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Abstract  

Gait modification strategies play an important role in the overall success of total knee arthroplasty. There are a number 

of studies based on multi-body dynamic (MBD) analysis that have minimized knee adduction moment to offload knee 

joint. Reducing the knee adduction moment, without consideration of the actual contact pressure, has its own 

limitations. Moreover, MBD-based framework that mainly relies on iterative trial-and-error analysis, is fairly time 

consuming. This study embedded a time-delay neural network (TDNN) in a genetic algorithm (GA) as a cost effective 

computational framework to minimize contact pressure. Multi-body dynamics and finite element analyses were 

performed to calculate gait kinematics/kinetics and the resultant contact pressure for a number of experimental gait 

trials. A TDNN was trained to learn the nonlinear relation between gait parameters (inputs) and contact pressures 

(output). The trained network was then served as a real-time cost function in a GA-based global optimization to 

calculate contact pressure associated with each potential gait pattern. Two optimization problems were solved: first, 

knee flexion angle was bounded within the normal patterns and second, knee flexion angle was allowed to be increased 

beyond the normal walking. Designed gait patterns were evaluated through multi-body dynamics and finite element 

analyses. 

 The TDNN-GA resulted in realistic gait patterns, compared to literature, which could effectively reduce contact 

pressure at the medial tibiofemoral knee joint.  The first optimized gait pattern reduced the knee contact pressure by up 

to 21% through modifying the adjacent joint kinematics whilst knee flexion was preserved within normal walking.  The 

second optimized gait pattern achieved a more effective pressure reduction (25%) through a slight increase in the knee 

flexion at the cost of considerable increase in the ankle joint forces.  The proposed approach is a cost-effective 

computational technique that can be used to design a variety of rehabilitation strategies for different joint replacement 

with multiple objectives.  

 

 

Keywords: Gait modification, Tibiofemoral knee joint, Time delay neural network, Genetic algorithm, Contact 
pressure 
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1. Introduction: 1 

 Following  total knee arthroplasty (TKA), rehabilitation strategies are of significant importance to accelerate 2 

patient recovery(Isaac et al., 2005, Klein et al., 2008), reinforce joint functionality(Moffet et al., 2004, Rahmann et al., 3 

2009), decrease gait asymmetry(Zeni Jr et al., 2011), and augment the durability and life time of knee 4 

prostheses(Fransen, 2011, Mont et al., 2006). Gait rehabilitations mainly aim to decrease knee joint loading through 5 

minor changes in human gait patterns. However, recognizing the synergistic kinematic changes, required for joint 6 

offloading, is a challenging task, hence; computational approaches have been used to facilitate the design procedure. 7 

To best of our knowledge, most of the current literature on gait modification strategies have been designed through 8 

multi-body dynamic (MBD) analysis (Barrios et al., 2010, Barrios and Davis, 2007, Fregly et al., 2009, Hunt et al., 9 

2008, Mündermann et al., 2008, Willson et al., 2001, Ackermann and van den Bogert, 2010, Anderson and Pandy, 2001, 10 

Fregly et al., 2007) . However, iterative “trial-and-error” MBD analysis, that has been performed in such studies,, is 11 

fairly time demanding which limits the applicability and generality of the method. Hence, a cost-effective 12 

computational framework that minimizes the computational cost is of particular interest. 13 

 Besides the computational cost, there are a number of aspects that have not been well addressed by the 14 

conventional MBD-based framework. First , MBD-based approach attempts to reduce the peak values of knee 15 

adduction moment (KAM) which is not always a reliable measure since decreasing KAM may not necessarily decrease 16 

knee joint loading  (Walter et al., 2010);  and the results of such approach are sensitive to  the chosen reference frame 17 

(e.g. laboratory, floating reference frames) (Lin et al., 2001, Shull et al., 2012). Second , joint-offloading gait patterns 18 

are likely to decrease the contact area of articulating surfaces that unfavorably may increase the contact pressure at the 19 

knee joint (D'Lima et al., 2008). Therefore, reducing the contact pressure should be concerned as the principal goal of 20 

rehabilitation design. Conventional computational frameworks however are inherently unable consider the contact 21 

pressure in the design procedure since the conventional methods require an explicit cost function whilst the relation 22 

between gait kinematics and the resultant contact pressure has not been stated explicitly before. Also considering the  23 

contact pressure necessitates using the intensive finite element analysis (FEA) which in turn increases the 24 

computational cost (Halloran et al., 2010). A cost-effective surrogate which releases the necessity of iterative FEA is 25 

therefore of significant advantage. Third, previous studies could not reach a general consensus about the contribution 26 

of knee flexion to the knee joint offloading. Knee flexion is a key synergetic parameter that is often increased within 27 

the clinical execution of the rehabilitation patterns (Barrios et al., 2010, Fregly et al., 2007, van den Noort et al., 2013).  28 

Several studies concluded that  increasing the knee flexion would reduce KAM (Fregly et al., 2009), whilst others 29 
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showed that it has no association with KAM (Creaby et al., 2013) or may even increase contact pressure at the knee 30 

bearing surfaces (D'Lima et al., 2008). A systematic investigation is required to enhance our understanding of the 31 

contribution of knee flexion to the knee joint offloading.   32 

 Artificial neural networks (ANN) and genetic algorithm (GA) are two relatively new techniques in the field of 33 

biomechanics. Artificial neural network (ANN) can be used as a real-time surrogate model with the ability to learn a 34 

nonlinear relationship. Once a set of inputs and corresponding outputs are presented to the network, the network learns 35 

the causal interactions between inputs and outputs. Given a new set of inputs, the trained neural network (surrogate 36 

model) can generalize the relationship to produce the associated outputs. The ANN surrogate therefore can be of 37 

significant advantage especially when the original model necessitates repeating a time-consuming computation. For 38 

example, ANN has been widely used as a surrogate of FEA (Campoli et al., 2012, Hambli, 2010, Hambli, 2011, Naito 39 

and Torii, 2005, Lu et al., 2013, Simic et al., 2011, Zadpoor et al., 2012). Genetic algorithm is a time-efficient global 40 

optimization technique which searches the entire data space to find the best solution(Goldberg, 1989). In each iteration, 41 

only potential candidates that better optimize the cost function will survive to the next iteration. Thus, regardless of the 42 

initial point, the search data space is iteratively modified and GA will rapidly converge to the global optimum solution.  43 

This in turn assures the robustness of the method and minimizes the computational effort required to find the best 44 

solution. Moreover, GA is capable of dealing with multivariable data space, nonlinear input-output interactions and 45 

non-explicit, non-differential cost function.  46 

 Therefore, the overall aim of this study was to develop a hybrid framework of time delay neural network 47 

(TDNN) and genetic algorithm (GA) to address the aforementioned limitations of the literature. In particular this study 48 

aimed to (1) optimize the gait pattern in order to minimize the contact pressure at the knee articulating surfaces and (2) 49 

investigate the role of knee flexion in knee joint offloading. The advantage of the proposed approach was also compared 50 

over the existing knee rehabilitations in the literature. 51 

2. Materials and methods 52 

 The proposed computational approach was implemented in the following steps: 53 

Step 1) Experimental gait analysis data were obtained from the literature (Section 2.1), and imported into MBD analysis 54 

to calculate gait kinematics and kinetics (Section 2.2). Knee flexion angle and three dimensional knee joint loadings, 55 

taken from MBD, in turn served as boundary condition and loading profiles of a finite element simulation to calculate 56 

contact pressure (Section 2.3). Gait trials were then outlined via a number of kinematic features and the corresponding 57 

maximum contact pressure values (CPRESS-max) (Section 2.4). 58 
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Step 2) A time-delay neural network (TDNN) was trained to learn the nonlinear relationship between kinematic features 59 

as inputs and the corresponding CPRESS-max values as output (Section2.5). 60 

Step 3) A genetic algorithm (GA) was implemented to search for the optimum kinematic features (optimization 61 

variables) which minimized the CPRESS-max at the knee joint bearing surfaces. In this GA, the trained TDNN was 62 

served as a real-time cost function to calculate the objective value (CPRESS-max) (Section 2.6).  63 

2.1. Experimental gait data 64 

 Experimental gait analysis data of a single subject with unilateral TKA (female, height 167 cm, mass 78.4 kg) 65 

was obtained from the literature (https://simtk.org/home/kneeloads; accessed on June 2013). The subject walked with 66 

a variety of different gait patterns including normal, medial thrust, trunk sway, walking pole, bouncy, crouch, smooth 67 

and fore foot strike.  Medial thrust, trunk sway and walking pole were knee rehabilitation strategies, designed to 68 

decrease KAM, whilst the remaining gait trials were exaggerated walking patterns to cover the span of executable gait 69 

for the subject. Compared to normal walking, the subject walked with a slightly decreased pelvis obliquity, slightly 70 

increased pelvis axial rotation and leg flexion to implement medial thrust pattern. For trunk sway pattern, the subject 71 

walked with an increased lateral leaning of the trunk in the frontal plane over the standing leg. In walking pole, the 72 

subject used bilateral poles as walking aids. For each gait pattern, five gait trials were repeated under the same walking 73 

condition at a self-selected pace. A total of two complete gait cycles were picked up from each trial, leading to a total 74 

of 84 data sets. For further details, see (Fregly et al., 2012). Gait trials were recorded in terms of marker trajectory data 75 

(Motion Analysis Corp., Santa Rosa, CA) and ground reaction forces (AMTI Corp., Watertown, MA).  76 

2.2. Multi-body dynamics 77 

 Experimental ground reaction forces and marker trajectories were imported into the three-dimensional multi-78 

body dynamics simulation software, AnyBody Modelling System (version 5.2, AnyBody Technology, Aalborg, 79 

Denmark). A lower extremity musculoskeletal model was used in AnyBody software based on the University of Twente 80 

Lower Extremity Model (TLEM) (Klein Horsman, 2007). This model, available in the AnyBody published repository, 81 

had 160 muscle units as well as foot, thigh, patella, shank, trunk and thorax segments. Hip joint was modelled as a 82 

spherical joint with three degrees of freedom (DOF): flexion-extension, abduction-adduction and internal-external 83 

rotation. Knee joint was modelled as a hinge joint with only one DOF for flexion-extension and universal joint was 84 

considered for ankle-subtalar complex. Since the assumptions of the simplified knee joint and rigid multi-bodies were 85 

made, the detailed knee implant was not considered in the MBD analysis. Knee flexion angle and three dimensional 86 

knee joint loads, aligned in medial-lateral, proximal-distal and anterior-posterior directions, were calculated for each 87 

https://simtk.org/home/kneeloads
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complete gait cycle. A complete gait cycle was defined as the time period from heel strike of one leg to the following 88 

heel strike of the same leg(Vaughan et al., 1992). Computations were then normalized to 100 samples to represent one 89 

complete gait cycle. Knee flexion and three dimensional knee joint loads then served as the boundary condition and 90 

load profiles for FEA.  91 

2.3. Finite element method 92 

 A typical tibiofemoral knee implant was modelled in the commercial finite element package; 93 

ABAQUS/Explicit (version 6.12 Simulia Inc., Providence, RI) using the computer aided design (CAD) of a clinically 94 

available fixed bearing knee implant. The knee implant consisted of two main parts; femoral component and tibia insert. 95 

Rigid body assumptions were applied to both parts, with a simple linear elastic foundation model defined between the 96 

two contacting bodies (Halloran et al., 2005). Tetrahedral (C3D10M) elements were used to mesh the model in 97 

ABAQUS. Convergence was tested by decreasing the element size from 8 mm to 0.5 mm in five steps (8, 4, 2, 1, and 98 

0.5 mm). The solution converged on contact pressure (≤5%) with over 86000 and 44000 elements representing the 99 

femoral component and the tibia insert respectively . This was also consistent with the previous mesh convergence 100 

studies for similar finite element models (Abdelgaied et al., 2011, Halloran et al., 2005). The physical interaction 101 

between femoral component and tibia insert was taken into account as a surface-to-surface contact (femur as the master 102 

surface and tibia as the slave surface) through a penalty-based approach with an isotropic friction coefficient of 0.04 103 

(Abdelgaied et al., 2011, Halloran et al., 2005). The tibia insert was constrained in all available DOFs and the femoral 104 

component was only allowed for flexion-extension under the three dimensional load which were obtained from MBD 105 

analysis. The model calculated the contact pressure at each node for each time increment. An output field was created 106 

over all simulation frames to compute the maximum value of the contact pressures (CPRESS_max) over the entire gait 107 

cycle. Since the medial compartment experiences the CPRESS-max value (Schipplein and Andriacchi, 1991), this part 108 

was considered for the rest of the study (Figure 1a). 109 

2.4. Feature extraction 110 

 During a complete gait cycle, the extent to which a joint can be moved (range of motion) and the corresponding 111 

absolute values of motions directly affect the quality of human gait and joint loading. For example, increasing the 112 

“maximum” value of hip adduction angle or hip internal rotation would decrease the “peak” values of KAM (Barrios 113 

et al., 2010). On the other hand, to design a realistic gait modification strategy, the overall trend of kinematic patterns 114 

cannot differ significantly from natural human walking habitudes; otherwise the pattern would not be acceptable and 115 

executable by the patient. Thus, only the key features of kinematic waveforms are needed to be modified whilst the 116 
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overall trends should be preserved consistent. Gait kinematics were therefore outlined through a total of 39 descriptive 117 

kinematic features (Table 1 and Figure 1b). These features have been suggested in the literature for a number of studies 118 

such as gait  analysis  (Collins et al., 2009, Gates et al., 2012a, Gates et al., 2012b), gait classification  (Armand et al., 119 

2006)  ,  evaluation of  joint loading  (Simonsen et al., 2010),  and  joint inter-coordination  (Wang et al., 2009). 120 

Kinematic features (optimization variables) were then allowed to vary within the corresponding ranges of experimental 121 

values plus ±20% variations to cover a thorough span of executable movement patterns for the subject. Contact pressure 122 

was also characterized by the maximum pressure value occurred over the entire gait cycle (CPRESS-max).   123 

2.5. Time-delay neural network 124 

 Time delay neural network (TDNN) was implemented to model the highly nonlinear relationship between 125 

kinematic features (39 inputs) and CPRESS-max values (one output). The trained network was then embedded in an 126 

optimization process (GA) as a real-time cost function to calculate the objective values (CPRESS-max). The TDNN 127 

architecture consisted of a feed forward neural network in which a tapped delay line was added to the input layer 128 

(Figure 2). Similar to other types of neural networks, a number of processor units (neurons) were arranged in a certain 129 

configuration (layers). A weighted sum of all inputs was fed into each hidden neuron where an activation function acted 130 

on this weighted sum to produce the output of the hidden neuron. All of the hidden neurons were activated using 131 

“hyperbolic tangent sigmoid” function which linearly scaled its input signal to [-1, 1] interval: 132 

2
-1       1,2,......,   

(-2* )1 exp

m

m
j

j My mV j

 



                                                                                                        ⑴  133 

Where yj
m is the output of jth hidden neuron located at the mth hidden layer, Mm is the number of hidden neurons 134 

at the mth hidden layer, and Vj
m(n) is the weighted sum of the signals from the previous layer which was fed to the jth 135 

hidden neuron of mth hidden layer:  136 
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Where Wjk is the weight relating the output of kth neuron located at the (m-1)th layer (yk
m-1) to the jth hidden neuron at 138 

the mth hidden layer with the bias value of bj, and Mm and Mm-1 are the number of neurons at the mth and (m-1)th layers 139 

respectively. A weighted sum of all hidden neurons’ outputs was also fed into the single output node which was 140 

activated by a “pure line” function:  141 
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in which y  is the output bias . 143 

 TDNN was trained using the scaled conjugate gradient algorithm (SCG) (Møller, 1993). The available data 144 

space, obtained from MBD and FEA, was randomly divided into three main parts: train (70%), validation (15%) and 145 

test (15%) subsets. The train and validation subsets were used to train the network whilst the test subset was not 146 

included in training. The network prediction error on the validation subset implied how accurate the network has 147 

learned the input-output causal relationship (accuracy). On the other hand, the network prediction error on the test 148 

subset indicated the extent to which the trained network could generalize this causal relationship for the new inputs 149 

(generality). Generally speaking, the structure of the FFANN would build a trade-off between “prediction accuracy” 150 

and “generality”. Whilst increasing the number of hidden neurons/layers would increase the prediction accuracy, using 151 

too many neurons would decrease the generality and increase the test error. The number of hidden layers and hidden 152 

neurons were therefore determined according to the network prediction error for the test and validation subsets. The 153 

input delay was also determined by trial and error.  154 

2.6. Genetic algorithm 155 

 In the present study, gait optimization was stated as follows: 156 

 Y :  Y=U(X)Minimize     AX b    ,  L UXX X                                                                                                       ⑷ 157 

Where Y is the CPRESS-max, X is the optimization variables (kinematic features), and U is the trained TDNN. Upper 158 

and lower bounds of the optimization variables (XL and XU) were obtained from the experimental gait trials plus ± 20% 159 

variations. Matrix A and vector b described the linear inequality constraints in order to control the natural trends of the 160 

gait kinematics (Appendix). Genetic algorithm (GA) was used to search for those kinematic features that could 161 

minimize CPRESS-max. Kinematic features (optimization variables) were configured as 1*N arrays called individuals 162 

(N=39). In each iteration, the GA created a population of individuals and then employed the trained TDNN to calculate 163 

the resultant CPRESS-max values associated with potential individuals. Those individuals that led to lower CPRESS-164 

max values were assigned a higher survivorship probability to be selected and make the next population. Each 165 

individual is indeed a potential solution and each population is a search space of solutions. Accordingly, after passing 166 

several iterations, the population (solution search space) evolved toward the optimized individuals.  167 
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 The first population was initialized with random individuals in which features of gait kinematics were 168 

randomly chosen due to XL and XU. The next populations were created through selected individuals by elitism, crossover 169 

and mutation operators of GA (Goldberg, 1989). Table 2 summarizes the setting of the proposed GA in MATLAB 170 

(v.2009, Genetic Algorithm toolbox). In the present study, two systematic optimizations were performed: first, knee 171 

flexion was bounded to vary within the normal walking. Second, the knee flexion was allowed to vary beyond the 172 

normal walking up to the medial thrust pattern. Once the GA converged to the optimum kinematic features, a typical 173 

normal gait cycle was adjusted to these optimum features using the curve fitting technique and the optimized gait 174 

pattern was reconstructed. Figure 3 shows schematic of the proposed combined TDNN-GA methodology in this study. 175 

3. Results 176 

3.1. Network training 177 

 A four-layer TDNN with four delay units at its input layer , 20 hidden neurons at the first hidden layer and 15 178 

hidden neurons at the second one, was trained using 70% of the generated data base. Then, it was validated and tested 179 

with the remaining 30%. Figure 4 shows the average performance of the proposed network over 100 training and testing 180 

repetitions, each time with a random selection of subsets(Iyer and Rhinehart, 1999). According to the results, the TDNN 181 

could accurately predict CPRESS-max values for the training, validation and test subsets. Pearson correlation 182 

coefficients, between network predictions (Y axis) and real outputs (X axis), were all above p=0.98. Figures 4a, b show 183 

that the network learned the nonlinear interaction of kinematics and contact pressure variables (p=0.99). Figure 4c 184 

shows that the network could predict the CPRESS-max values corresponding to new sets of kinematics which were not 185 

included in the training data space (p=0.98). 186 

3.2. Optimization problem 187 

 The crossover fraction substantially affects the convergence of GA.  Optimization was therefore run for a 188 

variety of different values of crossover fraction ranged from 0 to 1 in the step size of 0.05. The crossover fraction of 189 

0.85 led to the lowest CPRESS-max value (see Figure 5). Thus, this value was adopted for the rest of this study. In the 190 

first optimization problem, knee flexion angle was bounded within normal walking. The algorithm was terminated after 191 

75 populations due to stall generation criterion, in which the average change of the objective value (CPRESS-max) 192 

was less than 10-6 (function tolerance) over 50 populations (stall generations). Figure 6a shows the mean and the best 193 

CPRESS-max values associated with each population. After successful convergence of the algorithm, TDNN-GA 194 

achieved the lowest CPRESS-max value of 25.58 MPa for the best individual of the last population. 195 
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 Using the curve fitting technique, a representative normal gait cycle was updated due to the obtained optimum 196 

kinematic features and the optimized gait pattern was reconstructed (Figure 7). The optimized kinematics laid within 197 

the experimental gait patterns suggesting that it would be feasible for the subject to execute the optimized pattern. 198 

Using multi-body dynamics analysis, the corresponding joint loadings were computed and compared with the span of 199 

experimental values (Figure 8). Results show that lower extremity joints (ankle, knee and hip) underwent realistic 200 

loading conditions i.e. within and with similar pattern to the experimental gait trials. Particularly, hip joint loading was 201 

generally low in the anterior-posterior direction. A general reduction at the anterior-posterior component of knee joint 202 

loading and significant reduction at its medial-lateral component around 40%-60% of the gait cycle occurred. 203 

Moreover, the medial-lateral component of ankle joint loading was significantly decreased accompanied with a 204 

reduction at its anterior-posterior component around 40%-60% of the gait cycle. Figure 9 shows the resultant 205 

distribution of the maximum contact pressure over the medial tibiofemoral joint over the entire gait cycle. The 206 

maximum contact pressure was reduced by 21.8% compared to the normal walking, while previously published gait 207 

modifications were fairly ineffective to decrease the contact pressure magnitudes. 208 

 In the second optimization problem, XL and XU were modified and the knee joint flexion was bounded between 209 

normal and medial thrust patterns. The GA achieved the convergence value of 24.61 MPa after 77 populations (Figure 210 

6b). Reconstructed gait kinematics and the resultant joint loading patterns are presented in Figures 7 and 8 respectively. 211 

Results demonstrate that the second optimized gait pattern also laid within the span of executable gait patterns. The 212 

second optimized gait modification led to a significant reduction at the three dimensional hip joint loading (anterior-213 

posterior, proximal-distal and medial-lateral) around 0-25% of the gait cycle. This pattern also led to an overall 214 

reduction at anterior-posterior component of the knee joint loading. Anterior-posterior and medial-lateral components 215 

of the ankle joint loading were substantially low at 0-25% of the gait cycle, however ankle joint loading was slightly 216 

increased around 40%-60% of the gait cycle. By comparison, the second optimization problem yielded to a more 217 

effective gait modification pattern that better reduced the magnitude of the contact pressure by 25% (Figure 9).  218 

4. Discussion  219 

4. 1. Hybrid neural network-genetic algorithm 220 

 Neural network was employed for a two-fold purpose: first, it modelled the highly nonlinear relationship 221 

between gait kinematics and contact pressure; second, it served as a real-time cost function that allowed the 222 

optimization algorithm to be performed in a reasonable computation time. A recent study by Lu et al. (2013) 223 

demonstrated that the dynamic structure of a time delay neural network was preferred for modelling the relation 224 
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between tibiofemoral cartilage load (input) and von Mises stress (output), compared to the traditional static feed 225 

forward neural network. Therefore, this structure was used in this study. Moreover,  neural network has been used to 226 

calculate joint loading from ground reaction forces and gait kinematics (Ardestani et al., 2013, Ardestani et al., 2014) 227 

and ground reaction force from gait kinematics (Oh et al., 2013, Ren et al., 2008). In this study, neural network was 228 

employed to calculate the contact pressure from gait kinematics. The high correlation that was found between the target 229 

values and network predictions for validation and test subsets reassures the reliability of the proposed structure. The 230 

TDNN in turn necessitated involving the GA as the optimization technique. In fact, other classical optimization 231 

approaches mainly rely on iterative derivation of an explicit cost function however TDNN modelled the problem non-232 

explicitly.  233 

4. 2. Current research contribution 234 

There are a number of implications on the gait modification and optimization both in terms of methodology and 235 

findings. Major limitations of the previous studies were addressed in the present research. First, compared to previous 236 

studies in which iterative “trial-and-error” MBD analysis has been used, this study presented a cost-effective 237 

computational alternative. TDNN provided a real-time cost function for the GA that could rapidly evaluate the contact 238 

pressure associated with each potential gait pattern. Moreover, GA is a stochastic direct search method in which the 239 

search data space is modified iteratively. This in turn reduced the computational effort required to find the optimized 240 

solution. It should be pointed out that although various gait modifications have been developed in association with 241 

knee joint offloading, none of them have yet been accepted as a general modification strategy. In fact, due to the large 242 

inter-patient variability, reported in gait kinematics and joint loading patterns(Kutzner et al., 2010, Taylor et al., 2004) 243 

, gait rehabilitation strategies should be determined patient specifically. Hence, to design a gait modification strategy, 244 

it is crucial that the proposed computational method is cost-effective and easy to recreate. 245 

Second, unlike the previous studies in which KAM reduction has been the principal goal of gait modification, here, 246 

contact pressure was adopted as a more accurate criterion for knee joint offloading. This in turn built more confidence 247 

in the efficiency of the proposed gait modification. Previous gait modifications were mainly designed to reduce knee 248 

joint moment. Although these modification patterns could decrease knee joint loading, none of them could decrease 249 

contact pressure at the knee joint bearing surfaces whilst the proposed gait pattern in this study could effectively 250 

decrease the contact pressure by up to 25% (see Figure 9). 251 

 Third, whilst previous studies have debated on the influence of increasing knee flexion, this study could address 252 

the contribution of knee flexion angle to the knee joint offloading in a systematic manner. Two optimizations were 253 
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performed: first, knee flexion angle was kept within normal patterns to investigate whether it was possible to 254 

decrease knee joint loading through adjacent joints effects. Second, knee flexion was allowed for a non-significant 255 

increase. Results showed that in the first optimized gait, contact pressure was reduced by up to 21% whilst knee flexion 256 

was preserved within normal walking. In the second optimized pattern, a more effective pressure reduction (25%) was 257 

achieved with a slight increase in the knee flexion (up to 8°) at the cost of considerable increase in the ankle joint 258 

forces at 40-60% of the gait cycle. This observation is consistent with previous studies (Fregly et al., 2007) and suggests 259 

that perhaps the first optimization pattern in which joint reaction forces were within the experimental range might be 260 

more physiologically feasible. Allowing the knee flexion angle to be more increased (>10°) led to higher ankle joint 261 

loading and a gradual reduction in the contact area which in turn increased contact pressure. 262 

Overall, hip adduction, ankle flexion, subtalar eversion, pelvis posterior rotation and pelvis medial-lateral rotation were 263 

increased during the stance phase for both optimized gait patterns (see Figure 7). However it should be noted that the 264 

exact amount of kinematic changes, compared to normal gait, was not reported in this study since specific gait 265 

rehabilitation, designed for a particular subject, may not be equally applicable for other patients. Therefore, the 266 

quantitative amount of kinematic variations, compared to normal gait, was not focused in this study. 267 

4. 3. Limitations  268 

 There were several limitations in this study: (1) there was a lack of clinical investigation on the estimated 269 

kinematics. Nevertheless, from a technical point of view, the predicted kinematic waveforms are expected to be feasible 270 

since the TDNN was trained based on executable walking patterns. Once the network learns this dynamics, it uses this 271 

dynamics as the acting function to respond to new sets of inputs. Therefore, it is unlikely that it would generate highly 272 

aberrant kinematics. Regardless, further investigations are required to test whether the predicted kinematics is feasible 273 

to implement for compensatory or unexpected effects on the other joints or the contra-lateral limb; (2) rigid body 274 

constraints were applied to both the femoral and tibia components. Halloran et al.(2005) showed that rigid body analysis 275 

of the tibiofemoral knee implant can calculate contact pressure in an acceptable consistence with a full deformable 276 

model   whilst rigid body analysis would be much more time-efficient. Therefore, in order to produce the training data 277 

base, required to train the neural network, rigid body constraints were applied. This was consistent with the present 278 

multi-body dynamics analysis in which no detailed modelling on the knee implant was included; (3) a typical knee 279 

implant was adopted in the present study. Although this implant has been widely used in literature (Clayton et al., 2006, 280 

Dalury et al., 2008, Ranawat et al., 2004, Willing and Kim, 2011) , its dimensions were different from the original knee 281 

prosthesis by which the subject was implanted. In fact, the subject was implanted with a custom-made sensor-based 282 

prosthesis which was specifically produced to measure in vivo knee joint loading(Fregly et al., 2012). Accordingly, in 283 
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this study , a typical commercial knee implant was preferred to test the efficiency of  proposed knee rehabilitation 284 

patterns. Nevertheless, the proposed methodology should be equally applicable to other implant geometries and (4) the 285 

knee joint was modelled with only one DOF (flexion-extension). Although six DOFs are possible for the knee joint, 286 

the dominant movement of the knee joint takes place in the sagittal plane and knee joint has been widely simplified as 287 

a hinge joint, especially for the knee rehabilitation design purposes (Ackermann and van den Bogert, 2010, Anderson 288 

and Pandy, 2001, Fregly et al., 2007). 289 

5. Conclusion  290 

 A time-delay neural network was embedded in a genetic algorithm to predict a gait pattern that would minimize 291 

the contact pressure at the knee joint bearing surfaces. The proposed algorithm suggested an optimum gait pattern in 292 

which hip adduction, ankle flexion, subtalar eversion， pelvis posterior rotation and pelvis medial-lateral rotation were 293 

slightly increased during the stance phase. Compared to the available gait rehabilitations, the proposed gait pattern 294 

could decrease the knee contact pressure by up to 25%. Compared to the conventional MBD-based framework in gait 295 

rehabilitation design, the present methodology facilitated a more practical and reliable design procedure at a lower 296 

computational cost :(1) instead of using knee adduction moment, contact pressure was considered as a more accurate 297 

criterion which led to a more efficient gait modification, (2) using the time-delay neural network, the proposed 298 

computational framework was considerably faster and time-efficient. The computational framework therefore can be 299 

easily repeated for any given subject. Moreover, (3) the conflicting effect of the knee flexion was addressed through 300 

two systematic optimization frameworks: (i) knee joint may be offloaded without any changes in the knee flexion angle 301 

(ii) a slight increase in the knee flexion angle (up to 8°) might better reduce contact pressure but at the cost of ankle 302 

joint over loading and (iii) more increase in the knee flexion angle (more than 10°) reduced the contact area and 303 

yielded to an increment in the contact pressure. 304 

 Various future direction from this study can be considered: (1) on the methodological level, more rigorous 305 

tribological metrics (e.g. wear), constraints (e.g. energy expenditure) or gait balance requirements can be included into 306 

the computational framework to enhance the predications; (2) on the validation level, further clinical studies are 307 

required to validate the finding of such studies; (3) on a wider application level, the proposed methodology in this study 308 

has wider implications in design and development of rehabilitation protocols for broader numbers of subjects and other 309 

joints such as hip and ankle.  310 
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 456 

 457 

Fig. 1. (a) Experimental gait measurements were imported into multi-body dynamics analysis to calculate 458 

joint kinematics/kinetics which were then used by finite element analysis to calculate contact pressure (b) 459 

joint angles were parameterized by extremum features (red circles). Due to the periodicity of the gait, joint 460 

angle values at the end of the gait cycle (gray points) were equal to the initial values at 0% of the gait cycle 461 

except for pelvis position. (For interpretation anterior–posterior of the references to color in this figure 462 
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legend, the reader is referred to the web version of this article.)463 

 464 

 465 

Fig. 2. A schematic diagram of a four-layer TDNN used in this study. The network calculated the maximum 466 

values of contact pressure (output) based on gait features (inputs).467 

 468 
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Fig. 3. The flowchart of the proposed TDNNGA.469 
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Fig. 4. Network predictions vs. actual CPRESS-max values for (a) train (b) validation and (c) test subsets.474 

 475 

 476 

Fig. 5. Mean and standard deviation of the optimized CPRESS-max for different values of crossover 477 

fraction in the GA process. 478 
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Fig. 6. Convergence of the GA for (a) the first optimization problem in which the knee flexion angle was 495 

bounded to normal patterns, (b) the second optimization problem in which the knee flexion angle was 496 

allowed to increase beyond normal pattern. ‘‘Fitness’’ refers to the calculated value of CPRESS-max for 497 

each individual. 498 
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 525 

Fig. 7. Kinematics of the first optimized gait pattern (black line) and the second optimized pattern (pink 526 

line) laid within the extent of experimental gait trials (gray span). Those kinematics that underwent 527 

considerable changes have been marked by . (For interpretation of the references to color in this figure 528 

legend, the reader is referred to the web version of this article.) 529 
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 534 

Fig. 8. Resultant joint contact forces of the first optimized gait pattern (black line) and the second 535 

optimized pattern (pink line) laid within the extent of experimental gait trials (gray span). (For interpretation 536 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 537 
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 545 

 546 

Fig. 9. The resultant maximum values of contact pressures for the optimized gait patterns vs. contact 547 

pressures obtained from normal gait and other previously published gait modifications.548 
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Table 1 Description of gait kinematic features. 570 

 571 

Table 2 Genetic algorithm settings in MATLAB. 572 
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