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ABSTRACT. We prove an optimal error estimate for the flux variable
for a stabilized unfitted Nitsche finite element method applied to an
elliptic interface problem with discontinuous constant coefficients. Our
result shows explicitly that this error estimate is totally independent
of the diffusion coefficients. Interface problems; high-contrast; unfitted
Nitsche method; finite elements.

1. INTRODUCTION

In this paper we study the error estimation of an unfitted Nitsche finite
element method for the following elliptic interface problem with discontin-
uous constant coefficients: Let 2 C R? be an open polygonal domain with
an immersed smooth interface T, such that @ = Q~ U QF, and T encloses
either O~ or Q. Consider the problem

(1.1a) V- (pFVuE) = f* in QF,
(1.1b) ut =0 on OOH\T,
(1.1c) [u] =0 on T,
(1.1d) [pPVu-n]=0 on I

The jumps on the interface I' are defined as

(12)  [pVu-n]=p Vu -n~ +p"Vu'-n" and [u=u"—u",

where u® = u|n+ and n* is the unit outward pointing normal to QF. We

furthermore assume that the diffusion coefficients p™ > p~ > 0 are constant.

There have been several numerical methods for problem (1.1). See for
example [2], [22], [8], [11], [16], [14], [4], [9], [5], [18], [17], [23], [7], [3],
[21], [1], [19], [15]. The method we will consider below uses meshes that
are not necessarily aligned with the mesh (i.e. unfitted meshes). There are
several papers dealing with methods (see [1], [3], [4], [5], [9], [14], [15], [17],
[19], [23]) using unfitted meshes. One of the advantages of using unfitted
meshes is the fact that re-meshing is not required for problems where the
interface is moving. Nevertheless, the majority of the unfitted methods
do not address the analysis of high contrast problems. Some exceptions
are found [9], [6],[23], [7], [15]. In particular in [9], energy error estimates
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independent of the contrast of the coefficients (i.e. p™/p~) were proved.
However, the estimates were not completely independent of the coefficients,
a factor of 1/4/p~ was present in the right-hand side. More recently, in [15]
an interface finite element method was designed and certain error estimates
independent of coefficients contrast were proved on problems with smooth
interfaces. Specifically, the error estimate achieved in [15] for the energy
error was of the form

C
(1.3) VeV (u —up)|l2) < —=hllfllL2 )
() \/pi )

were we also observe a factor of 1/4/p~ in the estimate. One of the key
ingredients in [15] was to add a stabilization term that penalized the jump
of the gradients across edges of the triangulation. This idea was borrowed
from the stabilized Nitsche’s methods developed by Burman and co-authors;
see for example [7]. Here in this paper we analyze a variant of the method
introduced in [7] and prove the following error estimate totally independent
of contrast

(1.4) 1V (w = un)l L2y < ChllfllL2(0),

where constant C' is independent of p*. It is important to note that this
estimate is for the flux error pV(u — uy). The previous analysis in [15, 9,
7] used energy arguments to establish error estimates for the energy error
VPV (u — up), resulting in the dependence of 1/p~. Notice that a simple
application of estimate (1.3) will give

p+
107V (u = un) 200y < = bl fll20);
(@*) NG (@)

Hence, we see that our result (1.4) here is much sharper for this quantity.
The main ingredient of the analysis is the use of a discrete extension re-
sult from Q7 to all of . We note that this technique can be extended
to conforming finite element discretizations and it opens the possibility to
establish sharper results also for other discretizations as well (in particular
the method studied in [15]).

The paper is organized as follows. In the next section we describe the
Nitsche’s finite element method. In Section 3 we provide an error estimate
based on an energy argument. In Section 4 we improve the main result,
obtaining an error estimate independent of the contrast for the diffusion
coefficients for the flux. In the following section we discuss extension of the
method and results for: interface problem with non homogeneous jumps, and
the three dimensional problem. In Section 6 we present numerical results
that validate the theoretical results. We conclude with an appendix that
contains proofs of some crucial lemmas.
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Figure 1. Illustration of the definition of set ’771F and discrete
sub-domains Qf Left figure: elements in 7,0 (red transparent).
Center figure: sub-domain €2, (blue transparent). Right figure:

sub-domain Q" (blue transparent).

2. FINITE ELEMENT METHOD

2.1. Preliminaries. Let {7, }r~0 be an admissible family of triangulations
of 2. We adopt the convention that elements T and element edges e are open
sets. We use over-line symbol to refer to their closure. For each triangular
element T € Ty, let hp denotes its diameter and define the global parameter
of the triangulation by A = maxp hp. We assume that 7p is shape regular,
i.e. there exists k > 0 such that for every T € 7T the radius pr of its
inscribed circle satisfies

(2.1) pr > hr/k.

The set of elements cutting the interface I', and restricted to QT and Q~
are also of interest. They are defined by:

?::{TE'E:TﬂQi#@},
Tr ={T €T, :TNT #0}.

In particular for T € ’77{ we denote Tr = TNT. Observe that the definition
of T,I' guarantees that ETeT{ |Tr| = |I'|. Under these definitions we define

Qf = Int( U T).
TeTE
See Figure 1 for an illustration of these definitions. The set of all the edges

of 7;5 restricted to the interior of QZ and 2, is also considered

Ell;’i ={e=Int(0T1 NOTy) : Ty, T € 7?[, and Ty NT #( or ToNT # 0}.

the discrete domains

Standard finite element notation for the normal jumps is introduced as
follows: for a piecewise smooth function v with support in 7, the jump of
its gradient across an interior edge e = Int(977 N 913) is defined by

[[VU]] = VU|T1 5] + VU|T2 * Ny,
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where nq and no are the unit normal vectors to e, pointing outwards to T
and T5, respectively.

2.2. Stabilized unfitted Nitsche method. In this section we introduce a
slightly simplified version of the Nitsche method for high-contrast interface
problems by [7], Section 3.3. We begin by denoting the standard finite

element space of continuous piecewise linear polynomials with support in
+
Q5 by:
+ + + _
ViE = {veC(Q) :v|lr € PI(T),VT € T, and v|pax\r = 0}
The finite element space is defined by means of the restrictions of piecewise
linear functions to Q}J{ and Q;, i.e.
vy, = Vhf X Vh+‘
The jumps across the interface of a function v € Vj, are defined as in (1.2).

We now consider a finite element method based on: the weak formula-
tion of problem (1.1), penalty terms of the jump across the interface, and

stabilization terms on edges in S}:’i. Find up = (u,,, u;[) € V4, such that:
(2.2) an(up,v) = (fH,0N)ar + (f,v 7 )g-, forallve Vy,

where (-, -)q+ denotes the L? product in QF and ay(-,-) is a bilinear form
defined by

(2.3)

ap(up,v) = /+ p+VuZ -Votde —|—/ p~Vu, - Vv dx
Q Q-

+ /F (p~ Vv~ -n"[w] +p Vi, -n[v]) ds + T;F %p’ /Tr [up][v]ds

0y S el / [V Ve lds +7 3 el / Vo[V ] ds,

r,—- I+
e€t, e€t,

where v,7,, and ’y; are positive parameters to be chosen, and |e| denotes
the diameter of e, i.e. the size of the edge in two dimensions. Note that
although we consider the case where I' N9 = (), the method is well defined
when the interface crosses the boundary of the domain. However, we only
analyze the embedded case. If the interface crosses the boundary of the
domain the solution will not necessarily be in H2(Q* U Q7). In addition, a
technical tool that we utilized in the proof of our main result is the existence
of a stable extension (see Lemma 4.1). It is not clear that this extension will
exist in some cases where the interface crosses the boundary of the domain.

Remark 1. We point out that the terms in (2.3) involving integration on
I" can be generalized to

STl + Vb b ds + 3 77 [ s

T
TeT!
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The weighted average
[pV0-n"}y = (w_ p~Vo_ +ws g V) - m,

where the weights w_(z) € [0,1] and wy(x) =1 — w_(x) and p are chosen
properly, see [8]. The case w_(z) =1 and p(z) = p~ (z) reduces to the one
in (2.3). Another choice considered in the literature (see [11, 6, 12]) is the
pt 20t p~

harmonic average given by w_ = —f— . In this case we
8¢ 8 Y pT+p~ pt+p~

and p =

obtain

{pVv-n"}, = g (Voo +Vuy) -n™.

In this paper we concentrate in the analysis of the choice (2.3), however,
since p~ < p < 2p~, the analysis for the harmonic average case follows
straightforwardly.

Let us define the broken Sobolev spaces
HE(QF) = {ve H' () :v|ps € HX(TF), forall T € 7,5}
The energy norm || - ||y, induced by the bilinear form ap, is defined for

v=(v",v") € HA(Q;) x HE () by

1
ol =Ivavellzag + 3 5 IVe Wiz,

TeT)
+ D eV Vo e + X lel IVt Ve Tiize).
e€&y” ectp "

Note that in this definition we use the following notation:
||WVU||%2(Q) = [lv vav_”%%gf) + v P+VU+H%2(Q+)-

3. STANDARD A PRIORI ERROR ANALYSIS

3.1. Stability and best approximation results. We will need the fol-
lowing technical proposition for the proof of coercivity; proof can be found
in Appendix A.

Proposition 1. Consider a node z of the triangulation T;, such that z € Q.
Let A, be the patch of elements associated to z, i.e. A, = Int(U{T : T €
Ty, and z € OT'}). Then for h small enough, there exists an element T, € A,
such that:

(3.1) IT.N Q| > Chi,,

where C' > 0 is a constant independent of hr,.
Coercivity of the bilinear form ay, is proved below.

Lemma 1. There exists a constant ¢ > 0 such that

(3.2) cllv]} < ap(v,v),  for allv € Vj,.



6 E. BURMAN, J. GUZMAN, M. A. SANCHEZ, AND M. SARKIS

Proof. Let v € V},. Observe that the bilinear form a; is symmetric, then it
follows

e _ Y —
an(v,v) :H\/EVUH%%Q)"‘Q/FP Vo™ n” [v]ds + Z EH\F[U]H%Q(TF)

TeTY
9 D el IV Tz + 75 D lelo™ IV Tl Zz)-
e€&)” ecgpt

In order to prove (3.2) it is enough to bound the non positive term (second
term). Let T € 7?. Applying Cauchy-Schwarz inequality we obtain

_ - P~
< (Voo™ - n7llagry) {4/

Summing over T" € ’77lF and applying arithmetic-geometric inequality give

— —_ _— - - - p_
/Fp Vv n [U]ds < Z <€p hTHVU n ||%2(TI‘) + WH[U”&Q(TF)) :
TeTrk

/ p~ Vv~ -n~[v]ds
Tr

Let T € 77? and let 2 € Q be a node of 7. By Proposition 1, there exists
a triangle T, satisfying (3.1). Now, consider the shortest sequence of edges
E(T) = {ey,ea,...,en} such that
z € €5, j=1,..,N,
e1 C 0T and ey C 0T,
ej,ej+1 COT;, T, €Ty, j=1,...,N—1.

Note that by its definition E(T) C 8};’_. Then, observing that the tangential
jump of Vv~ is zero along edges, we have
_ - _|Tr| _ _ _
th HV’U n ”%Q(TF) S th HHVU ”%2(61) S /{,2'0 |€1’HV'U H%Q(el)
< w?p” ler| (IIVV T2y + V07 In 117
— L (61) 1 L2(€1)

< w27 le IV TIZe (e, + 50 le2l Vo7l N2

<o Y lellIVo ey + C)plenl V0|22 en)
ecE(T)

<c(w)p” D lellIVe Tz + CINVPVV 122z,
ecE(T)

where & is the shape regularity constant defined in (2.1). Observe that by
property (3.1) in Proposition 1 and since the test function is piecewise linear,
we can estimate the last term above as

Vo~ Vv (720 < ClIVP Vo 2100
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Figure 2. Illustration of set E(T).

Hence, considering that each nodal patch contains finite number of elements
implies that, after summing over 7' € 7,1, the terms above are repeated at
most finitely many times. Then, it follows

Y hrll Vo T gy < C) [ IV~ VollTaoy + D lelp™ ITVo D72

TeTT 6655,7

Therefore, coercivity follows by choosing v large enough in terms of C(k)
and €. 0

With the aim of proving continuity of the bilinear form aj,, we define the
following augmented norm:

(3:3) oty = ol + D hrlve~ Vom0 fa).
TeT,

Continuity of the bilinear form follows from its definition and Cauchy-
Schwarz inequality. The result is stated as follows:

Lemma 2. (Continuity) Suppose that v, w® € H2(QF). Then, there exists
a constant C' > 0, independent of v and w, such that

ap(w,v) < Cllwlv, [[vflv,-
Additionally, if w* € H2(QF) and v € Vj, we have
(3.4) ap(w,v) < Cllwlv, [[v]v.

In order to discuss the Galerkin orthogonality of method (2.2)-(2.3) we
need to define extension operators. Consider the following well known ex-
tension result (see [13]).

Lemma 3. Assume that u* = u|q+ € H?(QF). Then, there eist exten-
sions u% € H?(Q), such that u%‘gi =u*t and

[uE i) < Cllut ey, fori=0,1,2,
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for a constant C' > 0 depending only on QF.

A particular case is proved in Appendix B by means of an even extension.
From now on we simply denote u% by u®.

Lemma 4. (Galerkin orthogonality) Suppose that u solves the (1.1) and
suppose that ulgx € H*(QF). Then, we have that

ah(u,’u) = (fa U): Vo € Vi,
where we use the notation u = (ut,u~). Hence, Galerkin orthogonality
holds:

ap(u —up,v) =0, Yo e V.

The main result of this section, the best approximation result, is stated
below. It follows easily from coercivity, continuity and Galerkin orthogonal-

ity.

Theorem 1. (Best approzimation) Let Q C R? be an open polygonal do-
main. Letu be a solution of problem (1.1) and assume that u|g+x € H*(QF).
Let up, be solution of the discrete problem (2.2). Then, there exists a constant
C > 0 independent of h, such that

— < C inf — .
Ju—unlly < it flu=vllv,

3.2. Energy error estimates. In order to prove an error estimate in terms
of the V-norm we introduce the following interpolation operator: Define
I, : HY(Q) x HY(2,)) — V}, such that

(Ihu)* = Jyu®,  foru= (uT,u") e HY Q) < HY(Q;),

where J;, is the interpolant onto the standard continuous piecewise linear
polynomials introduced in [20]. Consequently, the following estimate for the
interpolation error follows from the properties of the Scott-Zhang interpo-
lation operator and the extension result: Lemma 3.

Lemma 5. Consider the definition of the interpolation operator Iy given
above. Then, there exists a constant C' > 0, independent of h, such that:

(3.5) lu— Inullv, < Ch(v/ p*||D?ull 204y + Vo~ 1Dl 2 (0))-
In addition, we assume that the following elliptic regularity bound holds,
(3.6) P D?ull 20 + 07 |1 D%ul 20y < Cllfllz2(0-

For instance, this bound is satisfied in the two-dimensional case (see [9]) for
) convex and polyhedral.

An energy error estimate follows from Theorem 1, Lemma 5 and elliptic
regularity (3.6). We state it in the corollary below.
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Corollary 1. (Standard energy error estimate) Let u be a solution of prob-
lem (1.1), and let uy, be the solution of the discrete problem (2.2). Suppose
that Q is convex. Then, there exists C' > 0 independent of pT, such that

Ch
|u —uplly < \/?HfHLQ(Qy

4. ERROR ESTIMATE FOR THE FLUX pV(u — up,)

In order to prove the main result of this paper, the error estimate for the
flux, we need a discrete extension result.

Lemma 6. (Discrete extension) Assume that the triangulation Ty is quasi-
uniform. Let vy € Vh+. Then, there exists a function Ev, € Vi¢ = {v €
Co(2) : v|r € PYT),VT € Tp}, such that Evy, = vy, in Q) and

B0 @) < Cllonln oy
with C' > 0 independent of h.
Proof. See Appendix C. O

Considering the discrete extension lemma, we state a bound for the H'-
norm in Q; The proof follows easily using Proposition 1 (with roles of Q7
and Q7 reversed), which allows us to control the terms in Q}J{ by terms in
QF. Similar statements have appeared before in [5] and [19].

Lemma 7. Let v € Vh+. Then, we have

1012 gy < C | el + D lelII901132¢,

665,1:’+

Proof. We first bound the H! semi-norm. By the argument given in proof
of Lemma 1 which uses Proposition 1 it follows that

IIVvlliz(Q;)SC IVollZz@n + D lelIIVolliZag,

e€€£‘+

where C' depends on the shape regularity constant x. Now, in order to
bound the L? norm let T be an element Q; not totally contained in Q7.
Let z be a node of T such that z € Q. Then, by Proposition 1, there exists
an element T, in the patch of z such that :

IT. N Q| > Chi,.
Then, using the fact that v is a linear function on T" we have that

lv(x)| < |v(2)| + hr|Vou|r|, forallzeT,
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and then we have
[0l L2¢ry < Chrlo(2)| + hrl|Voll L2 (7).
Using an inverse estimate we get
[0(2)] < Chy!lvllzacr,)-

It is not difficult to see, using the fact that [T, N Q1| > Ch?pz and that v is
linear on T, that
[vllz2(z) < Cllvll2(zona+)-
Therefore, we obtain
vl z2(r) < CllvllL2(rna+y + hrllVoll2 7).

Using this inequality repeatedly we obtain that
ol 2oy < € (Nollzaary + RIVol 2o

which proves the result after applying the estimate derived for the H' semi-
norm. ]

Now we are in position to state and prove the main result of this paper.
Observe that if we have a conforming piecewise linear discretization with
an interface I' aligning the mesh 7y, then the proof would be short. Pre-
cisely, the fact that the mesh does not align the interface creates some extra
technicalities on the proof.

Theorem 2. (Main result) Let u be a solution of problem (1.1) and let up
be solution of the discrete problem (2.2). Assume the triangulation is quasi-
uniform and that (p* || D*ul| 2y +p~ | D?ull 2(0-)) is bounded . Then, there
exists a constant C > 0, independent of h and p*, such that

1oV (u = up)ll 220y < Ch(p™ || D?ull 2+ + o~ |1D%ull2(0-))-
We remind the reader that
1PV (= wn)[[Z2 i) = 07 V(= un) " 7200y + 107V (@ = un) " [[72 1y
Proof. Observe that the bound in Q7 is given by Theorem 1 and (3.5)
o™V (u—un)" || 2@y < Ch(p™ | D?ull 20y + p~ | Dull 20 ))-
Thus, it remains to prove
41)  Ip"V(u—un) [l 2@y < Chlp™ | D?ull 2oy + o7 1Dl 2 (0))-

Consider the function v, = (Iyu — up)™ € V7. If QT is the inclusion,
ie., 00T NI = 0, we redefine vy, so that it has average zero on Q7T i.e.,
vy = Up — ﬁ fQ+ vy,. Either case Poincare’s inequality holds:

lonll vy < ClIVORllL20+) = CIVInu = up)* [l 1204y,
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for a constant C' > 0. Applying Lemma 6 it follows that there exists
an extension Evy, € V¢ such that Fv, = v, in Q. and HEU}LHHI(Q) <
CHUhHHl(Qj{)' Combining this estimate with Lemma 7, we have

(4.2)

1/2
|Bonllir o) < C(IVnu—un) iz + (30 lel IV (nu—u) Ja)) - )-

e€€£’+

Consequently, using ((Evy) ™, (Evy)T) € Vj, as test function (where (Evy )T =
E’Uh’Qh:t), and the consistency of the method (2.2)-(2.3), we obtain

0 = ap(u — up, Evp)
:/ PPV (U — up)t - V(Bop)t / PV (1= up)” - V(Eup)™
Qt+ Q-
—i—/p_VEvh ‘n [u— uplds
I

+ 3 lel [ oIV (B0 W= w) ] ds

eGS,L

> ye\/ PP IV (Bon) 11V (u — wn) ] ds.

eES

Here we used that Fvy, is continuous across the interface I'. Multiplying by
pT and adding and subtracting I,u™ in the first and last term give

PV (Inw = un) G2 ny + Y lelllp™ IV (Inu = un) 11135 =
665}1:’+

_p+ /Q+ p+V(U_IhU)+-V(E’Uh + Z ’e/ +[[v (Ewp) +]][[V(U—Ihu)+]]ds

665

s /Q 5V (1 — up)” - V(Bop) — p* / 5V (Evon)™ - n[u— uylds

pt Z 6|/p [V(Evn) [V (u—up) ] ds =: I} + I,

668

where I; denotes the first two terms and Iy the last three terms. First we
bound I;. Applying Cauchy-Schwarz and arithmetic geometric inequalities,
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and using that V(Fv,)" = V(Iu —up)™ in QZ yield

2111] <|lp*VInu = W)t |72y + Y lel 0TIV —u) TI172

eeg,l:""
+ "V (Inu = un) 72+ D lel 1T IVURu = un) 1172,
e€$£’+
<otV (I =0 ey + S lelllo* VU — w)* 112 + 11l + 12,

eGS,I:’Jr

which implies that

(4.3)

L] < oV (T — ) ey + 3 lel oIV — ) Tl + |12

e€€£‘+

Similarly, we apply Cauchy-Schwarz inequality for the three terms in I
after taking as common factor p™+/p~, i.e.

<[V~ V(u—up)” |2 IV(EvR) " |l 2(0-)

<) FH\/ nl |2y VAT IV (Ev) ™ -1 201,

TeTY

’\ﬁ V(u—up)” - V(Ev,) dzx
‘\/pT/FV(Evh)_ n"[u — up)ds

[Vor 3 1ol [ 1900 N9 )l < 3 1ellVo 19 ) Dl 9B ez

eGS 668

Observe that terms involving u — uy, are all bounded by ||u — up||v. Hence,
112 < C o™/ llu = unlly (I (Bon) 2o
- 1/2 _ 1/2
F (X hel T n Bag) 2+ (X 16l IV (Ew) TiEa) ).

TeThF 6685’7

For the terms involving Fvj, we use the argument in the proof of Proposition
1 to bound term in 1T by terms in a region of size h%. In addition, applying
inverse inequalities we obtain

- 1/2 _ 1/2
(D el V(Bw) 1 [F2) i > el IV (B ]]H%z(e))/ < C[|[VEup||r2(q)-
TeThF 6655’7

Thus, by estimate (4.3) and the estimate above for I, it follows that

L]+ L] <otV (Ihu =) o + Y el IV —u) 1172
eES,l:’Jr

+CVpllu—upllv|pTVEum] 20



NITSCHE METHOD FOR HIGH CONTRAST INTERFACE PROBLEMS 13

By approximation properties of the Scott-Zhang interpolant we have

(4.4) PtV (Inu = w) 720y + Y lelllo™IVURu = )17z,

6685’_‘—
< CRA(p" )| Dt e

Using the error estimate Theorem 1 and (3.5) and definitions of I; and I»
we conclude

PV (Inw = un) (T2 i+ Y lel o [V Uhw = un) 7z
eEc‘J,l:’Jr
< C(hlpTVE| r2(0)(pT |1 D*ull r20+) + o~ I1D%ull 120 ))
+ h2(0+)2||D2u+||%2(Q+))-
Therefore, applying (4.2) we have
HPJFV(IhU—Uh)”%%m)"‘ Z le] HPJF[[V(IhU—Uh)ﬂ]H%?(e) < ChQ(Pﬂ\D%”L?(m) + PfHD2U||L2(Q*))2-
665;1:’+

Finally, applying triangle inequality, the estimate for the interpolation error
(4.4), and last inequality we obtain the desired bound (4.1). O

We can now use the elliptic regularity result to prove the following corol-
lary.

Corollary 2. Assuming the hypothesis of Theorem 2 and in addition as-
suming that our domain is such that (3.6) holds, then

1PV (u = un)llr20) < ChfllL2(0)-

We conclude this section by stating an L?-error estimate. The proof
follows easily from a duality argument (see [15]). We omit the details.

Lemma 8. (L? error estimate) Assuming the hypothesis of previous corol-
lary we have

_ C
[ (w—un)" L2y + [[(u — uh)+HL2(Q+) < 7h2”f”L2(Q)-

p

5. EXTENSIONS OF THE METHOD

In this section we discuss and state some straightforward extensions of
method (2.2)-(2.3).
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5.1. Non homogeneous jump conditions. We consider problem (1.1)
with a non homogeneous jump conditions in equations (1.1c) and (1.1d), i.e.

(5.1a) —V - (ptVut) = £ in QF,
(5.1b) ut =0 on OQF\T,
(5.1c) u] =« on T,
(5.1d) [pVu-n| =0 onT,

where «, 8 are a smooth functions given on the interface. The method in
this case follows from a standard derivation of the variational formulation:

(5.2) ap(up,v) = (v N)ar + (v )g- + /F (Bvt +p Vo -na)ds

for all v € V},.

All the proofs would generalize easily. In particular, the main result
Theorem 2 holds. However, if one wants a result in terms of the data of the
problem (e.g. f, 5 and «) then one would need a regularity result like the
one in [9] for this more complicated problem which does not seem to appear
in the literature.

5.2. Three dimensional problem. To extend the method in three di-
mensions is straightforward. In order to prove the same result one needs the
regularity results from [9] to hold in three dimensions which we have not
found in the literature. Moreover, we need to be able to prove the geometric
result and extension results in three dimensions: Proposition 1 and Lemma
6. We believe that these results should hold.

6. NUMERICAL EXAMPLES

This section illustrates numerically the a priori error estimates proved in
Section 3 and Section 4. We consider a two dimensional example with a non
trivial immersed and closed interface. In particular, the example supports
the optimal order of convergence for the error of the flux pV(u — uyp). We
summarize our experimental results in tables, displaying the following errors
and experimental orders of convergence (eoc):

6% = ”U—UhHL2(Q)7 en 1= Hu_uhHLOO(Q)a
17 Pp—
ehy = [o(Vu—Vup)llrz@), e = Ip(Vu—Vup)| oo,

log(eth /ehz)

eoc(e) = Toa(hie /)
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Our theoretical results predict optimal convergence of: error 6’2 (second

order), and error e; (first order). We also test the convergence of the errors
e® and e,ll’oo.

The finite element approximation by scheme (2.2)-(2.3) is computed with
a sequence of uniform triangulations non matching the interface. The pa-
rameter of the triangulation is given by h = 2-(43/2) for | = 1, ..., 7.
Computations were performed in MATLAB including the solution of the
linear system by means of command ”\”.

(1) Consider problem (1.1) in a square domain Q = (—1,1)% and an
immersed interface I' = {z € Q : 22 + 22 = (1/3)?}. We will test
both cases: 9 as inclusion, and Q7 as inclusion. Consider the
following exact solution:

61 pé Lifz e,

(6.1) u(z) = ;%—"_(1/3)&(%_;)%) ,ifz e Qt,
where r = /27 + 23 and o = 2. We test with values of the diffusion
coefficients p™ = 10* and p~ = 1. Tables 1 and 2 summarize the

results obtained by method (2.2)-(2.3) with stabilization parameters
v =10 and fygi = 10, with Q= and Q7T as inclusion, respectively.

0 [eS) 1 1,00

l €h eoc en eoc €h,p eoc € p eoc
1 1.9e-02 5.5e-02 3.7e-01 5.9e-01

2 6.2e-03  1.64 1.5e-02  1.86 1.4e-01  1.38 2.7e-01  1.11
3 1.1e-03  2.46 2.8e-03 245 5.6e-02  1.31 1.2e-01  1.17
4 1.7e-04  2.69 5.0e-04 248 2.6e-02 1.11 5.4e-02  1.17
5 2.8e-05  2.66 9.8e-05 2.34 1.3e-02  1.03 2.4e-02 1.14
6 4.6e-06  2.59 1.9e-056  2.39 6.4e-03  1.01 1.2¢-02  1.03
7 8.4e-07 245 4.2e-06  2.16 3.2e-03  1.00 6.0e-03  1.01

Table 1. Example (1): errors and experimental orders of conver-
gence (eoc) for problem (1.1) and solution (6.1) with Q~ = {x €
Q:2? +23 < (1/3)%} and QF = Q\(Q~ UT).

Optimal convergence of the errors, second order for 62 and ep°® and
first order for e}h , and €;°, for Example (1) is observed in Tables 1
and 2 for both cases 0~ and Q7 as inclusion.

In addition, in order to test the independence of the coefficient
pt of our estimate in Theorem 2, we consider the exact solution
(6.1) with a fix mesh corresponding to h = 2-+3/2) We compute
errors e, e}ljp and 6}117\/;) = [[v/p(u — up)||2(q) for decreasing values
of p~ and increasing values of p*. We summarize the results in
Tables 3 and 4, corresponding to 2~ as inclusion and Q7 as inclusion,
respectively.
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l ey eoc er’ eoc €h.p eoc ei’;o eoc
1 3.7e-02 5.9e-02 3.6e-01 6.0e-01

2 8.3e-03  2.15 1.3e-02  2.23 1.4e-01 1.41 2.7e-01 1.15
3 1.5e-03 245 2.9e-03  2.09 5.6e-02 1.29 1.2e-01 1.17
4 2.7e-04  2.50 5.8e-04  2.35 2.6e-02  1.09 5.3e-02 1.18
5 5.2e-05  2.35 9.8e-05  2.56 1.3e-02 1.02 2.4e-02 1.14
6 1.2e-05  2.16 2.1e-05  2.25 6.4e-03 1.01 1.2e-02 1.01
7 2.8¢-06  2.06 4.2e-06  2.29 3.2e-03 1.00 5.8e-03 1.05

(2)

Table 2. Example (1): errors and experimental orders of conver-
gence (eoc) for problem (1.1) and solution (6.1) with Q = {z €
Q2%+ 23 < (1/3)?} and Q- = Q\(QT UT).

p- pt e €hp €h,p

le+00  let01 3.0e-05 1.3¢-02 5.50-03
le-01  let02 2.8e-04 1.36-02 1.3¢-02
1e-02  1e+03 2.8¢-03 1.3e-02 4.0e-02
1e-03  let04 2.8¢-02 1.3¢-02 1.3e-01
le-04  let05 2.8e-01 1.3¢-02 4.0e-01

Table 3. Example (1): errors for mesh parameter h = 2~ (+3/2),
Q" ={zreQ:2?+22 < (1/3)%} and QF = Q\(Q~ UT).

P~ pt e Chp Ch,vp

le+00  le+01 5.4e-05 1.3¢-02 1.2¢-02
le-01  1le+02 5.2e-04 1.3¢-02 3.9¢-02
1e-02  let03 5.2¢-03 1.3¢-02 1.2¢-01
1e-03  le+04 5.3e-02 1.3¢-02 3.9e-01
le-04  1et05 3.9¢-01 1.3¢-02 1.2e+00

Table 4. Example (1): errors for mesh parameter h = 2~(+3/2),
Of={reQ:2?+23 < (1/3)?} and Q= = Q\(QT UT).

Tables 3 and 4 show that error e}% p is practically invariant, corrob-
orating that in the main result of our paper Theorem 2, the estimate
is totally independent of the diffusion coefficients p*. Errors e?l and
e}h /p Seems to be dependent of the coefficients as our estimates in
Section 3 show.

Consider the two dimensional domain Q = (—1,1)? with the im-
mersed interface I' defined by I' = {x = (x1,22) € Q : ||z]]2 =7 =
1/18+0.2sin(5s), s € [0,27)}. We define Q™ as the interior domain,
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i.e. 00~ =T. We further consider the following exact solution

u(z) = { p%(x% +x3)%  if (z,y) €07,

p%xgx/l’% +x3 , if (z,y) € QT

We set the stabilization parameters to be: v = 10, fy; =10and v, =
10. Note that in this case the jump of the solution and the jump
of the flux are nonzero. Table 5 shows the errors and experimental
orders of convergence obtained by method (5.2)-(2.3). As in the
previous example, we test the independence of the coefficient p* of
our estimate in Theorem 2. We consider the exact solution (6.2)
with a fix mesh corresponding to h = 2~(+3/2) We compute errors
ey, e}L’p and e}l’\/ﬁ = |[v/P(u — up)| r2(q) for decreasing values of p~
and increasing values of p™. We summarize these results in Table 6.

We observe optimal convergence of the errors, second order for 62
and ef° and first order for e}h , and €;°  for Example (2) in Table 5.
Table 6 shows that error e,ll p is practically invariant, supporting our
claim that the estimate for the error of the flux is totally indepen-
dent of the diffusion coefficients p* for the case of non-homogeneous
jumps.

0 oo 1 1,00
€n eoc €ep €eocC eh,p eoc eh’p €eocC

o~

2.4e-2 — 7.1e-2 — 5.1e-1 — 1.0e+0 -

1.0e-2  1.23 2.6e-2  1.46 2.2e-1  1.18 7.8e-1 0.39
3.2e-3 1.68 1l4e-2 091 9.8¢-2 1.19 5.1e-1 0.62
8.6e-4 1.91 4.4e-3 1.63 3.7e-2 141 2.9e-1 0.84
1.7e-4  2.35 1.0e-3  2.13 14e-2 143 1.4e-1 1.07
2.8e-5  2.60 1.9e-4 242 5.9e-3 1.23 6.2e-2 1.14

ST W N

Table 5. Example (2): errors for mesh parameter h = 2~(>+3/2)
, using method (5.2)-(2.3).

APPENDIX A. PROOF PROPOSITION 1

Consider a node z of the triangulation 7, and the patch of elements A,
(defined in Proposition A) associated to z. Since we are assuming that h
is small enough and the interface is smooth we have that: the interface
intersects each edge of triangulation at most once, or the interface coincides
with an edge. Therefore, if z € 0, there exists at least one node 2’ € A,
with 2/ € Q , and the edge € connecting z and 2’ is completely contained
in Q . If there exists more than one node satisfying this property then it
would follow that an element of the patch of z is fully contained in Q.
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Figure 3. Example (2): Left figure: a non-fitted triangulation
of the interface. Right figure: approximate solution by method

(5.2)-(2.3).
p~ pt eh Ch.p €h,vp
1e400  let0l 1.60-04 1.4¢-02 1.1e-02
le-0l  let02 1.7¢-03 1.4¢-02 3.46-02
le-02  1e+03 1.7e-02 1.4e-02 1.1e-01
1003 let04 1.7e-01 1.4¢-02 3.40-01
le-04  1e+05 1.7¢-00 1.40-02 1.1e400

Table 6. Example (2): errors and experimental orders of conver-
gence (eoc) with p~ =1, p* = 105, using method (5.2)-(2.3).

We then prove the remaining case. See Figure 4 for an illustration of these

definitions.

Figure 4. Appendix A: Illustration of definitions.

Let zr the point on I' resulting of extending the segment e connecting z
and 2’. Denote by A; and As the regions separated by the segment er =
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Int(z’zr), such that A1 U AsUer = A, NQ~. Then, by Lemma 4 in [15], we
have
ler|* < C'max{|A,], |Az|}.

Thus, the result follows from |e| < |e''| and shape regularity.

APPENDIX B. PROOF OF EVEN EXTENSION

In this section we give an explicit construction of an even extension from
QO to 2. We apply this to continuous functions that are in H'(QT). The
extension result (B.1) is a well-known result in partial differential equations.
We sketch the proof with the aim to obtain the explicit construction of the
extension, which will be used in the proof of Lemma 6.

For simplicity, assume that Q7 is the inclusion (i.e. 9Q" =T'). For ¢ > 0
define the tubular neighborhood

R. = {z € Q:d(z) := dist(z,00") < €}.
Since I' is smooth, and for € small enough, for each © € R, there exists a
unique point zgo+ € QT such that
|z — 20+ | = dist(z,00T).

Moreover, define the unit normal vector to 9Q" pointing towards = as:
n(x) = (x — xya+)/|r — zy0+|. Hence, for each = € R, we define its “reflec-
tion” = = Z(x) by
T = xg0+ — d(z)n(z).
Now, given v € C(§+) we define Gv € C(QF U R,) such that:
: S+
~ _ ) ov(x), ifze
Gulz) = { 0(@), ifz € R\Q*.

Our extension is complete by considering a cutoff function n € C.(Q2T U R,),
such that n =1 on QT U Rc/p. Of course, we extend 7 to all of {2 by zero.
Thus, the extension Gv € C.(Q2) is defined as follows

Gv = név.
The estimate is a well-known result.
(B.1) GVl ) < Cllvll g

APPENDIX C. PROOF OF DISCRETE EXTENSION LEMMA 6

We first introduce notation. For each node z of the triangulation 73 we
consider the patch associated to z, denoted by A,. Moreover, we consider
A7 as the restrictions to 27, i.e.,

A, =AM, N0
Considering definitions introduced in Appendix B, we define the reflection
of A7
- ~ - S+
Ay ={yly):yeA;}cQ .
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Let v € V', then, by (B.1) there exists Gv € H{(f2) such that Gv = v in
QF, and
1Gvll 1) < Cllvllao+)-
We proceed constructing a stable interpolation operator of the extended
function Gv onto V)¢, invariant on Vh+. Define P;(Gv) for any node x of the
triangulation 7 by

] (), ifz e,
Py(Go)(z) = { 2 Jas Goly)dy, ifw e,

i.e., P| preserves v in QF and is the Clément interpolant (see [10]) of G(v)
on 7. Then, as a consequence of the definition of P; we have that
(C.1) 1PL(GV) [ 2 (0) < CllGoll g (0)-

Observe that this definition does not guarantee that P;(Gv) coincides with
v for a node in Qf\Q". Then we need to correct the definition of the
interpolant on these nodes. The needed extension is defined as follows

v(x), if v € §+,

Ev = Py (Gv)(z) = { A(lz) fA; Gu(y)dy, ifz e Q(W
Notice that P»(Gv) and P;(Gv) agree at every node except the nodes z in
the following set

Sp = {x € Q\QT : z is a node of some triangle 7' € T, }.
Define also the collection of triangles that have a node in S.

My, ={T € T, : at least one of three vertices of T" belongs to Si}.
If we define ep, = Po(Gv) — P1(Gv) we see that
IVerlZzy = Y IVenllZaey-
TeMy

For each T' € My, let 7 € S be such that |ey(zr)| = maxyer|en(y)|.
Then it is simple to show, using inverse estimates, that

IVerll 2y < Clen(zr)|.
By definition we have

.
|Azr| Azp

1

Gu(y)dy Ao
T

len(z7)| = |v(@r) (z7) —

i

[ Go(@)J([G)dg
Azp

where J(y) is the Jacobian of the map y(y) — y. Applying the definition of
Gv from the previous section, using that v(Z7) = v(zr), and the fact that

Jaz, JW)dy = |Az,| we get

1
Javy

< C diameter (A ) ”V””Loo(ﬁ‘ )’
T

len(z7)| =

[ )o@ @
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We see that &;T C Bay(T) = {y € Qf : dist(y,T) < 2h} for a d large
2
enough but independent of h and T'.
Using an inverse estimate we have

diameter (A;T)HVU”LOO(K;T) < CIVvllr2sy, 1))

Hence, we get

IVenllFz) < C D IVollizs,, @y < CHVUHig(Q;)-
TeMy

Finally, using the triangle inequality we get

IVEv| 2y < [[VPL(GV)| 1200) + CHVUHH(Q;)-

The result now follows from using (C.1) and Poincare’s inequality.
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