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Abstract
We describe a fully automated pipeline for the morphometric phenotyping of mouse brains

from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to

identify new morphological phenotypes in the brain of this first transchromosomic animal

carrying human chromosome 21. We incorporate an accessible approach for simulta-

neously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and

novel image processing steps for their separation and orientation. We employ clinically

established multi-atlas techniques–superior to single-atlas methods–together with publicly-

available atlas databases for automatic skull-stripping and tissue segmentation, providing

high-quality, subject-specific tissue maps. We follow these steps with group-wise registra-

tion, structural parcellation and both Voxel- and Tensor-Based Morphometry–advanta-

geous for their ability to highlight morphological differences without the laborious

delineation of regions of interest. We show the application of freely available open-source

software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmenta-

tion and NiftyReg for registration, and discuss atlases and parameters suitable for the pre-

clinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type

littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total

intracranial volume and, controlling for this, local volume and grey matter density reductions

in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agree-

ment with human DS and previous histological findings.
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Introduction

Down syndrome (DS) is the most common human genetic cause of intellectual disability,
affecting around 0.11% of live births in the UK, manifested by physical and cognitive develop-
mental deficits [1]. DS is caused by trisomy of human chromosome 21 (Hsa21), leading to
over-expression of genes encoded on this chromosome. The Tc1 mouse model of DS carries a
freely segregating copy of Hsa21 and is functionally trisomic for 75% of Hsa21 genes [2,3].
This aneuploid model recapitulates many features, including cardiac defects, short-termmem-
ory impairment, motor deficits and mandible malformation seen in humans and other DS
mouse models, such as Ts65Dn and Ts1Cje [4,5]. However, morphology of the Tc1 brain has
yet to be fully characterised.

We performed a fully automated morphometric analysis of brains from the Tc1 mouse
model of DS, using microscopic magnetic resonance imaging (μMRI) and Voxel- and Tensor-
BasedMorphometry (V/TBM), powerful statistical techniques used to detect subtle local differ-
ences in tissue density and physical volumes between groups [6], enabling non-invasive,
hypothesis-free structural investigations covering an entire organ or organism. Morphometry
obviates the requirement for the laborious expert delineation of regions of interest (ROIs),
which are vulnerable to intra- and inter-rater variability and may miss unexpected changes in
unexplored areas [7,8]. It may be used to localise and inform subsequent histology, which may
otherwise be too time-consuming to cover an entire brain.

V/TBM enjoy widespread clinical use, with software packages such as SPM (http://www.fil.
ion.ucl.ac.uk/spm) and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki).While several groups have
undertaken rigorous preclinical morphometric investigations (for example, [9–14]), there
remain many barriers to the general uptake of high-throughput morphometry demanded by
phenotyping studies, which draw on a vast number of mouse genetic knock-outs and disease
models. One is the time taken to image multiple brains in serial, or the significant investment
in custom coil arrangements required for parallel imaging [15]. Another is the lack of a com-
plete and fully automatic image processing pipeline for preclinical V/TBM. Existingmouse
brain analysis studies often omit descriptions of all but registration and segmentation, or
require disparate tools, manual intervention, or that data be adjusted to conform to human-
centric software.

Bock et al. [15] scanned up to 16 mice simultaneously in vivo using a 7T 40cm bore and a
custom array of birdcage receiver coils. The large-bore, high field-strength scanners required to
produce high-resolution images are, however, uncommon, and the numerous intricately-
arranged coils may be prohibitive for small laboratories [16]. Brains may alternatively be
scanned simultaneously with a single preclinical bore and coil–a more prevalent setup–necessi-
tating subject separation into individual images before processing, a problem unique to preclin-
ical imaging.

We have implemented a parallel-subject imaging technique, requiring only a 3D-printed
brain holder. We describe automatic separation of brains frommultiple-subject images, their
orientation to standard space, and the remaining processing for V/TBM, in a single, cohesive
software pipeline. We adopt symmetric, inverse-consistent registration, a technique shown to
reduce registration biases in clinical data [17]. Reference atlases in a standard space–such as
the increasingly popularWaxholm standard [18]–and containing structural brain images and
corresponding anatomical labels, enable automation of several steps, including brain masking,
subject-specific tissue classification, and label propagation.

Several single-subject and probabilistic mouse brain atlases exist or are in development
[10,19,20]. Multi-subject atlas databases are preferred in the human paradigm, but have only
recently been implemented preclinically [21,22]. By encompassing natural morphological
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variation, multi-atlas label fusion techniques reduce bias and increase accuracy over single-
atlas and probabilistic approaches by ranking images based upon local similarity [23–25]. Only
three multi-atlas mouse brain databases are presently available ([26–28]); only one of which is
ex vivo ([27]).

Our pipeline, which we release at http://github.com/nmpowell/mousemorph, is completely
automated between scanner, segmentations, and TBM statistical parametric map (Fig 1), and
incorporates open-source, freely available cross-platform tools created for clinical data:Nif-
tyReg for registration and NiftySeg for segmentation (http://cmictig.cs.ucl.ac.uk/research/
software).We here show its application to compare 55 ex vivo adult mouse brain images of Tc1
and wild-type (WT) littermates, without manual intervention. This first TBM analysis of a DS
mouse model reveals global and local volumetric differences–bothnovel and previously
described via histology. We discuss our pipeline and these results and further validate the Tc1
mouse as a preclinical model of human DS.

Methods

2.1. Multiple mouse brain imaging

We scanned two cohorts C1, C2 of ex vivo adult Tc1 andWT brains, and analysed them
together to improve statistical power. C1 brains were scanned individually. For C2 brains, we
used a multi-subject protocol.

2.1.1. Ethics statement

This study was conducted following approval by the local Ethical ReviewProcess of the MRC
National Institute for Medical Research and authorisation by the UK Home Office, Animals
(Scientific Procedures) Act 1986 under relevant Project Licence authority. The ERP approved
and reported that all work reflects contemporary best practice. High standards in the design
and conduct of work were applied and full implementation and consideration of the 3Rs
(http://www.nc3rs.org.uk), where appropriate, was made.

2.1.2. Mice, genotyping and fixation

C1 cohort: 28 male mice aged 4–5 months (14 Tc1, 14 WT littermate matched controls) were
taken from a colony maintained by mating Tc(HSA21)1TybEmcf (Tc1) females [3] to F1
(129S8×C57BL/6JNimr)males and genotyped as previously described [29]. C2 cohort: 28 male
mice aged 15 months (15 Tc1, 13 WT littermates) were taken from a colony maintained by
mating Tc1 females (from the same colony as those used to breed C1) to B6.Cg-Tg
(PDGFB-APPSwInd)20Lms/2Jmales (J20, [30]). All mice included in this study were geno-
typed negative for the J20 transgene. Mice were genotyped using a polymerase chain reaction
assay for the human APP transgene (as Jax stock code 006293). All mice were terminally anaes-
thetisedwith an overdose of sodium pentobarbitone, administered via intraperitoneal injec-
tion. Brains were perfuse-fixedusing an optimised protocol for structural μMRI mouse brain
phenotyping [31] and post-fixed (4% formal-buffered saline, 8mMGd-DTPA) for 9 weeks,
then scanned in-skull to prevent damage. One C2 WTwas excluded from analysis owing to a
partially collapsed skull.

2.1.3. Image acquisition

Brains were securedwith surgical gauze inside a 20ml syringe (C1) or within a subject separator
(C2). Syringes were filledwith proton signal-free, non-viscous Fomblin perfluoropolyether
(PFS-1, Solvay Solexis SpA., Bollate, Italy) to avoid air interface susceptibility artefacts, and
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scanned with an Agilent 9.4T VNMRS horizontal bore scanner (Agilent Technologies, Inc.,
Santa Clara, CA, USA) using an imaging gradient set with a 60mm inner diameter (SGRAD
115/60/HD/S, Agilent Technologies, Inc., Santa Clara, CA, USA). Single brain protocol (C1):
26mm quadrature volume coil (RAPID Biomedical GmbH,Würzburg, Germany), 3hr spoiled

Fig 1. Overview of pipeline steps.

doi:10.1371/journal.pone.0162974.g001
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3D gradient echo sequence, with parameters: TE 4.03ms; TR 17ms; flip angle 52°; 6 averages;
field of view (FOV) 20.48x13.04x13.04mm (matrix 512x326x326, 40μm3 isotropic resolution,
as described in detail by Cleary et al., [31]). 3-brain protocol (C2): 33mm quadrature birdcage
coil (RAPID Biomedical GmbH,Würzburg, Germany); 11hr 4min spoiled 3D gradient echo
sequence, with parameters: TE 4.54ms; TR 17ms; flip angle 51°; 6 averages; FOV 32x25x25mm
(matrix 800x625x625, 40μm3 isotropic resolution).

2.1.4. 3-brain subject separator

We used a custom-designed, 3D-printed plastic mouse brain holder (25.4mm diameter, 44mm
length, available from https://figshare.com/articles/CABI_Mouse_Brain_Holder_3_brain_/
3394783, doi: 10.6084/m9.figshare.3394783) to secure three skulls inside a 50ml syringe (Fig
2). Others may freely download,modify and print this file for their own use. The 1mmwalls
precluded touching or partial volume (PV) between neighbouring subjects. This significantly
reduced overall preparation time, enabling unsupervisedovernight scans and efficient use of all
hours of the night (the additional time accounting for increased FOV).

We measured the signal-to-noise ratio, SNR ( mean signal
standard deviation noise) and contrast-to-noise ratio,

CNR (signalðGMÞ� signalðWMÞstandard deviation noise) in both cohorts using the tissue maps created later. Brains were aligned
in one z-direction layer to minimise signal drop-off and geometric distortion away from the
bore isocentre. To ensure gradient accuracy, the system was calibrated prior to imaging [32].
Gradient linearity was within manufacturer’s limits, as measured within a centred sphere
(20mm radius) encompassing the 3-brain FOV. Scalingmeasurements were performed

Fig 2. Multiple-subject scanning: (a) 3-brain holder and syringe; (b) 3 ex vivo mouse brains (1 WT in lower right;

2 Tc1) as they typically appear, in the axial view of a reconstructed μMR image. The holder produces minimal

signal. It may rotate within the syringe, so any orientation is possible. The hyperintense dots are identifying

agarose markers of different lengths.

doi:10.1371/journal.pone.0162974.g002
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throughout data acquisition to measure temporal stability. The order of C1 scans was rando-
mised, with genotypes interleaved, to avoid the possibility of scanner miscalibration affecting
group volume differences. In C2, to remove possible group bias caused by remaining distortion
or gradient instability, genotypes were mixed randomly within 3-brain scans, and positioning
within the 3-brain holder was randomised.

Volumes were linearly scaled to account for phantom-based gradient calibration performed
between acquisitions [32]. Scaling factors were C1: 1.0321; C2: 0.9983 (5 s.f.). T-tests on intra-
group mean TIVs did not discern a significant difference between cohorts before (pWT>0.45;
pTc1>0.82), or after (pWT>0.05; pTc1>0.14) scaling.

2.2. Multiple subject extraction

To robustly extract subjects (Fig 3), isolation via thresholding alone is insufficient [33]:
unwanted material may survive. Strong thresholding may discard low-signal tissues, or create
concavities where vessels extend into the brain.

We standardised intensities of all acquired volumes (see 2.7 Intensity standardisation),
smoothedwith a 3D Gaussian kernel (FWHM0.2mm), and usedNiftySeg to fit histograms with
a two-component Gaussian mixture model (GMM, [34]), for subjects and background, omitting
prior spatial information.We thresholded the resulting probabilistic image, producing binary
masks of all image objects, distinguished using a 3D connected component algorithmwith a
6-connected neighbourhood.To ensure complete coverage, we fit a convex hull around each dis-
tinct object. This ensured the inclusion of small external features and concavities such as hollow
ventricles and the low-signal fissures sometimes present in fixed, ex vivo brains. These may
include blood vessels; WM tracts such as the optic nerve; and hollows such as the ear canals.

Given the total number of subjectsN (known a priori), we excluded extraneous objects by
choosing theN objects with the closest volumes to a set of trainingmasks. These were produced
by thresholding single-subject images (including skull), and creating a binary convex hull
around the largest 6-connected component. The mean mask volume from several such images
provided an initialisation for the expected subject volumes. We labelled theseN objects and
used each to crop the original image.

2.3. Orientation correction

Brains were aligned to a standard orientation matching that of an atlas, used to propagate
brain masks, tissue priors, and parcellations. Skulls may be arranged arbitrarily to fit more into

Fig 3. Extraction steps shown in coronal and sagittal views of a downsampled Tc1 brain image: (a) smoothed; (b) probabilistic mask after GMM fit;

(c) semi-transparent binarised mask of all objects overlaid upon the original image, including agarose marker. Low-signal regions which intrude into the

mask, causing incomplete brain coverage, are indicated; (d) convex hull mask.

doi:10.1371/journal.pone.0162974.g003
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the scanner bore (Fig 2B), or move after placement. The registration algorithms of clinical soft-
ware, including SPM and NiftyReg, cannot reliably resolve the resulting large (>45°) rotations
necessary for alignment.

To automate orientation, we exploited the inherent 3D properties of mouse brains. We first
assumed that the orthogonal principal axes of mouse brain structural images correspond
approximately to their anatomical axes [35] (Fig 4): the antero-posterior (AP), right-left (RL),
and inferior-superior (IS) axes, and that AP> {RL, IS}. Skull tissue and other extraneousmate-
rial (Fig 2B; Fig 3D) may confound this assumption. The image principal axes are the eigenvec-
tors of its inertiamatrix [36]. AP thus coincides with the eigenvector with the smallest
corresponding eigenvalue. We constructed a rotation matrix using the eigenvectors, and
rotated each subject to align AP with the y axis (Fig 5A).

Mouse brains exhibit approximate mid-sagittal plane symmetry (the yz plane in RAS ori-
entation). We used this feature to correct possible misalignment [39]. To measure symmetry,
we reflected images in the mid-sagittal plane and calculated the sample Pearson’s product-
moment correlation coefficient r between original and reflection (Fig 5B). By composing
with additional rotation matrices, we generated 14 rolls about the y axis, reflected each, and
searched for the optimal rotation which maximised r and thus best aligned LR and IS with
the x and z axes respectively (Fig 5C). We corrected remaining misalignments (due to per-
forming a limited number of rotations and tests) by rigidly registering the image pair with
the maximum r, giving an initial affine transformation matrix, A. Applying the (log Euclid-
ean) half of A to the original, rotated image thus correctly aligned the anatomical axes (Fig
5D), as Fig 4.

The principal axis eigenvectors omit anatomical direction (AP is equivalent to PA; LR to
RL; IS to SI). After correctly aligning principal axes, we composed with 180° rotations (Fig 5E)
to generate the remaining candidate orientations in addition to RAS (LAI, LPS, RPI). We regis-
tered each to a correctly-aligned image from the University of Florida atlas (UFL, http://
brainatlas.mbi.ufl.edu), and selected the candidate with the highest r with the atlas as the cor-
rect orientation (Fig 5F). A correctly oriented candidate from the four possible final orienta-
tions (RAS, LAI, LPS, RPI) could be manually selected for this comparison, instead of using an
external atlas image.

2.4. Multi-Atlas brain masking (skull-stripping)

Precise brain masks benefit many processing tasks, by restricting the ROI and excluding vari-
able extraneous material. As manual masking is extremely time-consuming at high resolu-
tions, and is susceptible to inter- and intra-rater variability, automated techniques are
preferred.

Fig 4. Illustration of a mouse brain in RAS orientation: coronal, sagittal, transverse views. Subject +Right,

Anterior, Superior parallel to image +x, y, z axes respectively: a “right-handed” orientation common to human

atlases [37,38] and Waxholm space [18]. Approximate principal axes (RL, AP, SI) are shown, dotted green and

dashed orange. The latter denotes the mid-sagittal plane.

doi:10.1371/journal.pone.0162974.g004
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To create brain masks, we adopted a multi-atlas technique, employing Similarity and
Truth Estimation for Propagated Segmentations (STEPS) label fusion [40], implemented in
NiftySeg, usingNiftyReg for affine and non-rigid registration (NRR). We chose the UFL atlas
(the only publicly-available multi-atlas database with ex vivo images) to best-match our data
as a reference, and used parameters recently investigated and optimised by Ma et al. [21] to
automatically generate highly accurate masks, including the olfactory bulbs and paraflocculi
(sometimes omitted by automated masks–e.g. [41]), and the cerebellum (Fig 6), where exter-
nal material is in close proximity to the brain and region-growing approaches consequently
struggle. This technique produced accurate masks in all 55 brains, without requiring manual
correction.

Fig 5. Overview of orientation correction steps, with coronal views. Four configurations are generated (e): in

the coronal views, the mouse either faces the viewer or away (L, R interchangeable); in the transverse views, the

view is from below or above.

doi:10.1371/journal.pone.0162974.g005
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2.5. Intensity non-uniformity correction (NUC)

We applied intensity non-uniformity correctionwithin 5-voxel dilated masks using N4ITK
[42], found to reliably correct the hardware-induced, low frequency bias field present at high
field strengths, using 200 iterations; 256 histogram bins; a 0.15mm FWHMGaussian kernel to
model the bias field; subsampling factor 2.

2.6. Tissue segmentation

Brain tissues are segmented to improve mask accuracy, localise analysis to specific classes, calcu-
late total intracranial volume (TIV), and determine changes in local tissue volume or concentra-
tion, after registration (VBM). Segmentation via intensity alone, without anatomical priors
[13,43], can be unreliable due to morphological variability, PV, intensity inhomogeneity and nat-
ural intra-tissue intensity variation. To initialise segmentation, human studies utilise extensive,
multi-subject a priori tissue probability map (TPM) databases [38], which balance study specific-
ity with naturally-occurringvariability. TPMs based on non-representative atlases may misclas-
sify voxels [34]. A comprehensive source of rodent brain TPMs does not yet exist. Sawiak et al.
[44] used SPM to create study-specificmouse TPMs, presently the only such public database.

We initialised segmentation of theWT and Tc1 brains using TPMs based upon the National
University of Singapore (NUS) atlas [26], preferring its greater number of labels (39) and
detail–including cerebellarWM–over the UFL atlas (20 labels). We classified the NUS parcella-
tions as grey matter (GM), white matter (WM), ventricular cerebrospinal fluid (vCSF) or GM/
WMmixture, to account for the substantial PV in mouse brains [45], based upon their pre-
dominant tissue content (Table 1). We doubled the number of atlas images in the database by
reflecting each in the mid-sagittal plane.

Fig 6. STEPS brain mask overlaid on representative slices (a, sagittal; b—c, coronal; d, transverse) of a single WT brain. Solid white lines indicate

slice locations. Green markers highlight accuracy, from left, at the olfactory bulbs, paraflocculi, and cerebellum.

doi:10.1371/journal.pone.0162974.g006

Table 1.

CSF cerebral aqueduct, lateral ventricles, third ventricle, fourth ventricle

GM amygdala, auditory cortex, cerebellar cortex, cortex general, dentate gyrus, entorhinal

cortex, frontal cortex, general basal ganglia, hippocampus CA1, hippocampus CA3,

hippocampus general, hypothalamus, lateral olfactory tract, midbrain (remainder), motor

cortex, olfactory system, periaqueductal grey, perirhinal cortex, septum, somatosensory

cortex, substantia nigra, visual cortex

GM/WM

mixture

caudate putamen (striatum), superior & inferior colliculi, thalamus

WM anterior commissure, cerebellar lobules, cerebral peduncle, corpus callosum, fornix

system, internal capsule, medulla, optic nerve, pons

Manual binary classification of NUS atlas labels [26]. The pituitary was excluded.

doi:10.1371/journal.pone.0162974.t001
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We dilated brain masks by 10 voxels to create a rim region, within which we used a prior-free
ExpectationMaximisation (EM) algorithm, implemented inNiftySeg [34], to classify voxels into
4 classes: background (BG),WM, GM, external CSF (eCSF). This helped to prevent the misclassi-
fication of extra-cranialmaterial, meninges and skull as brain tissue, or of cortical surface GM
PV voxels as WM [46,47]–a defect of several previously-publishedmouse brain segmentations.

We registered each atlas image to the data (12 degrees of freedom,DOF, symmetric affine;
then symmetricNRR), resampled atlas tissue labels into the data space, and combined themwith
the rim classes, creating subject-specificprobabilistic TPMs reflecting the data’s anatomical vari-
ability with 5 classes {GM,WM, eCSF, vCSF, BG}. GM/WMmixture was initialised as 50% GM,
50%WM. The in vivoNUS atlas’s large ventricles did not register well to the ex vivo data, whose
ventricles had almost completely collapsed.Within the vCSF label, therefore, we again used EM
to classify voxels as GM,WM or vCSF, and subsequently included this post-hoc vCSF result.

These TPMs initialised an iterative EM scheme inNiftySeg, spatially constrained with a
Markov Random Field (prior strength 0.25). The priors were relaxed (factor 0.25) and regu-
larised (Gaussian kernel standard deviation 0.5mm), to avoid overt atlas bias and account for
local anatomical variability [48]. Fig 7 shows resulting segmented tissues. Note external mate-
rial is excluded, and there is no misclassifiedWM layer at the cortical surface. The resolution
and segmentation-derived tissue probability at each voxel may bemultiplied and summed over
the entire image to give the total respective volumes of GM,WM and CSF. We calculated TIV,
used clinically to account for natural cross-sectional variability of head size [49] as:

TIV ¼ voxel volume �
P
all voxelsðPGM þ PWMþPeCSFþPvCSFÞ ð1Þ

Where Pclass is the voxel’s segmentation-derived tissue probability, and voxel volume is
40μm3. Brain volumes (BV) were calculated as above, excluding CSF.

Fig 7. Probabilistic GM (a; red) and WM (b; blue) tissue segmentations, in sagittal, coronal and transverse

views, overlaid on representative slices of a WT brain. Solid lines indicate slice locations.

doi:10.1371/journal.pone.0162974.g007
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2.7. Intensity standardisation

An intensity average image is created following each iteration of group-wise registration.We
standardised theMR intensity scale beforehand to the approximate 0–1 range, to ensure similar
intensity ranges represented equivalent anatomical regions between images, and thus prevent
individual images’ noise, intensity extremities and features from dominating this average,
which would bias subsequent registrations to particular brains’ anatomy. We used the piece-
wise linear approach describedby Nyúl et al. [50], with 11 histogram landmarks at percentiles
pc in the configuration L = {pc1,pc99,pc10,pc20,. . .,pc90}, to scale intensities between landmark
means across images (Fig 8).

2.8. Group-wise registration

Images from C1 and C2 were spatially normalised into common coordinates [9,51] usingNif-
tyReg, with 1 iteration symmetric rigid registration, 9 iterations symmetric affine (12 DOF) and
15 iterations symmetricNRR to avoid bias from registration directionality [17,52]. The initial
target was randomly selected from the cohort.NiftyReg was parameterisedwith constraints on
the final control point spacing (5 voxels), and a penalty term for bending energy (0.005). Nor-
malisedmutual information was used as the similarity measure. See S1 File for assessment.

We parcellated the final average image using STEPS and the UFL atlas [21]; the resulting
3D structure labels were used to localise statistical results. We measured the volume of each
region via integration of the determinants of the deformations’ Jacobian matrices, at all voxels
of the brain [53].

2.9. Transformation of deformation fields

For TBM, we took the natural log of the Jacobian determinant Jdet at each voxel in the deforma-
tion fields.We smoothed these with a 3D Gaussian kernel (FWHM 0.16mm, 4 voxels), chosen
to maintain sufficient resolution to identify small features, which helps to account for remain-
ing registration imprecision and renders values more normally distributed, an assumption of
subsequent statistical tests [37]. To compare local tissue proportions with VBM, we propagated
tissue maps to the group average space and smoothed (as above).

2.10. Statistical tests

We generated 3D statistical parametric maps consisting of False Discovery Rate (FDR)-cor-
rected (q = 0.05) t-statistics at every voxel of the group-wise registration’s final average image
[54]. We performedmass-univariate two-tailed t-tests using the General LinearModel (GLM)
on the transformed deformation fields (TBM), and resampled tissue maps (unmodulated
VBM) with ANCOVA covariates for animal age, cohort and TIV. The model was thus:

Y ¼ b1PðTc1Þ þ b2PðWTÞ þ b3Age þ b4Cohort þ b5TIV þ �i ð2Þ

Where the vector Y represents, at a particular voxel, the response values from each animal
(log(Jdet)); b are the regression coefficients;P(genotype) is the probability (0 or 1) of each animal
being Tc1 or WT; Cohort is a binary encoding for C1 and C2; and � is the residual error vector.
We controlled for TIV in TBM, to reveal differences in the Tc1 group independent of overall
volume. The TIV covariate was excluded for VBM. Levels of the effect of interest (genotype)
were compared using contrasts. Tests were constrained to the brain mask to limit the multiple
testing problem [55], and to exclude skull and external tissues, which exhibit high inter-indi-
vidual variability. We also performed two-tailed t-tests on the probabilistic tissue class and par-
cellation volumes, after normalising to TIV.
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Results

Our analysis revealed several novel features of the Tc1 model, discussed below. Mean (std.
dev.) SNR in C1 was 29.3 (2.50); C2: 13.6 (0.41). CNR in C1 was 12.4 (1.40); C2: 7.06 (0.40). The
sporadic hyperintense rim present in C1 was not found to have a deleterious effect upon results
(see S2 File). For VBM results, see S4 File.

Fig 8. Intensity standardisation: (a) original images’ histograms (within dilated masks), scaled to the 0–1 range

for comparisson with results of intensity standardisation (b).

doi:10.1371/journal.pone.0162974.g008
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3.1. Global brain volume

The Tc1 mice exhibit greater brain and total intracranial volumes thanWT littermates (Fig 9;
Table 2A), with little overlap. BV was on average 93.8% of bothWT and Tc1 TIV (no signifi-
cant difference, p = 0.99), indicating CSF did not play an appreciable role in separating groups.

Mean absolute volumes of the 20 anatomical parcellations are shown in Table 2B. Most seg-
mented tissues and parcellated regions had greater standard deviation and volume in the Tc1
mice. The brainstem, hippocampus, neocortex, thalamus and ventricles were all significantly
larger in the Tc1s, both before and after normalisation. The cerebellum, internal capsule and
olfactory bulb were all significantly smaller in the Tc1s after normalisation–but not before. For
results from each cohort separately, see S5 File.

3.2. Tensor-Based Morphometry

We used TBM to highlight local volume differences between groups, by including TIV as a
confounding factor in our GLM. Fig 10 shows representative slices through the final average
image after group-wise registration, with significant voxels overlaid. To localise clusters, we
referred to the parcellated labels and Paxinos & Franklin [56].

TBM revealed distinct local volume differences in the Tc1 brains compared withWTs.
There were bilateral regions of localised expansion in the amygdala, lateral ventricles and hypo-
thalamus. The reticular nucleus, superior colliculus, and periaqueductal grey regions of the
midbrain also showed expansion, possibly secondary to the ventricular aqueduct and 4th ven-
tricle. Unexpectedly, the hippocampus showed a degree of bilateral, localised enlargement in
the Tc1 group, in CA1.

We observed significant bilateral reductions in local volume in the olfactory bulbs; the CA3
region of the hippocampus, rostrally; two distinct regions of the thalamus (the rhomboid
nucleus and the dorsal sensory-motor region); and in the brainstem, the cochlear nuclei of the
medulla. There was a unilateral reduction in the hippocampus medially in CA1. The most
prominent volume reductions occurred throughout the Tc1 cerebellum, including bilaterally in
the flocculi; the central lobules (II and III) of the cerebellar vermis; the simple lobule and

Fig 9. Total intracranial and brain volumes (TIV, BV) of WT (blue) and Tc1 (green). Means (white dots) for

absolute volumes (a) were significantly different (*), but after normalisation to TIV (b), BV means were almost

identical. Outliers shown are >1.5 IQR.

doi:10.1371/journal.pone.0162974.g009
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culmen (lobules IV-V); and medially in declive VI and pyramus (VIII). See S3 File for further
investigation of significant regions.

Discussion

4.1 Automated pipeline

By enabling computational approaches and, by covering large regions in an unbiasedmanner,
reducing the need for time-consuming, destructive exploratory histology or ROI drawing,
μMRI statistical morphometry offers several advantages for phenotyping transgenic and dis-
ease model mice. Clinical image processing tools may be used to process preclinical data; how-
ever, this requires adjustment to fit human-centric parameters, and manual preparation
remains prohibitively time-consuming.

We described a novel multi-subject scanning protocol, and automated methods to eliminate
laboriousmanual processing steps when phenotyping large cohorts of mouse brains. We

Table 2.

WT (N = 26) Tc1 (N = 29) p

mean std mean std absolute TIV-normalised

a

GM 316.51 9.63 363.33 21.03 1.82x10-13

WM 123.89 9.52 139.57 11.29 8.86x10-6

BV 440.40 15.48 502.91 28.67 1.10x10-12

vCSF 2.39 0.98 3.43 1.25 0.01

eCSF 26.70 15.60 29.84 19.18

TIV 469.49 15.34 536.19 28.33 7.30x10-14

b

amygdala 12.51 1.19 14.55 1.23 1.60x10-6

anterior commissure 1.46 0.13 1.58 0.14

basal forebrain and septum 13.42 0.49 15.78 0.59 1.15x10-20

brainstem 56.52 1.83 60.08 2.63 9.81x10-6 3.39x10-6

central GM region 15.32 0.54 17.39 0.65 2.09x10-16

cerebellum 64.21 4.59 61.71 5.60 1.4x10-11

corpus callosum & external capsule 17.70 1.19 18.88 1.91

fimbria 3.55 0.44 4.05 0.49 5.12x10-3

globus pallidus 4.23 0.34 4.57 0.30 5.93x10-3

hippocampus 29.09 1.01 31.44 1.35 4.63x10-8 1.06x10-4

hypothalamus 12.26 0.49 14.30 0.61 1.24x10-17

inferior colliculus 7.50 0.57 8.12 0.41 4.31x10-4

internal capsule 5.48 0.60 5.40 0.60 1.21x10-3

midbrain (remainder) 4.97 0.40 5.72 0.38 4.08x10-8

neocortex 136.02 8.17 145.78 9.68 4.36x10-3 2.53x10-3

olfactory bulb 26.37 1.85 25.19 1.46 1.26x10-13

striatum (caudate putamen) 26.84 1.20 30.72 1.52 4.17x10-13

superior colliculus 9.36 0.62 10.97 0.80 9.52x10-10

thalamus 26.44 0.87 27.61 1.45 0.02 7.85x10-8

ventricles 1.65 0.22 2.22 0.45 8.21x10-6 4.56x10-2

Mean absolute volumes (mm3), by group, of (a) probabilistic tissues: BV = GM + WM; TIV = BV + CSF and (b) parcellated regions via integration of

Jacobian determinants, and their standard deviations. (Bonferroni-adjusted two-tailed p-values shown, omitted where >>0.05).

doi:10.1371/journal.pone.0162974.t002
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applied contemporary clinical best-practice techniques (multi-atlas masking, parcellation and
segmentation; symmetric registration), without requiring data adjustment, and unified all the
processing steps necessary for fully automatic, large-cohort, high-throughput preclinical phe-
notyping with MRI, from scanner to statistical parametricmap. We have tested parameters
and image processing steps on over 500 in vivo and ex vivomouse brain scans in our lab, ensur-
ing their robustness to variable image quality, shape differences, brains with physical damage
or without skulls. TBM results from an in vivo study using this pipeline are reported in Holmes
et al., [57]. None of the steps failed or required manual intervention for the 55 mouse images
describedhere. Most completed in under an hour using a single modern processor. Group-
wise registration is better suited to parallel environments; we used a Sun Grid Engine cluster.
Most steps are also applicable to mouse embryo images, provided an appropriate atlas [51].

Atlas-based approaches should be used with caution given the extraordinary number of
available mouse strains. A significant issue is compatibility: healthy subject atlases may be poor

Fig 10. TBM results: FDR-corrected (q = 0.05) t-statistics overlaid on slices (locations indicated top left) of the final

structural average. Blue: Tc1 group locally statistically significantly larger than WTs; red: Tc1s smaller. AM: amygdala;

CA1, CA3: hippocampal sub-regions; CN: cochlear nucleus; FL: flocculus; HY: hypothalamus; LV: lateral ventricles; MB:

midbrain; OB: olfactory bulb; PH: posterior hypothalamic nucleus; cerebellar lobules II & III; IV-V (culmen); declive VI and

VIII (pyramus); Sim: simple lobule; TH: thalamus.

doi:10.1371/journal.pone.0162974.g010
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fits for images exhibiting gross pathology. This concern should be reduced whenmorphologi-
cal changes are expected to be subtle, accounted for by registration, where morphometric tech-
niques are more relevant. In the case of gross volumetric differences between groups, or
between study data and atlas images, registration parameters may have to be adjusted, or alter-
native analysis techniques sought. For example, Wong et al. [58] employed intensity differences
between alignedmouse embryo images to identify large morphometric changes, such as miss-
ing organs. Cardoso et al. [59] showed improvements in parcellation accuracy by propagating
labels to severe pathological cases via intermediate images with less severe pathology.

Mouse brain tissue classification is complicated by smaller structures and greater PV propor-
tion than is found in humans. Bothmay bemitigated using higher field strengths, enabling
greater SNR, spatial precision, and contrast [60]. Structural differences between the in vivo, skull-
strippedNUS atlas used for tissue segmentation and our ex vivo, in-skull data were resolved with
NRR.Our tissue classifications include fineWM detail, including within the cerebellum and PV
regions such as the striatum and midbrain. By employing an atlas, and explicitly modelling back-
ground signal, external tissues, PV and CSF, we avertedmisclassificationswhich have befallen
previously published TPMs, including the presence of a brain-enveloping ‘rim’ where GM PV is
misinterpreted as WM, or the corruption of classifications by intensity inhomogeneity.

4.2 Morphometry of Tc1 brains

Whereas BV is reduced by around 18% in human DS, and mandible size is also reduced [8,61],
we observed significantly increased Tc1 tissue volumes (Fig 9; Table 2A). Using landmarks,
O’Doherty et al. [3] measuredmandible reduction in Tc1s, but found no overt craniofacial
malformation or reduction in skull size. Our consistent, unexpected global finding indicates
the utility of whole-brainMR and tissue segmentation over histology and landmark measure-
ments, which are necessarily localised and limited to a few subjects.

All tissues and most parcellated regions displayed greater volume variance in the Tc1s.
O’Doherty et al. [3] reported that approximately 66% of cells in the Tc1 brain retain Hsa21.
This mosaicism for Hsa21 in the Tc1 strain can vary between organs, mice, and with genetic
background, and could lead to phenotypic variation [5]. Olson et al. [62] observed that in
human DS, “most DS phenotypes are incompletely penetrant and variable in expressivity–the
mechanism(s) by which increased gene dosage causes any specificDS feature is not
established”.

Tc1 mice have some rearrangements of Hsa21 [2]: this may contribute to the brain megaly.
Pinter et al. [63] suggested greater subcorticalGM proportions in DS patients, and preservation
of parietal cortex GM volume, may result from insufficient apoptosis.

In humans and mice with deletion or truncation of the Hsa21 geneDYRK1A (dual-specific-
ity tyrosine-phosphorylation-regulated kinase 1A), brain size and weight is reduced [64,65].
This gene is thought to be tied to many DS phenotypes, and modulated by the presence of
other genes [66]. It is dose-dependent and hence, in humans and Tc1 mice, overexpressed [29].
In two mouse models of partial trisomy, overexpressing theDYRK1A gene, Sebrié et al. [64]
and Guedj et al. [65] found increased thalamus, midbrain, colliculus and total brain volumes
(measured via MRI, weight and histology). In the thalamus, neuronal density and number
increased, while neuron size and extracellular space decreased. Conversely, cell density was
negatively correlated withDYRK1A dosage in the hippocampus and somatosensory and ento-
rhinal cortex. This may underlie our TBM results, which showed expansion of the Tc1 thala-
mus and midbrain. Guedj et al. [65] noted that Ts65Dn mice, also with three copies of
DYRK1A, do not exhibit elevated BVs, and that other genes trisomic in the Ts65Dn mouse
may compensate.
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The ventricles are enlarged in adult human DS [8] and both VBM and TBM detected their
bilateral enlargement in the Tc1s. This is likely underestimated in ex vivo brains, which shrink
slightly during fixation as tissues relax and ventricles partially collapse [12]. The effect is miti-
gated when skulls are retained [14], and we expect the same systematic effect across groups.
Brain expansion due to hydrocephalus has been reported in a DS model [67]; however, these
mice died by 10 weeks of age, and the Tc1s did not exhibit gross ventricular enlargement. Over-
all vCSF volumes differed significantly between groups before, though not after, correction for
TIV.

Bianchi et al. [68] recently observed, via histology, impaired neurogenesis in the olfactory
bulbs of 13-month-old Ts65Dn mice, and remarked that this may parallel the loss of smell in
older human DS individuals. The reductions seen here suggest there may be a similar func-
tional impairment in Tc1 mice.

CerebellarGM was reduced in a VBM study of non-demented people with DS, and exhibits
reduced overall volume compared with TIV in humans [8,69] and the Ts65Dn, Ts1Cje and
Tc1 mouse models [3,21,62]. Our TBM analysis reveals that rather than the cerebellum being
uniformly reduced in volume, reductions have discrete local foci. There is evidence cerebellar
lobules have distinct functional correlates [70]. It may be possible to map local volume reduc-
tions to functional topography and hence to behaviour in Tc1 mice.

The cerebellum is associated with finemotor control and cognitive processes. In children
with DS, cerebellar hypoplasia is implicated in motor and speech difficulties [63]. Galante et al.
[71] found motor learning and coordination deficits in Tc1 mice. Histological staining revealed
reduced internal granule layer density in the Tc1 cerebellum compared withWTs, mirroring
observations of the Ts65Dn and Ts1Cje models [3,62,72].We repeated these findings with
VBM, showing reduced GM density in the granule cell layer of several lobules (S4 File). This
supports the utility of VBM for informing histology. VBM also showed bilateral reductions in
GM density in the entorhinal cortex, recapitulating the progressive atrophy of this region in
human DS [47].

VBM detected reduced GM in the dentate gyrus (DG) hippocampal region. Long-term
potentiation in the DG–synaptic plasticity thought directly related to long-termmemory–was
reduced in Tc1 mice [3], and behavioural observations demonstrated reduced spatial working
memory [73]. We observedbilaterally elevated GM proportion in the CA3 region of the Tc1
hippocampus. Insausti et al. [74] measured elevated neuronal numbers in Ts65Dn CA3, and
suggested this may compensate for reductions in DG, although Kurt et al. [75] found normal
neuron density, but reduced synapse density, in both structures.Witton et al. [76] also showed
decreased synapse density in the DG, and related this to poorer performance of Tc1 mice in a
radial armmaze, compared withWTs. These cellular changes could underpin the differences
in VBMGM signal observedhere.

Morphometry is dependent upon intra-group structural registration accuracy. As registra-
tion is intensity gradient-driven, contrast is crucial to the success of morphometry, and a driver
of increasing field strengths. Accuracy within homogeneous structures, such as the hypothala-
mus and brainstem, may be impeded: a local change in the centre of such a structuremay be
missed by TBM; a uniform change may be compounded and elicited only at its boundary. This
may explain why the TIV covariate did not account for some local expansions.

Our 3-brain protocol (C2) realised lower SNR and CNR than single-brain (C1) scans, likely
due to the larger coil required for 3-brain imaging. Kale et al. [77] suggested an SNR of around
20 was optimal for registration accuracy (assessed in S1 File). We included C1 to enhance the
power of voxel-wise statistical tests. Van Eede et al. [78] found that while false positive rates
were below 1%, FDR (q = 0.1) recovered only 38% of 20% simulated volume changes, and that
TBM generally underestimated volume reduction.
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4.3 Comparison with parcellation

Employing STEPS-based parcellation, Ma et al. [21] reported shrinkage of the cerebellum and
olfactory bulbs, but no other structures, in Tc1 brains relative to BV, which was increased. Con-
trolling for TIV, we repeated these findings using Jacobian integration, and additionally found
the internal capsule to be reduced in size, possibly thanks to the increased contrast the group
average image provides over individual scans; this thin structure is not easily segmented. Par-
cellation enables volume- and shape-based analysis of substructures, but is limited in specificity
by atlas detail. TBM here localised the contributory regions of differencewithin those struc-
tures. Furthermore, we observed local changes within the hippocampus, thalamus and ventri-
cles undiscerned by parcellation. This surrogate biomarker is more useful for informing precise
histological follow-up investigations.

Imprecise external atlas registrationmay have caused slight volume mismeasurement. Cur-
rently-available multi-subject atlases (UFL, NUS) are limited by relatively low contrast and res-
olution compared with those achievable at high field strengths; many opportunities exist for
extending their size and quality. A database with more subjects, parcellations, finer detail and
greater contrast would aid the specificity of segmentation-based approaches, and could com-
plement V/TBM by more precisely localising significant voxels–for example, within cerebellar
nodules. Results should improve furtherwith the increased availability of such atlases.

Conclusion

We showed a novel phenotyping pipeline’s application to ex vivo brains from the Tc1 trans-
chromosomic mouse model of Down syndrome, and identified novel phenotypes, including
unexpectedoverall brain volume increase, and local volume and GM density reductions in the
cerebellum, consistent with previous histological findings in this model, and human DS.

Our software shall be made freely available at http://github.com/nmpowell/mousemorph
upon publication. The homogenisation of scan parameters, standardisation of analysis pipe-
lines, and improved availability and accuracy of TPMs and atlases enable multi-site, large
cohort studies, increasing the feasibility of μMRI and morphometry as important, powerful
preclinical phenotyping tools. To aid these efforts, and reproducibility, our dataset, masks and
tissue classifications will also be made available online.
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S1 File. Group-wise registration assessment.
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S2 File. Hyperintense rim. In this supporting text we measure and discuss the implications of
an observed “hyperintense rim” in some of the brain images.
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S3 File. Effect sizes.This supporting information shows effect sizes at selected individual voxel
locations within the TBM results.
(DOCX)

S4 File. VBM results.
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