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Abstract. We prove an optimal error estimate for the flux variable
for a stabilized unfitted Nitsche finite element method applied to an
elliptic interface problem with discontinuous constant coefficients. Our
result shows explicitly that this error estimate is totally independent
of the diffusion coefficients. Interface problems; high-contrast; unfitted
Nitsche method; finite elements.

1. Introduction

In this paper we study the error estimation of an unfitted Nitsche finite
element method for the following elliptic interface problem with discontin-
uous constant coefficients: Let Ω ⊂ R2 be an open polygonal domain with
an immersed smooth interface Γ, such that Ω = Ω− ∪ Ω+, and Γ encloses
either Ω− or Ω+. Consider the problem

−∇ · (ρ±∇u±) = f± in Ω±,(1.1a)

u± = 0 on ∂Ω±\Γ,(1.1b)

[u] = 0 on Γ,(1.1c)

[ρ∇u · n] = 0 on Γ.(1.1d)

The jumps on the interface Γ are defined as

(1.2) [ρ∇u · n] = ρ−∇u− · n− + ρ+∇u+ · n+ and [u] = u+ − u−,
where u± = u|Ω± and n± is the unit outward pointing normal to Ω±. We
furthermore assume that the diffusion coefficients ρ+ ≥ ρ− > 0 are constant.

There have been several numerical methods for problem (1.1). See for
example [2], [22], [8], [11], [16], [14], [4], [9], [5], [18], [17], [23], [7], [3],
[21], [1], [19], [15]. The method we will consider below uses meshes that
are not necessarily aligned with the mesh (i.e. unfitted meshes). There are
several papers dealing with methods (see [1], [3], [4], [5], [9], [14], [15], [17],
[19], [23]) using unfitted meshes. One of the advantages of using unfitted
meshes is the fact that re-meshing is not required for problems where the
interface is moving. Nevertheless, the majority of the unfitted methods
do not address the analysis of high contrast problems. Some exceptions
are found [9], [6],[23], [7], [15]. In particular in [9], energy error estimates
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independent of the contrast of the coefficients (i.e. ρ+/ρ−) were proved.
However, the estimates were not completely independent of the coefficients,
a factor of 1/

√
ρ− was present in the right-hand side. More recently, in [15]

an interface finite element method was designed and certain error estimates
independent of coefficients contrast were proved on problems with smooth
interfaces. Specifically, the error estimate achieved in [15] for the energy
error was of the form

(1.3) ‖√ρ∇(u− uh)‖L2(Ω) ≤
C√
ρ−

h‖f‖L2(Ω),

were we also observe a factor of 1/
√
ρ− in the estimate. One of the key

ingredients in [15] was to add a stabilization term that penalized the jump
of the gradients across edges of the triangulation. This idea was borrowed
from the stabilized Nitsche’s methods developed by Burman and co-authors;
see for example [7]. Here in this paper we analyze a variant of the method
introduced in [7] and prove the following error estimate totally independent
of contrast

(1.4) ‖ρ∇(u− uh)‖L2(Ω) ≤ C h‖f‖L2(Ω),

where constant C is independent of ρ±. It is important to note that this
estimate is for the flux error ρ∇(u − uh). The previous analysis in [15, 9,
7] used energy arguments to establish error estimates for the energy error√
ρ∇(u − uh), resulting in the dependence of 1/ρ−. Notice that a simple

application of estimate (1.3) will give

‖ρ+∇(u− uh)+‖L2(Ω+) ≤
√
ρ+√
ρ−

h‖f‖L2(Ω),

Hence, we see that our result (1.4) here is much sharper for this quantity.
The main ingredient of the analysis is the use of a discrete extension re-
sult from Ω+ to all of Ω. We note that this technique can be extended
to conforming finite element discretizations and it opens the possibility to
establish sharper results also for other discretizations as well (in particular
the method studied in [15]).

The paper is organized as follows. In the next section we describe the
Nitsche’s finite element method. In Section 3 we provide an error estimate
based on an energy argument. In Section 4 we improve the main result,
obtaining an error estimate independent of the contrast for the diffusion
coefficients for the flux. In the following section we discuss extension of the
method and results for: interface problem with non homogeneous jumps, and
the three dimensional problem. In Section 6 we present numerical results
that validate the theoretical results. We conclude with an appendix that
contains proofs of some crucial lemmas.
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Figure 1. Illustration of the definition of set T Γ
h and discrete

sub-domains Ω±
h . Left figure: elements in T Γ

h (red transparent).

Center figure: sub-domain Ω−
h (blue transparent). Right figure:

sub-domain Ω+
h (blue transparent).

2. Finite element method

2.1. Preliminaries. Let {Th}h>0 be an admissible family of triangulations
of Ω. We adopt the convention that elements T and element edges e are open
sets. We use over-line symbol to refer to their closure. For each triangular
element T ∈ Th, let hT denotes its diameter and define the global parameter
of the triangulation by h = maxT hT . We assume that Th is shape regular,
i.e. there exists κ > 0 such that for every T ∈ Th the radius ρT of its
inscribed circle satisfies

(2.1) ρT > hT /κ.

The set of elements cutting the interface Γ, and restricted to Ω+ and Ω−

are also of interest. They are defined by:

T ±h := {T ∈ Th : T ∩ Ω± 6= ∅},
T Γ
h := {T ∈ T −h : T ∩ Γ 6= ∅}.

In particular for T ∈ T Γ
h we denote TΓ = T ∩Γ. Observe that the definition

of T Γ
h guarantees that

∑
T∈T Γ

h
|TΓ| = |Γ|. Under these definitions we define

the discrete domains

Ω±h := Int
( ⋃
T∈T ±h

T
)
.

See Figure 1 for an illustration of these definitions. The set of all the edges
of T Γ

h restricted to the interior of Ω+
h and Ω−h is also considered

EΓ,±
h := {e = Int(∂T1 ∩ ∂T2) : T1, T2 ∈ T ±h , and T1 ∩ Γ 6= ∅ or T2 ∩ Γ 6= ∅}.

Standard finite element notation for the normal jumps is introduced as
follows: for a piecewise smooth function v with support in Th, the jump of
its gradient across an interior edge e = Int(∂T1 ∩ ∂T2) is defined by

J∇vK = ∇v|T1 · n1 +∇v|T2 · n2,
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where n1 and n2 are the unit normal vectors to e, pointing outwards to T1

and T2, respectively.

2.2. Stabilized unfitted Nitsche method. In this section we introduce a
slightly simplified version of the Nitsche method for high-contrast interface
problems by [7], Section 3.3. We begin by denoting the standard finite
element space of continuous piecewise linear polynomials with support in
Ω±h by:

V ±h = {v ∈ C(Ω±h ) : v|T ∈ P1(T ), ∀T ∈ T ±h , and v|∂Ω±\Γ ≡ 0}.
The finite element space is defined by means of the restrictions of piecewise
linear functions to Ω+

h and Ω−h , i.e.

Vh = V −h × V
+
h .

The jumps across the interface of a function v ∈ Vh are defined as in (1.2).
We now consider a finite element method based on: the weak formula-

tion of problem (1.1), penalty terms of the jump across the interface, and

stabilization terms on edges in EΓ,±
h . Find uh = (u−h , u

+
h ) ∈ Vh, such that:

(2.2) ah(uh, v) = (f+, v+)Ω+ + (f−, v−)Ω− , for all v ∈ Vh,
where (·, ·)Ω± denotes the L2 product in Ω± and ah(·, ·) is a bilinear form
defined by

ah(uh, v) =

∫
Ω+

ρ+∇u+
h · ∇v

+dx+

∫
Ω−

ρ−∇u−h · ∇v
−dx

(2.3)

+

∫
Γ

(
ρ−∇v− · n−[uh] + ρ−∇u−h · n

−[v]
)
ds+

∑
T∈T Γ

h

γ

hT
ρ−
∫
TΓ

[uh][v]ds

+ γ−g
∑

e∈EΓ,−
h

|e|
∫
e
ρ−J∇v−KJ∇u−h K ds+ γ+

g

∑
e∈EΓ,+

h

|e|
∫
e
ρ+J∇v+KJ∇u+

h K ds,

where γ, γ−g , and γ+
g are positive parameters to be chosen, and |e| denotes

the diameter of e, i.e. the size of the edge in two dimensions. Note that
although we consider the case where Γ∩ ∂Ω = ∅, the method is well defined
when the interface crosses the boundary of the domain. However, we only
analyze the embedded case. If the interface crosses the boundary of the
domain the solution will not necessarily be in H2(Ω+ ∪ Ω−). In addition, a
technical tool that we utilized in the proof of our main result is the existence
of a stable extension (see Lemma 4.1). It is not clear that this extension will
exist in some cases where the interface crosses the boundary of the domain.

Remark 1. We point out that the terms in (2.3) involving integration on
Γ can be generalized to∫

Γ
({ρ∇v}w [uh] + {ρ∇uh}w [v]) ds+

∑
T∈T Γ

h

γ

hT
ρ̃

∫
TΓ

[uh][v]ds.
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The weighted average

{ρ∇v · n−}w := (w− ρ
−∇v− + w+ ρ

+∇v+) · n−,

where the weights w−(x) ∈ [0, 1] and w+(x) = 1 − w−(x) and ρ̃ are chosen
properly, see [8]. The case w−(x) = 1 and ρ̃(x) = ρ−(x) reduces to the one
in (2.3). Another choice considered in the literature (see [11, 6, 12]) is the

harmonic average given by w− = ρ+

ρ++ρ− and ρ̃ = 2ρ+ρ−

ρ++ρ− . In this case we

obtain

{ρ∇v · n−}w =
ρ̃

2
(∇v− +∇v+) · n−.

In this paper we concentrate in the analysis of the choice (2.3), however,
since ρ− ≤ ρ̃ ≤ 2ρ−, the analysis for the harmonic average case follows
straightforwardly.

Let us define the broken Sobolev spaces

H2
h(Ω±h ) = {v ∈ H1(Ω±h ) : v|T± ∈ H2(T±), for all T ∈ T ±h }.

The energy norm ‖ · ‖V , induced by the bilinear form ah, is defined for
v = (v−, v+) ∈ H2

h(Ω−h )×H2
h(Ω+

h ) by

‖v‖2V =‖√ρ∇v‖2L2(Ω) +
∑
T∈T Γ

h

1

hT
‖
√
ρ−[v]‖2L2(TΓ)

+
∑

e∈EΓ,−
h

|e| ‖
√
ρ−J∇v−K‖2L2(e) +

∑
e∈EΓ,+

h

|e| ‖
√
ρ+J∇v+K‖2L2(e).

Note that in this definition we use the following notation:

‖√ρ∇v‖2L2(Ω) = ‖
√
ρ−∇v−‖2L2(Ω−) + ‖

√
ρ+∇v+‖2L2(Ω+).

3. Standard a priori error analysis

3.1. Stability and best approximation results. We will need the fol-
lowing technical proposition for the proof of coercivity; proof can be found
in Appendix A.

Proposition 1. Consider a node z of the triangulation Th such that z ∈ Ω
−

.
Let ∆z be the patch of elements associated to z, i.e. ∆z = Int(∪{T : T ∈
Th and z ∈ ∂T}). Then for h small enough, there exists an element Tz ∈ ∆z

such that:

(3.1) |Tz ∩ Ω−| ≥ Ch2
Tz ,

where C > 0 is a constant independent of hTz .

Coercivity of the bilinear form ah is proved below.

Lemma 1. There exists a constant c > 0 such that

(3.2) c‖v‖2V ≤ ah(v, v), for all v ∈ Vh.
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Proof. Let v ∈ Vh. Observe that the bilinear form ah is symmetric, then it
follows

ah(v, v) =‖√ρ∇v‖2L2(Ω) + 2

∫
Γ
ρ−∇v− · n−[v]ds+

∑
T∈T Γ

h

γ

hT
‖
√
ρ−[v]‖2L2(TΓ)

+ γ−g
∑

e∈EΓ,−
h

|e|ρ−‖J∇v−K‖2L2(e−) + γ+
g

∑
e∈EΓ,+

h

|e|ρ+‖J∇v+K‖2L2(e)).

In order to prove (3.2) it is enough to bound the non positive term (second
term). Let T ∈ T Γ

h . Applying Cauchy-Schwarz inequality we obtain∣∣∣∣∫
TΓ

ρ−∇v− · n−[v] ds

∣∣∣∣ ≤ (√ρ−hT ‖∇v− · n−‖L2(TΓ)

)√ρ−

hT
‖[v]‖L2(TΓ)

 .

Summing over T ∈ T Γ
h and applying arithmetic-geometric inequality give∣∣∣∣∫

Γ
ρ−∇v− · n−[v]ds

∣∣∣∣ ≤ ∑
T∈T Γ

h

(
ερ−hT ‖∇v− · n−‖2L2(TΓ) +

ρ−

εhT
‖[v]‖2L2(TΓ)

)
.

Let T ∈ T Γ
h and let z ∈ Ω

−
be a node of T . By Proposition 1, there exists

a triangle Tz satisfying (3.1). Now, consider the shortest sequence of edges
E(T ) = {e1, e2, ..., eN} such that z ∈ ej , j = 1, ..., N,

e1 ⊂ ∂T and eN ⊂ ∂Tz,
ej , ej+1 ⊂ ∂Tj , Tj ∈ Th, j = 1, ..., N − 1.

Note that by its definition E(T ) ⊂ EΓ,−
h . Then, observing that the tangential

jump of ∇v− is zero along edges, we have

hTρ
−‖∇v− · n−‖2L2(TΓ) ≤ hTρ

− |TΓ|
|e1|
‖∇v−‖2L2(e1) ≤ κ

2ρ−|e1| ‖∇v−‖2L2(e1)

≤ κ2ρ−|e1|
(
‖J∇v−K‖2L2(e1) + ‖∇v−|T1‖2L2(e1)

)
≤ κ2ρ−|e1| ‖J∇v−K‖2L2(e1) + κ4ρ−|e2| ‖∇v−|T1‖L2(e2)

...

≤ c(κ)ρ−
∑

e∈E(T )

|e| ‖J∇v−K‖2L2(e) + C(κ)ρ−|eN | ‖∇v−|Tz‖L2(eN )

≤ c(κ)ρ−
∑

e∈E(T )

|e| ‖J∇v−K‖2L2(e) + C̃(κ)‖
√
ρ−∇v−‖2L2(Tz),

where κ is the shape regularity constant defined in (2.1). Observe that by
property (3.1) in Proposition 1 and since the test function is piecewise linear,
we can estimate the last term above as

‖
√
ρ−∇v−‖2L2(Tz) ≤ C‖

√
ρ−∇v−‖2L2(Tz∩Ω−).
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Figure 2. Illustration of set E(T).

Hence, considering that each nodal patch contains finite number of elements
implies that, after summing over T ∈ T Γ

h , the terms above are repeated at
most finitely many times. Then, it follows

∑
T∈T Γ

h

ρ−hT ‖∇v−·n−‖2L2(TΓ) ≤ C̃(κ)

‖√ρ−∇v‖2L2(Ω−) +
∑

e∈EΓ,−
h

|e|ρ−‖J∇v−K‖2L2(e)

 .

Therefore, coercivity follows by choosing γ large enough in terms of C(κ)
and ε. �

With the aim of proving continuity of the bilinear form ah, we define the
following augmented norm:

(3.3) ‖v‖2VA = ‖v‖2V +
∑
T∈T Γ

h

hT ‖
√
ρ−∇v− · n−‖2L2(TΓ).

Continuity of the bilinear form follows from its definition and Cauchy-
Schwarz inequality. The result is stated as follows:

Lemma 2. (Continuity) Suppose that v±, w± ∈ H2
h(Ω±). Then, there exists

a constant C > 0, independent of v and w, such that

ah(w, v) ≤ C ‖w‖VA ‖v‖VA .
Additionally, if w± ∈ H2

h(Ω±) and v ∈ Vh we have

(3.4) ah(w, v) ≤ C ‖w‖VA ‖v‖V .
In order to discuss the Galerkin orthogonality of method (2.2)-(2.3) we

need to define extension operators. Consider the following well known ex-
tension result (see [13]).

Lemma 3. Assume that u± := u|Ω± ∈ H2(Ω±). Then, there exist exten-
sions u±E ∈ H2(Ω), such that u±E |Ω± = u± and

‖u±E‖Hi(Ω) ≤ C‖u±‖Hi(Ω±), for i = 0, 1, 2,
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for a constant C > 0 depending only on Ω±.

A particular case is proved in Appendix B by means of an even extension.
From now on we simply denote u±E by u±.

Lemma 4. (Galerkin orthogonality) Suppose that u solves the (1.1) and
suppose that u|Ω± ∈ H2(Ω±). Then, we have that

ah(u, v) = (f, v), ∀v ∈ Vh,

where we use the notation u = (u+, u−). Hence, Galerkin orthogonality
holds:

ah(u− uh, v) = 0, ∀v ∈ Vh.

The main result of this section, the best approximation result, is stated
below. It follows easily from coercivity, continuity and Galerkin orthogonal-
ity.

Theorem 1. (Best approximation) Let Ω ⊆ R2 be an open polygonal do-
main. Let u be a solution of problem (1.1) and assume that u|Ω± ∈ H2(Ω±).
Let uh be solution of the discrete problem (2.2). Then, there exists a constant
C > 0 independent of h, such that

‖u− uh‖V ≤ C inf
v∈Vh
‖u− v‖VA .

3.2. Energy error estimates. In order to prove an error estimate in terms
of the V -norm we introduce the following interpolation operator: Define
Ih : H1(Ω+

h )×H1(Ω−h )→ Vh such that

(Ihu)± = Jhu
±, for u = (u+, u−) ∈ H1(Ω+

h )×H1(Ω−h ),

where Jh is the interpolant onto the standard continuous piecewise linear
polynomials introduced in [20]. Consequently, the following estimate for the
interpolation error follows from the properties of the Scott-Zhang interpo-
lation operator and the extension result: Lemma 3.

Lemma 5. Consider the definition of the interpolation operator Ih given
above. Then, there exists a constant C > 0, independent of h, such that:

(3.5) ‖u− Ihu‖VA ≤ Ch(
√
ρ+‖D2u‖L2(Ω+) +

√
ρ−‖D2u‖L2(Ω−)).

In addition, we assume that the following elliptic regularity bound holds,

(3.6) ρ+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−) ≤ C‖f‖L2(Ω).

For instance, this bound is satisfied in the two-dimensional case (see [9]) for
Ω convex and polyhedral.

An energy error estimate follows from Theorem 1, Lemma 5 and elliptic
regularity (3.6). We state it in the corollary below.
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Corollary 1. (Standard energy error estimate) Let u be a solution of prob-
lem (1.1), and let uh be the solution of the discrete problem (2.2). Suppose
that Ω is convex. Then, there exists C > 0 independent of ρ±, such that

‖u− uh‖V ≤
C h√
ρ−
‖f‖L2(Ω).

4. Error estimate for the flux ρ∇(u− uh)

In order to prove the main result of this paper, the error estimate for the
flux, we need a discrete extension result.

Lemma 6. (Discrete extension) Assume that the triangulation Th is quasi-
uniform. Let vh ∈ V +

h . Then, there exists a function Evh ∈ V c
h = {v ∈

C0(Ω) : v|T ∈ P1(T ),∀T ∈ Th}, such that Evh = vh in Ω+
h and

‖Evh‖H1(Ω) ≤ C‖vh‖H1(Ω+
h ),

with C > 0 independent of h.

Proof. See Appendix C. �

Considering the discrete extension lemma, we state a bound for the H1-
norm in Ω+

h . The proof follows easily using Proposition 1 (with roles of Ω+

and Ω− reversed), which allows us to control the terms in Ω+
h by terms in

Ω+. Similar statements have appeared before in [5] and [19].

Lemma 7. Let v ∈ V +
h . Then, we have

‖v‖2
H1(Ω+

h )
≤ C

‖v‖2H1(Ω+) +
∑

e∈EΓ,+
h

|e| ‖J∇vK‖2L2(e)

 .

Proof. We first bound the H1 semi-norm. By the argument given in proof
of Lemma 1 which uses Proposition 1 it follows that

‖∇v‖2
L2(Ω+

h )
≤ C

‖∇v‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖J∇vK‖2L2(e)


where C depends on the shape regularity constant κ. Now, in order to
bound the L2 norm let T be an element Ω+

h not totally contained in Ω+.
Let z be a node of T such that z ∈ Ω+. Then, by Proposition 1, there exists
an element Tz in the patch of z such that :

|Tz ∩ Ω+| ≥ Ch2
Tz .

Then, using the fact that v is a linear function on T we have that

|v(x)| ≤ |v(z)|+ hT |∇v|T |, for all x ∈ T,
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and then we have

‖v‖L2(T ) ≤ ChT |v(z)|+ hT ‖∇v‖L2(T ).

Using an inverse estimate we get

|v(z)| ≤ Ch−1
Tz
‖v‖L2(Tz).

It is not difficult to see, using the fact that |Tz ∩ Ω+| ≥ Ch2
Tz

and that v is
linear on Tz that

‖v‖L2(Tz) ≤ C ‖v‖L2(Tz∩Ω+).

Therefore, we obtain

‖v‖L2(T ) ≤ C‖v‖L2(Tz∩Ω+) + hT ‖∇v‖L2(T ).

Using this inequality repeatedly we obtain that

‖v‖L2(Ω+
h ) ≤ C

(
‖v‖L2(Ω+) + h‖∇v‖L2(Ω+

h )

)
,

which proves the result after applying the estimate derived for the H1 semi-
norm. �

Now we are in position to state and prove the main result of this paper.
Observe that if we have a conforming piecewise linear discretization with
an interface Γ aligning the mesh Th, then the proof would be short. Pre-
cisely, the fact that the mesh does not align the interface creates some extra
technicalities on the proof.

Theorem 2. (Main result) Let u be a solution of problem (1.1) and let uh
be solution of the discrete problem (2.2). Assume the triangulation is quasi-
uniform and that (ρ+‖D2u‖L2(Ω+)+ρ

−‖D2u‖L2(Ω−)) is bounded .Then, there

exists a constant C > 0, independent of h and ρ±, such that

‖ρ∇(u− uh)‖L2(Ω) ≤ Ch(ρ+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−)).

We remind the reader that

‖ρ∇(u− uh)‖2L2(Ω) = ‖ρ−∇(u− uh)−‖2L2(Ω−) + ‖ρ+∇(u− uh)+‖2L2(Ω+).

Proof. Observe that the bound in Ω− is given by Theorem 1 and (3.5)

‖ρ−∇(u− uh)−‖L2(Ω−) ≤ Ch(ρ+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−)).

Thus, it remains to prove

(4.1) ‖ρ+∇(u− uh)+‖L2(Ω+) ≤ C h(ρ+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−)).

Consider the function vh = (Ihu − uh)+ ∈ V +
h . If Ω+ is the inclusion,

i.e., ∂Ω+ ∩ ∂Ω = ∅, we redefine vh so that it has average zero on Ω+, i.e.,
vh = vh − 1

|Ω+|
∫

Ω+ vh. Either case Poincare’s inequality holds:

‖vh‖H1(Ω+) ≤ C‖∇vh‖L2(Ω+) = C‖∇(Ihu− uh)+‖L2(Ω+),
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for a constant C > 0. Applying Lemma 6 it follows that there exists
an extension Evh ∈ V c

h such that Evh = vh in Ω+
h , and ‖Evh‖H1(Ω) ≤

C‖vh‖H1(Ω+
h ). Combining this estimate with Lemma 7, we have

(4.2)

‖Evh‖H1(Ω) ≤ C
(
‖∇(Ihu−uh)+‖L2(Ω+)+

( ∑
e∈EΓ,+

h

|e| ‖J∇(Ihu−uh)+K‖2L2(e)

)1/2)
.

Consequently, using ((Evh)−, (Evh)+) ∈ Vh as test function (where (Evh)± :=
Evh|Ω±h ), and the consistency of the method (2.2)-(2.3), we obtain

0 = ah(u− uh, Evh)

=

∫
Ω+

ρ+∇(u− uh)+ · ∇(Evh)+ +

∫
Ω−

ρ−∇(u− uh)− · ∇(Evh)−

+

∫
Γ
ρ−∇Ev−h · n

−[u− uh]ds

+
∑

e∈EΓ,−
h

|e|
∫
e
ρ−J∇(Evh)−KJ∇(u− uh)−K ds

+
∑

e∈EΓ,+
h

|e|
∫
e
ρ+J∇(Evh)+KJ∇(u− uh)+K ds.

Here we used that Evh is continuous across the interface Γ. Multiplying by
ρ+ and adding and subtracting Ihu

+ in the first and last term give

‖ρ+∇(Ihu− uh)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− uh)+K‖2L2(e) =

− ρ+

∫
Ω+

ρ+∇(u− Ihu)+ · ∇(Evh)+ − ρ+
∑

e∈EΓ,+
h

|e|
∫
e
ρ+J∇(Evh)+KJ∇(u− Ihu)+K ds

− ρ+

∫
Ω−

ρ−∇(u− uh)− · ∇(Evh)− − ρ+

∫
Γ
ρ−∇(Evh)− · n−[u− uh]ds

− ρ+
∑

e∈EΓ,−
h

|e|
∫
e
ρ−J∇(Evh)−KJ∇(u− uh)−K ds =: I1 + I2,

where I1 denotes the first two terms and I2 the last three terms. First we
bound I1. Applying Cauchy-Schwarz and arithmetic geometric inequalities,
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and using that ∇(Evh)+ = ∇(Ihu− uh)+ in Ω+
h yield

2|I1| ≤‖ρ+∇(Ihu− u)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− u)+K‖2L2(e)

+ ‖ρ+∇(Ihu− uh)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− uh)+K‖2L2(e)

≤‖ρ+∇(Ihu− u)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− u)+K‖2L2(e) + |I1|+ |I2|,

which implies that
(4.3)

|I1| ≤ ‖ρ+∇(Ihu− u)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− u)+K‖2L2(e) + |I2|.

Similarly, we apply Cauchy-Schwarz inequality for the three terms in I2

after taking as common factor ρ+
√
ρ−, i.e.∣∣∣∣√ρ− ∫

Ω−
∇(u− uh)− · ∇(Evh)−dx

∣∣∣∣ ≤ ‖√ρ−∇(u− uh)−‖L2(Ω−)‖∇(Evh)−‖L2(Ω−),∣∣∣∣√ρ− ∫
Γ
∇(Evh)− · n−[u− uh]ds

∣∣∣∣ ≤ ∑
T∈T Γ

h

1√
hT
‖
√
ρ− [u− uh] ‖L2(TΓ)

√
hT ‖∇(Evh)− · n−‖L2(TΓ),

∣∣∣√ρ− ∑
e∈EΓ,−

h

|e|
∫
e
J∇(Evh)−KJ∇(u− uh)−Kds

∣∣∣ ≤ ∑
e∈EΓ,−

h

|e|‖
√
ρ−J∇(u− uh)−K‖L2(e)‖J∇(Evh)−K‖L2(e).

Observe that terms involving u− uh are all bounded by ‖u− uh‖V . Hence,

|I2| ≤ C ρ+
√
ρ−‖u− uh‖V

(
‖∇(Evh)−‖L2(Ω−)

+
( ∑
T∈T Γ

h

hT ‖∇(Evh)− · n−‖2L2(TΓ)

)1/2
+
( ∑
e∈EΓ,−

h

|e| ‖J∇(Evh)−K‖2L2(e)

)1/2)
.

For the terms involving Evh we use the argument in the proof of Proposition
1 to bound term in TΓ by terms in a region of size h2

T . In addition, applying
inverse inequalities we obtain( ∑
T∈T Γ

h

hT ‖∇(Evh)−·n−‖2L2(TΓ)

)1/2
+
( ∑
e∈EΓ,−

h

|e| ‖J∇(Evh)−K‖2L2(e)

)1/2 ≤ C‖∇Evh‖L2(Ω).

Thus, by estimate (4.3) and the estimate above for I2, it follows that

|I1|+ |I2| ≤‖ρ+∇(Ihu− u)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− u)+K‖2L2(e)

+ C
√
ρ−‖u− uh‖V ‖ρ+∇Evh‖L2(Ω).
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By approximation properties of the Scott-Zhang interpolant we have

‖ρ+∇(Ihu− u)+‖2L2(Ω+) +
∑

e∈EΓ,+
h

|e|‖ρ+J∇(Ihu− u)+K‖2L2(e)(4.4)

≤ Ch2(ρ+)2‖D2u+‖2L2(Ω+).

Using the error estimate Theorem 1 and (3.5) and definitions of I1 and I2

we conclude

‖ρ+∇(Ihu− uh)+‖2L2(Ω+)+
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu− uh)+K‖2L2(e)

≤C(h‖ρ+∇Evh‖L2(Ω)(ρ
+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−))

+ h2(ρ+)2‖D2u+‖2L2(Ω+)).

Therefore, applying (4.2) we have

‖ρ+∇(Ihu−uh)‖2L2(Ω+)+
∑

e∈EΓ,+
h

|e| ‖ρ+J∇(Ihu−uh)+K‖2L2(e) ≤ Ch
2(ρ+‖D2u‖L2(Ω+) + ρ−‖D2u‖L2(Ω−))

2.

Finally, applying triangle inequality, the estimate for the interpolation error
(4.4), and last inequality we obtain the desired bound (4.1). �

We can now use the elliptic regularity result to prove the following corol-
lary.

Corollary 2. Assuming the hypothesis of Theorem 2 and in addition as-
suming that our domain is such that (3.6) holds, then

‖ρ∇(u− uh)‖L2(Ω) ≤ Ch‖f‖L2(Ω).

We conclude this section by stating an L2-error estimate. The proof
follows easily from a duality argument (see [15]). We omit the details.

Lemma 8. (L2 error estimate) Assuming the hypothesis of previous corol-
lary we have

‖(u− uh)−‖L2(Ω−) + ‖(u− uh)+‖L2(Ω+) ≤
C

ρ−
h2‖f‖L2(Ω).

5. Extensions of the method

In this section we discuss and state some straightforward extensions of
method (2.2)-(2.3).
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5.1. Non homogeneous jump conditions. We consider problem (1.1)
with a non homogeneous jump conditions in equations (1.1c) and (1.1d), i.e.

−∇ · (ρ±∇u±) = f± in Ω±,(5.1a)

u± = 0 on ∂Ω±\Γ,(5.1b)

[u] = α on Γ,(5.1c)

[ρ∇u · n] = β on Γ,(5.1d)

where α, β are a smooth functions given on the interface. The method in
this case follows from a standard derivation of the variational formulation:

ah(uh, v) = (f+, v+)Ω+ + (f−, v−)Ω− +

∫
Γ

(
βv+ + ρ−∇v− · n−α

)
ds(5.2)

+
∑
T∈T Γ

h

γ

hT
ρ−
∫
TΓ

[v]αds,

for all v ∈ Vh.
All the proofs would generalize easily. In particular, the main result

Theorem 2 holds. However, if one wants a result in terms of the data of the
problem (e.g. f , β and α) then one would need a regularity result like the
one in [9] for this more complicated problem which does not seem to appear
in the literature.

5.2. Three dimensional problem. To extend the method in three di-
mensions is straightforward. In order to prove the same result one needs the
regularity results from [9] to hold in three dimensions which we have not
found in the literature. Moreover, we need to be able to prove the geometric
result and extension results in three dimensions: Proposition 1 and Lemma
6. We believe that these results should hold.

6. Numerical examples

This section illustrates numerically the a priori error estimates proved in
Section 3 and Section 4. We consider a two dimensional example with a non
trivial immersed and closed interface. In particular, the example supports
the optimal order of convergence for the error of the flux ρ∇(u − uh). We
summarize our experimental results in tables, displaying the following errors
and experimental orders of convergence (eoc):

e0
h := ‖u− uh‖L2(Ω), e∞h := ‖u− uh‖L∞(Ω),

e1
h,ρ := ‖ρ(∇u−∇uh)‖L2(Ω), e1,∞

h,ρ := ‖ρ(∇u−∇uh)‖L∞(Ω),

eoc(e) :=
log(ehl+1

/ehl)

log(hl+1/hl)
.
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Our theoretical results predict optimal convergence of: error e0
h (second

order), and error e1
h (first order). We also test the convergence of the errors

e∞h and e1,∞
h .

The finite element approximation by scheme (2.2)-(2.3) is computed with
a sequence of uniform triangulations non matching the interface. The pa-
rameter of the triangulation is given by h = 2−(l+3/2), for l = 1, ..., 7.
Computations were performed in MATLAB including the solution of the
linear system by means of command ”\”.

(1) Consider problem (1.1) in a square domain Ω = (−1, 1)2 and an
immersed interface Γ = {x ∈ Ω : x2

1 + x2
2 = (1/3)2}. We will test

both cases: Ω− as inclusion, and Ω+ as inclusion. Consider the
following exact solution:

(6.1) u(x) =

{
rα

ρ− , if x ∈ Ω−,
rα

ρ+ + (1/3)α( 1
ρ− −

1
ρ+ ) , if x ∈ Ω+,

where r =
√
x2

1 + x2
2 and α = 2. We test with values of the diffusion

coefficients ρ+ = 104 and ρ− = 1. Tables 1 and 2 summarize the
results obtained by method (2.2)-(2.3) with stabilization parameters
γ = 10 and γ±g = 10, with Ω− and Ω+ as inclusion, respectively.

l e0
h eoc e∞h eoc e1

h,ρ eoc e1,∞
h,ρ eoc

1 1.9e-02 5.5e-02 3.7e-01 5.9e-01

2 6.2e-03 1.64 1.5e-02 1.86 1.4e-01 1.38 2.7e-01 1.11

3 1.1e-03 2.46 2.8e-03 2.45 5.6e-02 1.31 1.2e-01 1.17

4 1.7e-04 2.69 5.0e-04 2.48 2.6e-02 1.11 5.4e-02 1.17

5 2.8e-05 2.66 9.8e-05 2.34 1.3e-02 1.03 2.4e-02 1.14

6 4.6e-06 2.59 1.9e-05 2.39 6.4e-03 1.01 1.2e-02 1.03

7 8.4e-07 2.45 4.2e-06 2.16 3.2e-03 1.00 6.0e-03 1.01

Table 1. Example (1): errors and experimental orders of conver-
gence (eoc) for problem (1.1) and solution (6.1) with Ω− = {x ∈
Ω : x2

1 + x2
2 < (1/3)2} and Ω+ = Ω\(Ω− ∪ Γ).

Optimal convergence of the errors, second order for e0
h and e∞h and

first order for e1
h,ρ and e∞h,ρ, for Example (1) is observed in Tables 1

and 2 for both cases Ω− and Ω+ as inclusion.
In addition, in order to test the independence of the coefficient

ρ± of our estimate in Theorem 2, we consider the exact solution
(6.1) with a fix mesh corresponding to h = 2−(5+3/2). We compute
errors e0

h, e1
h,ρ and e1

h,
√
ρ = ‖√ρ(u − uh)‖L2(Ω) for decreasing values

of ρ− and increasing values of ρ+. We summarize the results in
Tables 3 and 4, corresponding to Ω− as inclusion and Ω+ as inclusion,
respectively.
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l e0
h eoc e∞h eoc e1

h,ρ eoc e1,∞
h,ρ eoc

1 3.7e-02 5.9e-02 3.6e-01 6.0e-01

2 8.3e-03 2.15 1.3e-02 2.23 1.4e-01 1.41 2.7e-01 1.15

3 1.5e-03 2.45 2.9e-03 2.09 5.6e-02 1.29 1.2e-01 1.17

4 2.7e-04 2.50 5.8e-04 2.35 2.6e-02 1.09 5.3e-02 1.18

5 5.2e-05 2.35 9.8e-05 2.56 1.3e-02 1.02 2.4e-02 1.14

6 1.2e-05 2.16 2.1e-05 2.25 6.4e-03 1.01 1.2e-02 1.01

7 2.8e-06 2.06 4.2e-06 2.29 3.2e-03 1.00 5.8e-03 1.05

Table 2. Example (1): errors and experimental orders of conver-
gence (eoc) for problem (1.1) and solution (6.1) with Ω+ = {x ∈
Ω : x2

1 + x2
2 < (1/3)2} and Ω− = Ω\(Ω+ ∪ Γ).

ρ− ρ+ e0
h e1

h,ρ e1
h,
√
ρ

1e+00 1e+01 3.0e-05 1.3e-02 5.5e-03

1e-01 1e+02 2.8e-04 1.3e-02 1.3e-02

1e-02 1e+03 2.8e-03 1.3e-02 4.0e-02

1e-03 1e+04 2.8e-02 1.3e-02 1.3e-01

1e-04 1e+05 2.8e-01 1.3e-02 4.0e-01

Table 3. Example (1): errors for mesh parameter h = 2−(5+3/2).
Ω− = {x ∈ Ω : x2

1 + x2
2 < (1/3)2} and Ω+ = Ω\(Ω− ∪ Γ).

ρ− ρ+ e0
h e1

h,ρ e1
h,
√
ρ

1e+00 1e+01 5.4e-05 1.3e-02 1.2e-02

1e-01 1e+02 5.2e-04 1.3e-02 3.9e-02

1e-02 1e+03 5.2e-03 1.3e-02 1.2e-01

1e-03 1e+04 5.3e-02 1.3e-02 3.9e-01

1e-04 1e+05 3.9e-01 1.3e-02 1.2e+00

Table 4. Example (1): errors for mesh parameter h = 2−(5+3/2).
Ω+ = {x ∈ Ω : x2

1 + x2
2 < (1/3)2} and Ω− = Ω\(Ω+ ∪ Γ).

Tables 3 and 4 show that error e1
h,ρ is practically invariant, corrob-

orating that in the main result of our paper Theorem 2, the estimate
is totally independent of the diffusion coefficients ρ±. Errors e0

h and
e1
h,
√
ρ seems to be dependent of the coefficients as our estimates in

Section 3 show.
(2) Consider the two dimensional domain Ω = (−1, 1)2 with the im-

mersed interface Γ defined by Γ = {x = (x1, x2) ∈ Ω : ‖x‖2 = r =
1/18+0.2 sin(5s), s ∈ [0, 2π)}. We define Ω− as the interior domain,
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i.e. ∂Ω− = Γ. We further consider the following exact solution

(6.2) u(x) =

{
1
ρ− (x2

1 + x2
2)2 , if (x, y) ∈ Ω−,

1
ρ+x2

√
x2

1 + x2
2 , if (x, y) ∈ Ω+,

We set the stabilization parameters to be: γ = 10, γ+
g = 10 and γ−g =

10. Note that in this case the jump of the solution and the jump
of the flux are nonzero. Table 5 shows the errors and experimental
orders of convergence obtained by method (5.2)-(2.3). As in the
previous example, we test the independence of the coefficient ρ± of
our estimate in Theorem 2. We consider the exact solution (6.2)

with a fix mesh corresponding to h = 2−(5+3/2). We compute errors
e0
h, e1

h,ρ and e1
h,
√
ρ = ‖√ρ(u − uh)‖L2(Ω) for decreasing values of ρ−

and increasing values of ρ+. We summarize these results in Table 6.

We observe optimal convergence of the errors, second order for e0
h

and e∞h and first order for e1
h,ρ and e∞h,ρ, for Example (2) in Table 5.

Table 6 shows that error e1
h,ρ is practically invariant, supporting our

claim that the estimate for the error of the flux is totally indepen-
dent of the diffusion coefficients ρ± for the case of non-homogeneous
jumps.

l e0
h eoc e∞h eoc e1

h,ρ eoc e1,∞
h,ρ eoc

1 2.4e-2 − 7.1e-2 − 5.1e-1 − 1.0e+0 −
2 1.0e-2 1.23 2.6e-2 1.46 2.2e-1 1.18 7.8e-1 0.39

3 3.2e-3 1.68 1.4e-2 0.91 9.8e-2 1.19 5.1e-1 0.62

4 8.6e-4 1.91 4.4e-3 1.63 3.7e-2 1.41 2.9e-1 0.84

5 1.7e-4 2.35 1.0e-3 2.13 1.4e-2 1.43 1.4e-1 1.07

6 2.8e-5 2.60 1.9e-4 2.42 5.9e-3 1.23 6.2e-2 1.14

Table 5. Example (2): errors for mesh parameter h = 2−(5+3/2)

, using method (5.2)-(2.3).

Appendix A. Proof Proposition 1

Consider a node z of the triangulation Th and the patch of elements ∆z

(defined in Proposition A) associated to z. Since we are assuming that h
is small enough and the interface is smooth we have that: the interface
intersects each edge of triangulation at most once, or the interface coincides

with an edge. Therefore, if z ∈ Ω
−

, there exists at least one node z′ ∈ ∆z

with z′ ∈ Ω
−

, and the edge e connecting z and z′ is completely contained

in Ω
−

. If there exists more than one node satisfying this property then it
would follow that an element of the patch of z is fully contained in Ω−.
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Figure 3. Example (2): Left figure: a non-fitted triangulation
of the interface. Right figure: approximate solution by method
(5.2)-(2.3).

ρ− ρ+ e0
h e1

h,ρ e1
h,
√
ρ

1e+00 1e+01 1.6e-04 1.4e-02 1.1e-02

1e-01 1e+02 1.7e-03 1.4e-02 3.4e-02

1e-02 1e+03 1.7e-02 1.4e-02 1.1e-01

1e-03 1e+04 1.7e-01 1.4e-02 3.4e-01

1e-04 1e+05 1.7e-00 1.4e-02 1.1e+00

Table 6. Example (2): errors and experimental orders of conver-
gence (eoc) with ρ− = 1, ρ+ = 105, using method (5.2)-(2.3).

We then prove the remaining case. See Figure 4 for an illustration of these
definitions.

Figure 4. Appendix A: Illustration of definitions.

Let zΓ the point on Γ resulting of extending the segment e connecting z
and z′. Denote by A1 and A2 the regions separated by the segment eΓ =
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Int(z′zΓ), such that A1 ∪A2 ∪ eΓ = ∆z ∩Ω−. Then, by Lemma 4 in [15], we
have

|eΓ|2 ≤ C max{|A1|, |A2|}.
Thus, the result follows from |e| ≤ |eΓ| and shape regularity.

Appendix B. Proof of even extension

In this section we give an explicit construction of an even extension from
Ω+ to Ω. We apply this to continuous functions that are in H1(Ω+). The
extension result (B.1) is a well-known result in partial differential equations.
We sketch the proof with the aim to obtain the explicit construction of the
extension, which will be used in the proof of Lemma 6.

For simplicity, assume that Ω+ is the inclusion (i.e. ∂Ω+ = Γ). For ε > 0
define the tubular neighborhood

Rε = {x ∈ Ω : d(x) := dist(x, ∂Ω+) ≤ ε}.
Since Γ is smooth, and for ε small enough, for each x ∈ Rε there exists a
unique point x∂Ω+ ∈ ∂Ω+ such that

|x− x∂Ω+ | = dist(x, ∂Ω+).

Moreover, define the unit normal vector to ∂Ω+ pointing towards x as:
n(x) = (x− x∂Ω+)/|x− x∂Ω+ |. Hence, for each x ∈ Rε we define its “reflec-
tion” x̃ = x̃(x) by

x̃ = x∂Ω+ − d(x)n(x).

Now, given v ∈ C(Ω
+

) we define G̃v ∈ C(Ω+ ∪Rε) such that:

G̃v(x) =

{
v(x), if x ∈ Ω

+

v(x̃), if x ∈ Rε\Ω+.

Our extension is complete by considering a cutoff function η ∈ Cc(Ω+∪Rε),
such that η ≡ 1 on Ω+ ∪ Rε/2. Of course, we extend η to all of Ω by zero.
Thus, the extension Gv ∈ Cc(Ω) is defined as follows

Gv = ηG̃v.

The estimate is a well-known result.

(B.1) ‖Gv‖H1(Ω) ≤ C‖v‖H1(Ω+).

Appendix C. Proof of discrete extension Lemma 6

We first introduce notation. For each node x of the triangulation Th we
consider the patch associated to x, denoted by ∆x. Moreover, we consider
∆−x as the restrictions to Ω−, i.e.,

∆−x = ∆x ∩ Ω−.

Considering definitions introduced in Appendix B, we define the reflection
of ∆−x

∆̃−x = {ỹ(y) : y ∈ ∆−x } ⊂ Ω
+
.
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Let v ∈ V +
h , then, by (B.1) there exists Gv ∈ H1

0 (Ω) such that Gv = v in
Ω+, and

‖Gv‖H1(Ω) ≤ C‖v‖H1(Ω+).

We proceed constructing a stable interpolation operator of the extended
function Gv onto V c

h , invariant on V +
h . Define P1(Gv) for any node x of the

triangulation Th by

P1(Gv)(x) =

{
v(x), if x ∈ Ω

+
,

1
|∆−x |

∫
∆−x

Gv(y)dy, if x ∈ Ω−,

i.e., P1 preserves v in Ω+ and is the Clément interpolant (see [10]) of G(v)
on Ω−. Then, as a consequence of the definition of P1 we have that

(C.1) ‖P1(Gv)‖H1(Ω) ≤ C‖Gv‖H1(Ω).

Observe that this definition does not guarantee that P1(Gv) coincides with
v for a node in Ω+

h \Ω
+. Then we need to correct the definition of the

interpolant on these nodes. The needed extension is defined as follows

Ev := P2(Gv)(x) =

{
v(x), if x ∈ Ω

+
h ,

1
|∆−x |

∫
∆−x

Gv(y)dy, if x ∈ Ω\Ω+
h .

Notice that P2(Gv) and P1(Gv) agree at every node except the nodes x in
the following set

Sh = {x ∈ Ω+
h \Ω

+ : x is a node of some triangle T ∈ T Γ
h }.

Define also the collection of triangles that have a node in S.

Mh = {T ∈ Th : at least one of three vertices of T belongs to Sh}.
If we define eh = P2(Gv)− P1(Gv) we see that

‖∇eh‖2L2(Ω) =
∑
T∈Mh

‖∇eh‖2L2(T ).

For each T ∈ Mh, let xT ∈ S be such that |eh(xT )| = maxy∈T |eh(y)|.
Then it is simple to show, using inverse estimates, that

‖∇eh‖L2(T ) ≤ C |eh(xT )|.
By definition we have

|eh(xT )| =

∣∣∣∣∣v(xT )− 1

|∆−xT |

∫
∆−xT

Gv(y)dy

∣∣∣∣∣ =

∣∣∣∣∣v(xT )− 1

|∆−xT |

∫
∆̃−xT

Gv(ỹ)J(ỹ)dỹ

∣∣∣∣∣ ,
where J(ỹ) is the Jacobian of the map ỹ(y)→ y. Applying the definition of
Gv from the previous section, using that v(x̃T ) = v(xT ), and the fact that∫

∆̃−xT
J(ỹ)dỹ = |∆−xT | we get

|eh(xT )| =

∣∣∣∣∣ 1

|∆−xT |

∫
∆̃−xT

(v(x̃T )− v(ỹ))J(ỹ)dỹ

∣∣∣∣∣ ≤ C diameter (∆̃−xT )‖∇v‖
L∞(∆̃−xT )

.
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We see that ∆̃−xT ⊂ B d
2
h(T ) = {y ∈ Ω+

h : dist(y, T ) < d
2h} for a d large

enough but independent of h and T .
Using an inverse estimate we have

diameter (∆̃−xT )‖∇v‖
L∞(∆̃−xT )

≤ C‖∇v‖L2(Bd h(T )).

Hence, we get

‖∇eh‖2L2(Ω) ≤ C
∑
T∈Mh

‖∇v‖2L2(Bd h(T )) ≤ C ‖∇v‖
2
L2(Ω+

h )
.

Finally, using the triangle inequality we get

‖∇Ev‖L2(Ω) ≤ ‖∇P1(Gv)‖L2(Ω) + C‖∇v‖L2(Ω+
h ).

The result now follows from using (C.1) and Poincare’s inequality.
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