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We study the finite time singularity correspondence between the Jordan and Einstein frames for
various F (R) gravity theories. Particularly we investigate the ordinary pure F (R) gravity case and
the unimodular F (R) gravity cases, in the absence of any matter fluids. In the ordinary F (R)
gravity cases, by using specific illustrative examples, we show that it is possible to have various
correspondences of finite time singularities, and in some cases it is possible a singular cosmology
in one frame might be non-singular in the other frame. In the unimodular F (R) gravity case, the
unimodular constraint is affected from the conformal transformation, so this has an effect on the
metric we choose. Moreover, we study the Einstein frame counterpart theory of the unimodular
F (R) gravity case, and we investigate the correspondences of the singularities in the two theories by
considering specific illustrative examples. Finally, a brief dynamical system analysis is performed
for the vacuum unimodular F (R) gravity and we demonstrate how the dynamical system behaves
near the future Big Rip singularity.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k, 98.80.Cq,11.25.-w

I. INTRODUCTION

Cosmological singularities are timelike singularities in contrast to spacelike singularities, which occur in the case of
compact astrophysical objects, like black holes [1]. The finite time cosmological singularities affect the whole three
dimensional spacelike hypersurface defined by the time instance that these occur, and these were concretely classified
for the first time in [2]. In the classification scheme of Ref. [2], there are four different singularity types, among which
the Big Rip [3] is the most severe from a phenomenological point of view, since all the physical quantities which are
defined on the spacelike hypersurface defined by the singularity, severely diverge. On the antipode of the Big Rip
singularity lies the so-called Type IV singularity [2, 4–7], which is a soft singularity, since all the physical quantities
are finite at the time instance that the singularity occurs, but the higher derivatives of the Hubble rate diverge. From
a first glance, the Type IV singularity seems not to affect the cosmological system, since the singularity does not alter
the physics of the three dimensional hypersurfaces, however the occurrence of the Type IV singularity, crucially affects
the dynamical evolution of the cosmological system, as was explicitly demonstrated in [5, 6], and in some cases this
might have interesting consequences. Particularly, it is possible that the existence of a Type IV singularity triggers a
graceful exit from inflation, due to a dynamical instability caused by the Type IV singularity, see [6] for details. In
addition, in some cases, a Type IV singularity can be constrained by physical processes, for example in Ref. [7] it was
shown that the gravitational baryogenesis can constrain the form of the Type IV singularity.

∗Electronic address: sebastian.beltran.14@ucl.ac.uk
†Electronic address: odintsov@ieec.uab.es
‡Electronic address: v.k.oikonomou1979@gmail.com,voiko@sch.gr
§Electronic address: matthew.wright.13@ucl.ac.uk

http://arxiv.org/abs/1603.05113v1
mailto:sebastian.beltran.14@ucl.ac.uk
mailto:odintsov@ieec.uab.es
mailto:v.k.oikonomou1979@gmail.com,voiko@sch.gr
mailto:matthew.wright.13@ucl.ac.uk


2

In the literature there exists a class of singularities, known as sudden singularities, which were firstly studied in
Ref. [8], and later developed in Refs. [9, 10]. The Type IV singularity belongs to this class of singularities, and the
possibility of having singular inflation with sudden singularities was studied in Ref. [11]. A particular interesting
feature of milder singularities is that geodesics incompleteness does not occur for milder singularities, in contrast with
the Big Rip case, where geodesics incompleteness occurs, hence in the case of mild singularities, a smooth passage of
the Universe through them is guaranteed.
The finite time cosmological singularities can be consistently described by F (R) modified gravity models [12],

since the theoretical framework of modified gravity offers many possibilities for realization of cosmological scenarios
which are exotic for standard Einstein-Hilbert gravity. The purpose of this paper is to investigate in detail the
correspondence of the finite time singularities between the Einstein and Jordan frames, in the context of various F (R)
gravity frameworks. For a recent work using scalar-tensor theories, see [13]. It is a well known fact that every Jordan
frame F (R) gravity has an Einstein frame counterpart, related to each other by a conformal transformation [12], so
the basic issue we will address with this paper is how the finite time cosmological singularities are transformed from
one frame to the other. As we will demonstrate, it is possible that the mild singularities in one frame correspond
to crushing type singularities in the other frame, under the conformal transformation. Of course, it is expected that
the F (R) gravity framework plays some crucial role in the study, so we shall investigate the Jordan-Einstein frame
correspondence in various F (R) gravity variants. Specifically, we shall use the recently developed unimodular F (R)
gravity [14, 15] and also the usual vacuum F (R) framework. For simplicity we focus on the case that the F (R) gravity
is described by a power law function of the Ricci scalar, of the form R−n, but in principle the study can be extended
in other cases too. After providing some essential information about finite time singularities and the essential features
of the conformal transformation relating the Jordan and Einstein frames of F (R) gravity, we investigate how certain
singularities behave under the conformal transformation. We also discuss how specific cosmological evolutions are
transformed under this transformation. In addition, we discuss the same issues in the context of unimodular F (R)
framework. By using several illustrative examples, we demonstrate that there exist several patterns of transformations
from frame to frame, depending also to the form of the F (R) gravity. Also, in the case of the unimodular F (R) gravity,
we develop the necessary formalism that relates the Jordan and Einstein frames. Note that it is known that even in
the case of no singularities, there is no physical equivalence of Jordan and Einstein frames, see for example [16, 17].
This paper is organized as follows: In section II, we present some fundamental information about finite time

singularities and we study in detail the F (R) gravity case. After demonstrating in brief how to obtain the Einstein
frame counterpart, we investigate how the cosmological singularities behave under the conformal transformation, for
the case that the F (R) gravity is of the power law type R−n. In section III, we briefly present the unimodular F (R)
gravity framework and also the corresponding Einstein frame counterpart of this theory. We also give an account
on the unimodular theory of a canonical scalar field, and we use some illustrative examples in order to demonstrate
explicitly how the singularities are transformed from frame to frame. In section IV we present in brief the phase
structure of the dynamical system corresponding to the vacuum unimodular F (R) gravity and we discuss certain
features of the dynamical system near the Big Rip singularity. Finally, the concluding remarks follow in the end of
the paper.
The geometric background we shall assume in this paper is described by a flat Friedmann-Robertson-Walker (FRW)

metric, with line element,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(

dxi
)2

, (1)

with a(t) denoting as usual the scale factor. In addition, the connection is assumed to be the Levi-Civita connection,
which is a torsion-less, symmetric, and metric compatible affine connection. Physical quantities in the Einstein frame
will be denoted with a tilde ,̃ whereas quantities in the Jordan frame will not.

II. F (R) GRAVITY

Before we get into the core of our study, it is worth recalling at this point some essential information with regards to
the finite time cosmological singularities. The detailed classification of these was firstly done in Ref. [2], and according
to which classification, there are four types of finite time singularities. The classification criteria of Ref. [2], were the
scale factor, the energy density, the pressure density and the higher derivatives of the Hubble rate. Depending on
the behavior of these physical quantities on the spacelike three dimensional hypersurface corresponding to the time
instance that the singularity occurs, the classification goes as follows,

• Type I (“the Big Rip Singularity”) : This is the most severe type of finite time cosmological singularities, being
a singularity of the crushing type. This happens when, as the cosmic time approaches a certain time t → ts,
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the effective energy density, the scale factor and the effective pressure all diverge, so that a → ∞, ρeff → ∞,
and |peff | → ∞ when t → ts. For more details about the Big Rip Singularity, we refer to the following set of
important papers. [2, 3]

• Type II (the “Sudden Singularity”) [10]: This type of singularity appears when, as the cosmic time t → ts,
the scale factor a and the effective energy density ρeff remain bounded, that is a → as, ρeff → ρs, where both
as, ρs < ∞, but the effective pressure peff diverges. This means |peff | → ∞ as t → ts. This can occur when the
second derivatives of the scale factor diverge.

• Type III: This type of singularity is more severe than the Type II singularity, and appears when, as the cosmic
time t → ts, the scale factor a remains bounded, that is a → as, but this time both the effective energy density
and the effective pressure diverge, meaning ρeff → ∞ and |peff | → ∞. This can happen when the first and
second derivatives of the scale factor diverge.

• Type IV : This is the least severe of the types of cosmological singularities studied here. This type of singularity
appears when, as the cosmic time t → ts, the scale factor, the effective energy density and the corresponding
effective pressure all remain bounded, a → as, ρeff → ρs and |peff | → ps , but the second or higher derivatives
of the Hubble rate diverge. For more on this type of singularity, we refer the reader to the following [2, 4–7].

Having this classification scheme in mind, let us proceed to description of the F (R) gravity in the Jordan frame and
we investigate how these singularities are transformed to each other with a conformal transformation.
The vacuum F (R) gravity action in the Jordan frame is,

S =
1

2κ2

∫

d4x
√
−gF (R) . (2)

If we vary this action with respect to the metric and assume a flat FRW metric, we find the following field equations
in the absence of matter

0 = −F (R)

2
+ 3

(

H2 + Ḣ
)

F ′(R)− 18
(

4H2Ḣ +HḦ
)

F ′′(R) , (3)

0 =
F (R)

2
−
(

Ḣ + 3H2
)

F ′(R) + 6
(

8H2Ḣ + 4Ḣ2 + 6HḦ +
...
H
)

F ′′(R) + 36
(

4HḢ + Ḧ
)2

F ′′′(R) , (4)

where primes and dots denote derivation with respect to the Ricci scalar R and the cosmic time t respectively.
We now conformally transform in order to obtain the scalar-tensor Einstein frame counterpart theory. In order to

do this, we introduce the auxiliary fields A and B, so that we can write the equivalent action of the action (2), which
reads,

S =
1

2κ2

∫

d4x
√−g {B(R −A) + F (A)} . (5)

Varying this action with respect to the auxiliary scalar B, results in the condition A = R, and hence we recover the
action (2). We can eliminate the auxiliary field B from this action by varying with respect to A, and in effect we end
up to the condition B = F ′(A), so the action takes the equivalent form,

S =
1

2κ2

∫

d4x
√−g {F ′(A)(R −A) + F (A)} . (6)

By conformally transforming the metric, we can obtain a minimally coupled scalar-tensor theory, which is called the
Einstein frame scalar-tensor theory. We use a particular conformal factor of the form,

ĝµν =
1

F ′(A)
gµν , (7)

which modifies the Ricci scalar as R → R̂. After performing this conformal transformation, and upon defining a new
scalar field σ in terms of the auxiliary scalar field A,

σ = − lnF ′(A), (8)

the action (6) takes the following form,

S =
1

2κ2

∫

d4x
√

−ĝ

{

R̂− 3

2
ĝµν∂µϕ∂νϕ− V (ϕ)

}

, (9)
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with the potential V (σ) being equal to,

V (σ) =
A

F ′(A)
− F (A)

F ′(A)2
. (10)

Note that the potential (10) can be easily rewritten in terms of the scalar field σ, by inverting the relation (8). Hence
the resulting Einstein frame scalar-tensor theory corresponding to the Jordan frame F (R) gravity (2) is given by the
action of Eq. (9). Finally we can rescale the scalar field σ to put it into the canonical form by introducing

ϕ =

√

3

2κ2
σ. (11)

Conversely, by starting with the following scalar-tensor canonical scalar field action,

S =

∫

d4x
√

−ĝ

{

R̂

2κ2
− 1

2
∂̂µϕ∂̂

µϕ− V (ϕ)

}

, (12)

we can transform it to a Jordan frame F (R) gravity theory. By assuming a flat FRW metric, the Friedman equations
corresponding to the action (12) are equal to,

3H̃2 =
1

2
φ̇2 + V , (13)

3H̃2 + 2 ˙̃H = −1

2
φ̇2 + V . (14)

Now let us map to a modified gravity F (R) theory. This means we must perform the conformal transformation

gµν → e±
√

2
3κφĝµν , so that the FRW metric (1) becomes,

ds2F (R) = e±
√

2
3κφ



−dt̃2 + ã(t̃)2
∑

i=1,2,3

(

dxi
)2



 , (15)

and in order to obtain a FRW metric in the F (R) gravity frame, we introduce a new time coordinate t̃ variable, given
by solving the following equation,

dt = e±
1
2

√
2
3κφdt̃ , (16)

the solution of which, t = f(t̃), is an increasing function. Certain problems occur if the function f(t̃) contains
singularities. The range of the values of the cosmic time t̃ might get mapped to a different range in the t coordinate.
Assume that the range of the values of the cosmic time t̃ is the interval [t̃1, t̃2], with the scale factor at t̃ = t̃1 being
equal to, ã(t̃1) = 0 and at t̃ = t̃2, the scale factor being equal to, ã(t̃2) = 0 or ã(t̃2) = ∞. The latter situation at
t̃ = t̃2, corresponds to a Big Crunch and to a Big Rip respectively, in which case with potentially t̃1 = −∞ and/or
t̃2 = ∞, so that these singularities effectively do not occur, a fact which crucially depends on the particular form of
the scale factor at hand. The new range of t variable will be [f(t̃1), f(t̃2)], assuming φ(t̃) is regular everywhere over
the range [t̃1, t̃2]. The scale factor in terms of the t-variable is determined by the following equation,

a(t(t̃)) = e±
1
2

√
2
3κφã(t̃) , (17)

which upon differentiation with respect to t̃, it yields,

da(t(t̃))

dt
= ±

√

2

3

κφ̇

2
ã(t̃) + ˙̃a(t̃) . (18)

Therefore, in the Jordan frame, the scale factor a is an increasing function if and only if the following condition holds
true,

H̃ > ∓
√

2

3

κφ̇

2
(19)

in the original frame, and decreasing if the opposite inequality holds true.
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A. Power Law Cosmology

In order to demonstrate the correspondence of finite time singularities between the Einstein and Jordan frames,
we shall use some simple but illustrative examples. In the following we will work in units such that the gravitational
coupling constant κ = 1. We start off with the power law cosmology, described by the following scale factor,

ã(t̃) = ã0(t̃/t̃0)
p , (20)

with t̃0 being some fiducial time and p a positive real free parameter. Such a power law scale factor is a solution to
the Friedmann equations in the Einstein frame scalar-tensor theory when the potential is of the exponential form. In
such a case the scalar field behaves as,

φ = ±
√

2p ln(t̃/t̃0) . (21)

In this case t̃1 = 0 and t̃2 = ∞ and in this model the Hubble rate H̃ diverges at t̃ = 0, so we have a Type III
singularity in the Einstein frame.
By using the standard procedure outlined above, we can apply a conformal transformation to convert the theory

to the Jordan frame. The new time coordinate t can be found by solving the following differential equation,

dt

dt̃
= (t̃/t̃0)

±
√

p
3 , (22)

which has the following solution,

t =
3

3±√
3p

t̃

(

t̃

t̃0

)±2
√

p
3

. (23)

The corresponding scale factor as a function of the cosmic time reads,

a(t) ∼ t
√

3p±3p√
3p±3 . (24)

In the case where the minus sign is chosen in the conformal factor, the cosmological evolution (24) has a Type I finite
time singularity at t = 0 if the power law parameter p lies in the range 1/3 ≤ p < 3. If p = 1/3, the Jordan frame
metric becomes static and there is no longer a singularity. In all other cases, the Type III singularity at t̃ = 0 in the
original Einstein frame remains a type III singularity at t = 0 in the Jordan frame.

B. Cosmology Generated by R−n Gravity in the Jordan Frame

We consider now the cosmology corresponding to an R−n gravity in the Jordan frame, which was studied in detail
in [17]. When F (R) behaves as F (R) ∼ R−n, it can be seen from (3) and (4) that the corresponding scale factor
behaves as the following power law type,

a ∼ (t0 − t)
(n+1)(2n+1)

n+2 . (25)

Therefore, if either n < −2 or −1 < n < −1/2, a Big Rip Type I singularity appears at the time instance t = t0 in
the Jordan frame, and in the remaining cases a Type III Big Crunch singularity is present at this point. In this case,
the corresponding Einstein frame canonical scalar field reads,

σ ∼ (n+ 1) lnR ∼ −2(n+ 1) ln(t0 − t) , (26)

where we took into account that the Ricci scalar reads,

R ∼ 6(n+ 1)(2n+ 1)(4n+ 5)n

(n+ 2)2(t0 − t)2
. (27)

In the corresponding scalar-tensor theory, the time coordinate t̃ is given by,

dt̃ = ±e
1
2σdt ∼ ±(t0 − t)−(n+1)dt , (28)
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and consequently, we have t̃ = ±(t0 − t)−n. Therefore, in the case that n > 0, when t approaches t → t0 in the
Jordan frame, this corresponds to t̃ → ±∞ in the Einstein frame. As a consequence, the singularity changes its
structure, since it does not appear in finite time for the scalar-tensor theory, however a new additional singularity
may be present, as when t approaches infinity in the Einstein frame, it corresponds to the new time coordinate t̃ → 0,
and thus any singularities at infinity can be brought towards a finite time. On the other hand, when n < 0, the
limit t → t0 in the Jordan frame corresponds to t̃ → 0 in the Einstein frame. We also find that the metric in the
scalar-tensor theory behaves as

ds2ST = eσ



−dt2 + a(t)2
∑

i=1,2,3

(dxi)2



 ∼ −dt̃2 + ã(t̃)2
∑

i=1,2,3

(dxi)2 , ã(t̃)2 ∼ a20t̃
2n(n2−1)

n+2 , (29)

where the constant a0 is an arbitrary parameter. In this case the power of the scale factor is negative only when
−2 < n < −1 or 0 < n < 1, and thus a Big Rip Type I singularity becomes present then. Thus for the Big Rip Type
I singularity in the Jordan frame, the scale factor now behaves as ã(t̃)2 → 0 when t̃ → 0, in the Einstein frame it
becomes a Type III Big Crunch singularity.

C. A Singular Cosmological Evolution

In this section we investigate how the simplest singular cosmology, behaves in the corresponding frame. The simplest
singular cosmology is described by the following Hubble rate,

H(t̃) = f0(t̃− t̃s)
α , (30)

with f0 an arbitrary real and positive parameter and α a real number, the values of which will determine the singularity
Type. Particularly, depending on the values of the parameter α, we have the following singularities in the cosmological
evolution,

• When α < −1, the cosmology develops a Type I singularity.

• When −1 < α < 0, the cosmology develops a Type III singularity.

• When 0 < α < 1, the cosmology develops a Type II singularity.

• When α > 1, the cosmology develops a Type IV singularity.

Assume that the cosmological evolution (30), occurs in the Einstein frame, and the question is what happens if we

convert to the Jordan frame F (R) theory? The conformal factor is given by e
√

2
3φ and therefore the metric transforms

as follows,

ds2F (R) = e
√

2
3φ



−dt̃2 + ã(t̃)2
∑

i=1,2,3

(

dxi
)2



 , (31)

consequently, the scale factor becomes,

a(t) = e
1
2

√
2
3φã(t̃) , (32)

where the Jordan frame time parameter t is defined implicitly through the following relation,

dt = e
1
2

√
2
3φdt̃ . (33)

The solution to this differential equation is an incomplete gamma function. Now if the Hubble rate H is described by
Eq. (30), then from the corresponding equations of motion, the Einstein frame scalar field is equal to,

φ =
2
√−2f0α(t̃− t̃s)

α+1
2

α+ 1
, (34)
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where f0α < 0 is required in order for the scalar field to be canonical. The transformation blows up at t̃s if α < −1,
so extra caution is required in this case. In effect, the new Hubble rate in terms of our initial time coordinate t̃ is
equal to,

H(t̃) =

√−f0α(t̃− t̃s)
α−1

2

√
3

+ f0(t̃− t̃s)
α , (35)

and the question is what is the effect on the time coordinate t. Suppose that, t = f(t̃). When, f(t̃) 6= 0, we have,

f ′(t̃) = e
1
2

√
2
3φ , (36)

and correspondingly, the following relations holds true,

dH

dt
=

dt̃

dt

dH̃

dt̃
= e−

1
2

√
2
3φ

dH̃

dt̃
. (37)

This means that the expression dH
dt diverges if and only if dH̃

dt̃
diverges for α > −1, as then the conformal factor is

finite at t̃s. Effectively, a Type I singularity occurs when the Hubble rate H(t) diverges and the question is whether
the singularity still appears at a finite time, we need to investigate whether f(t̃s) is finite. It is easy to show that,

ts = f(t̃s) = c1 − c2Γ

(

2

α+ 1

)

, (38)

which is finite, provided 2
1+α is not a negative integer. Consequently, the singularity appears in the Hubble rate H

at a finite time, as long as α 6= 2/n− 1 where n ≥ 2 is an integer. Accordingly, a Type II singularity occurs if dH
dt

diverges, but H does not diverge. Combined together, these imply that 1 < α < 3. Note that for α > 3 a Type IV
singularity occurs. Now we investigate how the scale factor behaves when it is conformally transformed, which in the
Einstein frame reads,

ã(t̃) = Ce
f0(t̃−t̃s)1+α

1+α , (39)

so the conformally transformed scale factor in the Jordan frame reads,

a(t̃) = a0e





3f0(t̃−t̃s)α+1±2
√

−3αf0(t̃−t̃s)
α+1
2

3(α+1)





, (40)

with β an arbitrary constant. The scale factor (40) dictates the following singularity patter for the cosmological
evolution, depending on the values of the parameter α,

• For α < −1, a Type I or no singularity occurs.

• For −1 < α < 1, a Type III singularity occurs.

• For 1 < α < 3, a Type II singularity occurs.

• For 3 < α, a Type IV singularity occurs.

In Table I we have presented the singularity correspondence for the Jordan and Einstein frame. As we can see, the
most interesting cases are the Type I, Type II and Type IV singularities, since the case of the Big Rip singularity in
the Einstein frame may correspond to a non-singular evolution in the Jordan frame. Also the Type II singularity can
be modified to a more severe Type III singularity in the Jordan frame, and the Type IV in the Einstein frame can
correspond to a Type II singularity in the Jordan frame.
A special case of the singular evolution (30) is the singular bounce cosmology which is a special case of the symmetric

bounce [14]. We can rewrite the scale factor of the cosmological evolution (30), in the following form,

a(t) = ef0(t−ts)
2(1+ǫ)

, (41)

in which case, the Hubble rate reads,

H(t) = 2(1 + ǫ)f0(t− ts)
2ǫ+1 (42)
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Singularity in Einstein Frame Singularity in Jordan Frame

Type I Type I or no singularity

Type III Type III

Type II Type III

Type IV Type IV or Type II

TABLE I: Correspondence for finite time singularities in the Einstein and Jordan frames, for the cosmological evolution
H̃(t̃) = f0(t̃− t̃s)

α in the Einstein frame.

where ǫ > 0 and has to be carefully chosen so that everything remains real. Particularly, in order for a bounce to
occur, for t < ts the Hubble rate must become negative, that is H < 0 and also in order for the bounce (41) to be a

deformation of the symmetric bounce a(t) ∼ eβt
2

, the parameter ǫ must be chosen in the interval 0 < ǫ < 1 and also
must be of the following form,

ǫ =
2n

2m+ 1
, (43)

where m and n are integers chosen in such a way so that ǫ < 1. Clearly, for this choice of ǫ, the cosmology described
by the scale factor (41) and the Hubble rate (42) clearly describes a Type IV singular cosmology, in which case, the

Hubble rate and its first derivative Ḣ are finite, but the second derivative with respect to the cosmic time Ḧ diverges.
As was demonstrated in [6], by using well known reconstruction techniques [12], the pure F (R) gravity which can
realize the cosmological evolution (42) is approximately given by,

F (R) = R +
R2

4C0
+ Λ , (44)

where C0 is positive, near the bouncing point, which is t ≃ ts. For simplicity we introduce the parameter x = t− ts,
so the limit near the bouncing point corresponds to the limit x → 0. In order to transform the theory in the Einstein
frame, we perform the following conformal transformation,

gµν = e−σ ĝµν , (45)

where the scalar field σ is equal to,

σ = lnF ′(A) . (46)

In terms of the parameter x, the Ricci scalar is given by,

R = 12f0(ǫ+ 1)x2ǫ
(

4f0(ǫ + 1)x2ǫ+2 + 2ǫ+ 1
)

(47)

and so if we are close to the singularity, in which case x is small, the Ricci scalar becomes,

R ≈ 12f0(ǫ+ 1)(2ǫ+ 1)x2ǫ . (48)

Consequently, by combining Eqs. (44) and (48), we obtain,

F ′(R) ≈ 1 +
6f0(ǫ+ 1)(2ǫ+ 1)x2ǫ

C0
= 1 + C2x

2ǫ , (49)

where C2 is another positive constant. This means that the new time coordinate of the Einstein frame FRW metric
will be given in terms of x as,

dt̃ = (1 + C2x
2ǫ)

1
2

√
3
2dx , (50)

the solution to which is a hypergeometric function. The new scale factor in terms of x is given by,

a(t̃) = (1 + C2x
2ǫ)

1
2

√
3
2 ã(x) , (51)

and consequently, the derivative of the scale factor is given by

da

dt̃
=

dx

dt̃

da

dx
=

dx

dt̃

(

(1 + C2x
2ǫ)

1
2

√
3
2
dã

dx
+ 2ǫx2ǫ(1 + C2x

2ǫ)
1
2

√
3
2−1ã(x)

)

. (52)

Owing to the fact that, dt = dx at x ≃ 0, by looking at the second derivative of the scale factor a(t) it easily follows
that it diverges at x = 0 provided ǫ < 1/2. Thus the Type IV singularity in the Jordan frame becomes a Type II
singularity in the Einstein frame, which is expected according to Table I.
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III. UNIMODULAR F (R) GRAVITY

Apart from the standard F (R) gravity approach, which we developed in the previous sections, we shall study the
correspondence between frames in the context of unimodular F (R) gravity, with the latter being developed in Refs.
[14, 15]. The general action of unimodular F (R) gravity reads [14],

S =

∫

d4x
{√

−g (F (R)− λ) + λ
}

+ Smatter , (53)

with F (R) being a smooth function of the Ricci scalar, λ is the Lagrange multiplier function and Smatter stands for
the action of the matter fluids present. If we do a variation with respect to λ, we obtain the unimodular constraint,

√−g = 1 , (54)

so that the determinant of the metric is fixed. The unimodular constraint is the central point of unimodular F (R)
gravity. If we vary the action (53) with respect to the metric tensor gµν , we obtain the unimodular F (R) field
equations given by,

1

2
gµν (F (R)− λ)−RµνF

′(R) +∇µ∇νF
′(R)− gµν∇2F ′(R) +

1

2
Tµν = 0. (55)

In order to study cosmology, one needs to be very careful since the flat standard FRW metric of Eq. (1) does not
satisfy the unimodular constraint (54). However, upon making the following coordinate transformation,

dτ = a(t)3dt, (56)

the resulting metric satisfies the unimodular condition (54). Using the transformation (56), we obtain,

ds2 = a (t (τ))
−6

dτ2 − a (t (τ))
2
(

dx2 + dy2 + dz2
)

. (57)

which we will call for brevity, the unimodular FRW metric. Using this metric, the vacuum field equations become
[14],

0 =− a−6

2
(F (R)− λ) +

(

3K̇ + 12K2
)

F ′(R)− 3K
dF ′(R)

dτ
, (58)

0 =
a−6

2
(F (R)− λ)−

(

K̇ + 6K2
)

F ′(R) + 5K
dF ′(R)

dτ
+

d2F ′(R)

dτ2
, (59)

where the function K(τ) is defined to be the corresponding Hubble rate in the “τ” coordinate, that is,

K =
1

a(τ)

da(τ)

dτ
. (60)

By using the unimodular FRW metric of Eq. (57), the corresponding Ricci scalar reads,

R = a6(6K̇ + 30K2). (61)

In the following sections we shall study the correspondence of the Jordan frame unimodular F (R) gravity in the
Einstein frame.

A. Scalar-tensor Einstein Frame Representation

Having presented the unimodular F (R) gravity in the Jordan frame, we now study the corresponding scalar-tensor
theory. We start off with the action of Eq. (53), omitting the matter fluids, and we introduce the auxiliary field A,
as we did in the ordinary F (R) gravity case, so that the action becomes,

S =

∫

d4x
(√

−g (F ′(A)(R −A) + F (A)− λ) + λ
)

. (62)
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Note that the last term of the action will be unaffected by conformal transformations. In order to obtain a minimally
coupled scalar-tensor theory, we perform the same conformal transformation we performed in the standard F (R)
gravity case, which is,

ĝµν = eσgµν , (63)

where ĝ denotes the metric in the Einstein frame, and g the metric in the Jordan frame. Also, the scalar field σ in
terms of A is given by, σ = − lnF ′(A), so the action (62) becomes,

S =

∫

d4x

{

√

−ĝ

(

R̂− 3

2
ĝµν∂µσ∂νσ − V (σ)− λe−2σ

)

+ λ

}

, (64)

which describes a canonical scalar field action, in the absence of any matter fluids. Note however that the unimodular
constraint is not unaffected by the conformal transformation, to in the case at hand it becomes,

√

−ĝ = e2σ . (65)

In effect, the FRW metric of Eq. (1) does not satisfy this constraint identically, so in the same way we evades this
issue previously, we introduce a new time coordinate τ , which is related to the cosmic time t as follows,

dτ̃ = ã(t̃)3e2σ(t̃)dt̃ , (66)

so that the conformally transformed unimodular constraint of Eq. (65) is satisfied. The corresponding Einstein frame
unimodular FRW metric becomes,

ds2 = −e4σ(τ̃)

ã(τ̃ )6
dτ̃2 + ã(τ̃ )2

3
∑

i=1

dx2
i . (67)

To transform between the two frames at the level of the metric then, the following transformation happens. The
scale factor transforms as

ã(τ̃ ) = eσ/2a(τ) , (68)

where the parameter τ̃ is related to τ as follows,

e4σ(τ̃)

ã(τ̃ )6
dτ̃2 =

eσ

a(τ)6
dτ2 . (69)

By combining Eqs. (68) and (69), we can easily see that the new time coordinate τ̃ is the same as the coordinate τ ,
that is, τ̃ = τ .

B. Jordan frame of Canonical Scalar Field Model

Up to now we have discussed the unimodular F (R) gravity case, but we also need to discuss what is the scalar-tensor
unimodular gravity. Let us start with the following minimally coupled scalar-tensor action,

S =

∫

d4x

{

√

−ĝ

(

R̂

2κ2
− 1

2
ĝµν∂µφ∂νφ− V (φ)− λh(φ)

)

+ λ

}

, (70)

where for now we have assumed that the determinant of the metric is given by an arbitrary function of the scalar
field. This will be determined later by the requirement that the action has a Jordan frame. The flat unimodular
FRW equations for this action are given by the standard scalar field cosmological equations with a modified scalar
potential of the form V (φ) + λh(φ). Explicitly, we have

3K̃2 =
1

2
φ̇2 +

(

V (φ) + λh(φ)
)

ã(τ̃ )−6 , (71)

9K̃2 + 2 ˙̃K = −1

2
φ̇2 +

(

V (φ) + λh(φ)
)

ã(τ̃ )−6 . (72)
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Here K̃(τ̃ ) represents the unimodular Hubble parameter in the Einstein frame, explicitly given by

K̃(τ̃ ) = K̃(τ) =
1

ã(τ)

dã(τ)

dτ
. (73)

Now let us attempt to conformally transform this action to a Jordan frame. We apply the following conformal
transformation,

gµν = e±κ
√

2
3φĝµν . (74)

This rescaling eliminates the kinetic term from the action, reducing it to the following form,

S =

∫

d4x
{√−g

(

e±κ
√

2
3φ2κ2R− e±2κ

√
2
3φ(V (φ) + λh(φ))

)

+ λ
}

. (75)

Varying this action with respect to the scalar field φ, which is now just an auxiliary field, gives the following equations
of motion,

R = e±κ
√

2
3φ

(

4κ2(V (φ) + λh(φ)) ± 2κ

√

2

3
(V ′(φ) + λh′(φ))

)

. (76)

To find the Jordan frame unimodular F (R) gravity, we need to invert this equation to find the scalar field φ(R), as a
function of R only, and so independent of λ. This determines the up to now arbitrary function h(φ), which must be
chosen as follows,

h(φ) = e−2κ
√

3
2φ . (77)

In this case we can invert to find φ = φ(R) as usual, so the resulting unimodular F (R) gravity theory reads,

S =

∫

d4x
{√−g (F (R) + λ) + λ

}

, (78)

where the F (R) gravity is,

F (R) = e±κ
√

2
3φ(R)2κ2R− e±2κ

√
2
3φ(R)V (φ(R)). (79)

Now that we have the corresponding Jordan and Einstein frames, in the following sections repeat the analysis
performed in the standard F (R) case and present some illustrative examples to see the correspondence of finite time
singularities in the two frames. Again, all quantities in the Einstein frame will be denoted with a tilde, and we will
set the gravitational coupling constant κ = 1.

C. Power law

Let us begin by examining how a power law scale factor transforms when one conformally maps from the Einstein
frame to the Jordan frame. Let us consider the following scale factor in terms of the time coordinate τ̃ from the
unimodular Einstein frame FRW metric (67)

ã(τ̃ ) = a0

( τ̃

τ̃0

)p

. (80)

Here τ̃0 is some fiducial time and p is a positive parameter. Using this scale factor, the unimodular Hubble parameter is
K̃(τ) = pτ̃−1. Therefore at τ̃ = 0, the Hubble rate diverges and hence this cosmology possesses a Type III singularity
in the Einstein frame. Such a scale factor is a solution to the Einstein frame Friedmann equations (71)-(72) when the
potential is of the exponential type. In this case the scalar field takes the form

φ(τ̃ ) = ±
√

2p(1− 3p) log(τ̃ /τ̃0) . (81)

Using this solution, we can now change all our variables from the Einstein frame to the Jordan frame, using the
conformal transformation

gµν = e±κ
√

2
3φĝµν . (82)
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As we discussed in Sec. III A, the time coordinate τ in the Jordan frame is equivalent to the original time coordinate
in the Einstein frame. So using the transformation (82), we find that the scale factor in the Jordan frame is given by

a(τ) = e±
1
2

√
2
3φã(τ̃ ) ∼ τp±

√

p(1−3p)
3 . (83)

When the minus sign is chosen for the conformal transformation, we see that there is a potential for the Type III
singularity to become a Big Rip Type I singularity. This can happen at τ = 0 if the power law parameter lies in the
range 0 < p < 1/6. For all other cases the Type III singularity remains a Type III singularity in the Jordan frame.

D. The case F (R) = R−n Singularity Types in the Jordan Frame

Now let us examine a model where we begin in the Jordan frame and conformally transform to the Einstein frame.
We consider vacuum unimodular F (R) gravity of the form F (R) ∼ R−n, in which case the scale factor behaves as
follows,

a(τ) ∼ (τ0 − τ)
1+3n+2n2

5+10n+6n2 , (84)

where we used the τ coordinate of the unimodular FRW metric. It is obvious that a Big Rip singularity occurs in
the τ coordinate, if the parameter n lies in the range −1 < n < −1/2. In terms of the original FRW cosmic time
coordinate t, this means the scale factor evolves as,

a(t) ∼ t
(2n+1)(n+1)

2+n . (85)

Thus a Big Rip singularity in the τ coordinate, appears in the t coordinate if n < −2 or −1 < n < −1/2.
The question now is what happens in the corresponding Einstein frame scalar-tensor theory. The scalar field σ of

the conformal factor is given by

σ ∼ (n+ 1) lnR ∼ −
(

2(n+ 1)(2 + n)

5 + 10n+ 6n2

)

ln(τ0 − τ), (86)

where we use the fact that the Ricci scalar in the unimodular time parameter is given by

R ∼ (τ0 − τ)
−2

(

2+n

5+10n+6n2

)

. (87)

This means under a conformal transformation, the scale factor transforms as follows

ã(τ̃ ) = eσ/2a(τ) (88)

where the parameter τ̃ is the same as the original time coordinate τ , τ̃ = τ . Therefore we have,

ã ∼ (τ0 − τ)
n2−1

6n2+10n+5 . (89)

These conditions enlarge the range of values of n for which the power of the scale factor is negative, with now n lying
in the range −1 < n < 1 giving rise to this. Thus a Type I Big Rip will appear for more values of n.

E. A singular cosmological model

As a final example, we will consider a toy model where the unimodular Hubble parameter in the Einstein frame is

K̃(τ̃ ) = f0(τ̃ − τ̃s)
α , (90)

where f0, α are real constants and τ̃s is some time. In this case, the corresponding scale factor is

ã(τ̃ ) = a0e
f0(τ̃−τ̃s)α+1

α+1 , (91)

where a0 is a constant.



13

Now, in order to convert this Einstein frame solution to the Jordan frame, we need to find the scalar field φ giving
rise to such a solution (90). To do this we must solve the differential equation obtained by subtracting the unimodular
Friedmann equations (71) and (72). We find

φ̇2 + 6f2
0 (τ̃ − τ̃s)

2α + 2f0α(τ̃ − τ̃s)
α−1 = 0 . (92)

This equation can not be integrated in general for an arbitrary power of α, and so in order to proceed we will
approximate the solution around the singularity at τ̃ = τ̃s. Doing this results in two separate cases: when α < −1
and the Hubble rate is that of a Type I singularity, and when α > −1 and the other singularity types are present.
In the case when α < −1 and then around the singularity, the second term of (92) dominates over the third term

and so, close to the singularity, we can approximate (92) to be

φ̇2 + 6f2
0 (τ̃ − τ̃s)

2α ∼ 0 . (93)

In this case, solving for φ, we find that it becomes imaginary, and thus such a Hubble rate could only be described
by a phantom scalar field. For such a phantom field, the corresponding Jordan frame F (R) becomes complex, and so
we will not examine this case further.
However, now when α > −1, the third term in (92) will dominate over the second term and therefore in this case

the scalar field near the cosmological singularity at τ̃ = τ̃s will behave as

φ(τ̃ ) ∼ ±2
√−2f0α

α+ 1
(τ̃ − τ̃s)

α+1
2 , (94)

which is real if −2f0α > 0. And so in this case we can proceed further and conformally transform to the Jordan
frame. Applying the conformal transformation (74) and using that the time coordinate is unchanged τ = τ̃ , we find
the scale factor in the Jordan frame reads

a(τ) ∼ a0e





3f0(τ−τs)α+1±2
√

−3αf0(τ−τs)
α+1
2

3(α+1)





. (95)

Now from this scale factor we can read off conditions for the different singularity types to exist. We have the
following structure

• For −1 < α < 1, a Type III singularity occurs.

• For 1 < α < 3, a Type II singularity occurs.

• For 3 < α, a Type IV singularity occurs.

Table II shows a summary of how the different singularities change type from one frame to another. The Type I
singularity is excluded from this table, since it only occurs when α < −1 and the scalar field becomes a phantom. We
observe that the unimodular F (R) case behaves in a very similar way to the standard F (R) case. The most interesting
cases are the Type II and the Type IV singularities in the Einstein frame. The Type II singularity is modified to the
more severe Type III singularity, with the Hubble rate now diverging. There is also the potential for the Type IV
singularity to become a more severe Type II singularity if the parameter α lies in the range 1 < α < 3.

Singularity in Einstein Frame Singularity in Jordan Frame

Type III Type III

Type II Type III

Type IV Type IV or Type II

TABLE II: Correspondence for finite time singularities in the Einstein and Jordan frames, for the cosmological evolution
K̃(τ ) = f0(τ̃ − τ̃s)

α in the Einstein frame and α > −1.

IV. PHASE STRUCTURE OF UNIMODULAR F (R) GRAVITY NEAR FINITE-TIME

SINGULARITIES-A QUALITATIVE ANALYSIS

In this section we shall discuss in brief the qualitative behavior of the dynamical system corresponding to the
vacuum unimodular F (R) gravity near the finite time singularities. The focus will be exactly for cosmic times near
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the finite time singularities, so we discuss in brief how the dynamical system behaves near the singularities. However,
a most thorough analysis of the dynamical system will be given elsewhere. We start off by introducing the following
variables,

x1 = − 1

KF ′(R)

dF ′(R)

dτ
, x2 = − F (R)

6K2F ′(R)a6
, x3 =

R

6K2a6
, x4 =

λ

6a6K2F ′(R)
. (96)

With this choice, the first Friedmann equation reduces to,

1 = x1 + x2 + x3 + x4 . (97)

Thus one can choose to analyze the dynamics of just three of these variables, since one can algebraically relate the
fourth to the others. From the second Friedmann equation, we find that,

1

F ′(R)K2

d2F ′(R)

dτ2
= 1 + 5x1 + 3x2 + x3 + 3x4. (98)

Differentiating with respect to a cosmological time dN = K(τ)dτ we obtain the following dynamical system,

x′
1 = −1 + x2

1 − x1x3 − 3x2 − x3 − 3x4 (99)

x′
2 = −m+ 4x2 + x1x2 − 2x2x3 + 50− 16x3

x′
3 = m+ 20x3 − 2x2

3 − 50

x′
4 = x4(x1 − 2x3 + 4)

where m = K̈
K3 . Note that the fourth of these equations is superfluous due to the relation (97), and one can use this

to replace x4 in the remaining three equations. Note that the dynamical system, due to the existence of the term m,
is non autonomous.
The critical points of the system have been displayed in Table III. The focus in this section is to investigate certain

cases, for which the dynamical system is rendered autonomous. Indeed, if K(τ) = f0(τ − τs)
α, in the Big Rip case,

that is for α < −1, for times τ → τs, the parameter m is equal to, m = (−1+α)α(τ−τs)
−2−2α

f2
0

∼ 0, and therefore the

dynamical system of Eq. (99) is rendered autonomous for times near the Big Rip singularity. Therefore finding the
fixed points of the dynamical system near the Big Rip singularity, may provide some insights on the non-autonomous
system, however, we observe that none of the four critical points of the dynamical system are real when one sets
m = 0. In fact, for a constant m, one requires that m & 17 for a critical point to exist. This indicates that the
dynamics behave quite strange near the Big Rip singularity but this should be studied in all detail in order to be
sure, and the results of this study will be reported elsewhere.

Point x1 x2 x3 x4

P1
1

2
√

2

(

−

√

m−

√

m+ 4
√

2
√

m− 40 + 2
√

2

)

1

4

(

3
√

2
√

m+
√

2
√

m+ 4
√

2
√

m− 40− 20

)

5−
√
m√
2

0

P2
1

2
√

2

(

√

m−

√

m+ 4
√

2
√

m− 40 + 2
√

2

)

1

4

(

3
√

2
√

m−

√

2
√

m+ 4
√

2
√

m− 40− 20

)

5−
√
m√
2

0

P3
1

2
√

2

(

√

m+
√

m− 4
√

2
√

m− 40 + 2
√

2

)

1

4

(

−3
√

2
√

m−

√

2
√

m− 4
√

2
√

m− 40− 20

)

5 +
√
m√
2

0

P4
1

2
√

2

(

√

m−

√

m− 4
√

2
√

m− 40 + 2
√

2

)

1

4

(

−3
√

2
√

m+
√

2
√

m− 4
√

2
√

m− 40− 20

)

5 +
√
m√
2

0

TABLE III: Critical points of the dynamical system.

It would be interesting to investigate in detail what is the correspondence of the dynamical systems corresponding to
the Einstein and Jordan frames, with regards to singular evolution. The most interesting study is to see the behavior
of the dynamical systems near the singularities and compare the behavior of the dynamical systems in both frames.
We hope to address this issue in detail in a future work.

V. CONCLUDING REMARKS

In this work we have considered how the nature of the singularities changes when one conformally transforms
between the Jordan and Einstein frames of F (R) gravity. First we considered the Jordan and Einstein frames of
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classical F (R) gravity and explored various illustrative examples of scale factor evolution. We considered a simple
power law potential in the Einstein frame, which exhibits a Type III singularity. However once we transform to the
Jordan frame F (R) gravity, we could see that for certain values of the power law parameter the Type III singularity
can change its behaviour to become a Type I Big Rip singularity.
Next we reviewed the situation when in the Jordan frame, F (R) takes the functional form F (R) = R−n. In this

case the scale factor also behaves as a power law. We find that a Type I Big Rip singularity is removed with the
singularity being moved out to infinity, however this introduces a further Type III Big Crunch singularity in the
system. Likewise the Type III singularity can be replaced by a Big Rip singularity, depending on the value of the
parameter n.
A simple singular cosmology was also considered, where the Hubble rate is described by a power law. Such a toy

model is of great use for studying cosmological singularities, since all four types of cosmological singularities can be
exhibited by simply changing the power law parameter. We began with such a cosmology in the Einstein frame and
conformally transformed to the Jordan frame, and it was found that the type of singularity potentially changes. A
Type I singularity was either transformed to another Type I singularity, or the singularity was removed by the time
coordinate changing such that the singularity now occurred at infinity. The Type III singularity remained a Type III
singularity. On the other hand, a Type II singularity was transformed to the more severe Type III singularity, and
likewise the Type IV singularity was potentially transformed to the more severe Type II singularity.
We also examined the equivalence between the Jordan and Einstein frames of unimodular F (R) gravity. We derived

the transformation law to take the canonical Jordan frame unimodular F (R) gravity, where the determinant of the
metric is constrained to be det(g) = 1, to the Einstein frame. It was found that after conformal transformation,
the unimodular constraint was modified accordingly, with the determinant of the transformed metric required to be
a particular function of the scalar field. This affects the choice of the time coordinate of the FRW metric required
in the Einstein frame. On the other hand, if one starts with an arbitrary unimodular canonical scalar field action,
one can only transform to a Jordan frame unimodular F (R) gravity only if the unimodular constraint enforces the
determinant of the metric to be this particular function of the scalar field. The behaviour of the unimodular Jordan
and Einstein frames should be studied in greater detail, we will leave such an analysis for future work.
We then examined some particular scale factor evolutions and looked at how the structure of the singularities in

cosmological times was modified when one transformed between the Jordan and Einstein frames. The power law,
F (R) = R−n and the singular toy model were all examined in this framework too. A very similar behaviour to
standard F (R) gravity was found, with the singularities transforming to different types of singularities in much the
same way. These results could also be readily generalized the framework of other modified F (R) gravities, for example
mimetic F (R) gravity [18]. Finally, we briefly examined the cosmological dynamical system of the vacuum unimodular
F (R) gravity. We found that close to the Big Rip singularity, the dynamical system exhibits some strange behaviour,
with no real critical points present. A further in depth investigation of this phase structure has been left for future
work.
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