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Abstract 

The preimplantation embryos may have an increased risk of having mismatches due to the 

rates of cell proliferation and DNA replication. Elimination of mismatches in human gametes 

and embryos have not been investigated previously. In this study we developed a sensitive 

functional assay to investigate the repair or elimination of mismatches in both commercially 

available cell extracts and extracts obtained from preimplantation embryos. 

Heteroduplex molecules were constructed using synthetic oligonucleotides. Efficiency of the 

repair of mismatches was semi-quantitatively analysed by exposure to nuclear/whole cell 

extracts (as little as 2.5µg) and extracts obtained from pooled mouse and human blastocysts to 

investigate the repair capacity in human embryos.  

A cell free in vitro assay was successfully developed to analyze the repair of mismatches 

using designed heteroduplex complexes. The assay was further optimised to analyse repair of 

mismatches in cell extracts obtained from oocytes and blastocysts using minute amounts of 

protein. Repair of mismatch efficiency was observed in both mouse and human blastocysts 

(2.5µg). The blastocysts were observed to have lower repair efficiency compared to 

commercially available nuclear and whole cell extracts. 

In conclusion, a sensitive, easy and fast in vitro technique was developed for the first time to 

detect the repair of mismatch efficiency in embryos. This study showed for the first time that 

the MMR was active in human embryos at the blastocyst stage.  

Keywords: functional assay; DNA repair; repair of mismatch; embryo; human  
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Introduction 

The rates of cell proliferation and DNA replication are high in the early developing embryos 

that may increase the risk of mismatches in gametes and preimplantation embryos (Baarends 

et al., 2001). Importance of correct repair or elimination of mismatches is shown by anomalies 

during gametogenesis and preimplantation embryo development. The main pathway of 

elimination of mismatches is mismatch repair (MMR). Aberrant expression or lack of MMR 

genes have been associated with abnormal spermatid phenotypes (Richardson et al., 2000), 

failure of meiosis I completion in oocytes (Lipkin et al., 2002), growth retardation and 

embryo fatality (van de Vrugt et al., 2009) and infertility in both male and female mice (Baker 

et al., 1996, Baker et al., 1995, Wang et al., 1999). Therefore, it is suspected that mismatches 

are repaired either by MMR genes and proteins or by another mechanism in gametes and 

preimplantation embryos.  

One of the main difficulties in assessing repair capacity in human oocytes and embryos is the 

small amount of protein present in these samples, between122ng to 0.1µg in cattle oocytes 

and 162ng to 50µg in cattle preimplantation embryos (Grealy et al., 1996, Thompson et al., 

1998). In Xenopus and Drosophila, repair of mismatches have been investigated by 

microinjecting a heteroduplex construct into oocytes and embryos or by using protein extracts 

obtained from these oocytes (Oda et al., 1996, Petranovic et al., 2000, Varlet et al., 1996, 

Labhart, 1999). Generally, cells are transfected with plasmid/bacteriophage circular DNA 

substrates and the efficiency of repair is assessed by restriction endonuclease cleavage in vivo 

(Zhou et al., 2009) or in vitro by exposure of nuclear or whole cell extracts (Wang and Hays, 

2002, Thomas et al., 2002). The drawback of these techniques is that they require use of 

plasmids where the preparation is technically demanding and large number of cells is 
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required. They are also time consuming and can be expensive (Tsai-Wu et al., 1999, Lei et al., 

2004).  

The aim of our project was to develop a sensitive and simple functional assay to detect the 

efficiency of mismatch repair or elimination using mismatched oligonucleotide constructs and 

small amount of protein extracts. Exposure to endogenous and exogenous metabolites, such as 

reactive oxygen species, carcinogens or chemicals used in assisted reproduction treatments, 

could lead to DNA damage in embryos. Therefore, repair or elimination of mismatches is 

crucial during embryonic development; especially since apoptosis of a even a single cell could 

be detrimental to the overall development of early stage embryos. The results of this study 

provide a tool for future studies to evaluate the activity of different repair mechanisms in 

embryos.  

Results 

Repair or elimination of mismatches were functionally assessed by exposure of 

homo/heteroduplexes to the nuclear and whole cell extracts. A number of research studies 

suggest that repair of mismatches is strand specific and directed by the presence of a nick on 

one strand (Thomas et al., 1991, Holmes et al., 1990, Fang and Modrich, 1993, Umar et al., 

1994, Miller et al., 1997, Taghian et al., 1998). Therefore nicked homo/heteroduplex 

molecules were also constructed to investigate if repair or elimination of mismatches is nick-

directed.  

Repair or elimination of mismatches using nuclear and whole cell extracts 

Different concentrations of nicked and non-nicked homoduplex (G-C) / heteroduplex (G-T) 

constructs (3.33-0.33µM) were exposed to MMR efficient nuclear extract HeLa S3 (1.33-

14µg) and MMR deficient nuclear extract LoVo with an MSH2 mutation. The repair of G-T 
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heteroduplex to G-C homoduplex was detected in the presence of both HeLa and LoVo 

nuclear extracts by mini-sequencing analysis. The repair or elimination of mismatches 

detected in the presence of HeLa nuclear extract was at a higher efficiency compared to the 

LoVo nuclear extract. In the absence of any nuclear extract or buffer, the mismatch was 

persistent (Table 1). The repair or elimination efficiency was semi-quantitatively determined 

by comparing the peak heights of the corrected alleles at different incubation time intervals (1, 

3, 6 and 15 hours) (Figure 1 a, b, c and d, respectively). As the time of incubation increased 

from 1 hour to 3 hours, the repair or elimination efficiency was increased by 500-fold in the 

presence of HeLa. Exposing the mismatched heteroduplexes to the nuclear extracts for 6 and 

15 hours improved the correction of the mismatched bases, but the efficiency was not 

improved as significantly. Exposing the homoduplex constructs to the same buffer solutions 

showed that bias was not introduced upon the reaction. 

In the second part of the project, the nicked and non-nicked homoduplex molecules and 

heteroduplexes were exposed to commercially available HeLa whole cell extract. Different 

concentrations of G-Tn and G-T heteroduplexes (0.83-0.33µM) were exposed to 5-2.5µg 

HeLa whole cell extract for 23 hours (Table 2). It was observed that as the concentration of 

G-Tn decreased, the repair or elimination efficiency of the mismatched heteroduplex was also 

decreased (Figure 2).  

Repair or elimination of mismatches in oocytes and blastocysts 

In the final part of this study, repair or elimination efficiency of the mismatched 

heteroduplexes was assessed using whole cell extracts obtained from mouse/human oocytes 

and blastocysts. For all the reactions, repair or elimination of mismatches was assessed in two 

controls, one positive with commercially available HeLa whole cell extract and one negative 

with no extract. In the presence of HeLa whole cell extract, repair or elimination of the G-Tn 
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heteroduplex to G-C was observed in all the reactions; whereas mismatched bases were still 

detected in the absence of whole cell extract. In a subset of samples, repair or elimination of 

the mismatches was assessed in an additional negative control where buffer involving dNTPs, 

ATP and glutathione was excluded from the analysis. Similarly mismatched bases were 

observed in the absence of dNTPs, ATP and glutathione.  

Whole cell extracts were obtained from five and ten pooled mouse oocytes, and four and eight 

pooled mouse blastocysts, respectively (Table 3). The mismatched bases were not repaired or 

eliminated upon exposure to whole cell extract obtained from pooled oocytes. Repair or 

elimination of G-Tn heteroduplex to G-C homoduplex was observed in extracts from four and 

eight pooled mouse blastocysts (Table 3). Although there was G-C homoduplex detected, the 

presence of G-Tn heteroduplex was still detectable indicating the incomplete repair or 

elimination of G-Tn heteroduplex in the reaction mixture.  

Repair or elimination of G-Tn heteroduplex at 0.33µM was detected by exposure of WCE 

obtained from eleven pooled human blastocysts (Table 3). However, this correction of 

mismatches was considerably less compared to the repair observed for the pooled mouse 

blastocysts (Table 3). 

Discussion 

The repair or elimination of mismatches in gametes and preimplantation embryos has not 

been investigated thoroughly due to the small amount of protein present in these samples. 

Current techniques measure the repair or elimination efficiency in vitro (Thomas et al., 1991, 

Holmes et al., 1990) and in vivo (Wang and Hays, 2002) involve exposure of mismatched 

DNA substrates to large amounts of nuclear extracts and they require the construction of 

plasmids. Few studies assessed the mismatch repair in Xenopus oocytes by microinjecting the 
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heteroduplex molecule into the oocytes or by using the egg extracts (Oda et al., 1996, 

Petranovic et al., 2000, Varlet et al., 1996, Labhart, 1999). However similar to the other 

studies, these also require construction of plasmids to form the heteroduplex molecules. We 

therefore developed a simple assay that enables assessment of repair or elimination of 

mismatches without the need of large amounts of protein and construction of plasmids. This 

study forms the basis of future analyses to understand the repair or elimination of mismatches 

in human oocytes and embryos and to assess the embryonic development potential, especially 

in the presence of DNA damage. 

Nicked and non-nicked G-T heteroduplex molecules were constructed using oligonucleotides 

designed to incorporate the rs1981929 SNP in the MSH2 gene. Results of this study showed 

repair or elimination of both nicked and non-nicked G-T heteroduplexes to G-C 

homoduplexes in the presence of commercially available nuclear extracts of both MMR 

efficient HeLa and MMR deficient LoVo (1.33µg), commercially available whole cell (2.5µg) 

and whole cell extracts obtained from pooled mouse and human blastocysts. In theory, any 

nuclear extract that is MMR deficient should not repair the mismatches. However, studies 

have reported repair or elimination of mismatches in the presence of LoVo nuclear extracts in 

Saccharomyces cerevisiae showing that MSH3 can function as an alternate for MSH2 

(Marsischky et al., 1996, Strand et al., 1995) in endometrial cancer cell lines (Umar et al., 

1994), human colon carcinoma cell lines (Lei et al., 2004) and in mouse embryo fibroblasts 

(Edelmann et al., 1996). Repair or elimination of the mismatches could also be performed by 

other DNA repair mechanisms, such as base excision or nucleotide excision repair (O'Regan 

et al., 1996, Huang et al., 1994). Studies also identified a thymine DNA glycosylase that is 

specific for repairing the G-T mismatches to G-C in bacteria (Sohail et al., 1990) and in 

mammalian cells (Wiebauer and Jiricny, 1989, Wiebauer and Jiricny, 1990, Bill et al., 1998) 
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that could be responsible for the repair in MMR deficient cells. Any of these possibilities may 

have contributed to the repair of G-T to G-C homoduplexes in LoVo nuclear extracts.  

Studies suggested that nicks may improve the repair efficiency and the repair is initiated from 

the nick (Thomas et al., 1991, Holmes et al., 1990, Fang and Modrich, 1993, Umar et al., 

1994, Miller et al., 1997, Taghian et al., 1998). Conflicting studies in monkey COS-7 (CV-1 

in Origin and carrying the SV40 genetic material) cells suggested that nicks did not have an 

effect in directing the strand repair (Heywood and Burke, 1990a, Heywood and Burke, 

1990b). Additional studies supported this by showing equal mismatch repair efficiency with 

nicked and intact plasmid DNA in in vivo studies (Lei et al., 2004). The similarity of the 

mismatch repair activity between nicked and intact plasmid DNA could be due to fast ligation 

of the nick followed by the repair of the mismatch. Studies supported this hypothesis such that 

mismatch repair was more efficient in the presence of DNA ligase 3 with nicked plasmid 

DNA (Tomkinson et al., 1993). 

In mouse oocytes, although mRNA transcripts involved in DNA repair are present (Jaroudi et 

al., 2009),  repair or elimination of mismatches was not detected. Repair or elimination of 

mismatches was detected in human blastocysts with lower repair efficiency compared to the 

MMR observed in commercially available nuclear and whole cell extracts. This could be due 

to the small amount of protein present in mammalian blastocysts ( 0.16-50µg in 

preimplantation embryos) (Grealy et al., 1996).  

In conclusion, we described a method for monitoring repair or elimination of mismatches 

using commercially available nuclear and whole cell extracts as well as whole cell extracts 

obtained from pooled preimplantation embryos. This study is particularly important since 

there has not been any data on the repair or elimination of mismatches in human embryos and 

with this study it can be concluded now that there is a mechanism that eliminates mismatches 
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during preimplantation embryo development. This study further serves as proof of principle 

for a plasmid-free, in vitro functional assay allowing the semi-quantitative assessment of 

repair or elimination of mismatches . The technique is more sensitive, easier and faster than 

previously described methods, since it does not necessitate plasmid production, restoration of 

restriction endonuclease sites or reporter sequences. This modified protocol facilitates the 

efficient assessment of repair or elimination of mismatches in different/multiple mismatches 

with different lengths in addition to easily modifying the construct for the assessment of 

insertion deletion loops (IDLs) of variable sizes. Compared to previous assays, this method is 

superior, since small amounts of proteins can be used, allowing the investigation of repair or 

elimination of mismatches in human preimplantation embryos and evaluating the potential of 

embryonic development.  

Methods 

This study was licensed by the Human Fertilization and Embryology Authority (Reference: 

RO113) and ethical approval was granted by the National Research Ethics Service, Research 

Ethics Committee (Reference: 10/H0709/26). 

Formation of mismatched DNA substrate 

Oligonucleotides were designed around a single nucleotide polymorphism (SNP) site 

rs1981929 in the MSH2 gene on chromosome 2 (2p22-p21) to construct mismatched 

substrates (heteroduplexes with a G-T mismatch). These substrates were constructed by 

denaturing the synthetic G and T oligonucleotide strands (Eurogentec, Belgium) at 95˚C for 5 

minutes followed by 16 hour incubation at 37˚C. Similarly, homoduplex constructs (A-T 

duplexes) were formed by incubating two complementary strands (Supplemental table 1). 

Nicked homo/heteroduplex constructs were formed, by combining A or G strands with the 
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nicked T (Tn = Ta + Tb) strands, to test if the repair was nick-directed (see Supplemental 

table 1for sequence details). The details of the methodology are shown in figure 3. 

The successful formation of the constructs was confirmed by mini-sequencing analysis 

(SNaPshot™, Applied Biosystems) detecting the allele at the SNP site rs1981929 using two 

different cycling conditions. The sequences of the primers detecting the allele for the A and G 

strands were 5’-GGTACAAATAGTACAG-3’ and T strand was 5’-

TAAATAGTAACTTTGGAGACCT-3’, respectively. The first set of cycling conditions 

involved detection of both strands forming the homo/heteroduplex constructs by 25 cycles of 

denaturation at 96˚C for 10 seconds, annealing at 30˚C for 5 seconds and elongation at 37˚C 

for 30 seconds. The second set of conditions was used to verify that no excess 

oligonucleotides were present in the reaction mixture by the same cycling conditions 

excluding the denaturation step (only annealing at 30˚C for 5 seconds and elongation at 37˚C 

for 30 seconds for 25 cycles).  

Repair or elimination of mismatches using commercially available cell extracts 

The homo/heteroduplex constructs were subjected to commercially available nuclear extracts, 

HeLa S3 (MMR efficient) and LoVo (MMR deficient), and whole cell extracts (HeLa whole 

cell extract, WCE, Active Motif). The reaction was performed as previously described with 

some modifications (Wang and Hays, 2002). Briefly, 1.67-3.33µg/µl DNA constructs were 

mixed with 1.33-13.35µg nuclear extract or 5-2.5 µg/µl WCE in the presence of 3µl buffer 

(20mM Tris-HCl at ph 7.6, 1.5mM ATP, 1mM Glutathione, 0.1mM dNTP mix, 5mM MgCl2 

and 110mM KCl). To assess the Repair or elimination of mismatches, two negative controls 

were included in the analysis where no nuclear extract or no buffer was included in the 

reactions, respectively. The reaction mixture was incubated with the homo/heteroduplex 

constructs at 37˚C for 23 hours. The reaction was terminated by addition of 30µl stop solution 
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(25mM EDTA, 0.67% SDS, 90µg/ml Proteinase K) and incubated at 37˚C for 30 minutes and 

75˚C for 15 minutes (Figure 3). 

DNA constructs were purified immediately using DNA clean and concentrator™ (Zymo 

research corporation, USA) following the manufacturer’s protocol. The purified repaired/non-

repaired DNA constructs were analysed by mini-sequencing analysis (SNaPshot™, Applied 

Biosystems). The peak sizes were compared to obtain an estimate of the repair or elimination 

of mismatches for each allele. 

Repair or elimination of mismatches using whole cell extracts from mouse blastocysts, 

human oocytes and human blastocysts 

Whole cell extraction from MF1 strain mouse blastocysts, human oocytes and human 

embryos was carried out using the whole cell extraction kit (Millipore, UK) following the 

manufacturer’s protocol with slight changes. Briefly, 30µl of extraction buffer mixture was 

added to each pooled oocyte and blastocyst samples. This mixture was mixed and incubated 

on ice for 15 minutes. The whole cell extract was obtained by centrifugation. The reaction 

was performed as previously described using 70% (v/v) oocyte and embryo extract, 

respectively. 
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Figure Legends 

Figure 1 Result from GeneScan analysisTM on ABI PrismTM 310 examining the MMR 

efficiency of G-Tn after HeLa nuclear extract exposure for 1, 3, 6 and 15 hours. Black, 

blue and green peaks represent the C, G and A alleles, respectively. The peak heights 

(corresponding to the fluorescence intensity) are shown in parenthesis. G-Tn constructs were 

observed by the presence of C and A peaks following mini-sequencing analysis, as reverse 

mini-sequencing primers were used. The detection of a G peak, equivalent to homoduplex G-

C molecules formation, is indicative of repair. (A)-(D) i. SNaPshot™ analysis of G-Tn 

exposure to HeLa nuclear extract for 1, 3, 6 and 15 hours, respectively. (A)-(D) ii. 

SNaPshot™ analysis of G-Tn exposure to LoVo nuclear extract for 1, 3, 6 and 15 hours, 

respectively. (A)-(D) iii. SNaPshot™ analysis of G-Tn incubated in the absence of any 

nuclear extracts for 1, 3, 6 and 15 hours, respectively. As the time of incubation increased, the 

MMR efficiency was also increased observed by the higher peak heights. Repair in the 

presence of HeLa nuclear extract was increased compared to the MMR in the presence of 

LoVo nuclear extract. 

Figure 2 Result from GeneScan analysisTM on ABI PrismTM 310 examining the MMR 

efficiency of the heteroduplex after exposure of HeLa whole cell extract. Black, blue, red 

and green peaks represent the C, G, T and A alleles, respectively. The alleles and the peak 

heights in parenthesis (corresponding to the fluorescence intensity) are shown. G-T constructs 

were observed by the presence of C and A peaks following mini-sequencing analysis, as 

reverse mini-sequencing primers were used. The detection of a G peak, equivalent to 

homoduplex G-C formation, is indicative of repair. (A)-(C) i. shows the SNaPshot™ analysis 

of 0.83µM, 0.67µM and 0.33µM G-T after 23 hours of HeLa whole cell extract exposure, 

respectively. T strands are shown to be repaired to C strand. (A)-(C) ii. shows the SNaPshot™ 
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analysis of 0.83µM, 0.67µM and 0.33µM G-T that was incubated for 23 hours in the absence 

of any whole nuclear extracts showing the G (C) and T (A) alleles, respectively. 

Figure 3 The homoduplex constructs were formed with two complementary A and T 

sequences. Mismatched heteroduplex constructs were formed with two complementary 

sequences; G and T except at the SNP site rs1981929. Nicked heteroduplex constructs were 

formed using the G sequence and Ta and Tb sequences that are complementary to the G 

sequence. Successful formation of homo/heteroduplex constructs was confirmed by 

SNaPshot™ assay using two different cycling conditions by detecting the allele at the SNP 

site rs1981929. Each allele fluorescences with a different colour; A in green, T in red, C in 

black and G in blue. Denatured SNaPshot reaction showed all the alleles at the SNP site 

within that reaction, whereas in the non-denatured samples the alleles that are present in the 

mixture belonged to the excess sequences following the formation of homo/heteroduplex 

constructs. Mismatch repair reaction was carried out in the presence and absence of mismatch 

repair proteins. The mismatch repair efficiency was evaluated by SNaPshot™ assay by 

detecting the allele at the SNP site rs1981929. 
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Table Legends 

Table 1 Summary of all the mismatch repair reactions by HeLa and LoVo nuclear 

extracts. 

a) Summary table of repair efficiency of heteroduplex construct to homoduplex after HeLa 

nuclear extract exposure 

b) Summary table of repair efficiency of heteroduplex construct to homoduplex after LoVo 

nuclear extract exposure 

a) Summary table of repair efficiency of heteroduplex construct to homoduplex after HeLa 

nuclear extract exposure. b) Summary table of repair efficiency of heteroduplex construct to 

homoduplex after LoVo (mismatch repair deficient) nuclear extract exposure. In order to find 

the optimal concentrations of heteroduplex constructs and nuclear extracts with correct 

incubation times, series of optimisation experiments were performed. These tables summarise 

the final concentrations of nicked and non-nicked heteroduplex constructs, (a) HeLa and (b) 

LoVo nuclear cell extract concentrations and time of exposure for the mismatch reaction. The 

efficiency of mismatch analysed by SNaPshot™ reaction was shown as a percentage of the 

ratio of repaired/unrepaired sequence of the heteroduplex. GT represents the non-nicked 

heteroduplex complex and GTn represents the nicked heteroduplex constructs. 

Table 2 Summary table of repair efficiency of heteroduplex construct to homoduplex 

after HeLa whole cell extract exposure. 

This table summarises the final concentrations of the nicked and non-nicked heteroduplexes, 

final concentrations of whole cell extracts and time of exposure for the mismatch repair 

reaction. The efficiency of mismatch repair analysed by SNaPshot™ reaction was shown as a 

percentage of the ratio of repaired/unrepaired sequence of the heteroduplex. GT represents the 

non-nicked heteroduplex complex and GTn represents the nicked heteroduplex constructs. 
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Table 3 Summary of the mismatch repair reactions by whole cell extracts obtained from 

pooled mouse oocytes, blastocysts and human blastocysts. 

This table summarises the concentrations of the nicked heteroduplex constructs, number of 

oocytes and the initial concentrations of the whole cell extract obtained from mouse and 

human oocyte/blastocyst samples and time of exposure for the mismatch repair reaction. The 

efficiency of mismatch repair analysed by SNaPshot™ reaction was shown as a percentage of 

the ratio of repaired/unrepaired sequence of the heteroduplex. It was shown that there was no 

repair in pool of 5 and 10 mouse oocytes. Repair of G-T heteroduplex to G-C homoduplex 

was observed in whole cell extracts obtained from pool of 8 and 4 mouse blastocysts. 

Mismatch repair of G-T heteroduplex to G-C homoduplex was also observed in 11 pooled 

human blastocyst whole cell extract. However the repair efficiency in the human blastocysts 

was considerably lower compared to the mouse blastocysts. 
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Supplemental Table 1 Oligonucleotide sequences used to make homo/heteroduplexes. 

The oligonucleotide sequences around the SNP site rs1981929 showing A and G strands and 

the complementary T strand, including the nicked version: Ta and Tb. The alleles at the SNP 

site rs1981929 are shown in red. 

 

 


