
SCMon: Leveraging Segment Routing to Improve
Network Monitoring

François Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong, Yves Deville, Olivier Bonaventure
ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Email: firstname.lastname@uclouvain.be

Abstract—To guarantee correct operation of their networks,
operators have to promptly detect and diagnose data-plane
issues, like broken interface cards or link failures. Networks are
becoming more complex, with a growing number of Equal Cost
MultiPath (ECMP) and link bundles. Hence, some data-plane
problems (e.g. silent packet dropping at one router) can hardly
be detected with control-plane protocols or simple monitoring
tools like ping or traceroute.

In this paper, we propose a new technique, called SCMon, that
enables continuous monitoring of the data-plane, in order to track
the health of all routers and links. SCMon leverages the recently
proposed Segment Routing (SR) architecture to monitor the
entire network with a single box (and no additional monitoring
protocol). In particular, SCMon uses SR to (i) force monitoring
probes to travel over cycles; and (ii) test parallel links and bundles
at a per-link granularity. We present original algorithms to
compute cycles that cover all network links with a limited number
of SR segments. Further, we prototype and evaluate SCMon both
with simulations and Linux-based emulations. Our experiments
show that SCMon quickly detects and precisely pinpoints data-
plane problems, with a limited overhead.

I. INTRODUCTION

Monitoring is a crucial task for network operation. It is
needed to ensure that all resources operate correctly (e.g., no
failures) and their configuration meets operator’s expectations
(no congestion, required quality of service, etc.). Effective
monitoring is also fundamental for management tasks like
traffic engineering, maintenance and troubleshooting.

Unfortunately, even basic monitoring tasks, like checking
for hardware malfunctions, are practically hard, due to the
complexity of current networks. Prominently, multi-path rout-
ing is widely used, both to spread the load on multiple paths
and aggregate parallel links in bundles. Figure 1 shows an
overview of the European backbone of a big cloud provider,
OVH. It highlights that parallel links are used at the same
time between many pairs of routers. While enabling better
performance and robustness, multi-path routing also poses
significant obstacles to monitoring. For instance, assessing
the exact path and performance of each packet becomes
complex [2], [21] since such a path depends on (vendor-
specific) hash functions used by routers for load-balancing.

As a consequence, not only naive approaches (e.g., based
on ping or traceroute) are not sufficient, but also state-
of-the-art monitoring techniques tend to be ineffective.

Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS)

taken from http://weathermap.ovh.net/europe

Fig. 1: European backbone of OVH. In contrast to prior tech-
niques, SCMon can monitor health and performance of single
links in bundles (e.g., between LONDON and ROUBAIX).

On the one hand, protocol-based approaches use control-
plane messages to infer possible failures. For example, link-
state routing protocols (like OSPF or IS-IS) or specialized
ones (BFD [15]) rely on heartbeat-like mechanisms to check
bi-directional connectivity among pairs of adjacent nodes. This
approach only ensures detection of failures that affect control-
plane messages. However, it cannot be used to detect failures
that only affect data-plane traffic like: (i) corruption of an
optical link that leads to framing errors and packet losses, (ii)
malfunctioning of a router interface that considers the link still
up but discards all the received packets, and (iii) failure of
only one link among the parallel ones between two routers.

On the other hand, probe-based techniques rely on sending
data-plane monitoring packets, i.e., probes, between fixed
vantage points in the network. Vantage points typically run
standard protocols (e.g., IPSLA [8]) to send probes and extract
measurements from them. Unfortunately, if the probes are sent
over paths used to forward regular traffic, many vantage points
may be needed to obtain high coverage, and links not used
by current paths (e.g., backup links) cannot be checked at
all. Otherwise, probes can be sent over tunnels (e.g., RSVP-
TE [3] ones) to enforce specific paths, but this is not scalable.
Indeed, even for detecting single-link failures and pinpointing
their position, the number of needed tunnels tends to explode,
and so does the control-plane overhead (to signal tunnels) [7].

In this paper, we propose a new technique, called SCMon,
that ensures full coverage of all network resources from a
single vantage point. It is based on sending data-plane probes
over carefully-chosen cycles. This way, a single box can both

send and receive monitoring probes, avoiding the need for
synchronizing and coordinating multiple vantage points, hence
minimizing infrastructural costs. By relying on data-plane
measurements, we support both detection of hardware failures
and resource overloading (e.g., link congestion).

A key building block of our approach, used to send probes
over cycles, is Segment Routing (SR) [12]. SR is a modern
evolution of source routing which has recently attracted huge
interest from both vendors and operators. In SR, node and
adjacency segments can be added to a packet header: They
instruct routers to forward the corresponding packet to inter-
mediate nodes (node segments) or through intermediate links
(adjacency segments) before sending it to its destination.

Despite its flexibility, SR also comes with challenges. First,
SR paths natively use multi-path routing among intermediate
nodes or links. For example, in Fig. 1, assume that a router in
LONDON forces packets for FRANKFURT to cross PARIS
with an SR segment. Before being forwarded to FRANK-
FURT, each of those packets is then sent on any shortest path
from LONDON to PARIS, without any control on the link
effectively crossed between LONDON and ROUBAIX. More-
over, SR generates conflicting objectives for the computation
of cycles over which probes are sent. On the one hand, we
would like to minimize the number of cycles, to reduce the
monitoring overhead; hence, we should have cycles that are
long and few in number. On the other hand, we need cycles
to be enforced in practice, and long cycles may require too
many segments even for the most powerful commercial routers
(currently supporting less than 10 segments).

To tackle those challenges, SCMon runs original algorithms
that compute cycles on a monitoring topology, maintained by
routers in addition to the one used for user traffic. The mon-
itoring topology spans all network links, and uses carefully-
computed weights that avoid (as much as possible) ECMP
paths, i.e., multiple shortest paths between a pair of nodes.
Note that existing routers have already been shown to well
support two topologies and their (limited) overhead [18].

SCMon supports detection and localization of any set of link
failures/overloading. It infers single-link failures by keeping
track of the cycles associated to probes sent and not received
at the monitoring box. For multiple link failures, we have two
cases. Some of them, e.g., affecting links in disjoint cycles,
are detected directly from the set of lost probes (as single-
link failures). The others, e.g., affecting two links belonging
to a single monitoring cycle, are reported by SCMon one at
the time: This provides operators with a debugging interface
(asking to correct one error before showing another one)
similar to the one of a compiler for software programs. Similar
considerations apply to node failures and link congestion.

In developing SCMon, we make three main contributions.

The first complete formalization of SR, including node and
adjacency segments, as needed for SCMon cycles. (§II)

Algorithms to compute both the monitoring topology and
cycles. Our algorithms are parametric with respect to the
number of segments supported by routers. (§III)

a

b

c

d

e

f

g

1

2

2

1

3

3

1

1
4

Fig. 2: Sample graph used to illustrate our examples.

Thorough evaluation of both the effectiveness of our algo-
rithms and the practical ability of SCMon to quickly detect
and troubleshoot data-plane problems. (§IV)

We also compare with prior work (§V) and conclude (§VI).

II. SEGMENT ROUTING MODEL

In this section, we propose the first complete model of
Segment Routing with both node and adjacency segments: We
use this formalization as a basis for our algorithms. We start by
discussing an example of how segment routing works. Then,
we formalize our model and properties relevant for SCMon.

A. Segment Routing

Segment Routing is a recent routing architecture developed
within the Internet Engineering Task Force. It enables to
use non-shortest paths by specifying detours. Packets are
forwarded through the shortest path from the source to the first
detour, then to the second detour and so on. These detours are
called segments and can refer to a network node or a link. In
the case of a link (i.e. adjacency) segment, the shortest path to
the upstream node is taken and then that link is crossed. In the
case of Equal Cost Multipath (ECMP) between two segments,
all the ECMP paths are used (for different packets).

Consider the network in Figure 2. If we specify the node
e and the link (d, g) as segments from a to f , the path that
the packets will follow is a shortest path from a to e, then
a shortest path from e to d, then the link (d, g) and finally
a shortest path from g to f . In this example, there are two
shortest paths from a to e, namely (a, c, e) and (a, b, e), and
a single shortest path from e to d and from g to f . Therefore,
if a probe is sent using this list of segments, it will follow
either the path (a, c, e, b, d, g, f) or the path (a, b, e, b, d, g, f),
depending on which shortest path from a to e is taken.

Adjacency segments are more expensive than node segments
as they require us to push more labels into the Segment
Routing header. Therefore, we prefer to avoid them if possible.

B. Formalization

We model the network as a weighted directed graph G =

(V,E,w) where w : E ! Z+ is a weight function on E
which corresponds to the IGP link costs. In a network where
(x, y) 2 E, we usually have (y, x) 2 E, but sometimes
w(x, y) 6= w(y, x). In the figures, whenever w(x, y) = w(y, x)
we represent the edge (x, y) as an undirected edge. Given
two paths p1 = (x1, . . . , xn

) and p2 = (x
n

, . . . , x
n+m

)

we define the concatenation of p1 and p2 as p1 � p2 =

(x1, . . . , xn

, x
n+1, . . . , xn+m

). Finally, given a path p =

(x1, . . . , xn

), we write first(p) = x1 and last(p) = x
n

.

Given a network G, we denote by D

x

the shortest path DAG
(directed acyclic graph), with path lengths measured according
to the weights w, rooted at node x 2 V . In other words, D

x

is the sub-graph of G containing all the edges that belong
to a shortest path starting at x. These DAGs can easily be
computed using Dijkstra’s algorithm by keeping track of all
predecessors of the nodes upon shortest path computation.

We now give a formalization of Segment Routing on a
network G. A segmentation of a path p is essentially a
decomposition of p into a sequence of shortest paths or
edges. For this reason, we define Sp(G) to be the set of all
shortest paths in G and the set of all adjacency segments
Adj(G) = {

~
(x, y) | (x, y) 2 E(G)}. Finally, we define the set

S(G) = Sp(G)[Adj(G). The set S(G) represents the set of all
possible segments. We use the arrow notation on the second set
to distinguish them from shortest paths consisting of a single
edge. This distinction is necessary because it may happen that
an edge (x, y) is also the shortest shortest path between x and
y. In this case the adjacency segment is represented by ~

(x, y)
and the shortest path by (x, y).

Definition 1. A segmentation of a path p = (x1, . . . , xn

) in
a graph G = (V,E) is a list s1, . . . , sk 2 S(G) such that
p = s1�s2�. . .�s

k

. We call k the length of the segmentation.

As explained above, from the networking point of view, a
segmentation is a list of nodes and edges that represents a list
of detours. We now explain how to transform a segmentation
into a list of detours. This is necessary because it is the data
that will be added into the SR header.

If p = s1 � s2 � . . .� s
k

then we define

seg(s
i

) =

(
last(s

i

) if s
i

2 Sp(G)

s
i

if s
i

2 Adj(G)

The segment list corresponding to s1�s2� . . .�s
k

is defined
as hseg(s1), seg(s2), . . . , seg(s

k

)i. In a segment list, nodes are
called node segments and edges are called adjacency segments.

For example, in Figure 2, let p = (a, c, e, b, d, g, f). A
possible segmentation of p is (a, c)�(c, e)�(e, b, d)� ~

(d, g)�

(g, f). Its segment list is hc, e, d, ~
(d, g), fi. If we follow the

shortest path from a to c, then the shortest path from c to
e, then from e to d, then the edge (d, g) and finally the
shortest path from g to f , we will go exactly through path
p. Suppose now that, instead of this segmentation, we use the
following (notice that there is no arrow on top of edge (d, g)):
(a, c) � (c, e) � (e, b, d) � (d, g) � (g, f). Its segment list is
hc, e, d, g, fi. If we proceed as before, following shortest paths
between elements of this list, when we reach node d we have
to go to g. But there are two shortest paths between these two
nodes, namely, (d, g) and (d, f, g). Therefore, given only the
segment list, we cannot recover the original path.

C. Properties for single-box monitoring

In general, many segmentations exist for a single path.
Given a path p, an easy segmentation consists in assigning
adjacency segments to every edge of the path. For example,

(a, b, d, f) = ~
(a, b)� ~

(a, b)� ~
(b, d)� ~

(d, f). For SCMon to be
practical, we focus on segmentations with specific properties.

Primarily, we consider minimal segmentations.

Definition 2. A segmentation S of length k of a path p is said
to be minimal iff any other segmentation of p has length at
least k.

Moreover, since adjacency segments are more expensive
than node segments, we try to compute simple segmentations
that contain only node segments.

Definition 3. A segmentation S is said to be simple iff its
segment list contains only node segments.

Unfortunately, it is not always possible to compute simple
segmentations. For example, a path may contain edges not
belonging to any shortest path. The same applies to paths
with an edge (x, y) that is one among multiple shortest paths
between x and y (as for (d, g) in Figure 2).

Finally, to ease troubleshooting, we would like that every
segmentation is ECMP-free, i.e., it is biunivocally associated
with one segment list; otherwise, we have cannot know which
path actually corresponds to the segmentation.

Definition 4. A segmentation p = s1 � s2 � . . . � s
k

is said
to be ECMP-free iff each s

i

is either an element of Adj(G) or
the unique shortest path between its endpoints.

III. COMPUTING PROBING CYCLES

Our approach to compute monitoring cycles consists of four
steps. The first steps computes IGP weights for the monitoring
topology, in order to minimize ECMP paths. The second step
models link bundles aggregated into a single IGP link. The
third step calculates a set of cycles covering the whole network
and sharing the node from which probes are sent. The last step
computes the SR segments to send probes over those cycles.

A. Optimizing the Monitoring Topology
We propose an algorithm to compute IGP weights for the

monitoring topology (only used for monitoring) so that
1) every link belongs to some shortest path,
2) there is as few ECMP paths as possible.
Let m denote the number of edges in the network and let

P

m

= {p1, p2, . . . , pm} be the first m prime numbers.
The key idea of the algorithm is to use the logarithm of these

prime numbers as IGP weights. Indeed, these weights would
guarantee that any two paths have a distinct cost, since ln(x)+
ln(y) = ln(x · y) and ln is injective. Thus, the cost of the
first path is the logarithm of some product of prime numbers
whereas the weight of the second path is the logarithm of the
product of some other prime numbers. Since these products
are distinct, their logarithms must also be distinct.

Since the IGP weights must be integers, we use a truncated
logarithm ln

s

, defined as follows:

ln

s

(x) = b10

s

· ln(x)c

For instance, ln
4
(5) = b10

4
· 1.60943...c = 16094.

a

b

c

d

e

f

g

h i

2

3

5

7

11

13

17

19

23

29

31 37

(a)
a

b

c

d

e

f

g

h i

0

1

1

1

2

2

2

2

3

3

3

3

(b)
a

b

c

d

e

f

g

h i

6

10

16

19

23

25

28

29

31

33

34 36

(c)

Fig. 3: First two iterations of the execution of the algorithm
on a 3 by 3 grid.

In our algorithm, we start with s = 0 and increase s until
there is no ECMP. The following proposition proves that the
algorithm finds a solution in a finite number of iterations.

Proposition 1. Let A and B be two distinct subsets of P

m

and P =

Q
x2P

x

x. If s > ln (m · P),
P

x2A

ln

s

(x) 6=P
x2B

ln

s

(x).

Proof. Given any s and X ✓ P

m

, we have

10s · ln

Y

x2X

x

!
�
X

x2X

ln
s

(x) � 10s · ln

Y

x2X

x

!
� |X|· (1)

Write a =

Q
x2A

x and b =
Q

x2B

x. Assume without loss
of generality that a > b (they are not equal because they are
the product of distinct prime numbers). Then by (1)
X

x2A

ln

s

(x)�
X

x2B

ln

s

(x) � 10

s

· ln (a)� |A|� 10

s

· ln (b) =

10

s

· ln (a/b)� |A| � 10

s

· ln (a/(a� 1))� |A| �

10

s/a� |A| � 10

s/P �m.

Which is positive as long as s > log10 (m · P).

Further, we ensure that each edge belongs to a shortest path
by adding a large enough constant to each edge. Let w be the
weights obtained from the iterative procedure above, and C
be any constant that is bigger than the diameter of the graph.
Denote by w

C

the cost resulting from adding C to the cost
of every edge, that is w

C

(e) = w(e) +C. Then for any given
edge e = (v, u) we have w

C

(e) = C+w(e). If P is any path
other than e from v to u then

w
C

(P) = C · |E(p)|+ w(P) � 2 · C � C + w(e)

since C > w(e). Thus e is the shortest path from v to u.
Also, adding this constant does not create additional ECMP.

If P1 and P2 are two paths with w(P1) 6= w(P2) then

w
C

(P1)�w
C

(P2) = C(|E(P1)|� |E(P2)|)+w(P1)�w(P2)

If |E(P1)| = |E(P2)| then w
C

(P1) � w
C

(P2) = w(P1) �

w(P2) > 0 we defintion of w. Otherwise, we can assume
that |E(P1)| > |E(P2)| and we have w

C

(P1) � w
C

(P2) �

C � w(P2) > 0 since C is larger than the diameter of G.
Thus, our algorithm to compute the IGP weights for the

monitoring topology consists in (i) iterating over s until no
two shortest paths have the same weight and (ii) adding the
value of the diameter plus one to the cost of each edge.

x

y

5
x

y

xy1

xy2

xy3

2

2

2

3

3

3

Fig. 4: Link bundle transformation.

Figure 3 shows the execution of the algorithm on a 3 ⇥ 3

grid. Figure 3(a) displays the initial prime numbers associated
to each edge, and Figure 3(b) conveys the result of computing
ln

0
on these numbers. Note that there is still ECMP (in blue),

so we iterate. Figure 3(c) reports the result of the second
iteration, using ln

1
: There is no more ECMP. To ensure that

each edge belongs to a shortest path, we then add the value
of the diameter plus one (154) to each edge.

In practice, we cannot configure weights that are larger
than 65535, so we stop our algorithm before this threshold
is reached. This may leave some ECMP, but our experiments
show that the remaining ECMP is likely zero or negligible in
few corner cases. We ran the algorithm on all 243 connected
topologies in the Topology Zoo [16] and the Rocketfuel
[23] topologies. The average number of iterations (value of
s) was 1.06 with maximum value 5. Only two instances,
namely Kdl from the Topology Zoo and RF1239 from the
Rocketfuel topologies, still had ECMP after the execution of
our algorithm. In those topologies, only 0.4% and 0.06% of
source-destination pairs had ECMP, respectively.

To implement this algorithm, we need to be able to find the
first m prime numbers. We can find these by iterating over the
integers 2, 3, 5, 7, 9, . . . and using any primality test algorithm
to check which ones are prime numbers. The Prime number
theorem [9] tells us that the m-th prime number is close to
m ln(m) so we find them in a small number of steps.

B. Dealing with link bundles

Several physical cables between the same pair of nodes
can be aggregated into a single logical (IGP) link. In those
cases, we cannot avoid multi-path routing, not even setting
appropriate IGP weights in the monitoring topology. However,
in order to monitor each physical cable, we need to explicitly
represent all cables in a bundle and the corresponding multi-
path routing. We therefore derive a graph model of the
monitoring topology. We start from the IGP graph. Then, for
each link between u to v with several physical cables, we
remove (u, v) from our model; Moreover, for every physical
cable in (u, v), we add one fake node f and two edges (u, f)
and (f, v) and set their costs so that their sum is equal to the
IGP cost w(u, v). An example of this transformation is shown
in Figure 4. Note that fake links intuitively translated into the
need for using adjacency segments in our monitoring probes.

C. Computing the Cycle Cover

From the graph model built as described in the previous
section, we finally compute a cycle cover of the network. Our
algorithm is based on the two following observations:

1) A shortest path can be represented by a single segment,
provided that there is no ECMP.

2) The set of shortest paths from one node to all other nodes
in a graph forms a DAG. The longest paths in DAGs can
be computed in linear time [22].

The algorithm takes as input the weighted graph represent-
ing the monitoring topology and a parameter k specifying the
maximum number of segments that can be used for each cycle.

To find a cycle cover, we start by assigning a binary variable
u
e

to each edge e such that it has value 1, if the edge is not yet
covered by any cycle, and 0 otherwise. Then we call the cycle-
finding algorithm (described next) until all edges are covered,
that is, while

P
e2E

u
e

> 0. Every time we find a cycle we
set u

e

= 0 for each edge of that cycle.
The cycle-finding algorithm is outlined in Figure 5. Starting

from a source node s, it computes the longest path ¯P (with
respect to the number of uncovered edges) in D

s

. After finding
¯P , it then computes the longest path starting from the last node
of ¯P , and iterates on the latter found path for a given number
of iterations (depending on k). To avoid repeated edges in
the built cycle, the algorithm also keeps track of the edges
traversed in previous iterations, and discards paths (i) crossing
already-traversed edges, or (ii) terminating in a node with no
path to s disjoint from the already-traversed edges.

s x1

longest path in D

s

x2

longest path in D

x1

x3
longest path in D

x2
. . .

longest path in D

x3

x
r

longest path in D

x

r

Fig. 5: Cycle construction outline

The pseudocode of the cycle-finding algorithm is given in
Algorithm 1. The input is the graph G of the monitoring
topology, the shortest path DAG D computed on G, the node
source from which probes will be sent and the segment
budget k. We maintain the current node (corresponding to
the x

i

’s in Figure 5), the set of forbidden edges F to avoid
repeating edges, the binary variables u indicating whether an
edge has already been covered and the cycle itself. We use an
algorithm DAGLongestPath that receives as input a shortest
path DAG, a starting node x, the variables u to use as path
costs, the remaining segment budget and the forbidden edges.
It outputs the set of all the longest paths from the starting
node to the other nodes in the graph. For each of those paths,
it provides a tuple (ending node, path, number of segments).
Paths are sorted by non-increasing number of uncovered edges.
In the case of ties, they are broken by the number of uncovered
edges in the DAG of the ending node (the more the better).
This ensures that if all the edges of a DAG are covered we go
to a node that is adjacent to an uncovered edge. From this set
of solutions, we select the best one that has a path to the source
with the remaining segment budget (lines 10-18). Finally, we
close the cycle by finding a path from the last node to the

starting node (if they differ). The last step is always possible
since we only choose nodes that have a path to s as x

i

nodes.

Algorithm 1 FindCycle(G,D, source, k)
1: cur source
2: F ;
3: u

e

 1 forall e 2 E(G)
4: cycle null
5: S1 DAGLongestPath(D, cur, u, k,F)
6: while |S1| > 0 do
7: (next, path, nseg) (null, null, null)
8: while |S1| > 0 and next = null do
9: (x, p, s) S1.RemoveBest()

10: S2 DAGLongestPath(D, x, u, k � s,F [E(p))
11: if |S2| > 0 then
12: (next, path, nseg) (x, p, s)
13: if next 6= null then
14: k k � nseg
15: F F [E(path)
16: cur next
17: u

e

 0 forall e 2 E(path)
18: cycle cycle.Append(path)
19: S1 DAGLongestPath(Dcur, cur, u, k,F)
20: if cycle.Last() 6= source then
21: S1 DAGLongestPath(Dcur, cur, u, k,F)
22: (x, p, s) S1.RemoveBest()
23: cycle cycle.Append(path)
24: return cycle

The algorithm DAGLongestPath works in a similar fashion
as the standard dynamic programming algorithm for comput-
ing longest paths in directed acyclic graphs [22]. We extended
it to also compute the number of segments needed in the path.
It does so by using the shortest path DAGs given as input to
check for ECMP. For all ECMP cases, it decreases the current
segment budget (since a new segment is needed). The time
complexity of DAGLongestPath is O(E · k).

D. Segmenting Cycles
Once we have a cycle cover of the graph, we need to be

able to represent them as a list of segments. Our segmenting
algorithm computes ECMP-free segmentations so that (i) it
uses adjacency segments only when any other segmentation
would also use one, and (ii) it minimizes the remaining node
segments. Those two properties imply that if the input path
admits a simple segmentation, our algorithm will produce a
minimal simple segmentation.

The pseudo-code of the algorithm is reported in Algorithm
2. It receives as input a path p and a shortest path DAG D
and outputs an ECMP-free segmentation of p. Its complexity
is linear with respect to the length of p.

We now show that the algorithm produces a valid segmen-
tation.

Lemma 1. Let seg
i

and seg
i+1 be two consecutive elements in

the segment list produced by Algorithm 2. Suppose that seg
i

and seg
i+1 are both node segments. Then there is a unique

shortest path from seg
i

to seg
i+1.

Proof. Suppose that there exist two shortest paths from seg
i

to seg
i+1. Then the in-degree of seg

i+1 in the shortest path

Algorithm 2 MinSegECMP((x1, x2, . . . , xn

),D)

1: r 1
2: S hi
3: for i 1 to n� 1 do
4: if (x

i

, x

i+1) /2 E(D
r

) then
5: if d�

D

x

i

(x
i+1) = 1 then

6: S S + x

i

7: r x

i

8: else
9: S S + hx

i

, (x
i

, x

i+1)i
10: r x

i+1

11: else if d�
D

r

(x
i+1) > 1 then

12: if d�
D

x

i

(x
i+1) > 1 then

13: S S + hx
i

, (x
i

, x

i+1)i
14: r x

i+1

15: else
16: S S + x

i

17: r x

i

18: return S

DAG rooted at seg
i

is larger than one. But, in this case, the
algorithm would have either produced an adjacency segment
on the edge of the input path ending at seg

i+1 (on line 19) or
a node segment at the last node of p before node seg

i+1 (on
line 22). In either case, this contradicts the fact that seg

i+1 is
the element after seg

i

in the segment list.

When seg
i

is an adjacency segment and seg
i+1 is a node

segment, a similar argument applies. In the other cases there
is nothing to show. This gives the following corollary.

Corollary 1. The segmentations produced by Algorithm 2 are
ECMP-free.

Now we establish that some adjacency segments must be
in any ECMP-free segmentation and that those are the only
adjacency segments present in the segmentation produced by
Algorithm 2.

Lemma 2. Let p = (x1, x2, . . . , xn

) be a path on a graph G.
If the segment list of p produced by Algorithm 2 possesses
an adjacency segment (x

i

, x
i+1) then the segment list of

any ECMP-free segmentation of p possesses this adjacency
segment.

Proof. Algorithm 2 produces adjacency segments in two
cases: the edge (x

i

, x
i+1) does not belong to any shortest path

DAG or there exists a shortest path from x
i

to x
i+1 different

than (x
i

, x
i+1). It is obvious that any segmentation contains

adjacency segments on all edges that do not belong to any
shortest path since it is the only way we can cross them. In
the latter case, if a segmentation passes through the edge via a
shortest path p, then p cannot be a unique shortest path since
its last edge is (x

i

, x
i+1). We can get another one by removing

the node x
i+1 from p and concatenating the result with the

other shortest path from x
i

to x
i+1.

The next lemma shows that Algorithm 2 minimizes the
remaining node segments.

Lemma 3. Let p = (x1, x2, . . . , xn

) be a path in a graph
G and let S = s1 � s2 � . . . � s

k

be the segmentation
corresponding to the segment list produced by Algorithm 2.
Let S0 be any ECMP-free segmentation of p having the exact
same set of adjacency segments. Then, for each i such that
s
i

2 Sp(G), there exists a node in s
i

that is a node segment
in the segment list of S0.

Proof. Suppose that no node in s
i

is a node segment on
the segment list of S0. Then, since both segmentations have
the same adjacency segments, no edge of s

i

is an adjacency
segment in the segment list of S0. Therefore, there must be
a shortest path s0 starting before (or at) first(s

i

) in S0. This
contradicts the fact that s

i

was produced by Algorithm 2 in
the first place because when last(s

i

) was added to the segment
list, the condition on line 4 must have been false meaning that
the edge is not a shortest path edge in the shortest path DAG
of first(s

i

). Thus that edge cannot also be a shortest path edge
in the first(s0), since the node does not come after first(s

i

).
This contradicts the fact that s0 is a shortest path.

A corollary of Lemma 3 is the following proposition,
stating that Algorithm 2 uses the strictly-minimum number
of adjacency segments and also minimizes node segments.

Proposition 2. Algorithm 2 computes an ECMP-free seg-
mentation of the input path such that: (1) it contains an
adjacency segment if and only if all segmentations of the input
path contain that adjacency segment; (2) the number of node
segments used is minimal.

IV. EVALUATION

We implemented the SCMon algorithms in approximately
1,000 lines of Java code. To evaluate their performance, we
focus on realistic topologies. We provide simulation results
that show the number of cycles and segments that are required
to cover various topologies. In addition, we also implement
SCMon in python and evaluate its performance on emu-
lated networks. We publicly released both the code for our
algorithms and our prototype implementation of SCMon at
http://inl.info.ucl.ac.be/softwares/scmon.

A. Network topologies

We experiment with two real topologies, a large ISP and the
European backbone of OVH 1, plus all the realistic topologies
included in the Rocketfuel [23] and in the Internet Topology
Zoo [16] datasets. For brevity, we mainly focus on results for
the Rocketfuel and OVH topologies, and provide aggregated
results for the 243 connected topologies in the Internet Topol-
ogy Zoo. The OVH topology is especially interesting since it
contains many link bundles that are difficult to test with current
monitoring techniques (see Figure 1). In all our experiments,
we compute IGP weights with the algorithm described in
Section III-A and select the monitoring box as the center of
the graph with respect to those weights.

1Available at http://weathermap.ovh.net

http://weathermap.ovh.net

Topology |V | |E|
OVH Europe ⇡ 57 ⇡ 216
RF AS1239 153 1010
RF AS1755 67 248
RF AS3257 103 484
RF AS3967 57 208

TABLE I: Topologies used for experiments.

B. Probing cycles

The effectiveness of our cycle-cover algorithm is related to
the number of cycles used to cover the input topology. Indeed,
it aims at minimizing such number, in order to reduce the
monitoring overhead. However, as discussed in Section III,
this number depends on the maximum number of admitted
segments (parameter k in Algorithm 1).

Table II shows the number of cycles found by Algorithm
1 in function of k. With the exception of the OVH topology,
we find solutions for all values of k = 3, . . . , 11 (we limited
k to be 11 at most, since this is the maximum number of
segments supported by current commercial routers). Indeed,
in the absence of multi-path routing, any edge can be covered
by at most 3 segments: the first one is a node segment used to
reach the node connected to the edge we would like to cover,
the second one is an adjacency segment used to traverse the
edge, and the third one is a node segment used to come back to
the vantage point. The OVH network is a special case because
it contains a lot of parallel links, which force some multi-path
routing. We also observe that the number of cycles quickly
decreases with the increase of k in our experiments.

Topology 3 4 5 6 7 8 9 10 11
OVH Europe - - - - - 87 72 66 56
RF AS1239 580 295 195 145 116 98 84 74 65
RF AS1755 98 53 34 26 23 18 15 14 12
RF AS3257 217 110 76 55 44 38 33 29 25
RF AS3967 65 35 24 18 15 13 11 10 9

TABLE II: Number of cycles in function of k for IGP weights
that are ECMP-free. The first row shows the value of parameter
k and then each row shows the number of cycles in the cover
for each k.

To analyse the performance of our algorithm in a larger
number of topologies, we now consider the 243 network
topologies collected by the Internet topology Zoo project.

In Figure 6, we provide a CDF of the number of cycles
that are required to cover each of these 243 topologies. Since
these networks have different numbers of nodes and links, the
x-axis represents the ratio between the number of cycles in
the cover and the total number of links in the topology. For
instance, with k = 3, we see that some topologies have a very
bad ratio, meaning that we need a number of cycles that is
close to the number of edges. For k = 4, 5, more than 80%

of the instances have a cover that has a 20% ratio. When we
increase k to 6 or 7, we obtain cycle covers with 10% ratios
for more than 80% of the topologies. In other words, we find
cycle covers that are small compared to the number of edges
for all values of k higher than 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e

rc
e

n
ta

g
e

 o
f

g
ra

p
h

s

Number of cycles over number of edges

Cycles edge ration on the Topology Zoo

k = 3
k = 4
k = 5
k = 6
k = 7

Fig. 6: Percentage of networks from the Internet topology zoo
that are covered with a given ratio of the number of cycles
over the number of edges for k = 3, . . . , 7.

C. Practical Evaluation

To evaluate the practical deployability of SCMon, we im-
plemented a prototype in python and tested it in emulated
networks running on Linux servers.

We emulate the RocketFuel and the OVH Europe topolo-
gies. We rely on two software components, (i) a framework
that emulates large topologies and (ii) an implementation
of SCMon that sends and receives probes over the com-
puted cycles. Our framework is Linux-based and uses named
namespaces and virtual Ethernet interfaces to simulate network
nodes/links, IGP costs and link delays. This framework is
similar to Mininet [13] with the difference that our im-
plementation uses named namespaces instead of anonymous
ones, allowing easier debugging. For Segment Routing, our
prototype leverages the open-source implementation in the
Linux kernel2. A similar implementation could be developed
for the MPLS-based implementation in ONOS [10].

Our SCMon implementation (also denoted as SCMon in
this section) takes as input the list of cycles computed by
Algorithm 1 for the emulated topology and periodically sends
UDP probes over each cycle. SCMon probes each cycle
according to the Finite State Machine shown in Fig. 7. We
provide more details on its behavior below.

Fig. 7: Cycle state diagram in SCMon

2See http://www.segment-routing.org

http://www.segment-routing.org

In our implementation, we use the parameter T1 to set the
delay between successive probes. This parameter is bounded
by the maximum rate at which SCMon is able to send
probes. In our prototype implementation, we measured that our
python code was able to send at most one probe every 0.2
milliseconds, i.e., 5,000 probes per second. We thus define T1

as the number of cycles in a topology times 0.2 milliseconds,
plus a 25% (added as a safety margin).

When SCMon starts, it enters an initial state (INIT) which
calibrates the RTT of each cycle. SCMon sends and receives
probes over each cycle at the rate defined by T1 and does
not consider any late arrival as a cycle timeout. The number
of calibrating probes is defined by a configuration variable
P
k

. We set P
k

= 10 since it proved large enough to account
for unexpected jitter in our experiments. Once SCMon has
received P

k

probes, it considers that the cycle is up and enters
the actual monitoring state (MON). For a given cycle, if a probe
is not received within 2 ⇤ T1 milliseconds, then the cycle is
considered as timed out and SCMon enters a debugging state
for this cycle (DEBUG). In this state, SCMon sends one probe
for each segment composing the cycle to determine the faulty
one (for our prototype, we make the assumption of a single
failure). If SCMon does not receive all the debugging probes
within 2 ⇤RTT

cycle

milliseconds, it outputs the first segment
that has timed out and starts the debugging state over again.
If all the debugging probes are received within 2 ⇤ RTT

cycle

milliseconds, the cycle is considered back up and SCMon re-
enters the initial state for this cycle. Re-entering the initial
state, and thus temporarily not reacting to timeout events
allows the cycle RTT to get smoother if the detected fault
was caused by a temporary jitter in the cycle RTT.

Our experiments then consist in simulating link failures, and
evaluate the effectiveness of SCMon to detect and correctly
locate them. For simplicity, we focus on single failures.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

Pe
rc

en
ta

ge
 o

f l
in

ks

Time (milliseconds)

Time to detect blackhole

RF1239
RF1755
RF3257
RF3967

OVH-EUR

Fig. 8: Blackhole detection time for each link. The cycles were
computed with k = 5 for all RocketFuel topologies and with
k = 8 for the OVH topology.

In Fig. 8, we plot the time needed to detect a blackhole
as cumulative distribution functions for each edge. The figure

clearly shows that most of the blackholes are detected within
less than 100 milliseconds. Table III and Table IV show
for each topology, the blackhole detection time for several
percentiles of the links, and the average and maximum RTT
of the cycles. We see that the detection time is correlated
mainly with the delay of the cycles in a topology, and with
the number of those cycles. The RF1239 topology has a large
number of cycles and large cycle RTTs, yielding a higher
blackhole detection time. The topologies RF1755 and RF3257
have very similar cycle delays but the latter has a higher
number of cycles, yielding a slightly higher detection time
than RF1755. The RF3967 topology has a small number of
cycles but very large cycle delays, yielding a higher detection
time than topologies RF1755 and RF3257. The OVH topology
has a relatively large number of cycles but very small cycle
delays (due to missing link delays of the OVH topology, we
set the delay of all the links at one millisecond), yielding the
fastest detection time of all tested topologies.

Topology 20th 40th 60th 80th 90th
RF1239 35 ms 48 ms 61 ms 76 ms 96 ms
RF1755 4 ms 10 ms 16 ms 26 ms 47 ms
RF3257 10 ms 16 ms 24 ms 30 ms 40 ms
RF3967 8 ms 19 ms 31 ms 46 ms 63 ms

OVH-EUR 3 ms 7 ms 12 ms 16 ms 21 ms

TABLE III: This table shows, for each topology, the time
needed to detect a blackhole at the 20th, 40th, 60th, 80th and
90th percentiles of the links

Topology Cycles Avg RTT Max RTT
RF1239 195 83 ms 360 ms
RF1755 34 49 ms 130 ms
RF3257 76 48 ms 127 ms
RF3967 24 109 ms 206 ms

OVH-EUR 87 18 ms 28 ms

TABLE IV: This table shows, for each topology, the number
of cycles, the average RTT of a cycle and the maximum RTT
of the cycles

V. RELATED WORK

There is a huge literature about monitoring and fault de-
tection, including pioneering work published almost three
decades ago [27]. Previous work typically start from the con-
sideration that queries to devices (e.g., through SNMP) cannot
always be trusted [7], and analyses of control-plane messages
(e.g., OSPF or IS-IS hello packets) do not provide enough
information on data-plane performance. These limitations are
also faced by most commercial products (e.g., Tivoli NetView)
that aggregate basic tools, from IP SLA to SNMP traps and
Syslog collection into a common framework.

Many prior works (see, e.g., [28]) focus on data correlation
and statistical techniques for detecting faults and service
disruptions. For example, [17] studied how to detect silent
(hardware) failures with active measurements and their post-
elaboration using a greedy heuristic. Similarly, many contribu-
tions have been made in the area of network tomography where
topology and link performance are inferred from end-to-end
measurements (e.g., [11]). However, all prior work overlooked
the impact of multi-path routing, that can make failures

much harder to detect and troubleshoot. SCMon tackles those
scenarios using an additional topology and segment routing to
avoid multi-path routing for monitoring probes.

In addition, previous contributions typically assumed multi-
ple vantage points, and tried to optimize their position in order
to minimize their number while guaranteeing high network
coverage (e.g., [20]). The presence of multiple vantage points
is costly and requires coordination (time synchronization,
probe identification and so on). An exception is represented
by [6], which is based on a single monitoring point. However,
that methodology needs unreliable tools like SNMP or Net-
flow to collect information on the traversed routers. SCMon
effectively used a single monitoring box both to send probes
(over cycles) and extract measurements from them.

The approach closest in spirit to SCMon is [7], where
monitoring paths are source-routed thanks to either explicit
tunnels (i.e., RSVP-TE) or static routes. However, [7] can
explore only layer3 paths (hence, failures on aggregated link
bundles are impossible to detect) and tends to create a lot
of state (especially if RSVP-TE is used). SCMon avoids those
limitations: It relies on Segment Routing that requires no state
on the routers and can pinpoint a layer2 failure. In addition,
SCMon improves debugging time from order of minutes (as
taken by [7]) to milliseconds (see §IV).

Segment Routing has been used by recent works (e.g., [5],
[1], [14]) on traffic engineering. To the best of our knowledge,
this is the first paper about monitoring with Segment Routing.
Moreover, in contrast to the mentioned previous works (which
only considered node segments), we presented the first com-
plete model for Segment Routing.

Finally, previous works on cycle covers mainly focused on
covering undirected graphs with a minimal number of edges
(MCCP cover problem) [24]. For MCCP, a heuristic algorithm
based on the Chinese postman problem is provided in [19].
Moreover, a polynomial time algorithm to achieve small covers
is given in [4]. In SCMon, we cannot reuse those algorithms
because network topologies are directed graphs. Moreover, we
have additional constraints due to the maximum number of SR
segments that can used for implementing every cycle.

VI. CONCLUSION

In this paper, we presented SCMon, a new monitoring
technique which relies on Segment Routing to send probes
over cycles. SCMon allows any single box to effectively
monitor all the network resources, including single links in
bundles. We described algorithms to compute probe-traversed
cycles inducing a limited overhead and the corresponding SR
configurations for the probes. Further, we implemented an
SCMon prototype and evaluated its performance on publicly-
available topologies and emulated networks. Our experiments
show that SCMon works well in practice: By using a limited
number of cycles, it takes milliseconds to pinpoint the location
of failures, like packets silently discarded by router hardware,
that cannot be detected by existing techniques.

In future work, we plan to deploy SCMon in real networks,
and investigate possibilities (e.g., using Fibbing [26], [25])

to program ECMP-free paths while avoiding a dedicated
monitoring topology.

ACKNOWLEDGEMENTS

This work is partially supported by the ARC grant 13/18-
054 (ARC-SDN) from Communauté française de Belgique.

REFERENCES

[1] F. Aubry, D. Lebrun, Y. Deville, and O. Bonaventure. Traffic duplication
through segmentable disjoint paths. In IFIP Networking, 2015.

[2] B. Augustin, T. Friedman, and R. Teixeira. Measuring Load-balanced
Paths in the Internet. In IMC, pages 149–160, 2007.

[3] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow.
RSVP-TE: Extensions to RSVP for LSP Tunnels. RFC 3209, 2001.

[4] J. C. Bermond, B. Jackson, and F. Jaeger. Shortest coverings of graphs
with cycles. Journal of Combinatorial Theory, 35(3):297 – 308, 1983.

[5] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman. Optimized Network
Traffic Engineering using Segment Routing. In INFOCOM, 2015.

[6] Y. Breitbart, C.-Y. Chan, M. Garofalakis, R. Rastogi, and A. Silber-
schatz. Efficiently monitoring bandwidth and latency in IP networks. In
INFOCOM, 2001.

[7] R. Cartlidge and N. Guilbaud. Topology Aware Blackbox Monitoring.
NANOG presentation, 2013.

[8] M. Chiba, A. Clemm, S. Medley, J. Saloway, S. Thombare, and
E. Yedavalli. Cisco service-level assurance protocol. RFC 6812, 2013.

[9] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill, 2001.

[10] S. Das. Segment routing in onos. https://wiki.onosproject.org/display/
ONOS10/Segment+Routing.

[11] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Network loss
tomography using striped unicast probes. IEEE/ACM Transactions on
Networking, 14(4):697–710, Aug 2006.

[12] C. Filsfils et al. Segment Routing Architecture. Internet draft, 2014.
[13] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, , and N. McKeown.

Reproducible network experiments using container-based emulation. In
CoNEXT, 2012.

[14] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A Declarative and Expressive Approach
to Control Forwarding Paths in Carrier-Grade Networks. In SIGCOMM,
2015.

[15] D. Katz and D. Ward. Bidirectional forwarding detection (bfd). RFC
5880, 2010.

[16] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
Internet Topology Zoo. IEEE J. Sel. Areas Commun., 29(9):1765–1775,
Oct 2011.

[17] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection
and Localization of Network Black Holes. In INFOCOM, 2007.

[18] A. Kvalbein et al. Fast IP Network Recovery Using Multiple Routing
Configurations. In INFOCOM, 2006.

[19] M. Labbe, G. Laporte, and P. Soriano. Covering a graph with cycles.
Computers & Operations Research, 25(6):499 – 504, 1998.

[20] L. Ma, T. He, A. Swami, D. Towsley, and K. K. Leung. On optimal
monitor placement for localizing node failures via network tomography.
Performance Evaluation, 2015.

[21] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush. From Paris to Tokyo:
On the Suitability of ping to Measure Latency. In IMC, 2013.

[22] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011.
[23] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp

topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):216, 2004.
[24] C. Thomassen. On the complexity of finding a minimum cycle cover of

a graph. SIAM J. Comput., 26(3):675–677, 1997.
[25] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford. Central Control

over Distributed Routing. In SIGCOMM, 2015.
[26] S. Vissicchio, L. Vanbever, and J. Rexford. Sweet Little Lies: Fake

Topologies for Flexible Routing. In Hotnets, 2014.
[27] P. Wu, R. Bhatnagar, L. Epshtein, M. Bhandaru, and Z. Shi. Alarm

correlation engine (ACE). In NOMS, 1998.
[28] H. Yan et al. G-RCA: A Generic Root Cause Analysis Platform for

Service Quality Management in Large IP Networks. In CoNEXT, 2010.

https://wiki.onosproject.org/display/ONOS10/Segment+Routing
https://wiki.onosproject.org/display/ONOS10/Segment+Routing

	Introduction
	Segment Routing Model
	Segment Routing
	Formalization
	Properties for single-box monitoring

	Computing Probing Cycles
	Optimizing the Monitoring Topology
	Dealing with link bundles
	Computing the Cycle Cover
	Segmenting Cycles

	Evaluation
	Network topologies
	Probing cycles
	Practical Evaluation

	Related Work
	Conclusion
	References

