1	How to optimize drug study design: PKPD studies introduced to paediatricians		
2			
3 4	H. Vermeulen ¹ , J.N. van den Anker ^{2,3,4} , O. Della Pasqua ^{5,6} , K. Hoppu ⁷ , J.H. van der Lee ¹ , On behalf of GRiP (Global Research in Paediatrics)		
5			
6	¹ Pediatric clinical Research Office, Emma Children's Hospital, Academic Medical Center Amsterdam		
7	² Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA		
8 9	³ Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland		
10 11 12	⁴ Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands		
 13 14	⁵ Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, UK		
15 16	⁶ Clinical Pharmacology & Therapeutics, University College London, London, UK		
17 18	⁷ Poison Information Centre, Helsinki University Central Hospital, P.O. Box 790, Helsinki 00029, Finland		
19			
20			
21	Acknowledgment:		
22 23	The research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant		

agreement no. 261060 (Global Research in Paediatrics – GRiP network of excellence).

25 Abstract

26

27 Objectives

- 28 In children there is often lack of sufficient information concerning the pharmacokinetics (PK) and
- 29 pharmacodynamics (PD) of a study drug to support dose selection and effective evaluation of efficacy
- 30 in a randomised clinical trial. Therefore, one should consider the relevance of relatively small PKPD
- 31 studies, which can provide the appropriate data to optimize the design of an RCT.
- 32

33 Methods

- 34 Based on the experience of experts collaborating in the EU-funded Global Research in Paediatrics
- 35 (GRiP) consortium, we aim to inform clinician-scientists working with children on the design of
- 36 investigator initiated PKPD studies.
- 37

38 Key findings

- 39 The importance of the identification of an optimal dose for the paediatric population is explained,
- 40 followed by the differences and similarities of dose-ranging and efficacy studies. The input of clinical
- 41 pharmacologists with modelling expertise is essential for an efficient dose-finding study.
- 42

43 Conclusions

- 44 The emergence of new laboratory techniques and statistical tools allows for the collection and
- 45 analysis of sparse and unbalanced data, enabling the implementation of (observational) PKPD studies
- 46 in the paediatric clinic. Understanding of the principles and methods discussed in this paper is
- 47 essential to improve the quality of paediatric PKPD-investigations, and to prevent the conduct of
- 48 paediatric RCTs that fail because of inadequate dosing.
- 49
- 50 Keywords: pharmacokinetics, pharmacodynamics, paediatrics
- 51

52 How to optimize drug study design: PKPD studies introduced to paediatricians

53

54 *"It is unfortunate that a communication gap still exists between paediatricians and clinical pharmacologists,*

55 who can apply methodologies to validate current prescription practice, in many cases without the need for

56 *additional prospective trials."*[1]

57

58 Introduction

59 Children have traditionally been protected from participation in medical (drug) research, and as a 60 consequence medications have not been appropriately labelled for them.[2] Regulatory initiatives 61 such as the Paediatric Research Equity Act (PREA) and Best Pharmaceuticals for Children's Act (BPCA) 62 in the United States (US) and the Paediatric Regulation in the European Union (EU) provide incentives 63 for pharmaceutical companies to investigate *new* drugs in children. Sponsors can submit a Paediatric 64 Investigation Plan to support the authorisation of a new drug for children.[3] However, off-label dosing recommendations for currently marketed drugs need to be revisited [1, 4-8], especially for 65 66 older, off-patent medications.[7] Given the general lack of interest in the 'paediatric-use marketing 67 authorisation' (PUMA) opportunity, which provides sponsors incentives for research on off-patent 68 drugs, the initiative to gather empirical evidence to support the dose rationale for older drugs is left 69 to non-commercial (academic) paediatric clinician-scientists.[9] In fact, the need for increasing 70 awareness of paediatricians about the value of Investigator Initiated trials in children is 71 acknowledged in the revision of Directive of the European Commission (EC) in 2014, which tries to 72 correct the bias toward trials sponsored by pharmaceutical companies, "while those with non-73 commercial sponsors were overlooked".[10, 11] Another element that has been highlighted in the 74 revised directive is the role of paediatric networks to help consolidate available knowledge about 75 medicines and translate it into practice. [12, 13] To meet the demand for clinical trials, "the pediatric 76 research enterprise must act with diligence to address deficiencies in our current preclinical and 77 clinical research systems that often give rise to irreproducible data. Historically, most federally 78 funded pediatric research programs were designed to generate data for publication rather than 79 regulatory review, the latter a standard that needs to withstand independent validation down to 80 individual elements".[13] Paediatric drug research poses challenges but innovations in trial design and pharmacology prompt Rieder and Hawcutt (2016) to conclude that 'there has never been a 81 82 better time for conducting drug studies in children'.[14]

The general principles of randomised clinical trials to study drug efficacy and effectiveness are well 83 84 known among most paediatricians. However, they may be unaware that other types of studies, i.e. 85 studies to identify the appropriate dose and dosing regimen in children might have a higher priority 86 on the research agenda. Failure to perform these studies can lead to a negative trial result, not 87 because of insufficient statistical power (type II error), but because of inadequate dose selection, i.e. the drug dose that is compared to placebo or another comparator results in too low exposure to 88 89 ensure the required clinical response in children. This was illustrated by a retrospective investigation 90 of the design aspects that might have caused the failure of several antihypertensive dose-response 91 trials submitted to the Food and Drug Administration from 1998 to 2005.[15] The authors 92 recommend that "future pediatric antihypertensive trials should incorporate a wide range of doses 93 and use information from adult trials to account for potential pharmacological differences between 94 adult and pediatric populations." As long as there are no safety concerns, for dose-response trials 95 these authors advise to use a lowest dose that is lower than the lowest approved relative dose (per 96 kg or per m²) in adults, and a highest relative dose that is at least 2-fold higher than the highest 97 approved relative dose in adults. We would be more cautious and more specific about how to evaluate a medicine, but we agree that characterisation of the exposure-response curve requires the 98 99 evaluation of dose levels that result in a wide range of drug exposure, including in some cases 100 nominal dose levels that may be lower or higher than the currently approved therapeutic doses in 101 adults.

102

This paper aims to close the communication gap between clinical pharmacologists and paediatricians and provide a starting point for the design of paediatric dose finding studies in such a way that the results can be used to justify the dose rationale for children and consequently to support the development of clinical guidelines and labelling changes. We want to make clear (1) why the identification of an optimal dose for the paediatric population is important, (2) what the differences and similarities are in the design and conduct between dose-ranging and efficacy studies, and (3) which information is needed for the planning of a dose-finding study and how this can be obtained.

- 110
- 111

1. Why the identification of an optimal dose for the paediatric population is important

112 Many drugs used in daily paediatric practice lack a scientifically sound, evidence-based dosing 113 regimen.[16, 17] Off-label doses in children are often the result of an extrapolation exercise, i.e., they 114 are based on the adult dose corrected only for differences in body size (e.g. body weight or body 115 surface area). Such extrapolations often rely on the assumption of a linear correlation between dose

and size. In fact, when using doses per kg or per square meter, one implicitly assumes that 116 117 fractioning of the dose will result in comparable drug levels, i.e. concentrations change in a linear 118 fashion with weight or body surface area, respectively. This practice also assumes that children and 119 adults are comparable with regard to body composition and have similar gastro-intestinal, renal and 120 hepatic function (primary organs determining the absorption, distribution and metabolism of drugs), 121 as well as concentration-response relationships. Since developmental changes are mostly non-linear, 122 this so-called 'empirical' dosing can lead to over- or under-dosing, especially in specific age groups 123 such as neonates and (extremely) low birth weight infants, thereby increasing the risk of toxicity or 124 reduced efficacy. The heterogeneity within the paediatric population, ranging from very small 125 premature neonates to, sometimes overweight or obese, 18-year olds, cannot be overemphasized.

126 To ensure that the aforementioned points are considered for the selection of the dose and design of 127 a clinical study, a few basic concepts should be highlighted. Pharmacokinetics (PK) describes what 128 happens to a drug when it enters the body (including absorption, distribution, metabolism and 129 excretion), and pharmacodynamics (PD) refers to the effect the drug has on the body. Historically, a 130 major constraint for the evaluation of the dose rationale has been the lack of information about drug 131 exposure. Traditional PK studies involve the collection of multiple blood samples in each patient, 132 usually taken according to a rigidly timed and structured protocol, within a relatively small patient 133 population (e.g., n = 12). This 'data-rich' approach has severe limitations in paediatric practice for 134 both ethical and practical reasons: the fixed sampling strategy potentially interferes with patient 135 care; and the requirement for multiple blood samples (perhaps 12–15) raises concerns about venous 136 access and blood loss. Population PK (using sparse sampling schemes in which less blood samples are 137 taken per individual without the need for a rigid sampling time as compared to classical PK studies) 138 and PKPD modelling (using statistical models to characterise the exposure-response relationship of a 139 drug) are now well established.[18-23] This approach prevents children being exposed to the practice 140 of large numbers and volumes of blood sampling seen in adult PK and PKPD studies.

141

Whereas the conduct of a PK study may suffice to support the dose rationale in some cases (e.g., when evidence exists of comparable exposure-response relationships in adults and children), clinicians and investigators are less familiar with the requirements and conditions in which a PKPD study is necessary. The criteria were initially set out in a regulatory guidance, in which the FDA proposed a 'paediatric study decision tree' [24]. This diagram shows the requirements for using adult data (or any other reference group or population) to extrapolate or infer efficacy and safety in (specific groups of) children. Evidence that disease progression, PKPD relationships and endpoints are 149 similar or comparable both in adults and children allows the use of PK (bridging) studies to support 150 the dose rationale for the paediatric population. However, if these requirements are not met, the 151 decision tree clearly indicates the need for further PKPD or efficacy studies. It is important to 152 understand that regulatory views in the European Union are slightly different from the USA. 153 According to a reflection paper released by the European Medicines Agency (EMA), extrapolation 154 may be generally defined as: 'Extending information and conclusions available from studies in one or 155 more subgroups of the patient population (source population), or in related conditions or with 156 related medicinal products, to make inferences for another subgroup of the population (target 157 population), or condition or product, thus reducing the need to generate additional information 158 (types of studies, design modifications, number of patients required) to reach conclusions for the 159 target population, or condition or medicinal product.' (EMA 2012; 2)[25] Instead of a decision tree, 160 the European regulators propose a framework to systematically determine whether extrapolation 161 can be applied, introducing the requirement for an extrapolation plan and what such a plan should 162 entail. [26]

163

164 The creation of a framework for extrapolations has also made explicit which are the requirements for 165 data generation, in particular how studies should be designed following the extrapolation plan, 166 including the relevance of PKPD and dose ranging studies. The extrapolation plan represents 167 therefore a mechanism to ensure the accurate use of current knowledge as well as the criteria for 168 the use of biomarkers and clinical endpoints, many of which have not been evaluated or qualified to 169 support a regulatory application. An example of a study that has led to incorporation of the starting 170 dose and titration scheme (of argatroban) in the US prescribing information is a study by Madabushi 171 et al. (2011)[27] An example of the use of a PD endpoint that has been validated for use in children 172 is the measurement of pain in young children in De Cock et al. (2011)[28].

173

174 As these types of study have been an area of expertise within pharmaceutical R&D, academic 175 investigators still have limited experience with their implementation. It should therefore be clear that 176 before performing a RCT, the doses to be tested need to be selected and justified; otherwise trials 177 may fail as has happened in the past. [15] Most importantly, paediatricians need to understand that body size (weight) is not necessarily a surrogate or proxy for differences in physiological or organ 178 179 function across the various subgroups of the paediatric population. During the planning and 180 evaluation of the suitable dose(s) and dosing regimens for children, different factors may need to be 181 considered in an integrated manner, taking into account differences (as compared to adults) due to demographic and clinical factors as well as the role of organ maturation, ontogeny of enzymes anddevelopmental growth.[29]

184 It is also worth mentioning that whereas maturation and ontogeny play a critical role in very young 185 children (e.g. preterm newborns, term newborns, infants, toddlers), the use of postnatal or even 186 postmenstrual age does not necessarily provide insight into organ function at an individual patient 187 level. For instance, one can use postmenstrual age to refer to the average (patho)physiological 188 difference in glomerular filtration in preterm newborns, but one should measure cystatin C to obtain 189 accurate estimates of the organ function in a given patient. In other words, the use of age as a proxy 190 or surrogate for function is of limited value, given the large heterogeneity in organ maturation.[30] 191 Given the wide weight variation (see e.g., quartiles of the weight by age growth curves for male and 192 female patients from the World Health Organization and National Center for Health Statistics [31, 193 32], the use of age as criterion for dosing medicines in older children yields even larger errors. 194 Similarly, there is little scientific basis to support the use of dosing based on body surface area (BSA), 195 as BSA does not accurately reflect differences in organ or metabolic function. 'Scaling for function' is 196 suggested [1] in which the dosing accounts for developmental growth and different 197 (patho)physiological conditions.[24]. BSA was introduced as a correction factor for dosing regimens 198 associated with poor tolerability, and dates back to the introduction of cytotoxic medicines in 199 oncology. Current understanding of drug disposition and PKPD relationships strongly suggests that 200 weight or biomarker banded-dosing regimens or should be used if large heterogeneity is anticipated

in a given group of patients or disease condition (e.g. renally impaired patients).

202

203 2. Differences and similarities in the design and conduct between dose-finding and efficacy 204 studies

Dose-ranging studies, also known as Phase II studies, occupy a key position in clinical drug
development. If properly designed and accurately performed a dose-finding study will save time and
effort during the assessment of efficacy in comparative and large scale trials in phase 3. Moreover,
evidence from these studies may help to minimize the numbers of patients required in subsequent
phases of development or even eliminate the need for additional data. [33]

A key goal of phase II is to determine the effective dose(s) that will inform a phase III trial. Often the results of Phase II studies will substantiate the dose and dosing regimen that will be used on the product label submitted for approval as part of the new drug application. Whereas current regulatory guidelines highlight the importance of identifying an effective and safe dose as the basis for approval of a novel medicine, an overwhelming number of examples show that the characterization of the exposure-response curve and subsequent selection of the optimal dose range can have important implications for the development of the medicinal product.[34] An optimal dose is a dose that is high enough to demonstrate efficacy in the target population taking into account the impact of variability in pharmacokinetics and pharmacodynamics. Yet, this dose should ensure minimum safety concerns and adverse events. There are different strategies or approaches to determine the optimal dose, the three most common dose finding study designs are described below.

221 1. Parallel Dose Comparison: Parallel dose comparison studies are the classical dose finding 222 studies.[35] This is still one of the most common (but also the least efficient) study designs. In a 223 parallel dose comparison study, several potential doses are selected and subjects are randomized to 224 receive one of the doses or placebo for the entire study period. At the end of the study, the outcome 225 in each treatment group is compared to the placebo group. Given that these designs are not 226 staggered, all treatment groups, including the higher dose cohorts, may be evaluated in parallel. 227 Therefore, this study design is best suited for situations where there is some confidence about the 228 location of the exposure-response curve and no concern about the safety profile of the compound. 229 On the other hand, parallel dose comparisons are very inefficient designs. They can make the 230 identification of the optimal dose and dosing regimen rather challenging if limited information is 231 available about the location of the dose-response curve. Empirical choice of the doses to be used in a 232 (paediatric) study may lead to biased estimates of the parameters describing the dose-response 233 curve. Dose-finding parallel group studies are difficult to perform in children due to the relatively 234 narrow dose range, the small interval between tested doses, the inter-individual variability of the 235 parameters measured and therefore the lack of statistical power. The 'continual re-assessment 236 method' (CRM) has been used in several instances in children. This method allocates doses 237 sequential to groups of patients. The first group is treated with the first dose level, whereas dose 238 levels for the subsequent groups are determined according to the model estimates of the dose-239 efficacy and dose-safety relationships. [36, 37] The implications of traditional approaches vs. model-240 based data analysis for antidepressant drugs were evaluated by Santen et al (2009).[38, 39]

241 2. Staggered Dose Escalation: If there is uncertainty about the safety profile of a medicinal product,242 one can start exposing subjects to lower doses first before progressing to higher doses. In this type of243 study, one starts with one group of subjects (often referred to as a cohort) and assigns them to a low244 dose treatment, during which the group is observed for some period of time. If no safety issues are245 encountered, a new group of subjects can be enrolled and assigned to a higher dose. This process is246 repeated until the clinical response is achieved or the maximum tolerated dose is reached. This247 design increases patient safety because you can start by exposing a small number of subjects to the

lowest dose possible, which might discriminate drug response from baseline or control treatment. By
doing so, one mitigates risk both by limiting the initial number of subjects and limiting the exposure
of each subject to study drug. As indicated above, control subjects can be included along with each
cohort if the objective is to compare efficacy with standard of care or other reference treatment.[33]

252 3. Intrapatient Dose Titration: In a dose titration study, titration is aimed at achieving a pre-defined 253 clinical response or maximum tolerated dose within a subject. This means that each subject will start 254 at a low dose and receive an incrementally higher dose until a predefined clinical response or 255 maximum tolerated dose is reached. Dose titration studies work well in chronic conditions where a 256 drug will be used for a long period of time, and where it is likely that significant differences will be 257 seen in the way each subject reacts. Epilepsy is a good example of a condition where dose titration is 258 useful.[40] There is considerable variability in how individual patients respond to anti-epileptic 259 products and with titrating the dose, one can tailor treatment with lower doses to patients who are 260 more responsive to treatment and higher doses to those who do not respond optimally to the same 261 dose level.

262 Whereas main stream data analysis in efficacy trials in adults relies primarily on treatment 263 comparisons, as assessed by hypothesis testing (e.g., ANOVA), paediatric dose finding studies can 264 benefit enormously from a model-based approach, in which treatment effects are not estimated 265 primarily based on pair-wise comparisons, but by PKPD parameter estimates. Among the many 266 advantages, PKPD modelling [41] of dose-finding data allows effective separation of the variability in 267 response associated with differences in drug exposure from other factors known to cause variation in 268 response. Moreover, data analysis can be complemented by simulations, including scenarios which 269 expand the population characteristics to include characteristics of virtual subjects who were not 270 included in the empirical study, providing insight into the implications of the dose and response 271 across the overall target population.

272

Another potential benefit of the use of model-based approaches (using statistical models for 273 274 predicting the effect and efficacy of a drug) is the possibility of eliminating the need for additional 275 data, thereby avoiding the exposure of children to unnecessary experimental protocol procedures. In 276 contrast to traditional (descriptive) experimental protocols, the use of modelling does not limit to 277 summarising the experimental variables. It relies on the estimation of parameters, which describe 278 either the disposition (e.g. clearance, distribution volume) or PKPD relationships (e.g., potency) as 279 the basis for extrapolation and prediction of drug exposure and response in a new patient or group 280 of patients, taking into account individual characteristics and variability in drug PK or PD parameters.

Given that assumptions can be made about the magnitude of the changes associated with growth
and maturation, mathematical functions exist that allow for scaling of model parameters. For
instance volume of distribution and clearance are known to change with body weight. By using
allometric scaling it is possible to predict how volume decreases as body weight becomes smaller.
Examples where adult data has been used to support paediatric dose selection include the work
performed by Avramis et al. (2007) [42], Piana et al [23].

287

In addition, population PK and PKPD models allow for the identification of additional covariate
effects, including demographic and clinical factors, such as creatinine clearance. Evidence of the
influence of such covariates on PK and/or PKPD relationships can be used to predict the impact of
overall variability on drug exposure and treatment response. Most importantly, the parameter
estimates obtained by extrapolation can be directly used as the basis for dosing recommendations.
[43, 44].

294 One can also characterize the effect of demographic and clinical factors on pharmacokinetics and 295 discriminate them from factors that influence the variability in pharmacodynamics, e.g. disease 296 severity or baseline conditions. This stepwise approach is often referred to in specialized literature as 297 hierarchical modelling and has the main advantage of describing both identifiable and non-298 identifiable sources of variability. Each 'variability' component is expressed in a hierarchical model as 299 a different parameter. Identifiable sources of variability are converted into covariate factors during 300 the analysis, whereas non-identifiable sources are expressed as statistical distributions. Variability, in 301 this context, is typically split into between-subject variability, between-occasion variability (within 302 the same subject on different occasions during the course of treatment), and residual variability in 303 the measurements.[22] The implementation of this type of analysis can be performed using different 304 techniques and software programmes. The most commonly used software for population PK and 305 PKPD modelling is NONMEM (Icon Development Plc, USA). However, other tools exist that can be 306 used that support the development of nonlinear mixed effects modelling include for example SAS, 307 Monolix, USC*PAC, MATLAB, and ADAPT .[45, 46]

308

In addition to the advantages relative to the methodological aspects described above, the use of a model-based approach allows one to take into account additional challenges that are faced when collecting and interpreting paediatric data. For instance, it is possible to consider a more mechanistic approach through incorporation of physiologically based pharmacokinetic models, which are able to factor in the contribution of maturation processes in drug disposition in very young children.

315 In the era of Evidence Based Medicine, randomized clinical trials remain the best known approach for the evaluation of efficacy. The main difference between PKPD studies or dose finding studies and 316 317 randomized efficacy trials is the type of information that is generated and the objective of the study. 318 In a typical RCT the main objective is to establish the statistical significance of the mean difference in 319 outcomes between the intervention groups. The entire study design is aimed at minimizing variability 320 or 'noise' around this 'signal'. In a PKPD study, on the other hand, the main objective is to establish 321 how response changes with varying exposure and whenever possible identify the causes or sources 322 of within- and between-subject variability. In this respect, patient characteristics such as e.g. age, 323 renal function, maturation status, disease severity, can all play an important role and lead to biased 324 estimates of the exposure-response curve, if not adjusted for. Basically, this difference can be 325 observed as a variation on the distinction in two (psychological) scientific paradigms that was 326 described by Cronbach in 1957 [47], i.e. (1) the correlational approach, in which the investigator uses 327 variation between subjects to study the correlation with the determinants of this variation, and (2) 328 the experimental approach, where the investigator attempts to measure change due to an 329 intervention (the signal) with as much precision (as little noise) as possible. 330 The 'learning-confirming' paradigm proposed by Sheiner (1997),[48] which has been acknowledged 331 by the FDA as an important step to establish exposure-response and support dose rationale, enables

optimisation of the process to learn about exposure-response relationship if knowledge cannot be

333 extrapolated from adult studies.

334

335 **3.** Information needed for the planning of a dose-finding study, and how this can be obtained

The following provides basic information on the elements that should be considered when planning a dose-finding study. We want to emphasise that the first step when planning such a study is to consult all the important players: clinicians, nurses, patients/parents, pharmacists, geneticists, and clinical pharmacologists with modelling expertise. Obviously, the exact composition of the team will depend on the investigational product. The clinical pharmacologist can advise on the design of the study and minimisation of patient samples. The GRIP initiative offers an educational programme for paediatric investigators interested in this type of research.[49]

One of the consequences of the difference between typical RCTs for the evaluation of efficacy and PKPD studies is the different emphasis, i.e. from statistical power and sample size for hypothesis testing to parameter accuracy and precision for model fitting. The precision of PK and exposureresponse parameters is critical in the sample size calculation for paediatric PKPD studies. Prior knowledge of the disease, exposure, and response from adults and other relevant paediatric data, such as that related to variability, can be used to derive the optimal sample size for ensuring precise

parameter estimation. The investigators should account for all potential sources of variability, including inter-subject and intra-subject variability, and differences between the adult and paediatric populations in the final selection of the sample size for each age group. Simulations can play a key role in that process, as variability is not considered to be only random. Moreover, it is the evidence of an exposure-response relationship that should define the success of the trial, not the statistical significance of eventual differences between treatment arms.

355 The distinct age groups to be studied should be chosen based upon what is known about the

356 prevalence and incidence of the disease, taking into account the role of developmental growth,

357 maturation processes and ontogeny, all of which can affect pharmacokinetics, pharmacodynamics

and the safety profile of a drug.

359 If the drug is intended for use in newborn infants, the paediatric study plan should specify whether 360 premature or small for gestational age infants will be included in the study population. Given the 361 influence of different factors on pharmacokinetic and pharmacodynamic variability, it is important to 362 ensure all relevant information is captured for each patient, for instance, gestational age and serum 363 creatinine or cystatin C for pre-term infants, birth weight and actual weight for infants and toddlers.

364 In 2012 the FDA discussed a proposal, ultimately rejected by the Advisory Committee, for a sample 365 size standard for paediatric pharmacokinetic studies, which stated that a study had to be powered 366 with at least 80% to target a confidence interval with no more than 20% relative standard error in the 367 pharmacokinetic parameter estimates, [50] but with nonlinear mixed effects methods, also known as 368 population approach, sample size is not the only relevant aspect. Sample size calculations are well 369 explained by Roberts et al. [51], who also describe the software programs available for this purpose. 370 Although these authors show that for every situation an 'optimal' sample size and study design can 371 and should be determined, they seem to overlook important feasibility issues that need to be 372 considered, especially when dealing with newborns and toddlers. Important for paediatricians is that 373 PKPD studies do not necessarily follow the same design route as classical RTCs. PKPD studies are 374 designed with the objective of learning about the appropriate dose, and hence must not follow the 375 logic of the classical study that aims to determine the difference in outcome between groups.

Noncompartmental analysis (NCA) based on rich PK sampling has been common practice for a large
number of paediatric trials. The use of frequent blood sampling has led to important ethical and
practical challenges in the implementation of clinical trials. This situation can be improved by better
understanding of paediatricians about the value of model-based approaches. Population PK and

380 PKPD modelling analysis based on sparse PK sampling can achieve sufficient precision for the

381 characterization of PK and PKPD parameters.[50]

382 From the above, it is evident that the number of blood samples collected in the clinical pharmacology 383 study is as critical as the number of patients available and the dose levels under consideration for the 384 study.[18, 51] Tools have been developed in statistical research to provide insight into the 385 contribution of (individual) input data to the overall precision of parameter estimates.[52] These 386 techniques can become powerful when combined with new sampling techniques such as dried blood 387 spots or microsampling, particularly in special paediatric patient groups such as neonates. Clinical 388 study simulations can be further implemented to illustrate the impact of different sampling and 389 design scenarios, thereby justifying the proposed sampling scheme and overall protocol design. On 390 the other hand, one should also consider that additional sampling for drug or metabolite may be 391 required if more than efficacy is to be established. Opportunistic (ad hoc) sampling should be 392 considered when acute adverse events occur.

393 One last keynote on the advantages of PKPD studies is the possibility of establishing the clinical 394 relevance of covariate factors known to affect pharmacokinetics and/or pharmacodynamics in 395 children. Therefore attention must be given to the way information is collected in these kinds of 396 trials, especially the so-called time-varying covariates, such as age, body weight, body surface area 397 and many biochemical and haematological parameters (clinical labs) which may be closely linked to 398 organ function and reflect differences in drug disposition and/or pharmacodynamics. In addition, 399 information regarding the onset of disease, phenotype, genotype, time since diagnosis, concomitant 400 and recent drug therapy should also be considered as relevant factors in some diseases. It should be 401 noted that some covariate factors will be relevant only in a subgroup of patients, e.g., organ 402 maturation, whereas others can affect the whole patient population.

403

404 Conclusions

Paediatricians can and should perform Investigator Initiated clinical pharmacological research in children as there are many gaps in the knowledge about drugs used for children. In order to develop rational, patient tailored dosing schemes, population PKPD studies in children and infants are needed. The emergence of new laboratory techniques and statistical tools allows for the analysis of sparse and unbalanced data and has increased the possibilities to perform (observational) PKPD studies in the paediatric clinic. To improve the quality of future paediatric PKPD investigations, and to prevent the conduct of paediatric RCTs that are doomed to fail because of inadequate dosing, the experience and knowledge about these tools is shared in this paper. If performed well, the results of
these studies will contribute to the evidence base underlying clinical guidelines and regulatory
decisions concerning labelling adjustments.

In contrast to the design of randomized clinical trials for the assessment of efficacy, in which the aim is to minimize the signal to noise ratio, studies aimed at the characterisation of the exposureresponse curve and subsequent dose selection of a drug need to consider the sources of variation in the target population. This means that in the design of a paediatric PKPD study, intrinsic factors determining variability in drug exposure and response, such as age, weight, gender, will have to be accounted for carefully to maximize the amount of information gathered from the smallest possible number of participating children.

422

423

424 References

- Cella, M., Knibbe, C., Danhof, M., Della Pasqua, O., What is the right dose for children? Br J
 Clin Pharmacol, 2010. 70(4): p. 597-603.
 European Commission., Better medicines for children. From concept to reality. Progress
- 428 report on the paediatric regulation (EC) No 1901/2006. 2013: Brussels.
- 429 3. European Medicines Agency., *Paediatric investigation plans: Templates, forms and*430 *submission dates.* 2016.
- Laughon, M.M., Avant, D., Tripathi, N., Hornik, C. P., Cohen-Wolkowiez, M., Clark, R. H.,
 Smith, P. B., Rodriguez, W., *Drug labeling and exposure in neonates.* JAMA Pediatr, 2014.
 168(2): p. 130-6.
- Haslund-Krog, S., Mathiasen, R., Christensen, H. R., Holst, H., *The impact of legislation on drug substances used off-label in paediatric wards--a nationwide study*. Eur J Clin Pharmacol,
 2014. 70(4): p. 445-52.
- 437 6. European Medicines Agency., *Paediatric needs*. 2013; Available from:
 438 <u>http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/docum</u>
 439 <u>ent_listing_000096.jsp</u>.
- 440 7. Starkey, E.S. and H.M. Sammons, *Practical pharmacokinetics: what do you really need to know?* Arch Dis Child Educ Pract Ed, 2015. 100(1): p. 37-43.
- 442 8. Turner, M.A., et al., *Paediatric drug development: the impact of evolving regulations*. Adv
 443 Drug Deliv Rev, 2014. 73: p. 2-13.
- Wimmer, S., Rascher, W., McCarthy, S., Neubert, A., *The EU paediatric regulation: still a large discrepancy between therapeutic needs and approved paediatric investigation plans.* Paediatr
 Drugs, 2014. 16(5): p. 397-406.
- 44710.European Union., Clinical trials: clearer rules, better protection. 2015; Available from:448http://www.europarl.europa.eu/news/en/news-
- 449 room/content/20130527IPR10525/html/Clinical-trials-clearer-rules-better-protection.
 450 11. EMA., *Regulation*. 2015; Available from:
 451 bttp://www.ema.europa.eu/ema/index.isp?curl=pages/regulation/document_listing/dr
- 451http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/docum452ent_listing_000122.jsp&mid=WC0b01ac0580022bb2#section2

12.	EMA., Enprema. 2015; Available from:
	http://www.ema.europa.eu/ema/index.jsp?curl=pages/partners_and_networks/general/gen
	eral content 000303.jsp.
13.	Connor, E.M., Smoyer, W. E., Davis, J. M., Zajicek, A., Ulrich, L., Purucker, M., Hirschfeld, S.,
	Meeting the demand for pediatric clinical trials. Sci Transl Med, 2014. 6(227): p. 227fs11.
14.	Rieder, M. and D. Hawcutt, Design and Conduct of Early Phase Drug Studies in Children;
	Challenges and Opportunities. Br J Clin Pharmacol. 2016.
15.	Benjamin, D.K., Jr., Smith, P. B., Jadhay, P., Gobburu, J. V., Murphy, M. D., Hasselblad, V.,
	Baker-Smith, C., Califf, R. M., Li, J. S., <i>Pediatric antihypertensive trial failures: analysis of end</i>
	points and dose range. Hypertension, 2008, 51(4): p. 834-40.
16.	American Academy of Pediatrics. <i>Policy statement</i> . <i>Off-Label Use of Drugs in Children</i> . 2014.
	p. 563-567.
17.	Zhao, W., S. Leroux, and E. Jacqz-Aigrain. <i>Dosgae individualization in children: integration of</i>
	pharmacometrics in clinical practice. World J Pediatr. 2014. 10(3): p. 197-203.
18.	Viele K and LT Connor. Dose-Finding Trials: Ontimizing Phase 2 Data in the Drug
10.	Development Process IAMA 2015, 314(21): p. 2294-5
19	Bellanti E Della Pasqua O Modelling and simulation as research tools in naediatric drug
10.	development Fur I Clin Pharmacol 2011 67 Suppl 1: n 75-86
20	Bellanti E van Wijk B C Danhof M Della Pasqua O Integration of PKPD relationshins
20.	into henefit-risk analysis Br I Clin Pharmacol 2015 80(5): n 979-91
21	Cella M. Danhof M. Della Pasqua O. Bridging strategies for drug combinations in pediatric
21.	indications Clin Pharmacol Ther 2012 91(4): n 726-33
22	Piana C Danhof M Della Pasqua O Influence of covariate distribution on the predictive
22.	nerformance of nharmacokinetic models in naediatric research Br I Clin Pharmacol 2014
	78(1)· n 145-57
23	Piana C Zhao W Adkison K Burger D Jacqz-Aigrain E Danhof M Della Pasqua O A
23.	model-based approach for the evaluation of once daily dosing of lamivudine in HIV-infected
	children Br I Clin Pharmacol 2014 77(5): n 852-60
24	Duppe L et al. Extrapolation of adult data and other data in pediatric drug-development
21.	programs. Pediatrics, 2011, 128(5): p. e1242-9
25.	Furopean Medicines Agency. Concept paper on extrapolation of efficacy and safety in
201	medicine development. Draft 2012.
26.	Furopean Medicines Agency. Reflection paper on extrapolation of efficacy and safety in
20.	naediatric medicine development. Draft 2016.
27.	Madabushi, R., et al., Pharmacokinetic and pharmacodynamic basis for effective argatropan
_/.	dosing in nedigtrics. I Clin Pharmacol. 2011, 51(1): p. 19-28
28.	De Cock, R.F., et al., The role of population PK-PD modelling in paediatric clinical research. Fur
_0.	I Clin Pharmacol 2011. 67 Suppl 1: p. 5-16
29.	van den Anker, I.N., M. Schwab, and G.L. Kearns, <i>Developmental pharmacokinetics</i> , Handb
	Exp Pharmacol. 2011, 205: p. 51-75.
30.	Allegaert, K. and J.N. van den Anker. <i>Clinical pharmacology in neonates: small size, huge</i>
	variability. Neonatology. 2014, 105(4): p. 344-9.
31.	Centers for Disease Control and Prevention. <i>Growth charts</i> , 2016. Available from:
011	https://www.cdc.gov/growthcharts/
27	Cella, M., M. Danhof, and O. Della Pasqua. Adaptive trials in prediatric development: dealing
, 12 -	
52.	with heterogeneity and uncertainty in pharmacokinetic differences in children. Br I Clin
52.	with heterogeneity and uncertainty in pharmacokinetic differences in children. Br J Clin Pharmacol. 2012, 74(2); p. 346-53.
33.	with heterogeneity and uncertainty in pharmacokinetic differences in children. Br J Clin Pharmacol, 2012. 74(2): p. 346-53. Hampson, L.V., et al., Bridging the gap: g review of dose investigations in paediatric
	 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.

502	34.	Bellanti, F., Iorio, V. L., Danhof, M., Dell Pasqua, O., Sampling Optimisation in
503		Pharmacokinetic Bridging Studies: Example on the Use of Deferiprone in Children With Beta-
504		Thalassaemia. J Clin Pharmacol, 2016.
505	35.	Wang, J.J. and A. Ivanova, Dose finding with the sequential parallel comparison design. J
506		Biopharm Stat, 2014. 24(5): p. 1091-101.
507	36.	Desfrere, L., et al., Dose-finding study of ibuprofen in patent ductus arteriosus using the
508		continual reassessment method. J Clin Pharm Ther, 2005. 30(2): p. 121-32.
509	37.	Treluyer, J.M., et al., Minimum effective dose of midazolam for sedation of mechanically
510		ventilated neonates. J Clin Pharm Ther, 2005. 30(5): p. 479-85.
511	38.	Santen, G., et al., From trial and error to trial simulation. Part 1: the importance of model-
512		based drug development for antidepressant drugs. Clin Pharmacol Ther, 2009. 86(3): p. 248-
513		54.
514	39.	Santen, G., et al., From trial and error to trial simulation. Part 2: an appraisal of current
515		beliefs in the design and analysis of clinical trials for antidepressant drugs. Clin Pharmacol
516		Ther, 2009. 86(3): p. 255-62.
517	40.	Frank, L.M., et al., Lamictal (lamotrigine) monotherapy for typical absence seizures in
518		<i>children</i> . Epilepsia, 1999. 40(7): p. 973-9.
519	41.	Bellanti, F. and O. Della Pasqua, Modelling and simulation as research tools in paediatric drug
520		development. Eur J Clin Pharmacol, 2011. 67 Suppl 1: p. 75-86.
521	42.	Avramis, V.I. and S.A. Spence, Clinical pharmacology of asparaginases in the United States:
522		asparaginase population pharmacokinetic and pharmacodynamic (PK-PD) models
523		(NONMEM) in adult and pediatric ALL patients. J Pediatr Hematol Oncol, 2007. 29(4): p. 239-
524		47.
525	43.	Brussee, J.M., et al., Children in clinical trials: towards evidence-based pediatric
526		pharmacotherapy using pharmacokinetic-pharmacodynamic modeling. Expert Rev Clin
527		Pharmacol, 2016: p. 1-10.
528	44.	Krekels, E.H., D. Tibboel, and C.A. Knibbe, Pediatric pharmacology: current efforts and future
529		goals to improve clinical practice. Expert Opin Drug Metab Toxicol, 2015. 11(11): p. 1679-82.
530	45.	Nyberg, J., et al., Methods and software tools for design evaluation in population
531		pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol, 2015. 79(1): p. 6-17.
532	46.	Dartois, C., et al., Overview of model-building strategies in population PK/PD analyses: 2002-
533		2004 literature survey. Br J Clin Pharmacol, 2007. 64(5): p. 603-12.
534	47.	Norman, G.R., Stratford, P., Regehr, G., Methodological problems in the retrospective
535		computation of responsiveness to change: the lesson of Cronbach. J Clin Epidemiol, 1997.
536		50(8): p. 869-79.
537	48.	Sheiner, L.B., <i>Learning versus confirming in clinical drug development</i> . Clin Pharmacol Ther,
538		1997. 61(3): p. 275-91.
539	49.	GRIP. Educational programme. 2016; Available from: <u>http://www.grip-</u>
540		network.org/index.php/cms/en/training_and_education
541	50.	Wang, Y., Jadhav, P. R., Lala, M., Gobburu, J. V., Clarification on precision criteria to derive
542		sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol, 2012.
543		52(10): p. 1601-6.
544	51.	Roberts, J.K., Stockmann, C., Balch, A., Yu, T., Ward, R. M., Spigarelli, M. G., Sherwin, C. M.,
545		Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical studies. Paediatr
546		Anaesth, 2015. 25(3): p. 222-30.
547	52.	Bijleveld, Y., de Haan, T., Toersche, J., Jorjani, S., van der Lee, J., Groenendaal, F., Dijk, P., van
548		Heijst, A., Gavilanes, A. W., de Jonge, R., Dijkman, K. P., van Straaten, H., Rijken, M.,
549		Zonnenberg, I., Cools, F., Nuytemans, D., Mathot, R., A simple quantitative method analysing
550		amıkacın, gentamıcın, and vancomycin levels in human newborn plasma using ion-pair liquid

- 551 chromatography/tandem mass spectrometry and its applicability to a clinical study. J
- 552 Chromatogr B Analyt Technol Biomed Life Sci, 2014. 951-952: p. 110-8.