiles (8), we found 
that essential gene interaction profiles provided higher accuracy gene function predictions across 
a diverse set of biological processes (14), and this increased accuracy was correlated with the 
fraction of essential genes annotated to specific bioprocesses (fig. S6; Data File S4). 
Nevertheless, interactions involving either essential or nonessential genes can predict function. 
For example, interactions involving nonessential genes were more predictive of vacuolar 
transport, peroxisome, and mitochondrial function, whereas interactions involving essential 
genes were more informative for predicting chromosome segregation, mRNA splicing, and 
proteolysis functions. Interestingly, functional predictions for essential genes could also be 
derived from interactions with nonessential genes and vice versa. Nevertheless, optimal 
functional prediction performance was achieved with a global similarity network that combined 
the majority of all nonessential and essential protein coding genes in the S. cerevisiae genome. 
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To functionally annotate the global genetic profile similarity maps (Fig. 1A-C), we 
applied Spatial Analysis of Functional Enrichment (SAFE), which identifies dense network 
regions associated with specific functional attributes (15). Implementing SAFE with 4373 
biological process terms from Gene Ontology (GO)(14), we detected gene clusters in each 
similarity network that were enriched for unique sets of related GO terms (Fig. 1D-F; Data File 
S5). Gene clusters enriched for GO terms related to cell polarity, protein degradation, and rRNA 
processing, were specifically detected in the essential gene similarity network (Fig. 1D), whereas 
the nonessential gene similarity network identified clusters enriched for mitochondrial and 
peroxisomal functions (Fig. 1E). The global similarity network provided a more organized and 
functionally comprehensive view of cellular function, emphasizing the importance of mapping 
genetic interactions that involve both nonessential and essential genes (Fig. 1F). SAFE identified 
487 significantly enriched GO bioprocess terms that mapped to 17 unique network regions and 
covered 1343 genes on the global network (Fig. 1F). The subsets of enriched GO bioprocess 
terms associated with each densely connected network region in turn revealed genes involved in 
core cellular functions and defined an informative subset of GO bioprocess terms associated with 
these functions (Data File S5). 

 
Genetic profile similarities map a hierarchy of gene and cellular function 

The relative positioning of biological process clusters appeared to reflect shared 
functionality because distinct, but related processes such as DNA replication & repair and 
Mitosis, were positioned next to each other in the global similarity network (Fig. 1F). To explore 
this functional organization more rigorously, we considered only those genes with at least one 
highly similar gene partner, resulting in a set of 515 nonessential and 421 essential array mutants 
(8). We then applied an unsupervised clustering approach to construct a genetic interaction-based 
hierarchy for this subset of genes. The base of the resultant hierarchy was composed of 
numerous, small clusters of genes with highly similar genetic interaction profiles, whereas the 
top of the hierarchy was composed of a small set of larger clusters of genes with lower profile 
similarity (Figs. 2A, S7; Data File S6).  

To examine functional relationships between clusters identified at different hierarchical 
levels, we assessed whether distinct “sibling” clusters, resolved at one level of the hierarchy and 
combined together at a higher level to generate a unique and larger “parent” cluster, shared 
enrichment for the same annotations from a particular functional standard (8). Indeed, sibling 
clusters identified at a relatively high level of profile similarity (e.g. PCC > 0.4), which often 
corresponded to distinct protein complexes, shared enrichment for the same GO biological 
process annotations (Data File S6). For example, five sibling clusters with distinct 
pathway/complex annotations, including the homologous DNA repair pathway and the ORC 
(Origin Recognition Complex),	 combined together into a single parent cluster, and all these 
siblings are enriched for GO biological process terms such as “DNA repair”, “DNA metabolic 
process”, and “Response to DNA damage stimulus”, which reflects a general role shared by the 
collective gene set in the regulation of DNA synthesis and repair (Data File S6). 
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However, sibling clusters detected at an intermediate range of profile similarity (0.2 < 
PCC < 0.4), which combined into a relatively smaller set of larger parent clusters at a lower 
range of profile similarity (0.05 < PCC < 0.2), did not share enrichment for the same GO 
biological process, pathways or protein complex annotations. Instead, these clusters were 
enriched for genes whose products function in the same cell compartment (Figs. 2A, S7; Data 
File S6). For example, one of the ten parent clusters formed near the top of the hierarchy was 
comprised of six sibling clusters, and, although each individual sibling cluster was enriched for 
unique GO biological process terms including “Chromosome Segregation”, “Transcription from 
RNA Polymerase II Promoter” or “DNA Repair”, none of the sibling clusters were enriched for 
the same GO biological process terms. Instead, all ten sibling clusters were enriched for gene 
products that exhibit nuclear localization patterns (Data File S6). As observed previously (16), 
this indicates that novel functional organization is embedded within large-scale, unbiased 
datasets, which may not be captured completely by functional standards, including GO as it is 
currently organized (14). Thus, a global genetic interaction network, created on the basis of a 
single fitness phenotype, quantifies functional relatedness to organize genes into modules 
corresponding to protein complexes and pathways, which combine to define specific biological 
processes which, in turn, group together into larger modules representing specific cellular 
compartments, thereby revealing a hierarchical model of cell function. 

The functional hierarchy revealed by genetic interaction profiles can also be visualized on 
the global similarity network (Fig. 2B). Applying SAFE with a protein localization standard (17), 
we detected 14 network regions enriched for genes whose products localize to 11 different 
subcellular compartments (Fig. 2B, Cell Compartments; Data File S5). For example, bioprocess 
clusters such as DNA synthesis, Mitosis, Nuclear Transport and Transcription (Fig. 2B, 
Bioprocesses; Data File S5) combined into a single module encompassing genes localized to the 
cell nucleus (Fig. 2B, Cell Compartments). At a higher level of functional resolution, SAFE 
identified 28 gene clusters corresponding to 123 specific protein complexes (Fig 2B, 
Complexes/Pathways; Data File S5). Genetic relationships between protein complexes were also 
resolved in greater detail by extracting biological process-enriched clusters from the global 
network and visualizing them in isolation (Fig. 3; Data File S5).  
 
Quantifying genetic pleiotropy 

The ability of an organism to tolerate environmental and genetic variation may be 
dependent on phenotypic capacitors, a class of genes whose inactivation may increase 
phenotypic variation among genetically diverse individuals in a population (18). Hsp90, the 
canonical capacitor, is a molecular chaperone controlling numerous signaling pathways and thus 
is considered a multi-functional or pleiotropic gene (18). Identifying other pleiotropic genes may 
uncover novel capacitors and provide insight into the genetic basis of phenotypic robustness. 

We expect that a pleiotropic gene involved in diverse functions should show a genetic 
interaction profile that partially overlaps with genes representative of its functional spectrum. To 
quantify pleiotropy, we focused on genes with a high degree of negative genetic interactions and 
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developed a pleiotropy score that measured the functional breadth of genetic interaction profiles 
associated with these genes (8). Genes encoding Hsp90 (hsc82Δ hsp82-5001 TS double mutant 
query strain; Data File S1), IRA2, a negative regulator of RAS signaling, and RSP5, an E3 
ubiquitin ligase, ranked among the most highly pleiotropic genes observed (Data File S7). Other 
highly pleiotropic genes (top 30% pleiotropy scores) included those with proteostasis or 
signaling roles, as well as select genes with roles in fundamental cellular functions, such as 
translation, RNA processing, vesicle trafficking, lipid metabolism, and coenzyme-A biosynthesis 
(Fig. 4A). Because they share genetic interactions with many functionally diverse genes, high 
pleiotropy genes tended not to belong to densely connected network clusters, but rather were 
more often positioned outside the functionally enriched clusters, scattered in the sparser regions 
of the global network (Fig. 4A).  In contrast, high degree but low pleiotropy genes (lowest 30% 
pleiotropy scores), which are functionally specific, overlapped more often with densely 
connected regions of the global similarity network (P < 10-5; Gene Set Enrichment Analysis)(8)  

 
Predicting novel gene function 

The location of numerous previously uncharacterized genes either within or in close 
proximity to functionally enriched regions of the genetic profile similarity network allows us to 
predict functions for these genes (Fig. 4B)(8). Notably, while most essential genes are relatively 
well studied, our network uncovered a role for a previously uncharacterized essential gene, 
YJR141W, which we named IPA1 (Important for cleavage and PolyAdenylation), in the highly 
conserved process of mRNA 3’-end processing and polyadenylation. IPA1 shares many genetic 
interactions in common with genes encoding members of the Cleavage/Polyadenylation factor 
(CPF) and Cleavage Factor IA (CF IA) protein complexes (Fig. 4B,C), which along with HRP1, 
are essential for mRNA 3’ end processing (19). We also found that Ipa1 physically interacted 
with CPF complex members, Mpe1 and Ysh1 (Data File S8)(8) further supporting a role for 
IPA1 in this process. Indeed, as shown previously for TS mutants in components of CF IA and 
CPF complexes (20), such as pcf11 and cft2 TS mutants, an ipa1 TS mutant was impaired for in 
vitro mRNA cleavage and polyadenylation (fig. S8) and showed widespread defects in mRNA 
processing accuracy and efficiency with a significant bias towards the use of downstream 
polyadenylation sites (P < 2 x 10-16, Wilcoxon rank sum; Figs. 4D; S8)(8). 
 Six poorly characterized genes, MTC2, MTC4, MTC6, CSF1, DLT1, and YPR153W 
localized in the vicinity of the cell polarity and morphogenesis cluster on the global network 
(Fig. 4B) and displayed highly similar genetic interaction profiles suggesting that they work 
together as a novel functional module (Fig. 4E). Interestingly, all of these genes were identified 
as important for growth in high-pressure and cold environments (21). Thus, we called this 
module the MTC pathway and named YPR153w as MAY24 (genetic interaction profile similarity 
to MTC Annotated Yeast genes MTC2 and MTC4). MTC2, MTC4, and MTC6 mutants were 
previously shown to enhance the mutant phenotype associated with perturbation of CDC13, 
which controls the maintenance of telomere capping (22). MTC pathway genes showed strong 
negative interactions with protein trafficking genes, as well as aromatic amino acid biosynthesis 
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genes, ARO1 and ARO2 (Figs. 4F, S9). Because pathway components often share phenotypes 
with their target genes, a genetic interaction profile that contains members of a particular 
pathway may also identify potential targets of the same pathway. For example, the ARO1 genetic 
interaction profile revealed strong negative interactions with genes involved in amino acid 
metabolism, the entire MTC pathway and the aromatic amino acid transporters, BAP2 and TAT1 
(Figs. 4G, S9), suggesting that the MTC pathway may control amino acid metabolism or affect 
trafficking of Bap2 and Tat1 permeases. Indeed, mutations of MTC pathway genes resulted in 
Bap2 mislocalization (Figs. 4H, S9) and defective phenylalanine uptake, resembling that of 
strains deleted for genes encoding amino acid transporters, including BAP2, TAT1, and GAP1 
(Fig. 4I)(8). Furthermore, unbiased metabolomics analysis revealed that the MTC pathway 
mutants exhibited elevated levels of kyurenine biosynthetic pathway metabolites, including 
NAD+ (Fig. 4J)(8). Previous studies showed that defects in kyurenine biosynthesis suppressed 
cdc13-1 TS mutants, suggesting that elevated NAD+ levels inhibit telomere capping (23). Thus, 
the global genetic interaction network traced novel functional connections whereby defects in 
MTC pathway-dependent protein trafficking alter aromatic amino acid homeostasis, which 
appears to modulate steady state levels of kyurenine biosynthetic pathway metabolites, linking 
cell polarity to telomere capping through altered NAD+ levels.  

 
Genetic interaction network connectivity 

Genetic interaction profiles connect a particular gene to other genes through both 
negative and positive interactions. Although the average gene participated in ~100 negative 
interactions (2% of genes tested) and ~65 positive interactions (1% of genes tested), when 
assessed at an intermediate confidence threshold (8), a wide range of connectivity exists in the 
genetic interaction network (fig. S10; Data File S9). For example, the 10% most connected genes 
(i.e. high interaction degree genes or hub genes) in the genetic interaction network participated in 
3.5-fold more genetic interactions than the average gene. More specifically, negative interaction 
hubs had an average degree of 340 negative interactions and the average positive interaction hub 
displayed 200 positive interactions. In general, essential genes participated in ~5-fold more 
negative and positive interactions than nonessential genes, confirming previous estimates (Fig. 
5A)(24). 

As observed previously (1), fitness defects associated with both deletion alleles of 
nonessential genes and TS alleles of essential genes were highly correlated with the degree of 
genetic interaction (figs. S11-S12; Table S1; Data File S10). In the global network, genetic 
interaction hubs participated in numerous chemical-genetic interactions and tended to encode 
conserved, multifunctional, highly expressed and abundant proteins that exhibit many physical 
interactions (Data File S9; Table S1). Genes encoding proteins involved in specific biochemical 
functions, or those that contain specific functional domains, such as an SH3 (SRC Homology 3) 
protein-protein interaction domain, were also associated with a higher number of genetic 
interactions (figs. S13, S14). In the nonessential genetic interaction network (NxN), negative and 
positive interaction hubs were enriched for biological processes including chromatin 
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organization, transcription and vesicle trafficking (Data File S11). In the essential genetic 
network (ExE), negative interaction hubs were relatively uniformly distributed across all 
bioprocesses, whereas positive interaction hubs were specifically enriched for proteostasis-
related bioprocesses (Data File S11). 

Genes that exhibited relatively few genetic interactions were also associated with specific 
features (figs. S11-S14; Table S2; Data File S10). For example, ABC transporters, which belong 
to functionally redundant gene families and thus are extensively buffered, exhibited fewer 
genetic interactions (figs. S11-S14; Table S2). Interestingly, genes with lowest interaction degree 
(lowest 20%; Data File S9) were often associated with more deleterious single nucleotide 
polymorphisms (SNPs), exhibited a higher dN/dS ratio, and displayed high expression variance 
across different genetic backgrounds and environments. This suggests that these genes are under 
reduced evolutionary constraints and subject to condition-specific regulation (Table S2; figs. 
S11-S12). Approximately 1000 genes displayed few genetic interactions and had profiles that 
generally displayed a relatively low level of functional information, suggesting that the rich 
connectivity of some genes will only be revealed under different environmental or genetic 
conditions. The functional, physiological and evolutionary properties associated with genetic 
interaction frequency should predict genetic network connectivity and candidate genes that may 
serve as important genetic modifiers in other organisms, including humans (25). 

 
Negative and positive genetic interactions of essential and nonessential genes 

The global genetic interaction network, encompassing the majority of both nonessential 
and essential genes, enabled a comprehensive comparative analysis with other functional 
information (8). Both nonessential and essential genetic interactions were predictive of 
functionally related gene pairs (Figs. 5B, C, S15). In particular, negative interactions among 
essential genes showed a striking overlap with protein-protein interactions (Figs. 5C, S15). For 
example, 50% of essential gene pairs whose products physically interact also share a negative 
interaction, representing a ~10-fold enrichment for negative interactions among essential genes 
displaying protein-protein interactions. Similarly, 63% of gene pairs annotated to the same 
essential protein complex were connected by a negative genetic interaction, representing a ~15-
fold enrichment for negative interactions among co-complexed essential gene pairs. In fact, 
individual negative interactions were as informative as genetic interaction profile similarity for 
predicting membership to the same essential pathway or complex, a property that does not hold 
for nonessential genes (fig. S16). This observation highlights the reduced ability of a cell to 
tolerate multiple mutations in the same essential pathway or complex (Figs. 5C, S15). 

Consistent with previous observations (1), positive genetic interactions between 
nonessential genes also overlapped with protein-protein interactions, albeit to a lesser extent 
(0.5%, 3.7-fold enrichment; Figs. 5C, S15). This reflects that simultaneous perturbation of two 
genes encoding members of the same nonessential protein complex often show a fitness defect 
resembling the corresponding single mutants. In contrast, we did not detect any overlap between 
essential gene positive interactions and other molecular or functional relationships, including 
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physical interactions (Figs. 5B, C, S15). The lack of a functional signal could not be explained 
by differences in data quality because replicate analysis confirmed that SGA-derived positive 
and negative interactions showed similar levels of reproducibility (fig. S2). Furthermore, 
members of the same essential protein complex or different alleles of the same essential gene 
often showed similar positive interaction profiles (fig. S17). Thus, while negative interactions 
identified clear functional relationships between genes, positive interactions among essential 
genes represent a different type of relationship that is not captured by other large-scale datasets 
or functional standards. 

 
Functional distribution of genetic interactions within and between bioprocesses 

We further examined the functional distribution of genetic interactions, through the 
enrichment for negative and positive interactions within and between biological processes (Fig. 
1F; Data File S6)(8). Negative genetic interactions were significantly enriched (P < 0.05, 
hypergeometric) among genes belonging to the same biological process in both the nonessential 
(NxN) and essential (ExE) genetic interaction networks (Fig. 5D, on-diagonal). Negative 
interactions were also enriched between deletion alleles of nonessential genes in different 
biological processes (Fig. 5D, off-diagonal). In contrast, negative interactions between TS alleles 
of essential genes, despite higher abundance (Fig. 5A), were biased towards gene pairs in the 
same biological processes (Fig. 5D, on-diagonal) and were rarely enriched between genes 
involved in different biological processes (Fig. 5D, off-diagonal). Although these trends could 
reflect the different genetic perturbations used to interrogate nonessential and essential genes, 
negative interactions among essential genes highlight a core set of cellular bioprocesses and 
nonessential genes appear to mediate connections between these bioprocesses. 

While nonessential genes involved in the same biological process were modestly 
enriched for positive interactions, we failed to observe a similar enrichment for positive 
interactions among functionally related essential genes (Fig. 5D, on diagonal). Instead, positive 
interactions tended to connect essential genes with roles in highly distinct biological processes. 
In particular, we observed significant enrichment for positive interactions that connected 
essential genes with nuclear-related functions to essential genes required for vesicle traffic-
dependent functions (Figs. 5D, S17).  

 
The architecture of negative interactions within the genetic network hierarchy 

To explore the functional distribution of genetic interactions in more detail, we examined 
where genetic interactions occurred within the genetic network hierarchy of gene function 
derived from profile similarities. Specifically, we assessed how frequently negative interactions 
connected a pair of genes belonging to the same cluster within the hierarchy of genetic 
interaction profiles (Fig. 2A), and we examined clusters corresponding to either a cellular 
compartment, biological process or pathway/complex (Fig. 6A)(8). The frequency of negative 
interactions, among genes in both the nonessential (NxN) and essential (ExE) genetic interaction 
networks, increased with the functional specificity of a given cluster. Accordingly, genes within 
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a cluster enriched for specific pathways or complexes were connected by negative interactions 
more often than genes in the same biological process-enriched cluster, which in turn, were more 
frequently connected by negative interactions than genes belonging to a cluster enriched for a 
specific cell compartment (Fig. 6B). For example, essential genes that fall into a cluster within 
the set that was enriched for complexes/pathways (PCC 0.4-0.8) were connected by a negative 
interaction with a relatively high frequency (60-90%), but they were rarely connected by a 
positive interaction. In total, 43% of nonessential and 56% of essential genes pairs connected by 
negative interactions shared some degree of functional relatedness (Fig. 6C). 

The magnitude of a given negative interaction was also associated with the extent of 
functional similarity shared between genes (Fig. 6D). For both nonessential and essential genetic 
interactions, stronger interactions tended to connect genes with closer functional relationships 
(Fig. 6D). Thus, on the basis of the strength of negative genetic interaction, we can predict if two 
genes share an intimate relationship and possibly function in the same pathway or complex. For 
example, members of the conserved ER Membrane protein Complex, including EMC1, EMC2, 
and EMC6, which play a role in phospholipid transfer from the ER to mitochondria to facilitate 
phosphatidylethanolamine biosynthesis (26), showed strong negative genetic interactions 
(genetic interaction score < -0.65) with a previously uncharacterized essential gene, YNL181w, 
suggesting a role for this gene in lipid metabolism. Indeed, YNL181w encodes a putative 
oxidoreductase that localizes to the ER (27) and, consistent with defective membrane function, 
ynl181w hypomorphic mutants showed altered sensitivities to numerous bioactive compounds 
(fig. S18)(8). We named this gene PBR1 (Potentiates Bioactive compound Response) to 
highlight its role in xenobiotic sensitivity. 

 
The architecture of positive interactions within the genetic network hierarchy 

Positive interactions among nonessential genes exhibited similar albeit weaker trends, 
where the frequency of interactions increased gradually with the functional specificity of 
hierarchy-derived clusters (Fig. 6B) and the magnitude of nonessential positive interactions was 
predictive of nonessential pathway or complex membership (Fig. 6D). In contrast, the frequency 
of positive interactions detected in the essential network was not related to functional specificity. 
In fact, the most distantly related essential gene pairs were more frequently connected by 
positive interactions than gene pairs mapping to the same biological process-level clusters (Fig. 
6B). The majority of positive interacting gene pairs in both the essential (ExE, 78%) and 
nonessential (NxN, 75%) genetic interaction networks occurred between distantly connected 
genes whose products appeared to function in different cell compartments (Fig. 6C). Moreover, 
we did not observe a relationship between functional similarity and the magnitude of positive 
interactions between essential gene pairs (Fig. 6D). Thus, positive interactions between essential 
genes generally appear to reflect more functionally distant relationships. 

 
Genetic interactions within and between protein complexes 
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Consistent with previous findings (1, 5, 28, 29), we found that protein complexes 
exhibited highly organized patterns of genetic interactions. For example, many protein 
complexes tested (60/141, 43%) were enriched (P < 0.01, hypergeometric) for genetic 
interactions among complex genes and were biased for a single type of interaction, either 
negative or positive, highlighting the coherent nature of genetic interactions shared among genes 
encoding members of the same complex. The type of interaction observed within protein 
complexes depended on essentiality. For example, complexes composed primarily of 
nonessential genes (> 75% nonessential genes; Data File S12) were more often enriched for 
positive (21%, 20/97 complexes) compared to negative (5%, 5/97 complexes) interactions 
among their members (Fig. 7A; Data File S13). In contrast, most essential protein complexes (> 
75% essential genes; Data File S12) were enriched for negative interactions among their 
members (82%; 35/44 complexes). Notably, none of the essential complexes in our dataset were 
enriched for positive interactions (Fig. 7A; Data File S13). 

The genetic interactions occurring within protein complexes can even resolve the 
structural organization of large, multi-subunit complexes. For example, while proteasome genes 
tend to be connected by negative genetic interactions, genes encoding components of the same 
subunit (e.g. within 19S or within 20S) interact more frequently with one another than genes 
belonging to different subunits (between 19S and 20S; fig. S19). Phenotypic differences between 
proteasome subunits were also supported by chemical-genetic interactions observed in yeast (fig. 
S19)(30) as well as in Drosophila melanogaster cultured cells (fig. S20; Data File S14)(8), 
suggesting that the topology of genetic networks connecting genes within protein complexes by 
uniform sets of genetic interactions is conserved in higher eukaryotes. 

We also examined the topology of genetic interactions occurring between protein 
complexes and found a large number of complex-complex pairs that were both enriched for 
genetic interactions (P < 0.001, hypergeometric) and strongly biased towards either negative or 
positive interactions (8). More complex-complex pairs were connected by coherent sets of 
negative than positive interactions (Fig. 7B; Data File S13). For example, 4% of all nonessential 
pairs of protein complexes tested (293/6899) were connected by negative interactions, whereas 
positive interactions connected less than 2% of nonessential complexes (130/6899). Similarly, 
5% (74/1597) of all essential complex pairs in our dataset were connected by negative 
interactions, whereas less than 2% (29/1597) of essential protein complex pairs shared positive 
interactions (Fig. 7B; Data File S13). Nonetheless, we observed hundreds of instances of both 
coherent negative (470) and positive (192) interactions connecting pairs of essential and 
nonessential complexes emphasizing the highly organized topology of genetic interaction 
networks (Fig. 7B; Data File S13). 

 
Functional wiring diagrams of protein complexes 

Extracting all genetic interactions for specific protein complexes generated functional 
wiring diagrams revealing the set of genes, pathways, and bioprocesses modulated by mutation 
of a particular complex (Fig. 8A,B). For example, coherent sets of negative interactions 
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involving the ORC, which specifies sites of initiation of DNA replication throughout the genome 
(31), linked functionally related complexes, including the MCM (Mini-Chromosome 
Maintenance) and the GINS  (Go, Ichi, Ni, San) complexes (Fig. 8A), both of which participate 
in the initiation of DNA replication (32, 33). In another example, negative interactions associated 
with the 19S proteasome highlighted diverse functions that are particularly important when 
proteasome activity is compromised (Fig. 8B), including interactions with genes encoding the 
APC (Anaphase Promoting Complex), which targets cell cycle proteins for degradation to 
promote exit from mitosis (34). Interestingly, essential genes that showed negative interactions 
with the proteasome were enriched for multidomain proteins, suggesting that TS alleles may 
perturb folding of more complex proteins resulting in a greater dependence on proteasome 
activity in mutants (fig. S21). 

 
Positive interactions among essential genes reflect general regulatory mechanisms 

Protein complexes involved in proteostasis, including several chaperones and the 
proteasome, exhibited among the strongest enrichment for positive genetic interactions, 
especially in the essential gene network (Figs. 8C, S22; Data File S15). Positive genetic 
interactions connected the proteasome and other proteostasis-related complexes to genes 
involved in various functions, including vesicle trafficking and transcription (Figs. 5D, 8B, S23). 
Because the proteasome plays a direct role in controlling protein turnover, we hypothesized that 
a subset of its positive interactions may reflect genetic suppression through the stabilization of a 
mutant protein (35). Indeed, we further tested a subset of these positive interactions (8) and, 
based on this analysis, we estimated that ~30% of proteasome positive interactions represent 
genetic suppression, where a fitness defect associated with a hypomorphic TS allele of an 
essential gene is suppressed by a second mutation in a proteasome encoding gene (Table S3; fig. 
S24; Data File S16). In total, 16% of positive interactions with essential genes appear to be 
associated with proteostasis. In a similar regulatory relationship, positive interactions were also 
enriched between genes involved in mRNA decay and essential gene DAmP alleles (13), which 
affect mRNA stability via disruption of their 3’ UTR (fig. S24).  

Interestingly, a subset of protein complexes, in addition to being enriched for positive 
interactions (Fig. 8C), also exhibited more positive interactions compared to negative 
interactions with essential genes (Fig. 8D; Data File S15). The positive interactions of these 
biased complexes, were also more functionally diverse compared to their negative interactions. 
For example, ORC subunits were connected by coherent sets of positive interactions to genes 
with roles in several different functions including members of the ER-associated Translocon 
complex (Fig. 8A). The ORC-Translocon connection reflects enrichment for cross-compartment 
positive interactions observed between genes encoding essential, nuclear and vesicle traffic-
dependent functions (Fig. 5D). 

Protein complexes with a positive interaction bias tend to be involved in cell cycle 
progression and their disruption often leads to a cell cycle delay or arrest phenotype (Figs. 8D, 
S22). A cell cycle delay may result when a mutation activates a checkpoint pathway which slows 
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cell cycle progression, allowing the cell to correct an otherwise rate-limiting defect to mask the 
phenotypic effect normally associated with a second mutation (36). Thus, an ORC-dependent S-
phase cell cycle delay may mask growth defects associated with perturbation of genes required 
for polarized secretion during budding, thereby resulting in positive interactions. Protein 
complexes biased for positive interactions with essential genes also exhibited many negative 
interactions with checkpoint genes (P < 4x10-56, Fisher’s exact test; fig. S22), suggesting that cell 
viability depends on an active checkpoint response in the absence of these complexes. Genes 
with cell cycle progression-related roles accounted for 30% of essential gene positive 
interactions, which combined with genes involved in proteostasis, explain 46% of the positive 
interaction among essential genes. 
 
Discussion 
 A global network based on genetic interaction profile similarity resolves a hierarchy of 
modules, enriched for sets of genes within specific pathways and protein complexes, biological 
processes, or subcellular compartments. In the context of this functional organization, coherent 
sets of negative and positive genetic interactions connect both within and between the highly 
resolved complex and pathway modules to map a functional wiring diagram of the cell. 
 Our comprehensive analysis of genetic interactions among essential genes revealed 
several interesting principles.  First, consistent with the results of our previous smaller scale 
surveys (1, 24), essential genes are major hubs and form the basic scaffold of the global genetic 
interaction network. Second, the extreme negative or synthetic lethal interactions among 
essential genes often occur between genes within the same protein complex, or between genes in 
different protein complexes but within the same biological process or subcellular compartment, 
properties that may prove useful for predicting genetic interactions in other systems.  Third, 
positive genetic interactions between two essential genes typically do not reflect shared function, 
but rather often occur between genes in distant cellular compartments and reflect more general 
regulatory connections associated with a cell cycle delay or proteostasis.   
 An important property associated with the global network is the potential for digenic 
interactions to compound the phenotypes associated with single gene mutations. While only 
~1000 genes in the yeast genome are individually essential in standard growth conditions and 
cause lethality when mutated (9, 10), we showed that as many as ~550,000 mutant gene pair 
combinations result in a negative interaction in the global genetic interaction network, including 
an extreme set of ~10, 000 synthetic lethal interactions between nonessential gene pairs (8). In 
other words, we discovered a genetic background in which an additional ~3, 300 genes are 
essential for viability (8).  Despite the power of this approach for uncovering growth 
dependencies, ~1000 of the 5,400 yeast genes on the global genetic interaction network showed 
relatively few genetic interactions and remain sparsely connected. Our global genetic network 
was mapped under a particular condition in a specific genetic background, and we anticipate that 
changing these two key factors may reveal new interactions for many of the sparsely connected 
genes (37). Ultimately, broad mapping of both core and condition-specific genetic interactions 
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promises to accelerate the field of synthetic biology, providing a rational understanding of the 
requirements for the design of minimal genomes (38). 

It is also important to consider other types of genetic interactions, beyond those 
associated with loss-of-function mutations in haploid cells. Our analysis revealed that relatively 
severe deletion alleles of nonessential genes or TS alleles of essential genes often show extensive 
digenic interaction profiles. However, it is possible that the more subtle mutations associated 
with natural genetic variation may require higher order combinations, involving more than two 
genes, to modulate phenotype and influence heritability extensively (39). One interesting case 
involves duplicated genes with overlapping function, which often are buffered more extensively, 
such that more complex triple mutant analysis will be required to reveal their genetic interaction 
profiles (1, 40).  We must also understand the general principles associated with genetic 
networks involving gain-of-function alleles and more complex genetic interactions that can occur 
in diploid and polyploid organisms (41), across a variety of different cell types, within whole 
animals (42-44), or between hosts and their symbiotic organisms (45).  
 Because negative genetic interactions are highly ordered and often occur as coherent sets 
that connect genes in protein complexes and biological pathways, many different pairs of 
mutations may lead to same terminal synthetic lethal/sick phenotype. This network topology is 
important when considering the genotype to phenotype problem in human genetics. Since 
biological systems are built upon sets of conserved genes whose products participate in 
functional modules, it is reasonable to expect that the general topology of genetic networks will 
also be conserved (25).  As observed for the complex-complex connections on the global yeast 
genetic network, mutations in many different pairs of genes may lead to the same phenotype, 
such as a disease state, in humans. This property of genetic networks means that scanning 
disease cohorts for genetic variation that corresponds to coherent sets of mutations that connect 
genes within or between protein complexes and pathways may reveal genetic networks 
underlying diseases.  
  The regulatory mechanisms associated with positive genetic interactions among essential 
genes, which include genetic suppression interactions, are also potentially relevant to human 
genetics because they may inspire novel therapeutic approaches and elucidate mechanisms of 
heritability (46-48). Notably, mutations that compromise the cellular proteostasis network often 
suppressed TS alleles of essential genes (Table S3; Data File S16). It is possible that, similar to 
yeast, certain variants of the human proteasome also suppress the detrimental effects of genetic 
variation associated with numerous other genes, and their corresponding complexes and 
pathways, within the human genome.  
 It is clear that the digenic interactions we have mapped in yeast can be conserved in 
different yeast species over hundreds of millions of years of evolution (49, 50). Likewise, 
conservation of genetic interactions from yeast to human cells has been observed (51, 52), 
particularly within fundamental bioprocesses like DNA synthesis and repair and chromosome 
segregation (53). However, the general extent and breadth of network conservation remains 
largely unexplored. Importantly, genome-scale application of CRISPR-Cas9 genome editing 
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approaches offer the potential to map global genetic interaction networks in human cells (54-56). 
We suspect that the general principles of the global yeast genetic network described here will be 
highly relevant for both the efficient mapping and interpretation of analogous networks in a 
variety of different cells and organisms.  
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Figure Legends 

Figure 1. A global network of genetic interaction profile similarities. (A) The essential 
similarity network was constructed by computing Pearson correlation coefficients (PCCs) for 
genetic interaction profiles (edges) of all pairs of genes (nodes) in the essential genetic 
interaction matrix (ExE). Gene pairs whose profile similarity exceeded a PCC > 0.2 were 
connected and graphed using a spring-embedded layout algorithm. Genes sharing similar genetic 
interactions profiles map proximal to each other, whereas genes with less similar genetic 
interaction profiles are positioned further apart. (B) A genetic profile similarity network for the 
nonessential genetic interaction matrix (NxN). (C) A global genetic profile similarity network 
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encompassing all nonessential and essential genes was constructed from the combined NxN, ExE 
and NxE genetic interaction matrices. (D) The essential similarity network was annotated using 
the Spatial Analysis of Functional Enrichment (SAFE), identifying network regions enriched for 
similar GO biological process terms, which are color-coded. (E) The nonessential similarity 
network annotated using SAFE. (F) The global similarity network annotated using SAFE. 
 
Figure 2. The global genetic interaction profile similarity network reveals a hierarchy of 
cellular function. (A) A schematic representation of a genetic interaction profile-derived 
hierarchy. Genes with highly correlated genetic interaction profiles (PCC > 0.4) form small, 
densely connected clusters representing specific pathways or protein complexes. At an 
intermediate range of profile similarity (0.2 < PCC < 0.4), sibling clusters representing distinct 
pathway or complexes combine together into larger biological process enriched clusters. At a 
lower range of profile similarity (0.05 < PCC < 0.2), bioprocess-enriched clusters, in turn, 
combine together to form larger clusters corresponding to different cell compartments. The grey-
white scale bar illustrates enrichment of sibling clusters for the same set of terms from the 
indicated functional standard. See also fig. S7. (B) The genetic network hierarchy visualized 
using SAFE analysis, which identified regions in the global similarity network enriched for 
specific cellular compartments, biological processes or protein complexes. 
 
Figure 3. Genetic interaction profile similarity sub-networks. Genes belonging to the 
indicated biological process-enriched clusters were extracted from the global network and laid 
out using a spring-embedded layout algorithm. Sub-networks were annotated using SAFE to 
identify network regions enriched for specific protein complexes. (A) Protein complexes 
localized within the Protein Degradation, Mitosis, and DNA Replication and Repair enriched 
bioprocess clusters shown in Fig. 1F. (B) Protein complexes localized within the Transcription 
and Chromatin Organization and mRNA Processing-enriched bioprocess clusters shown in Fig. 
1F. (C) Protein complexes localized within the Glycosylation, Protein folding/Targeting, Cell 
Wall Biosynthesis- and Vesicle Traffic-enriched bioprocess clusters shown in Fig. 1F. (D) 
Protein complexes localized within the MVB Sorting and pH Dependent Signaling, Cell polarity 
and Cytokinesis enriched bioprocess clusters shown in Fig. 1F. 
 
Figure 4. Using network connectivity to explore gene function. (A) Highly connected hub 
genes identified as pleiotropic (blue nodes) or functionally specific (yellow nodes) are 
highlighted on a schematic representation of the global similarity network. Examples of high 
(blue text) and low (yellow text) pleiotropy genes, grouped based on their general function, are 
shown. (B) Poorly characterized genes that localize to specific biological process enriched 
network clusters on the global similarity network. An estimated network position is indicated (*) 
for genes that are not present on the global similarity network because their genetic interaction 
profile similarity to other genes does not exceed a PCC > 0.2. (C) A genetic interaction profile 
similarity sub-network for the uncharacterized essential gene, IPA1 (red node), extracted from 
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the Transcription & Chromatin Organization enriched cluster in (B). (D) Polyadenylation 
profiles for a representative gene, RTG2, generated from genome-wide sequencing of mRNA 
purified from a wild-type strain (WT) and strains carrying TS mutations of PCF11, CFT2 or 
IPA1. The arrow indicates the orientation of the RTG2 open reading frame. (E) A genetic 
interaction profile similarity sub-network for MTC2, MTC4, MTC6, CSF1, DLT1 and MAY24 
genes (red nodes) extracted from the network region corresponding to the Cell Polarity & 
Morphogenesis cluster. (F) The MTC pathway genetic interaction network. Nodes are grouped 
according to genetic interaction profile similarity and edges represent negative (red) and positive 
(green) interactions (genetic interaction score, |ε| > 0.08, P < 0.05). (G) Distribution of ARO1 
negative (red) and positive (green) genetic interactions (|ε| > 0.08, P < 0.05; gene pairs that failed 
to meet threshold for interactions are colored grey). Functions enriched among genes that 
displayed an extreme negative interaction with ARO1 are indicated and a subset of these genes is 
shown. Closed circles indicate members of the MTC pathway and arrows indicate amino acid 
permease encoding genes. (H) Representative cell images illustrating Bap2-GFP localization in 
wild type, mtc2Δ and may24Δ deletion mutant strains (Top panel). Vacuolar intensity (total GFP 
signal in the vacuole/vacuolar area) and percent of total cellular GFP present at the cell periphery 
(cell periphery GFP/total cellular GFP signal) were quantified for wild type cells and MTC 
pathway mutants (Bottom panel). Error bars indicate standard deviation from three replicate 
experiments. (I) Cellular uptake of 14C-labeled phenylalanine in wild type and deletion mutant 
strains. Error bars indicate standard deviation from three replicate experiments. (J) Metabolite 
levels for the indicated mutants were analyzed by full scan LC-MS (Top panel). The levels of 
selected metabolites are presented as log2 ratios relative to wild type cells. Schematic diagram 
illustrating aromatic amino acid and de novo NAD+ biosynthesis pathways (bottom panel). 
 
Figure 5. Negative and positive genetic interactions connecting nonessential and essential 
genes. (A) The fraction (%) of negative (red) and positive (green) genetic interactions, relative to 
all tested gene pairs, associated with nonessential and essential genes at a defined threshold 
(genetic interaction score, |ε| >0.08, P < 0.05). Error bars indicate the standard deviation across 
multiple samplings of the alleles for essential genes, where each gene is represented by a single, 
randomly selected allele in each sampling. (B) Plots of precision versus recall (number of true 
positives (TP)) for negative (red) and positive (green) interactions for nonessential and essential 
genes, as determined by our genetic interaction score (|ε| >0.08, P < 0.05). True positive 
interactions were defined as those involving gene pairs co-annotated to a gold standard set of GO 
terms and precision and recall were calculated as described (8). (C) Fold enrichment for negative 
(red) and positive (green) genetic interactions among co-localized, co-expressed or physically 
interacting nonessential and essential gene pairs. (D) Frequency of genetic interactions within 
and across biological processes. The fraction of screened nonessential and essential gene pairs 
exhibiting negative or positive interactions, as determined by our genetic interaction score (|ε| 
>0.08, P < 0.05), was measured for the 17 gene sets enriched for specific biological processes 
defined in Fig. 1F. Node size reflects the fraction of interacting gene pairs observed for a given 
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pair of biological processes. Dark red and green nodes indicate that the frequency of interaction 
is significantly above random expectation. Light red and light green nodes represent a frequency 
of interaction that is not significantly higher than random expectation. Nodes on the diagonal 
represent the frequency of interactions among genes belonging to the same biological process. 
Nodes off the diagonal represent the frequency of interactions between different biological 
processes. 
 
Figure 6. Mapping negative and positive interactions across the genetic network based 
functional hierarchy. (A) Schematic representation of the genetic network-based functional 
hierarchy illustrating interactions between genes within the same complex, biological process, or 
cellular compartment, as well as distant interactions that span different compartments. (B) The 
fraction (%) of genes in the same cluster, at a given level of profile similarity (PCC) in the 
genetic network hierarchy, which are connected by negative (red) or positive (green) genetic 
interactions (genetic interaction score, |ε| > 0.08, P < 0.05).  Dashed lines indicate the PCC range 
within which clusters in the genetic network hierarchy were enriched for cell compartments, 
bioprocesses and protein complexes. (C) The functional distribution of all negative (red) and all 
positive (green) interactions (|ε| > 0.08, P < 0.05) among genes in the genetic network hierarchy. 
The fraction of all interactions connecting nonessential gene pairs and essential gene pairs in the 
same clusters corresponding to a cell compartment, bioprocess or complex/pathway is shown. 
The combined fraction of functionally related interactions (i.e. interactions connecting genes in 
the same compartment, bioprocess, complex or pathway) is also indicated (*). (D) The fraction 
of negative (red) and positive (green) interactions within a specified genetic interaction score (ε) 
range that connects genes belonging to the same cluster at the indicated level of the genetic 
network-based hierarchy. Different shades of red and green correspond to levels of functional 
relatedness shown in (C). The white area corresponds to the fraction of interactions that connect 
genes in different cellular compartments (i.e. Distant). 
 
Figure 7. Genetic interactions within and between protein complexes. (A) The fraction of 
nonessential and essential complexes whose members were enriched for genetic interactions with 
each other and biased (i.e. coherent) for either negative (red) or positive (green) interactions. (B) 
The fraction of nonessential-nonessential, essential-essential or essential-nonessential complex-
complex pairs found to be enriched for genetic interactions and biased (i.e. coherent) for either 
negative (red) or positive (green) interactions. Black dashed lines indicate the background rate of 
coherent genetic interaction enrichment within individual complexes or between pairs of protein 
complexes. Error bars indicate the standard deviation across multiple samplings of the alleles for 
essential genes, where each gene is represented by a single, randomly selected allele in each 
sampling. 
 
Figure 8. Functional wiring diagrams for specific protein complexes. (A) Genetic interaction 
map for the Origin Recognition Complex (ORC) (i) Regions of the global similarity network 
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significantly enriched for genes exhibiting negative (red) or positive (green) genetic interactions 
with ORC members were mapped using SAFE. (ii) Protein complexes that showed coherent 
negative or positive genetic interactions with ORC were placed on a schematic representation of 
the global similarity network based on the average genetic interaction profile similarity of the 
complex and connected with red or green edges, respectively. (iii) A subset of protein complexes 
from (ii) that showed coherent negative (red) or positive (green) genetic interactions with genes 
encoding the ORC are shown. (B) Genetic interaction map for the 19S proteasome. The 19S 
proteasome networks shown in (i-iii) were constructed are as described in (A). (C) Distribution 
of positive genetic interaction enrichment for protein complexes screened against the essential 
gene array (TSA). Protein complexes enriched for positive interactions with essential genes tend 
to be associated with proteostasis-related functions (2.3X, P < 10-7, Fisher’s Exact Test), 
including the 19S and 20S proteasome subunits as well as the chaperonin-containing T-complex 
(CCT) and prefoldin chaperone complexes (indicated on the graph). (D) Distribution of positive 
vs. negative genetic interactions for protein complexes enriched for positive interactions shown 
in (C). Essential protein complexes that show a bias towards positive interactions, such as the 
ORC, are often required for normal cell cycle progression (2X, P < 7x10-4, Fisher’s Exact Test).  
 
Methods Summary 
Methods for construction of yeast double mutant strains, identification and measurement of 
genetic interactions as well as all analyses pertaining to genetic interaction profiles, negative and 
positive interactions are described in detail in the supplementary materials. General information 
about our methods, accompanied by specific references to the supplementary materials, is 
included throughout the text. 
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