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Abstract: End-stage kidney disease (ESKD) patients are at increased cardiovascular risk. Vitamin D
deficiency is associated with depressed heart rate variability (HRV), a risk factor depicting poor
cardiac autonomic tone and risk of cardiovascular death. Vitamin D deficiency and depressed HRV
are highly prevalent in the ESKD population. We aimed to determine the effects of oral vitamin D
supplementation on HRV ((low frequency (LF) to high frequency (HF) spectral ratio (LF:HF)) in
ESKD patients on hemodialysis. Fifty-six subjects with ESKD requiring hemodialysis were recruited
from January 2013–March 2015 and randomized 1:1 to either conventional (0.25 mcg alfacalcidol
plus placebo 3×/week) or intensive (0.25 mcg alfacalcidol 3×/week plus 50,000 international units
(IU) ergocalciferol 1×/week) vitamin D for six weeks. The primary outcome was the change in
LF:HF. There was no difference in LF:HF from baseline to six weeks for either vitamin D treatment
(conventional: p = 0.9 vs. baseline; intensive: p = 0.07 vs. baseline). However, participants who
remained vitamin D-deficient (25-hydroxyvitamin D < 20 ng/mL) after treatment demonstrated an
increase in LF:HF (conventional: n = 13, ∆LF:HF: 0.20 ± 0.06, p < 0.001 vs. insufficient and sufficient
vitamin D groups; intensive: n = 8: ∆LF:HF: 0.15 ± 0.06, p < 0.001 vs. sufficient vitamin D group).
Overall, six weeks of conventional or intensive vitamin D only augmented LF:HF in ESKD subjects
who remained vitamin D-deficient after treatment. Our findings potentially suggest that while
activated vitamin D, with or without additional nutritional vitamin D, does not appear to improve
cardiac autonomic tone in hemodialysis patients with insufficient or sufficient baseline vitamin D
levels, supplementation in patients with severe vitamin D deficiency may improve cardiac autonomic
tone in this higher risk sub-population of ESKD. Trial Registration: ClinicalTrials.gov, NCT01774812.
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1. Introduction

Patients with end-stage kidney disease (ESKD) have 10–100 times greater risk of cardiovascular
death compared to the general population, with sudden arrhythmic cardiac death (SCD) accounting
for approximately 25% of all cardiovascular-related deaths [1]. Despite treatment of traditional
cardiovascular risk factors, rates of cardiovascular mortality and SCD remain elevated in this patient
population [2]. Suppressed heart rate variability (HRV), a measure of cardiac autonomic nervous
system activity commonly depressed in ESKD patients [3], has been shown to predict SCD risk [4,5] and
suggests that treatments aimed at normalizing HRV may translate into improved cardiac outcomes.

Vitamin D deficiency is common in ESKD [6,7] and is characterized by not only a deficiency in
25-hydroxyvitamin D, the barometer of vitamin D status, but also 1,25-dihydroxyvitamin D, the active
form of vitamin D due to decreased renal 1-alpha hydroxylase activity [8]. Vitamin D deficiency has
been shown to be associated with increased renin-angiotensin system (RAS) activity [9], abnormal
HRV [10–12], and increased risk of cardiovascular mortality in patients with ESKD [6,7,13,14]. While, to
date, no randomized trials have shown increased survival with vitamin D supplementation [15–17] in
ESKD, treatment with the activated vitamin D analogue paricalcitol decreased cardiovascular-related
hospitalizations compared to those treated with placebo [16,17]. We have previously shown that
vitamin D3 supplementation is associated with normalization of HRV in healthy humans [18] and
increased cardioprotective vagal activity in patients with Immunoglobluin A (IgA) nephropathy [19],
suggesting that low vitamin D levels may mediate increased risk via the cardiac autonomic nervous
system, though this has not been examined in a randomized-controlled trial.

The VITamin D supplementation and cardiac Autonomic tone in Hemodialysis (VITAH) trial
was an investigator-initiated, blinded, randomized controlled trial, which tested the hypothesis that
six-week treatment with intensive vitamin D [activated vitamin D (alfacalcidol) + nutritional vitamin D
(ergocalciferol)] would normalize HRV measures of cardiac autonomic tone by enhancing cardiovagal
activity in patients with ESKD requiring hemodialysis.

2. Experimental Section

2.1. Study Population

Details of the VITAH study design have been previously published [20]. In brief, participants
were recruited in Calgary, Canada. Eligible patients were ≥18 years, and on outpatient hemodialysis
three times per week for ≥3 months. Exclusion criteria included any major cardiovascular event (new
onset arrhythmia, cardiovascular-related hospitalization or emergency room visit) within six months
prior to enrollment, inability to cease non-study-related vitamin D, anticipated death, changes in
dialysis modality or location or upcoming kidney transplantation within one year, active medical
issues, or inability to provide informed consent. Demographic and clinical characteristics were
collected prospectively.

2.2. Study Design

The VITAH Trial was a 2 × 2 crossover, blinded, randomized-controlled trial. Subjects,
investigators, health care providers, study coordinators and data analysts were blinded to treatment
allocation. Subjects were recruited from January 2013 until October 2015 and underwent a four-week
washout period of any type of vitamin D therapy. Subject identification codes and corresponding
treatment allocations were developed by an independent biostatistician at the University of Calgary
using random small block randomization methods, which were then held solely by the University of
Calgary Research Pharmacy for the preparation and dispensing of unlabeled vitamin D blister packs.
Identification codes were then allocated to each enrolled subject prospectively by the study coordinator,
and provided to the Pharmacy for dispensing of the corresponding blister packs.
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2.3. Randomization

Subjects were subsequently randomized to one of two sequence arms; six weeks of conventional
vitamin D therapy (0.25 mcg alfacalcidol plus placebo three times per week), followed by a 12 weeks
washout, and six weeks of intensive vitamin D therapy (0.25 mcg alfacalcidol three times per week plus
50,000 IU of ergocalciferol once per week and placebo the remaining two days of the week), or vice
versa for 24 weeks (Figure A1). All vitamin D treatments were taken orally at each hemodialysis session
during the study period. The different vitamin D formulations and placebo tablets were encapsulated
in identical 1 g soft gelatin capsules matching in appearance. Compliance with study treatment was
monitored and recorded electronically by attending nursing staff at each hemodialysis unit.

2.4. Outcome Measures

Ambulatory electrocardiograph (ECG) monitors were applied to the subjects within the first hour
of the first weekly dialysis run at baseline (oneweek prior to vitamin D intervention initiation) and every
six weeks (Week 0, Week 6, Week 12, Week 18, Week 24) until trial termination (Figure A1). Ambulatory
ECG data were collected for a minimum of 4 h and up to 24 h using a standard bipolar three-lead
configuration (GE Healthcare, SEER MC; Milwaukee, WI, USA). Power spectral density analysis
of heart rate variability (HRV), which transforms the electrocardiographic signals into measures of
frequency domain (largely representing activity of the sympathetic and vagal activity) was carried out
by computer-generated algorithms (MARS software program; GE Healthcare; Milwaukee, WI, USA).
Autonomic activity was categorized into spectral bands: total power (TP), very-low frequency (VLF,
0.003–0.04 Hz), low-frequency (LF, 0.04–0.15 Hz) and high-frequency (HF, 0.15–0.4 Hz) domains (28,
35, 151–153). Absolute LF and HF parameters were not normally distributed; therefore, the values
were squared and transformed into the natural logarithm (ln ms2), as well as converted to normalized
units (nu) to account for potential background contribution from activity within the VLF frequency
band. Time domain measurements were also generated using the beat-to-beat variation in normal R-R
intervals, including the standard deviation of the normal waves (SDNN), standard deviation of the
average normal wave (SDANN), and percentage of normal waves more than 50 ms difference between
the immediate preceding normal wave (pNN50%) [21,22].

The primary outcome was the change in cardiac autonomic tone measured by the ratio of LF to
HF frequency domain parameters (LF:HF) during the first 4 h of hemodialysis of the first hemodialysis
session of the week, as the period of highest cardiovascular risk in hemodialysis patients occurs after the
long interdialytic interval [23]. Though an increase in LF:HF ratio is associated with improved cardiac
outcomes in non-ESKD populations [24], we hypothesized, based on our previous studies [18,19], that
vitamin D supplementation would result in an overall decrease in LF:HF due a significant increase
in HF. Furthermore, we also hypothesized that intensive vitamin D therapy would have a greater
effect on LF:HF compared to conventional vitamin D alone. Time domain measures of HRV were
also analyzed, but only if >12 h of ambulatory ECG data were available to ensure validity of these
measures [21].

Pre-specified secondary end points included additional HRV measures, such as LF, HF, and time
domain parameters. In addition, biochemical and dialysis adequacy measures were assessed at each
six-week study visit throughout the trial.

2.5. Sample Size Determination

Sample size calculations were based on the expected change in the baseline LF:HF ratio.
Post-myocardial infarction (MI) patients randomized to receive daily quinapril for 35 days
demonstrated a 46% reduction in LF:HF from baseline [25]. Vitamin D has been shown to be a negative
endocrine regulator of the RAS [9], and thus may act similarly to an angiotensin-converting enzyme
inhibitor such as quinapril. Using a 2 × 2 crossover design and anticipating a 20% or larger reduction
in LF:HF after intensive vitamin D treatment compared to conventional vitamin D treatment, we
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estimated 54 participants would be required (α = 0.05, β = 0.9). Assuming a 10% dropout rate,
we aimed to recruit approximately 60 participants.

2.6. Patient Safety

Safety was evaluated as related to serious adverse events during the 24-week study period.
An external data safety monitoring board independent of the steering committee operated under
a formalized charter to monitor safety.

2.7. Study Approval

The study was approved by Health Canada and the University of Calgary Health Research Ethics
Board (the ethical approval code: E-24846). All participants signed written informed consent prior to
inclusion in the trial.

2.8. Statistical Analyses

All end-point data were collected and analyzed using the intention-to-treat principle. All data
is presented as mean ± standard error (SE) unless otherwise indicated. The primary analysis tested
associations between conventional and intensive vitamin D therapies and change in LF:HF and other
HRV measures pre- vs. post- vitamin D within each treatment period utilizing a non-parametric paired
t-test. Prompted by the results of the Correction of Vitamin D Deficiency in Critically Ill Patients
(VITdAL-ICU) randomized clinical trial [26] demonstrating a lower hospital mortality with vitamin D
supplementation only in the severely vitamin D deficiency subgroup of critically ill patients, a post hoc
analysis was conducted with participants’ achieved 25-hydroxy vitamin D status after each six-week
vitamin D treatment period (vitamin D deficient: <20 ng/mL; insufficient; 20–30 ng/mL; sufficient:
>30 ng/mL) [27]. Changes in LF:HF and other measures of HRV pre- vs. post-vitamin D across these
groups were compared with Kruskal–Wallis test and Tukey’s post hoc analysis. To further determine
the relationships between HRV and vitamin D therapy, multivariate regression analysis was conducted.
Age, sex treatment sequence, prior vitamin D supplementation, baseline calcium, parathyroid hormone,
dialysis adequacy (kt/V), and β-blocker medication were tested as potential effect modifiers within the
model, recognizing that the ability to detect significance was limited by sample size. Subgroup analyses
were conducted for subjects with diabetes mellitus [28] and subjects on nocturnal hemodialysis [29].
Missing HRV values were imputed utilizing an expectation–maximization (EM) technique. Data
from participants who completed at least the first treatment period before withdrawal (n = 4; three
in intensive treatment, first arm, one in conventional treatment, first arm) were analyzed by paired
t-test to assess the effect of that specific vitamin D therapy on HRV but were excluded from any further
analyses. Statistical analyses were performed using SPSS (version 21; IBM, Armonk, NY, USA), with
two-tailed significance levels of α = 0.05.

3. Results

3.1. Enrollment and Study Population

A total of 214 hemodialysis patients were screened of whom 56 participants were randomized
from January 2013 to March 2015—27 to conventional treatment first and 29 to intensive treatment
first (Figure 1). The trial was halted in March 2015 due to funding and time constraints; however,
the achieved sample size allowed for the statistical power to be maintained above 80%. Demographics
were balanced between treatment groups (Table 1). Participants were predominantly male, Caucasian,
with the cause of ESKD due to diabetes or hypertension. Most participants were receiving medications
interrupting the RAS, and the use of beta-blockers was balanced between groups. The majority
of participants underwent daytime dialysis, and more than half were on some form of vitamin D
supplementation prior to enrollment in the study. No participants were vitamin D sufficient at
baseline, with approximately half of the participants vitamin D insufficient (n = 31) and half vitamin D
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deficient (n = 25). All participants demonstrated low levels of serum 1,25-dihydroxy vitamin D [18,19].
Measures of circulating components of the RAS were markedly elevated [18] but similar between
groups. Post-dialysis systolic blood pressure was lower in the intensive vitamin D group (p = 0.03),
but blood pressure was well controlled in both groups. All measures of HRV were depressed but were
similar between groups and comparable to published measures in the ESKD population [3,24,28,30].
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Figure 1. Consolidated Standard of Reporting Trials (CONSORT) diagram for trial recruitment
and participation.

Table 1. Baseline characteristics of study subjects.

All Subjects
(n = 56)

Conventional Vitamin D
Therapy First (n = 27)

Intensive Vitamin D
Therapy First (n = 29)

Age 66 ± 2 67 ± 2 66 ± 3
Male sex (%) 41 (73%) 19 (70%) 22 (76%)

Race
Caucasian 33 (59%) 15 (56%) 18 (62%)

Asian 17 (30%) 9 (33%) 8 (28%)
Black 1 (2%) 0 (0%) 1 (3%)
Other 5 (9%) 3 (11%) 2 (7%)

Cause of ESKD
Diabetes 17 (31%) 9 (33%) 8 (28%)

Hypertension 11 (20%) 4 (15%) 7 (24%)
Glomerulonephritis 5 (9%) 1 (4%) 4 (14%)

Unknown 23 (41%) 13 (48%) 10 (34%)
Dialysis vintage (months) 38 ± 3 42 ± 4 34 ± 4

History of CVD or related events (%) 23 (41%) 10 (37%) 13 (45%)
Diabetes (%) 17 (30%) 9 (33%) 8 (28%)
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Table 1. Cont.

All Subjects
(n = 56)

Conventional Vitamin D
Therapy First (n = 27)

Intensive Vitamin D
Therapy First (n = 29)

Dialysis schedule (%)
Morning 21 (38%) 9 (33%) 12 (41%)

Afternoon 23 (41%) 8 (30%) 15 (52%)
Evening 6 (11%) 6 (22%) 0 (0%)

Nocturnal 6 (11%) 4 (15%) 2 (7%)

Medications
ACE-inhibitors/ARBs 41 (73%) 19 (70%) 22 (76%)

Statins 18 (32%) 9 (33%) 9 (31%)
β-blockers 5 (9%) 2 (7%) 3 (10%)
Cinacalcet 5 (9%) 3 (11%) 2 (7%)

Current vitamin D therapy
Alfacalcidol 9 (16%) 7 (25%) 4 (15%) 2 (7%)

Calcitriol 10 (18%) 5 (19%) 6 (21%)
Cholecalciferol 9 (16%) 1 (4%) 4 (14%)

Combination (Calcitriol + Cholecalciferol) 4 (7%) 3 (10%)

25(OH) Vitamin D (ng/mL) † 21 ± 4 20 ± 5 22 ± 5
1,25(OH)2 Vitamin D (pg/mL) † 49 ± 5 56 ± 9 43 ± 5

Serum Calcium (mmol/L) 2.15 ± 0.05 2.11 ± 0.06 2.19 ± 0.08
Serum Phosphate (mmol/L) 1.57 ± 0.07 1.44 ± 0.06 1.62 ± 0.09

Serum PTH (ng/L) 241 ± 29 216 ± 49 263 ± 34
Renin (mg/mL/s) 2.8 ± 0.36 1.91 ± 0.50 3.21 ± 1.5

Ang II (pg/mL) 26.9 ± 2.9 22.6 ± 3.7 30.9 ± 4.4
Aldosterone (pmol/L) 766 ± 223 3330 ± 888 2241 ± 950

Post-dialysis heart rate (bpm) 69 ± 2 69 ± 2 68 ± 3
Post-dialysis SBP (mmHg) 122 ± 6 129 ± 8 110 ± 8 *
Post-dialysis DBP (mmHg) 63 ± 2 66 ± 3 60 ± 4
Ultrafiltration volume (mL) 1726 ± 133 1543 ± 168 2016 ± 202

Kt/V 1.27 ± 0.08 1.33 ± 0.11 1.17 ± 0.11

HRV Measures
LF:HF 1.40 ± 0.08 1.34 ± 0.12 1.41 ± 0.11

LF (ms2) 586 ± 108 557 ± 215 597 ± 215
LF (ln ms2) 5.05 ± 0.24 4.98 ± 0.42 5.10 ± 0.25

LF (nu) 52 ± 3 50 ± 5 53 ± 4
HF (ms2) 312 ± 62 313 ± 116 272 ± 51

HF (ln ms2) 4.56 ± 0.22 4.64 ± 0.37 4.14 ± 0.25
HF (nu) 34 ± 2 35 ± 3 33 ± 3

SDNN (ms) ‡ 88 ± 13 89 ± 11 77 ± 8
SDANN (ms) ‡ 72 ± 14 72 ± 11 69 ± 10

pNN50% ‡ 9.2 ± 2.5 10.3 ± 4.1 6.15 ± 2.1

ESKD: end stage kidney disease; CVD: cardiovascular disease; ACE: angiotensin-converting enzyme; ARB:
angiotensin receptor blocker; PTH: parathyroid hormone; AngII: angiotensin II; Epi: epinephrine; NE:
norepinephrine; SBP: systolic blood pressure; DBP: diastolic blood pressure; VLF: very-low frequency; LF:
low-frequency; HF: high-frequency; SDNN: standard deviation of the normal NN interval; SDANN: standard
average deviation of the normal NN interval; pNN50%: percentage of NN intervals greater than 50 ms different
than the preceding NN wave. Data is presented as mean ± SE * p < 0.05 vs. conventional vitamin D first group;
† Post four-week washout period including n = 31 participants previously on vitamin D supplementation;
‡ Time domain measures used only in subjects with ≥12 h Holter recording, n = 14 in conventional vitamin D
therapy first group, n = 17 in intensive vitamin D therapy first group.

3.2. Cardiac Autonomic Tone and Mineral Metabolism Responses

A similar number of participants in each group reached the final visit at 24 weeks
(conventional-first, 85.2% vs. intensive-first, 79.3%, p = 0.9). The primary end point was change
in overall cardiac autonomic tone as measured by LF:HF at six weeks, which did not significantly differ
from baseline after either vitamin D treatment period (Table 2). LF:HF increased but not significantly
at week 6 after both conventional (p = 0.9) and intensive (p = 0.07) vitamin D treatments compared
to baseline (Figure 2). Neither LF nor HF changed significantly in both the conventional (LF nu,
p = 0.8; HF nu, p = 0.9) and intensive (LF nu, p = 0.8; HF nu, p = 0.7) vitamin D groups. Other HRV
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measures (SDNN, SDANN, pNN50%) were highly variable and did not differ between the two vitamin
D therapies (Table 2).

Table 2. Responses to conventional and intensive vitamin D supplementation.

Conventional Vitamin D n = 46 Intensive Vitamin D n = 46

Pre Post Pre Post

25(OH) Vitamin D (ng/mL) 22 ± 4 23 ± 5 21 ± 4 33 ± 5 *,†

1,25(OH)2 Vitamin D (pg/mL) 50 ± 7 42 ± 4 36 ± 7 49 ± 5
Serum Calcium (mmol/L) 2.2 ± 0.03 2.2 ± 0.04 2.3 ± 0.03 2.3 ± 0.04

LF:HF 1.42 ± 0.09 1.50 ± 0.08 1.44 ± 0.12 1.63 ± 0.08
LF (ms2) 498 ± 122 565 ± 162 585 ± 151 589 ± 162

LF (ln ms2) 5.22 ± 0.31 5.57 ± 0.27 5.32 ± 0.24 5.45 ± 0.24
LF (nu) 56 ± 3 59 ± 3 57 ± 4 62 ± 3

HF (ms2) 353 ± 89 287 ± 78 359 ± 84 288 ± 73
HF (ln ms2) 5.07 ± 0.28 4.69 ± 0.24 5.11 ± 0.75 5.00 ± 0.24

HF (nu) 33 ± 2 31 ± 2 32 ± 2 29 ± 3
SDNN (ms) ‡ 84 ± 8 68 ± 5 76 ± 6 73 ± 6

SDANN (ms) ‡ 64 ± 8 47 ± 5 56 ± 6 54 ± 6
pNN50% ‡ 10.4 ± 2.6 7.8 ± 2.0 7.5 ± 1.9 9.4 ± 2.6

Serum Phosphate (mmol/L) 1.4 ± 0.08 1.6 ± 0.20 1.6 ± 0.06 1.5 ± 0.06
Serum PTH (ng/L) 260 ± 32 240 ± 20 295 ± 26 229 ± 18
Renin (mg/mL/h) 3.3 ± 1.1 3.1 ± 1.1 3.9 ± 0.9 3.0 ± 0.8

Ang II (pg/mL) 28 ± 4 21 ± 2 26 ± 2 23 ± 3
Aldosterone (pmol/L) 756 ± 207 448 ± 164 828 ± 165 779 ± 177

Post-dialysis heart rate (bpm) 69 ± 2 66 ±1 68 ± 2 67 ± 2
Post-dialysis SBP (mmHg) 130 ± 4 130 ± 3 119 ± 4 128 ± 3
Post-dialysis DBP (mmHg) 64 ± 2 61 ± 2 66 ± 4 61 ± 2

Kt/V 1.36 ± 0.05 1.37 ± 0.05 1.32 ± 0.05 1.40 ± 0.07

PTH: parathyroid hormone; AngII: angiotensin II; SBP: systolic blood pressure; DBP: diastolic blood pressure;
VLF: very-low frequency; LF: low-frequency; HF: high-frequency; SDNN: standard deviation of the normal
NN interval; SDANN: standard average deviation of the normal NN interval; pNN50%: percentage of NN
intervals greater than 50 ms different than the preceding NN wave; Data is presented as mean ± SE * p < 0.05
vs. pre-vitamin D response; † p < 0.05 vs. conventional vitamin D treatment; ‡ Time domain measures used
only in subjects with ≥12 h Holter recording, n = 14 in conventional vitamin D therapy first group, n = 17 in
intensive vitamin D therapy first group.
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A number of participants remained vitamin D deficient (<20 ng/mL 25-hydroxyvitamin D)
following either type of vitamin D therapy (Table A1). The majority of subjects achieved a vitamin D
level within the vitamin D insufficient range with vitamin D therapy with only a minority of subjects
achieving vitamin D sufficiency. Nursing records depicting dispersal of study medication at each
dialysis session as well as the non-statistically significant dose-dependent reduction in parathyroid
hormone (PTH) during both vitamin D treatment periods provided evidence of compliance with both
vitamin D therapies (Figure A2).

In response to conventional treatment, neither 25-hydroxy (p = 0.9) nor 1,25-dihydroxy (p = 0.8)
vitamin D levels changed from baseline. Conversely, following intensive treatment, 25-hydroxyvitamin
D levels rose significantly (p = 0.001), although 1,25-dihydroxy vitamin D levels did not differ (p = 0.7)
from baseline. Mineral metabolism parameters did not change from baseline with either conventional
or intensive vitamin D treatment, and PTH remained within range (Figure A2) [27]. Both conventional
and intensive vitamin D supplementation elicited similar, non-significant effects on measures of
circulating RAS components or blood pressure control (Table 2).

3.3. Post Hoc Analyses

In post hoc analyses, participants who remained vitamin D-deficient after either vitamin D
treatment demonstrated significantly lower baseline LF:HF compared to subjects who achieved
sufficient vitamin D status (p = 0.01 after conventional treatment; p = 0.03 after intensive treatment).
Stratification by post-treatment vitamin D status demonstrated that HRV responses to vitamin D
supplementation differed significantly by group. In response to conventional vitamin D therapy,
participants who remained vitamin D deficient showed a trend towards an increased LF:HF (p = 0.06),
an increase not observed in subjects who achieved vitamin D levels within the insufficient and sufficient
ranges (p < 0.001 vs. deficient vitamin D group) (Table A1, Figure 3). A similar trend was observed
after six weeks of intensive vitamin D treatment (Figure 3). Those participants who achieved vitamin D
sufficiency in response to intensive vitamin D therapy demonstrated an increase in HF (p = 0.05 pre- vs.
post supplementation) (Table A1). Vitamin D therapy-dependent changes in measures of mineral
metabolism and RAS activity were not significantly different between any of the three vitamin D status
groups. Treatment sequence, prior vitamin D supplementation, 25-hydroxy vitamin D level, and all
other potential modifiers had no significant effect on outcomes.
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3.4. Subgroup Analyses

Diabetic subjects (n = 17) and nocturnal dialysis subjects (n = 6) displayed similar measures of
mineral metabolism, RAS, blood pressure (BP), and HRV pre- and post-conventional and intensive
vitamin D treatment, with similar trends in changes of HRV measures post-vitamin D as observed in
the primary analyses.

3.5. Adverse Events

There was no difference in the overall incidence of adverse events between groups
(conventional-first, 7.4% vs. intensive-first, 6.9%, p = 0.9), and no adverse events were judged to be
related to vitamin D therapy. There was one episode of gastrointestinal upset and one hospitalization
due to upper airway compromise in the conventional-first group, one incident of gastrointestinal upset
and one episode of increased lower leg edema in the intensive-first group. No participants withdrew
from the study because of adverse events. There were no deaths during the study period or within
30 days of study completion.

4. Discussion

Vitamin D deficiency is associated with cardiovascular risk in ESKD [6,7,13,14], and limited data
suggests that supplementation may mitigate risk in this population [16,17] via favourable alterations
in HRV [18,19]. In this blinded, randomized controlled trial, administration of both nutritional
and activated (intensive) vitamin D supplementation compared with activated vitamin D alone
(conventional) did not alter HRV among patients with ESKD on thrice weekly hemodialysis. However,
in post hoc analysis, a significant increase in LF:HF ratio was observed in response to both vitamin D
supplementation treatments exclusively in subjects with the poorest vitamin D status, suggesting
a potential cardiovascular benefit of vitamin D therapy in ESKD patients with the lowest 25-hydroxy
vitamin D levels.

Impaired HRV is a valid surrogate marker of cardiovascular risk, and is thought to play a central
role in the risk of SCD in patients with ESKD [5,24,30]. However, reduced HRV measures remain
relatively under-recognized as a predictor of adverse cardiovascular events in clinical practice [24].
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Depressed HRV is extremely common in the ESKD population [3–5,24], and commonly presents
as withdrawal of vagal activity in conjunction with an increase in the sympathetic input [3].
Consequently, interventions favourably altering cardiac autonomic tone could potentially hold
considerable therapeutic benefit.

Observational studies suggest that low levels of vitamin D are associated with increased risk
of SCD in ESKD patients [6,7,13,14], and vitamin D deficiency is extremely common in the ESKD
population [7,8,14]. We have previously shown that in both healthy volunteers and subjects with IgA
nephropathy, oral vitamin D3 supplementation was associated with normalization of autonomic tone
due to significantly increased vagal (HF) activity in response to angiotensin II [18,19], a chronically
upregulated hormone in the ESKD population. As a result of this increase in vagal tone, there
was an overall decrease in the LF:HF ratio. However, contrary to our hypothesis, we observed no
difference in LF:HF with conventional (i.e., activated vitamin D alone) treatment and a trend towards an
increase in cardiosympathovagal balance (LF:HF) with intensive (activated and nutritional) vitamin D
supplementation. Furthermore, the increase in LF:HF attributed to vitamin D supplementation
appeared to be driven primarily by participants with the lowest vitamin D status. Interestingly, and in
support of our a priori hypothesis, an increase in HF with vitamin D supplementation was observed
but only in the participants who achieved vitamin D sufficient status. The similar cardiovagal response
to vitamin D supplementation in this sufficient group compared to healthy subjects [18] and subjects
with early CKD [19] suggests that these subjects may have been in better general health to elicit
a comparable response. We also speculate that the differences observed with vitamin supplementation
on cardiac autonomic tone between the previous studies and the VITAH study are due to differences
in vitamin D formulations and study populations. This phenomenon, whereby outcomes differ in the
ESKD population compared to other populations, is not uncommon [31,32].

The observation that vitamin D therapy had an effect on overall LF:HF only in subjects with low
vitamin D status and not those with vitamin D sufficiency is suggestive of a threshold effect of the
benefit of vitamin D, potentially similar to the subgroup analysis results of the VITdAL-ICU clinical
trial [26], in which only the severely vitamin D deficient subgroup of critically ill subjects who were
provided with vitamin D supplementation showed a lower mortality risk. Interestingly, there were
no significant differences in HRV to vitamin D treatment in the stratified groups when comparing
conventional and intensive vitamin D supplementation, implying that the observed effects on cardiac
autonomic nervous system activity are principally driven by the activated 1,25-dihydroxy vitamin D
metabolite (via 25-hydroxylation of alfacalcidol). Our data thus provide a potential physiological
explanation for the findings reported by Wolf and colleagues [6]. While vitamin D status was
associated with all-cause and cardiovascular mortality in ESKD patients on hemodialysis in this
large cross-sectional study, the association was abolished in those patients on activated vitamin D
supplementation, suggesting that 1,25-dihydroxyvitamin D status, rather than 25 hydroxyvitamin D
status, determines risk.

5. Limitations

To date, there are no adequate clinical trials demonstrating a causal relationship between vitamin D
and adverse cardiovascular outcomes in CKD and ESKD, with the majority of existing trials primarily
assessing the impact of vitamin D on biochemical outcomes rather than patient-level outcomes [33].
However, compelling evidence from observational studies suggests that vitamin D plays a role in
cardiovascular risk in the ESKD population [7,13,14]. While our study is the first to assess a causal
relationship between vitamin D supplementation and a surrogate marker of cardiovascular risk, it was
not without limitations. First, the intervention periods for both vitamin D therapies were only six weeks
in length, and thus any effects observed may not be representative of long-term exposure to vitamin D
treatment, although our results add to the literature demonstrating the short-term safety of intensive
vitamin D treatment with both nutritional and activated vitamin D. Total 25-hydroxy vitamin D levels
are currently accepted as the barometer of vitamin D status [34]; however, it has been suggested that
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the free or bioavailable fraction of vitamin D provides a more reliable assessment of the vitamin D
being used for cellular processes. Furthermore, the notion that vitamin D may have local roles within
the nervous system is relatively new; nevertheless, recent review papers have shown strong evidence
to support our hypotheses and results herein [35–38]. A total of nine subjects dropped out throughout
the duration of the study, mostly due to non-compliance with the vitamin D treatment or changes in
hemodialysis site and modality. Fortunately, the study characteristics of remaining subjects in both
treatment arms (n = 23 in each) remained similar, and we found no evidence of the impact of subject
attrition within our patient sample or results (Table 1). Our primary outcome was a surrogate marker of
risk, but changes in HRV are independently associated with corresponding changes in cardiovascular
risk [39]. This study was conducted in a single centre and recruited patients on a voluntary basis. It is
possible that healthy volunteer bias may have altered the results of our study in which those subjects
who enrolled and completed the trial are healthier than the average hemodialysis patient, which may
limit the generalizability of our findings. However, despite its modest size, the VITAH trial represents
the largest prospective blinded, randomized, placebo-controlled trial of intensive vitamin D therapy in
ESKD patients to date.

6. Conclusions

In conclusion, we found that six weeks of treatment with either conventional or intensive vitamin
D did not alter HRV measures in patients with end-stage kidney disease on hemodialysis. Increased
LF:HF, which may translate into decreased cardiovascular risk [24], was observed in the vitamin D
deficient subgroup; however, this finding should be considered hypothesis generating and requires
further study.
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Table A1. Response to conventional and intensive vitamin D supplementation, stratified by achieved vitamin D status.

Conventional Vitamin D n = 46 Intensive Vitamin D n = 46

Deficient <50 nmol/L
25(OH)D n = 13

Insufficient 50–75 nmol/L
25(OH)D n = 27

Sufficient >75 nmol/L
25(OH)D n = 7

Deficient <50 nmol/L
25(OH)D n = 8

Insufficient 50–75 nmol/L
25(OH)D n = 23

Sufficient >75 nol/L 25(OH)D
n = 15

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

25(OH) 41 ± 4 † 45 ± 3 * 56 ± 5 65 ± 5 61 ± 9 91 ± 4 *,†,‡ 30 ± 4 † 49 ± 4 * 49 ± 5 59 ± 2 53 ± 5 104 ± 6 *,†,‡
1,25 (OH)2 52 ± 18 52 ± 6 51 ± 8 50 ± 6 49 ± 5 59 ± 9 26 ± 6 † 21 ± 8 * 37 ± 5 50 ± 12 38 ± 4 50 ± 6

LF:HF 1.31 ± 0.16 † 1.53 ± 0.16 ‡ 1.44 ± 0.21 1.36 ± 0.10 1.86 ± 0.26 1.65 ± 0.18 1.32 ± 0.15 † 1.49 ± 0.12 ‡ 1.29 ± 0.38 1.87 ± 0.22 *,‡ 1.66 ± 0.14 1.43 ± 0.10
LF (nu) 52 ± 6 † 60 ± 6 59 ± 6 † 56 ± 8 76 ± 6 66 ± 5 52 ± 7 57 ± 7 47 ± 8 69 ± 5 66 ± 4 62 ± 3
HF (nu) 35 ± 4 36 ± 4 37 ± 5 42 ± 3 25 ± 5 29 ± 6 37 ± 5 32 ± 4 39 ± 8 25 ± 4 29 ± 3 36 ± 2 *

25(OH): 25-hydroxy vitamin D (ng/mL): 1,25(OH)2 ;1,25-dihydroxy vitamin D (pg/mL); LF: low-frequency; HF: high-frequency. Data is presented as mean ± SE, * p < 0.05 vs.
pre-vitamin D response, † p < 0.05 vs. sufficient vitamin D group at same time point, ‡ p < 0.05 vs. delta (post–pre vitamin D response) vs. other vitamin D group.
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