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Abstract

From the general difficulty of simulating quantum systems using classical systems, and in particular
the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is
intrinsically more powerful than classical computation. At present, the best upper bound known for
the power of quantum computation is that BQP C AWPP, where AWPP is a classical complexity
class (known to be included in PP, hence PSPACE). This work investigates limits on computational
power that are imposed by simple physical, or information theoretic, principles. To this end, we define
acircuit-based model of computation in a class of operationally-defined theories more general than
quantum theory, and ask: what is the minimal set of physical assumptions under which the above
inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that
multipartite states and transformations can be characterized by local measurements), efficient
computations are contained in AWPP. This inclusion still holds even without assuming a basic notion
of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future
measurement choices). Following Aaronson, we extend the computational model by allowing post-
selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity
class, PostBQP, is equal to PP. Given only the assumption of tomographic locality, the inclusion in
PP still holds for post-selected computation in general theories. Hence in a world with post-selection,
quantum theory is optimal for computation in the space of all operational theories. We then consider
whether one can obtain relativized complexity results for general theories. It is not obvious how to
define a sensible notion of a computational oracle in the general framework that reduces to the
standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a
‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in
any theory satisfying the causality assumption does not include NP.

1. Introduction

Quantum theory offers dramatic new advantages for various information theoretic tasks [1]. This raises the
general question of what broad relationships exist between physical principles, which a theory like quantum
theory may or may not satisfy, and information theoretic advantages. Much progress has already been made
in understanding the connections between physical principles and some tasks, such as cryptography and
communication complexity problems. It is now known that the degree of non-locality in a theory is related
to its ability to solve communication complexity problems [2] and to its ability to perform super-dense
coding, teleportation and entanglement swapping [3]. Teleportation and no-broadcasting are now better
understood than they were when investigated solely from the viewpoint of quantum theory [4, 5].
Cryptographic protocols have been developed whose security relies not on aspects of the quantum
formalism, but on general physical principles. For example, device-independent key distribution schemes
have been developed that are secure against attacks by post-quantum eavesdroppers limited only by the no-
signalling principle [6].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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By comparison, relatively little has been learned about the connections between physical principles and
computation. It was shown in [7] that a maximally non-local theory has no non-trivial reversible dynamics and,
thus, any reversible computation in such a theory can be efficiently simulated on a classical computer. Aside
from this result, most previous investigations into computation beyond the usual quantum formalism have
centred around non-standard theories involving modifications of quantum theory. These theories often appear
to have immense computational power and entail unreasonable physical consequences. For example, non-linear
quantum theory appears to be able to solve NP-complete problems in polynomial time [8], as does quantum
theory in the presence of closed timelike curves [9, 40]. Aaronson has considered other modifications of
quantum theory, such as a hidden variable model in which the history of hidden states can be read out by the
observer [11], and these have also been shown to entail computational speedups over the usual quantum
formalism.

This work considers computation in a framework suitable for describing essentially arbitrary operational
theories, where an operational theory specifies a set of laboratory devices that can be connected together in
different ways, and assigns probabilities to experimental outcomes. Theories within this framework can be
described that are different from classical or quantum theories, but which nonetheless make good operational
sense and do not involve peculiarities like closed timelike curves. The framework, described in section 2 suggests
anatural model of computation, analogous to the classical and quantum circuit models, described in section 3.

The strongest known non-relativized upper bound for the power of quantum computation is that the class
BQP of problems efficiently solvable by a quantum computer is contained in the classical complexity class
AWPP. The class AWPP has a slightly obscure definition, but is well known to be contained in PP, hence
PSPACE. Section 3.4 shows that the same result holds for any theory in the operational framework that satisfies
the principle of tomographic locality, where this means, roughly, that transformations can be completely
characterized by product states and effects. That is, if the complexity class of problems that can be efficiently
solved by a specific theory G is denoted schematically BGP, then for tomographically local theories,

BGP C AWPP. Once suitable definitions are in place, the proofis essentially the same as the proof for the
quantum case: the idea is that this proof can be cast in a theory-independent manner, and be seen to follow from
avery minimal set of assumptions on the structure of a physical theory. In fact, the containment BGP C AWPP
still holds even in the absence of a basic principle of causality (which, if it does hold, ensures that there can be no
signalling from future to past).

It was suggested in [ 14] that quantum theory achieves, in some sense, an optimal balance between its set of
states and its dynamics, and that this balance entails that quantum theory is powerful for computation by
comparison with most theories in the space of operational theories. Although the status of this suggestion is
unknown, it turns out to be exactly correct in the context of a world allowing post-selection of measurement
outcomes. Aaronson showed that the class of problems efficiently solvable by a quantum computer with the
ability to post-select measurement outcomes is equal to the class PP [10]. Section 4 extends the idea of
computation with post-selection to general theories, and shows that given (as always) tomographic locality,
problems efficiently solvable by any theory with post-selection are contained in PP. In other words: any problem
efficiently solvable in a tomographically local theory with post-selection, is also efficiently solvable by a quantum
computer with post-selection.

Finally, oracles play a special role in quantum computation, forming the basis of most known computational
speed-ups over classical computation. Section 5 discusses the problem of defining a sensible notion of oracle in
the general framework, that reduces to the standard definition in quantum theory. This problem may not have a
solution that is completely general, hence we introduce instead a notion of ‘classical oracle’ that can be defined in
any theory that satisfies the causality principle. There then exists a classical oracle such that relative to this oracle,
NP is not contained in BGP for any theory G satisfying tomographiclocality and causality .

2. The framework

We will work in the circuit framework for generalised probabilistic theories developed by Hardyin [15, 16] and
Chiribella, D’Ariano and Perinotti in [12, 13]. The presentation here is most similar to that of Chiribella et al.

2.1. Tests and circuits

The idea of a generalised probabilistic theory is that a set of physical, or laboratory, devices is specified, which can
be connected together in different ways, such that the theory will give probabilities for different outcomes. Such
theories take tests as their primitive notions, where a test can be thought of as corresponding to a physical device
with input ports, output ports, and a classical pointer. Whenever the test is applied, the pointer ends up in one of
anumber of positions indicating a classical outcome. Input and output ports are typed, with types given by labels
A, B, C.... Asdiscussed in more detail below, tests can be composed both sequentially and in parallel, and when

2
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tests are composed sequentially, types must match: the output ports of the first device must have the same types
as the corresponding input ports of the second.

Suppose that for a particular test, the classical outcome r takes values in a set X. We shall assume throughout
that | X |is finite. A test £, with specified input and output types, then defines a set of events, one for each classical
outcome, {& },ex. With an input port of type A and an output port of type B, for example, the test can be

represented diagrammatically as
: :

and a specific event as

A @ B
A test is deterministic if its outcome set X is the singleton set.

Although tests, with input and output ports, and a pointer, form the primitives of the operational theory, it is
also useful to introduce a notion of physical system. A system may be thought of as passing between the output
port of a device, and the input port of the next, and has the same type as the ports. In other words, in the diagrams
above and below, systems correspond to wires. Given two systems of types A and B, we can form a composite
system of type AB. Operationally, a test with input system AB corresponds to a physical device with a set of input
ports labelled by A and a disjoint set of input ports labelled by B.

A test with no input ports corresponds to a preparation of a system—more precisely, such a test corresponds
to a set of preparations, with the classical pointer indexing which preparation actually occurs. Such a test can be

represented diagrammatically as:
@J

A test with no output ports corresponds to a measurement (that destroys or discards the system), with the
classical pointer indexing the measurement outcome. Diagrammatically, such a test can be written:

%
Both tests and events can be composed in sequence and in parallel. If {€, },cx, is a test from system A to Band
{U,, }1,ex, is atest from system Bto C, then their sequential composition is a test from A to C with outcomes
(n, ) € X3 X X;andevents {U], o &, }(,n)ex,xx,- Similarly, if {&, },.ex, is a test from system A to Band
{U}, },ex, isa test from system C'to D, then their parallel composition is a test from the composite system AC to
the composite system BD with outcomes (13, ) € X; X X, andevents {U;, @ &, }(.r,)ex,xx,- Sequential and
parallel composition satisfy

(U ® &) 0 (F® k) = (UioF,) ® (&, 0 K),

forevery U, &,, F,, K, with the property that the output of 7;, (respectively, ,,) matches the input of U},
(respectively, &, ). A generalised probabilistic theory specifies a set of tests, closed under sequential and parallel
composition.

A circuitin a generalised probabilistic theory corresponds to a number of tests, connected in sequence and in
parallel, such that there are no unconnected ports (i.e., no dangling input or output wires), and no cycles'. For
example:

A specific outcome of the above circuit corresponds to a particular classical outcome for each of the tests, i.e., to a
collection of events, connected in sequence and in parallel:

Connected sets of tests with dangling wires may be called open circuits, but this work has no need to consider open circuits, so we use the
term circuit throughout to refer to a closed circuit.
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G, Q2.1.1)

2.2. Probabilistic structure
So far, we have described the operational part of a generalised probabilistic theory, but not the probabilistic part.
In addition to specifying a set of tests, hence sets of circuits and circuit outcomes, a probabilistic theory should
assign probabilities to circuit outcomes. In a generalised probabilistic theory, every outcome of a circuit is
assigned a probability P (1;1,...1,), understood as the joint probability of outcomes 7, ..., 7, for the individual
tests occurring on a single run. The joint probabilities satisfy 3, . . P (rir...r,) = 1. Afurther constraint is that

probabilities for unconnected, i.e., independent, circuits factorize. This means that for events &,,, , and

T
Fis,...s,» €ach of which corresponds to the outcome of a closed circuit, probabilities assigned to the composite
events &, . ® Fis,. spand &y, . oF:s, s, cachsatisfy P (fi...5,, s1...5,) = P (1i...1,) P (51...5,).

The introduction of probabilities into the theory induces linear structure that will be crucial in what
follows. Consider two events &) and &£}, whose input and output ports have matching types. Suppose that for
every closed circuit, and every outcome of the circuit, replacing £, with & does not change the probability of
the outcome. In this case, £y and & are equivalent. The events £y and &£, may be easily distinguished
operationally by the fact that the corresponding physical devices look quite different, but there is no
distinction between &£y and & from the point of view of the probabilistic predictions of the theory. We refer to
the equivalence classes of events formed in this way as transformations. The following will mostly be concerned
with transformations, rather than the underlying primitive events. Transformations with no input ports we
will sometimes call states, and transformations with no output ports, effects. For system types A and B, the sets
of transformations from A to B, states on A and effects on Bare denoted Transf(A, B), St(A), and Eff(B)
respectively.

Quantum theory provides a specific example of a theory that can be described in this framework. A system is
associated with a complex Hilbert space, with the type of the system given by the dimension of the Hilbert space.
States and effects are associated with positive operators, and transformations are associated with trace non-
increasing completely positive maps. A test with no input ports corresponds to what is sometimes called a
‘random source of quantum states’, and is associated with positive operators {y } such that )" Tr(p) = 1. When
the test is performed, the probability that the classical pointer takes position ris given by Tr(p.), and the
quantum state that is prepared, conditioned on the pointer reading being r, is the normalized operator g /Tr (7).
A test with no output ports is associated with a positive operator-valued measurement, that is a set of positive
operators {E;} satisfying )", E; = I. A test with both input and output ports is associated with a quantum
instrument, that is a set of trace non-increasing completely positive maps, one for each value of the pointer
reading r, that sum to a trace-preserving map. Given these associations, the standard rules of quantum theory
allow the probability to be calculated for any circuit outcome.

Returning to the general framework; it is convenient to use the ‘Dirac-like’ notation |6, ) 4 to represent a state
of system type A, and 4 (4, | to represent an effect on system type A, so that if the state |5, ) 4 is followed by the
effect 4(4,,], the joint probability of obtaining outcome r; for the preparation and outcome r; for the
measurement is given by

aAnlon)a =P (1, 12).

In the following, we shall sometimes drop the input/output type label. A state |, ) 4 can be identified witha
function from effects on A into probabilities, such that

A(irzl A (lrz |6r1)A-

Since one can take linear combinations of functions, the set of states St (A) can be extended to a real vector space,
which we denote Vj. In quantum theory, for example, states are positive operators, which span the real vector
space V, of Hermitian operators.

Similarly, an effect 4(4,,| can be identified with a function from preparation events to probabilities:

|Ur1)A =aA (/1r2|0r1)A,

and the set of effects Eff(A) can be extended to a real vector space V2. A more general kind of
transformation, from (possibly composite) system type A to (possibly composite) system type B, defines
a function into probabilities, where the domain is now circuit fragments with the property that there are
unconnected input and output ports, such that adding in a transformation of this type results in a closed
circuit. Again, this means that the set of transformations Transf(A, B) can be extended to a real vector
space, denoted Vj.
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Throughout the paper, we adopt

Assumption 1. For every pair of system types A and B, and every transformation from A to B, V4 is finite
dimensional.

Asa consequence, the vector space generated by effects on a system can be regarded as dual to the space of

states, and vice versa: V4 = (V;)*and V, = (V4)*. In other works on generalised probabilistic theories, it is
quite often assumed that the sets Transf(A, B), St(A), and Eff(B) are convex subsets of the corresponding
vector spaces, the idea being that probabilistic mixtures of allowed transformations should also be allowed
transformations. This work, however, doesn’t need this assumption: the main constraints on sets of
transformations, states and effects are closure under sequential and parallel composition.

2.3. Tomographic locality
Every transformation T from A to Binduces a linear map from Vj to Vg, uniquely defined by

lo:), € St(A) = Ti|o,), € St(B), (2.3.1)

where T;|6,) 4 is the state of type B, corresponding to composition of T, with | o, ) . Without further assumptions,
however, this map is in general not sufficient to specify the transformation 7. To see this, consider the situation
in which the transformation T is applied to one half of a bipartite state |6) sc. The composition defines a
bipartite state of type BC, which can be schematically represented |6")gc = (T; ® Ic)|0)ac, with Ic understood
as an identity transformation (or the absence of any transformation) on system C. The action of T, on bipartite
states of type ACinduces a linear map from Vj¢ to Vpc. In general, however, there need be no simple
relationship between this map, and the map above from Vj to Vg. Indeed, there need not be any simple
relationship between the vector space V¢ and the vector spaces for the individual systems, V and Vc. For each
possible system type C, this structure is ultimately specified by the theory, via the assignments of probabilities to
circuit outcomes”.

The representation of transformations in a generalised probabilistic theory is greatly simplified by the
assumption of fomographic locality. A theory satisfies tomographic locality if every transformation can be fully
characterized by local process tomography. More formally, consider transformations Tsl1 and TSZ2 , both of which
have input type A;---A,, and output type B; -:-B,,. Consider circuit outcomes of the form

ol AL
Ay B,
: Ty,
m m
§ A'V,L BTL t’”

with corresponding probability P’ (r...7,, t...t,, s;),where i € {1, 2}. Tomographic locality states that for all

transformations Tsll and Tszz with matching input and output types, if
1 1
Pl( N...ls Bee il 51) = Pz( M.l Bee iy 52) v |6r1 )) EERS) |o-rn )) (ﬂtl |) [EX3} (j't’j,

m

then
T = T2
The whole of the rest of this work adopts

Assumption 2. Tomographic locality is satisfied.

A consequence of tomographic locality is that for a transformation with input type AB and output type CD,
the corresponding real vector space has the form [12-14],

VEB2VARQ VE® Ve ® W,

where ® here denotes the ordinary vector space tensor product (as opposed to the symbolic ® used above to
denote parallel composition). In particular, for a bipartite state of type AC, the corresponding vector space
Vac 2 Va ® Vc. Furthermore, a transformation T; € Transf(A, B) is completely specified by its action on
St(A), hence T; can be identified with the linear map defined by equation (2.3.1). When T;acts on part ofa

The operational content of assumption 1 is that there does at least exist a finite set of system types C, such that specification of the action of
T; @ Ic on V¢ for each of the system types in this finite set is sufficient to characterize T.
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bipartite state of type AC, the induced linear map Vac — Vpcisgivenby T; ® Ic, where again, the symbol @
represents the ordinary vector space tensor product, and I is now the identity operator on the vector space Vc.
In view of assumptions 1 and 2, the symbol ® will from here on denote the ordinary tensor product of finite
dimensional vector spaces.

Fixing a basis for each system type, a transformation T'with input AB and output CD can be written as a
matrix

A B C D
T= Y Myu(a! ® af ® of ® ),
ikl

where Mj; ;; € R, {a,-A hia jB } are bases for VA and VB respectively, and {alc 1 {af } are bases for Vc and Vp
respectively. The probability associated with a circuit outcome, e.g., of the form of figure (2.1.1), can be written

3 2 1
M. (M2 ® Ic). M,
where M,} (a column vector) is the matrix form of the transformation corresponding to the event &,, M,f

corresponds to ;,, and Ms (arow vector) corresponds to G,..

2.4. Causality

A nice feature of the Pavia-Hardy framework we have described is that a basic assumption of causality is not
implicit, but can be articulated explicitly and theories considered that do not satisfy this assumption. A
generalised probabilistic theory is said to be causal if the marginal probability of a preparation event is
independent of the choice of which measurement follows the preparation. More formally, if {|6;) },ex C St(A)
are the states corresponding to a preparation test, consider the probability of outcome 7, given that a subsequent
measurement £ corresponds to a set of effects { (1;]};ey:

P(il€) = Y ()l0:).
jey
The theory is causal if for any system type A, any preparation test with outcome 7, and any pair of measurements,
& and 7, with input type A,

P(i|€) = P(i|F).

Note that the causality assumption is logically independent from tomographic locality: generalised probabilistic
theories satisfying one or both or neither can be defined.

If circuits are thought of as having a temporal order, with tests later in the sequence occurring at a later time
than tests earlier in the sequence, then the assumption of causality captures the intuitive notion of no signalling
from the future. It was shown in [12] that a generalised probabilistic theory is causal if and only if for every system
type A, there is a unique deterministic effect 4 (u]. In this case, a measurement, with corresponding effects
{(Zj1} ey, satisfies D i (4j] = (u]. Astate|o) isnormalized if and only if (#|o) = 1. The causality assumption
also implies [ 12] a no-signalling principle for the states of the theory. That is, in a causal theory, if a test is
performed on the A part of a composite system of type AB, then it is not possible to get information about which
test was performed by only performing a test on the B part. (For an interesting extension of this idea to arbitrary
causal networks, corresponding to circuits in the Pavia-Hardy framework, see [17].)

Although the idea of no-signalling from the future seems intuitive, there is nothing obviously pathological
about generalised probabilistic theories that do not satisfy the causality assumption, aslong as one does not try to
define adaptive circuits, wherein a choice of later test can depend on an earlier outcome. Indeed there is nothing
about the framework as it stands that forces an interpretation of the circuits described as a sequence of tests
applied in a temporal order matching the order of tests in the circuit. Perhaps an entire closed circuit is set up in
advance, and the pointers attain their final resting positions together, when a ‘go’ button is pressed. Remarkably,
the majority of the results derived in this work do not require the causality assumption, hence: except where
explicitly stated, causality is not assumed in what follows.

2.5. Examples

As already noted, quantum theory can be formulated as a generalised probabilistic theory in the above
framework, with finite dimensional quantum theory satisfying assumption 1. Quantum theory satisfies the
causality assumption, as the probability of an event cannot depend on the choice of a measurement that is
subsequently performed on the system. For a system associated with Hilbert space H, the unique deterministic
effect, guaranteed to exist in a theory satisfying the causality assumption, is simply the identity operator I on H.
For a system of type A, the vector space Vj is the real vector space of Hermitian operators, spanned by the density
matrices. [tis well known that quantum theory satisfies the assumption of tomographic locality. This follows
from the way in which systems combine to form composite systems: a joint state is a positive operator acting on

6
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the tensor product of the Hilbert spaces associated with the individual systems. One can then check that the real
vector spaces of Hermitian operators satisfy Vag = V4 @ Vp.

The framework presented is also general enough to accommodate the basic classical theory of finite
dimensional probability distributions and stochastic processes, as well as probabilistic theories different from
either quantum or classical theory. The latter include ‘box world’ [3, 14], a causal theory allowing for arbitrarily
strong nonlocal correlations, such as the PR box correlations of Popescu and Rohrlich [18] that maximally
violate the CHSH inequality. Quantum theory defined over real, rather than complex, Hilbert spaces supplies an
example of a theory that does not satisfy tomographic locality. See also [19] for an explicit construction that does
not satisfy the causality assumption.

3. Computation in generalised probabilistic theories

3.1. Uniform circuits

The last section showed that in a generalised probabilistic theory, one can draw circuits representing the
connections of physical devices in an experiment, and the specific events that took place in the experiment.
These circuits provide a natural model of computation, based on the classical and quantum circuit models. A
good notion of efficient computation needs a definition of a uniform family of circuits in a generalised
probabilistic theory.

In the standard, classical or quantum, circuit model, a circuit family {C,,} = {C;, C; ,...} consists ofa
sequence of circuits, each indexed by a positive integer 1, denoting the input system size, where C,, is the circuit
corresponding to a problem instance of size . In a poly-size circuit family, the number of gates in C,, is bounded
by a polynomial in #, and the circuit family is uniform if a Turing machine can output a description of C, in time
bounded by a polynomial in #.

In a generalised probabilistic theory, there is no reason to assume that a circuit must have the form of a
number of gates acting on some input, where the input preparation encodes the problem instance—recall that
we do not necessarily assume that the generalised probabilistic theory satisfies the causality assumption, in which
case a circuit does not have a preferred direction. Instead, we allow the entire circuit to encode the problem
instance, defining a circuit family as a set {C, } such that each circuit is indexed by a classical string x = x;x; ... X..
A circuit family is poly-size if the number of gates is bounded by a polynomial in |x|. For a particular generalised
probabilistic theory it might not be the case that bipartite and single system transformations together are
universal for computation, as they are in classical and quantum computation. Hence for any k, 1, a circuit might
involve gates with k input systems and / output systems. In general, it might be the case that no finite gate set is
universal for computation. Nonetheless, we will impose as a requirement of uniformity that any uniform circuit
family is associated with a finite gate set’, such that each circuit in the family is built from elements of that set. It
follows that the number of distinct system types appearing in a uniform circuit family is also finite.

A further requirement for a circuit family to be uniform takes the form of a constraint on the entries of the
matrices representing the transformations that appear in the finite gate set—otherwise, it may be possible to
smuggle hard to compute quantities into the computation. There must exist some fixed choice of basis of V, for
each system A, such that a Turing machine can efficiently compute approximations to the entries of the matrices
relative to these bases. We require that for any matrix entry (M);;, and any ¢, a Turing machine can output a
rational number, within € of (M);;, in time bounded by a polynomial in log (1/¢). This is physically reasonable,
since gates are supposed to represent operational devices, and it makes sense to assume that an experimenter
with access to devices governed by some generalised probabilistic theory cannot align, or employ, them with
arbitrary accuracy.

Finally, for a circuit family {C, } to be uniform, there must be a Turing machine that, acting on input x,
outputs a classical description of C, in time bounded by a polynomial in | x|.

The notion of a poly-size uniform circuit family {C, } can be summarized as follows:

e The number of gates in the circuit C, is bounded by a polynomial in | x .

o Thereisa finite gate set G, such that each circuit in the family is built from elements of G.

o For each type of system, there is a fixed choice of basis, relative to which transformations are associated with
matrices. Given the matrix M representing (a particular outcome of) a gate in G, a Turing machine can
outputa matrix M with rational entries, such that | (M — M);| < €, in time polynomial in log(1/e).

For a uniformity condition where the size of the gate set grows with circuit size, see [39].

7
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o ThereisaTuring machine that, acting on input x = x,x;... x,,, outputs a classical description of C, in time
bounded by a polynomial in |x|.

3.2. Acceptance criterion
Now that we have defined a uniform family of circuits, we need to discuss the acceptance criterion. In quantum
computation it is known that performing intermediate measurements during the computation does not increase
the computational power. So, without loss of generality, all measurements can be postponed until the end of the
computation. A quantum computer can be defined to accept an input string x if the outcome of a computational
basis measurement on the first outcome qubit is |0). In a general theory, it need not be the case that all
measurements can be postponed until the end of the computation without loss of generality, hence the
acceptance criterion should reflect this.

The way in which a generalised probabilistic theory solves a problem might be imagined as follows. First,
given the input string x, the circuit C, is designed and built by composing gates from the fixed finite gate set
sequentially and in parallel according to the description. An example of such a circuit is depicted below.

<<tal‘4|ii!H|B D e F Aok

{17}

s )t
c L JG g

Once the circuit is built, the computation can be run. At the end of a run, each gate has a classical outcome
associated with it, where the theory defines a joint probability for these outcomes. For the example above, the
joint probability is given by

P(fiss18) = (2, | (A0 | (T5y @ T2) T (T, @ 10)18,) |63).-

Denoting the string of observed outcomes by z = 7...r3, the final output of the computation will be given by a
function a (z) € {0,1}, where there must exist a Turing machine that computes a in time polynomial in the
length of the input |x |. The probability that a computation accepts the input string x is therefore given by

P (accept) = Z P(z),

zla(z)=0

where the sum ranges over all possible outcome strings of the circuit C,.

3.3. Efficient computation
The class of problems that can be solved efficiently in a generalised probabilistic theory can be defined as follows.

Definition 3.3.1. For a generalised probabilistic theory G, alanguage £ isin the class BGP if there exists a poly-
sized uniform family of circuits in G, and an efficient acceptance criterion, such that

e x € Lisaccepted with probability at least %
o x ¢ Lisaccepted with probability at most %

As ever, the choice of the constant 2/3 is arbitrary. Any fixed constantk, 1/2 < k < 1would serve equally
well”.

For a specified G, the class BGP is the natural analogue of BPP for probabilistic classical computation, and
BQP for quantum computation. Indeed, BGP reduces to BPP or BQP in the case that the theory G is in fact the
classical or quantum theory. See, e.g., [20] for a proof that quantum circuits with mixed states and CP maps are
equivalent in computational power to standard quantum circuits with pure states and unitary transformations.

Note that the way in which the acceptance criterion is defined implies that P C BGP, for (almost) every
generalised probabilistic theory G. This is a consequence of the fact that the final output is a function a(z) of the
string of observed events, and the only constraint on a is that it can be efficiently computed by a Turing machine.
Degenerate cases provide exceptions to this—consider, e.g., any theory such that all transformations are

* Note that each uniform circuit (with an efficient acceptance condition) defines a random variable that maps circuit outcomes to the set
{accept, reject} and so one can regard multiple repetitions of a computation as a collection of i.i.d random variables (independence follows
from the definition of the probabilistic structure; specifically that the sequential or parallel composition of two events corresponding to
outcomes of closed circuits define independent probability distributions). This fact is independent of the form of a particular theory and so
holds true for all theories in the framework. Taking this fact in conjunction with the definition of BGP and applying the Chernoff bound
provides the required result. See [ 1, p 154] for more discussion of the quantum case.
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deterministic, i.e., the outcome set of any circuit is the singleton set. One could remove these degenerate cases by
generalizing the acceptance function a(. ) so that it depend on both the outcome string zand the input string x.
Of course, the fact that P C BGP does not have much to do with the intrinsic computational power of a GPT,
but is an artefact of the acceptance criterion—it might be interesting to weaken this criterion so that
computation in theories intrinsically weaker than classical can be explored.

3.4. Upper bounds on computational power

Using the above definitions of uniform circuit families, and acceptance of an input, the following upper bound
on the computational power of any generalised probabilistic theory can be obtained. The main assumption—in
addition to those involved in uniformity—is that tomographic locality holds. The result does not require the
causality assumption.

Theorem 3.4.1. For any generalised probabilistic theory G satisfying tomographic locality, BGP C AWPP C PP C
PSPACE.

Here, PSPACE consists of those problems that, roughly speaking, can be solved by a classical computer
using a polynomial amount of memory. PP stands for Probabilistic Polynomial time, which roughly speaking,
contains those problems that can be solved by a probabilistic classical computer that must get the answer right
with probability >1/2. The probability does not need to be bounded away from 1/2, indeed may be greater than
1/2 only by an exponentially small amount, hence PP contains problems that are not thought to be efficiently
solvable by a classical random computer. AWPP stands for Almost Wide Probabilistic Polynomial time, and it is
known that AWPP C PP. The best known upper bound for the class of efficient quantum computations
similarly states that BQP C AWPP.

To define the class AWPP, the notion of a GapP function must be introduced. Given a polynomial-time
non-deterministic Turing machine M and input string x, denote by M,..(x) the number of accepting
computation paths of M given input x, and by M,j(x) the number of rejecting computation paths of M given x. A

function f: {0,1}* — Z isa GapP function if there exists a polynomial-time non-deterministic Turing machine
Msuchthat f (x) = My (x) — M, (x) for all input strings x. The class AWPP can be defined as follows [35].

Definition 3.4.2. The class AWPP consists of those languages £ such that there exists a GapP function f,and a
polynomial r such that

e Ifx € Lthen2/3 < f(x)/27D < 1,

o ifx & Lthen0 < f(x)/27D < 1/3.

Once the appropriate definitions for generalised probabilistic theories are in place, the proof of theorem
3.4.11is a fairly straightforward extension of similar proofs for the quantum case, and is presented in appendix B.

Although formal proofs are relegated to appendices, it is useful to sketch the proof that BGP C PSPACE in
order to provide intuition about how the physical principles underlying generalised probabilistic theories lead to
computational bounds.

Sketch proof. Consider a general circuit Cr, with g (] T'|) gates. Tensoring these gates with identity
transformations on systems on which they do not act, and padding them with rows and columns of zeros, results
in a sequence of square matrices M™4,..., M"!, where M"" is the matrix representing the r, th outcome of the
nth gate. This can be done in such a way that the probability for outcome z = 1... 7, is given by

TAf o 21511 — g9 2 1,1
bTMet- MM = YT M MM,

lig—1 iz
{il ,,,, ig-1

where bis the vector b = (1, 0,...,0) and b" is its transpose. The output probability is a sum of exponentially
many terms, but each term is a product of polynomially many numbers, each of which can be efficiently
calculated. So a classical Turing machine can calculate each term in the sum, one after the next, keeping a
running total. This requires only polynomial-sized memory. O

This proof relies on the ability to decompose the acceptance probability of the computation in a form
reminiscent of a (discrete) Feynman path integral. This is a consequence of the fact that transformations in a
generalised probabilistic theory are linear, and thus have a matrix representation. It is pertinent then to ask
where this linearity comes from. When we introduced generalised probabilistic theories in section 2.1, we
associated states (respectively, effects) with functions taking effects (respectively, states) to probabilities. As one

9
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can take linear combinations of such functions, this induces a linear structure on the set of states (respectively,
effects). Thus the linear structure of generalised probabilistic theories arises from the requirement that a physical
theory should be able to give probabilistic predictions about the occurrence of possible outcomes.

Aside from linearity, a further requirement of the proofis the ability to compute efficiently the entries in the
matrices representing the transformations applied in parallel in a specific circuit. Section 2.3 noted thatin a
theory satisfying tomographic locality, a transformation £ € Transf(A, B) is completely specified by its action
on St(A), and so the matrix representing transformations applied in parallel can be easily calculated by taking
the tensor product of the matrices representing each individual transformation. This is not the case in a theory
without tomographic locality, where the tensor product structure disappears. If a transformation from A to B
acts on one half of a system AC, there may be no simple way to relate the linear map St(AC) — St(BC) to the
action of the transformation when it is applied to a system A on its own, or indeed to a joint system AC'. There
may therefore be no efficient way of computing matrix elements corresponding to a transformation considered
as part of a circuit of arbitrary size. An interesting direction for future work might be to weaken the assumption
of tomographic locality such that the results still go through. Real Hilbert space quantum theory provides an
example of a theory without tomographic locality for which the above bounds hold, since there is an efficient
way of calculating relevant matrix entries.

4. Post-selection and generalised probbilisitic theories

In [10] Aaronson introduced the notion of post-selected quantum circuits. These are quantum circuits which, in
addition to having a specified qubit, on which a computational basis measurement will be made to provide the
outcome, have an additional qubit on which a measurement can be performed such that we can post-select on
the outcome. Instead of sampling the measurement result r directly from the computational outcome qubit
according to the distribution P(r), only those runs of the computation are counted for which a measurement on
the post-selected qubit yields the outcome s = 0. The outcome distribution for the computation is taken to be the
conditional distribution P (r|s = 0). An extra technical condition is needed, which is that there exists a constant
D and polynomial wsuch that P (S = 0) > 1 /DY <D, je., we can only post-select on at most exponentially-
unlikely outcomes”.

Definition 4.0.3. A language L is in the class PostBQP if there is a polynomially-sized uniform quantum circuit
family, where each circuit has a computational outcome qubit and a post-selected qubit, such that when
computational basis measurements are performed on these qubits, with respective outcomes rands,

e There exists a constant D and polynomial wsuch that P (s = 0) > 1/D"(xD

o Ifxe LthenP(r=0]|s=0) >

o Ifx¢& LthenP(r=0|s =0) <

W= W

Aaronson showed in [10] that PostBQP = PP. Combining this with theorem 3.4.1 gives
Theorem 4.0.4. For any generalised probabilistic theory G, BGP C PostBQP.

Roughly speaking, a post-selecting quantum computer can simulate computation in any other theory
satisfying tomographic locality. One can also define a notion of generalised circuits with post-selection
on at most exponentially-unlikely outcomes. These are poly-sized uniform circuits in a generalised
probabilistic theory, where the probability of acceptance is conditioned on the circuit outcome z lying in
a (polytime computable) subset of all possible values of z. Defining the class PostBGP in the obvious
way, one then obtains

Theorem 4.0.5. For any generalised probabilistic theory G, PostBGP C PP.
The proofis in appendix C. Combining this with Aaronson’s result yields

5. . - > e . .

This extra condition was missing from Aaronson’s original paper on PostBQP, but is needed for the definition of PostBQP to be
independent of a choice of quantum gate set; see section 2.5 of [21]. We thank Scott Aaronson for some very interesting discussions
concerning this point.

10
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Corollary 4.0.6. For any generalised probabilistic theory G, PostBGP C PostBQP.

So, in a world in which we can post-select on at most exponentially-unlikely events, quantum theory is
optimal for computation in the space of all tomographically local theories. Note that the class of problems
efficiently solvable on a probabilistic classical computer with the power of post-selection is unlikely to be as large
as PP: it was shown in [22] that if this class, denoted BPPByq,, is equal to PP, then the polynomial hierarchy
collapses to the third level.

It was suggested in [ 14] (see also [31]) that quantum theory in some sense achieves an optimal balance
between the sets of available states and dynamics, in such a way that quantum theory is optimal, or at least
powerful, for computation relative to the class of generalised probabilistic theories. It is interesting to ask
whether corollary 4.0.6 can be seen as evidence in favour of this idea. The following considerations show that
caution is needed. Consider, for example, the class IQP [22], of restricted quantum computations where the
only gates allowed in a circuit are diagonal in the {|+), |—) } basis. Clearly IQP C BQP, but it is unlikely that
BQP C IQP. However, it was shown in [22] that PostIQP = PP = PostBQP. Alternatively, consider the class
of restricted quantum computations DQCy, discussed in [23], known as the one clean qubit model, where the
inputs to each circuit are restricted to be one pure qubit with as many maximally mixed qubits as desired. At the
end of the computation, k qubits are measured in the computational basis. Clearly, DQCy C BQP, but again,
DQC; is not believed to be universal for quantum computation®.It was shown in [23] that
PostDQCy = PP = PostBQP for k > 3. So, while PostBQP C PostDQCy, under reasonable assumptions
[24] itis not the case that BQP C DQCy.

5. Oracles

In classical computation, an oracleis a total function O: N — {0,1}. A number x is said to be in an oracle O if
O (x) = 1, hence oracles can decide membership in a language. Let C and B be complexity classes, then C® denotes
the class C with an oracle for B (see [25] for formal definitions). We can think of CP as the class of languages
decided by a computation which is subject to the restrictions and acceptance criteria of C, but allowing an extra
kind of computational step: an oracle for any desired language £ € B that may be queried at any stage in the course
of the computation, with each such query counting as a single computational step. That is, bit strings may be
generated at any stage of the computation and presented to the oracle, which in a single step, returns the
information of whether the bit string is in £ or not. Given two complexity classes, C; and C,, we say the relation”
C, = C, holds relative to the oracle B, if C? = C%. Such aresult is referred to as a relativized separation result.
Oracles play a special role in quantum computation, forming the basis of most known computational speed
ups over classical computation [1]. In quantum computation, oracle queries are represented by a family {R,,} of
quantum gates, one for each querylength. Each R,, is a unitary transformation acting on #n + 1 qubits, whose
effect on the computational basis is given by

R, |x3 61) = |x’ a @A(x)>

forall x € {0,1}"and a € {0,1}, where A is some Boolean function that represents the specific oracle under
consideration. One could also consider more general oracles that, when queried, apply some general unitary
transformation to the query state, but here, we only consider oracles that compute Boolean functions. In the
state vector formalism of quantum theory, the action of a unitary oracle is defined on a maximal set of pure and
perfectly distinguishable states, namely the computational basis. Linearly extending this to all states in the
Hilbert space uniquely defines the action of the oracle on any state.

As pointed out to us by Howard Barnum [26], the situation for generalised probabilistic theories is more
subtle. Consider, for example, the density matrix formulation of quantum theory, and suppose that oracle
queries correspond to a family of trace-preserving completely-positive maps {&, }. Analogously to the state
vector formalism, define the action of the oracle on a maximal set of pure and perfectly distinguishable states
{p; 1Y, where each p; is a density matrix, by

Ep ®p) =p ® Pagaier (5.0.1)
where p. = g, ® -+ ® p, and Ais the function computed by the oracle. Note that

RO N = h ® Puga = Ina) = 0 [x a @A),

6 . . . .
In fact, under reasonable assumptions, DQCy is provably not universal for quantum computation [24].

7 The = canbe replaced with #, C or 2 equally well.
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where a = 1,..., N and €4 ®% is some phase factor that depends on the query state. Now, in addition to being
able to compute the function A, a quantum computer with access to the oracle may also acquire information
about the function ¢, which may be hard to compute [27]. The usual definition of a quantum oracle therefore
prevents ‘sneaking in information’ through phase factors.

In generalised probabilistic theories (with sufficient distinguishable states), it is easy to produce a definition
of an oracle analogous to that of equation (5.0.1). But for a system type A, a maximal set of pure and perfectly
distinguishable states does not in general span the vector space V4. Hence the action of an oracle on such a set of
states will not, in general, uniquely define its action on an arbitrary state in the state space. It is then not clear
what extra condition must be placed on the oracle, first to define its action on arbitrary input states, and second
to prevent non-trivial information being obtained through its action on non-basis input states (perhaps viaa
generalised notion of phase [28]).

Rather than attempt to solve this problem, we will instead consider a notion of ‘classical oracle’ that can be
defined in any generalised probabilistic theory that satisfies the causality assumption of section 2.4. The causality
assumption allows the construction of adaptive circuits without paradox (see [12] for a more thorough
discussion of the causality assumption, adaptive circuits, and conditioned transformations). In an adaptive
circuit, the choice of which test to perform can depend on the outcomes 7, ..., 7, of previous tests in the circuit.
Anoracle A : N — {0,1} defines an extra gate that can be used in a computation in addition to those of the finite
gate set, but with input and output that are classical wires, rather than being typed as with the gates intrinsic to
the theory. The input to the oracleisa function f (1, ..., 1) of the outcomes of tests that appear in the circuit
prior to the use of the oracle. The design of that portion of the circuit that is subsequent to the oracle can depend
on the output A(f) of the oracle. An oracle can be used in this way an unlimited number of times in a circuit, with
each use counting as one gate. The uniformity condition must be extended, so that for each use of the oracle in a
circuit, the input f (n, ..., 1), and the design of the circuit subsequent to the oracle, are computable in poly-
time by a Turing machine with access to an oracle for A. The acceptance criterion can also be extended so that
for a circuit outcome z, the function a(z) is computable in poly-time by a Turing machine with access to an
oracle for A.

Definition 5.0.7. For each causal generalised probabilistic theory G, alanguage £ is in the class BGP? if there
exists a poly-size uniform family of circuits with access to the classical oracle A, and an efficient acceptance
condition, such that

e x € Lisaccepted with probability at least %
o x ¢ Lisaccepted with probability at most %

We can use the notion of classical oracle to obtain the following relativized separation result.

Theorem 5.0.8. There exists a classical oracle A such that for any causal generalised probabilistic theory G,
NPA ¢ BGPA.

The proofis in appendix D. This generalizes the results of [30] from quantum theory to causal generalised
probabilistic theories that satisfy tomographic locality. The result proved in the appendix is actually stronger:
there exists a classical oracle A such that for any causal generalised probabilistic theory G that satisfies
tomographic locality, the polynomial time hierarchy is infinite and BGPY C P*. The oracle in question is the
same oracle that was used by Fortnow and Rogers in [30].

6. Discussion and conclusion

This work has investigated the relationship between computation and physical principles. Using the circuit
framework approach to generalised probabilistic theories, introduced by Hardyin [15, 16] and Chiribella,
D’Ariano and Perinottiin [12, 13], the computational power of theories formulated in operational terms can be
investigated, along with the role played by simple information-theoretic or physical principles that a theory may
or may not satisfy. A rigorous model of computation can be defined that allows a definition of the complexity
class of problems efficiently solvable by a specific theory. The strongest known inclusion for the quantum case,
BQP C AWPP, which implies BQP C PP C PSPACE, still holds in any theory satisfying tomographic locality,
and it is notable that this includes even those theories that violate the causality principle. Combining these results
with aresult of Aaronson’s, it follows that any problem efficiently solvable in a theory satisfying tomographic
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locality can also be solved efficiently by a post-selecting quantum computer. In fact, one can say something
stronger: any problem efficiently solvable with post-selection in a theory satisfying tomographic locality can also
be solved efficiently by a post-selecting quantum computer. Roughly speaking, then, in a world with post-
selection, quantum theory is optimal for computation in the space of all tomographically local theories.

We discussed the problem of defining a computational oracle for an arbitrary theory. In general, this
problem may have no good solution, if it is required that the definition of an oracle reduce to the standard
definition in the quantum case. Nonetheless, a notion of ‘classical oracle’ can be defined in any theory that
satisfies the causality principle, and for such theories there exists a classical oracle relative to which NP is not
contained in BGP. Itis plausible that there is an interesting subclass of theories, for which a notion of oracle can
be defined that admits ‘superposition’ of inputs, and reduces to the standard definition in the quantum case. If
so, then for these theories, the solution of the ‘subroutine problem’ of [29] might serve as an interesting
computational principle that could rule out certain theories, potentially providing a new principle from which
quantum theory can be derived.

An open question is to establish tighter bounds on the power of general theories. Even with tomographic
locality assumed, there is alot of freedom in the construction of a generalised theory. Is there an explicit
construction that solves a hard problem, that is, a problem at least thought to be hard for quantum computers?
Even better, can we describe a complexity class, potentially larger than BQP, and an explicit construction of a
general theory G, such that this class is contained in BGP? It would be interesting to determine whether
violation of the causality principle can confer extra computational power. An initial thought is that there could
be anon-causal theory that can efficiently solve NP-complete problems. Given that the inclusion
BGP C AWPP holds even for non-causal (tomographically local) theories, however, this can only be the case if
NP is contained in AWPP. At present, this is unknown, and establishing the question either way would
constitute a major advance in complexity theory. Still, it would be interesting if the violation of causality enabled
the efficient solution of other problems, thought to be hard for quantum computers, but known to be in AWPP.

Finally, although our main results do not require the causality principle, we have nonetheless been
considering circuits in which gates appear in a fixed structure. It would be interesting to investigate the
computational power of theories in which there is no such definite structure. Frameworks for describing
situations with indefinite causal structure have been defined with the aim of discussing aspects of quantum
gravity [32, 33]. Some preliminary remarks on the computational power of such theories were given in 33, 41]
and a specific query complexity problem that can be solved with fewer queries on a quantum computer in which
the gates do not appear in a fixed order than on a standard quantum computer was presented in [42].
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Appendix A. Approximate circuit families

Consider a poly-size uniform circuit family {C, }, defined over a finite gate set . Each gate in G corresponds to
some finite set of transformations, one for each classical outcome of the gate. From the uniformity condition, the
entries of the matrices representing these transformations can be calculated to accuracy € in time poly(log (1/¢€)).
With e (|x|) a function of the input size, consider a family { C,} of approximations to the original circuits, where
matrix elements are replaced by rational numbers within € (|x|) of the original matrix elements. Call {C.an

¢ (|x])-approximation to {C, }. The following result shows that { C,} can simulate {C, }, to an accuracy
dependent on € (|x|).

Proposition A.0.9. Let {C,. } be a uniform circuit family, with the number of gates in C, bounded by a polynomial
q(1x]). Let { C;} bean e (|x|)-approximation to {Cy }, with € (|x|) < 1. Ifthecircuit Cr € {C,} gives an outcome
sequencez with probability P(z), then the circuit Cr € {C,} gives outcome sequence z with amplitude D(z) such that

|P@ - Pa)]| < D20T0=19 (T e (ITN,
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whereN and D are constants depending on the gate set G.

The word amplitude here should not be confused with the complex amplitudes of quantum theory. Itis used
for the real-valued quantity which approximates an outcome probability for the original circuit family, and is
used rather than the term probability, because this quantity can be (slightly) less than 0 or (slightly) greater than
1. (The approximating circuit family is a mathematical construction that need not correspond precisely to a valid

circuit family in the theory.) This proposition will be useful in the main proofs, since if {C, } is a circuit family

1
that decides some language £ in BGP, it follows thata -approximation to {C, } will accepta

12 (|x|) D9UxD-IN
string x € L with amplitude atleast 7/12, and will accept a string x & £ with amplitude at most 5/12, hence the
success amplitude is still bounded away from 1/2. The uniformity condition ensures that such an e (|x|)
-approximation can be constructed in time polynomial in |x|.

In order to prove the proposition, two lemmas will be helpful.

Lemma A.0.10. Let M be areal n X m matrix such that for each entry, my, we have that |m;;| < e, for e > 0. Then
| Mllop < nme,
wherel|. |lop is the operator norm.

Proof. Let M; be the ith row of M. Then

< em,

m

=

m
IMily = [ Yomi <
j=1 1

= :
where|. | is the Euclidean norm, hence
n n
|Mvig < ) |Miv| < Zem = nme,
i=1 i=1

for|v| = 1, where the second inequality follows from the Cauchy—Schwarz inequality. Thus || M ||, < nme.!l []

Lemma A.0.11. Let {M;}L, and {M;} _, be two sets of matrices. Then the T-fold product of these matrices satisfies

T
| My ... My = My ... My llop < DT~ Y | Mi = Mi llop
i=1
where D = max{[| Millop s> [|Mr llops 1| Millop seeos | Mrllop }-
Proof. Consider the case of T=2. With |[v| = 1,
[(MaM; — M,M,)v |
= [(MyM, — MoMy)v + (MyM;, — MoMy)v g
<|(My — My)Myv | + | My (My — My)v |
S IMy = My llop | Millop + 1My llop | My = M [lop -
Thus
| MaM;, — MyM,llop < D || My = Millop + D || Mz — M, lop

The result follows from induction on T. O
We can now prove proposition A.0.9.

Proof. A particular outcome sequence of the circuit Cr € {C,} corresponds to a sequence of matrices

Ghl...., G4, where G represents the r;th outcome of the ith gate in Cr. Note that states and effects are included
in this sequence. Tensoring these gates with identity transformations on systems on which they do not act and
padding the corresponding matrices with rows and columns of zeros results in a sequence of square matrices
M'»4,... M™!such that

P(z) = P(fiynty) = bT. M1 M™ b,
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where bis the vector (1, 0,...,0) and b" is its transpose. Similarly for ¢"',... G so that
Pz)=P(n, ..., 1) = bl M ML b,

Note that || M™ ||y, < |G [lop and [| M [|op < S [lops for all i. Therefore,

— =,

|P(Z) - ﬁ(Z)lz |bT (qu’q...M”‘l _M™_M 1)b|
<IBT |l (M1 M — N1 M) g

q
< DAITD=IR Y Mo — M o, < D'1ITD=1g(| T ) Ne (| T]),

n=1
where if n;m; is the size of the matrix G, then
N = max{ nymg,..., mm},

and
~n,1 ~raq
D’=max{||gfb1||op oo 1167 g 118" lop o 11G ||op}.

Note that, as circuits are built from finite gate sets, N'is a constant. The first inequality follows from the Cauchy-
Schwarz inequality, the second from that fact that |bT| = 1and lemma A.0.11, the third from lemma A.0.10, the
factthat the sum has g (| T'|) entries and the fact that, as 6T is an e-approximation of C, the matrix M — M f
has entries satisfying |m;; — i71;;| < e.

The reverse triangle inequality gives

Xrii il

1S Nlop = 116 llop < 1™ = G™llop < Ne(IT1).
Withe(]T]) € 1,and
D" = max{ 11" flop s 1 llop }.
wehave D’ < D = D" + N, which completes the proof. O

Appendix B. Proof of theorem 3.4.1

One method of proving theorem 3.4.1 is to use GapP functions. GapP functions were first studied in the context
of quantum computation by Fortnow and Rogers in [30], where, among other things, they showed that

BQP C AWPP. A good discussion on GapP functions can be found in Watrous’s survey of quantum
complexity theory [34]. Proofs in this section are modifications and generalizations of proofs presented in
(25,30, 34].

Given a polynomial-time non-deterministic Turing machine M and input string x, denote by M, ..(x) the
number of accepting computation paths of M given input x, and by M,;(x) the number of rejecting computation
paths of M given x. A function f: {0,1}* — Z isa GapP function if there exists a polynomial-time non-
deterministic Turing machine M such that f (x) = M. (x) — Mj(x) for all input strings x.

Many complexity classes can be described in terms of GapP functions. For example the class PP can be
defined as those languages £ such that, for some GapP function fand any input string x, if x € £ then f (x) > 0
butif x ¢ L then f (x) < 0. A useful class of GapP functions is provided by the following theorem.

Theorem B.0.12. Any function f: {0,1}° — Z that can be computed in poly-time by a Turing machine is a GapP
function. O

For aproof, see [25, p 237].

The notation (x, y) denotes the pairing function [30]: that is, a poly-time computable function that maps
the pair of strings x and y bijectively to the set of finite length strings {0, 1} such that, given (x, y), bothxand y
can be extracted in poly-time. The following proposition gives slight generalizations of standard closure
properties of GapP functions.

Proposition B.0.13. For a polynomial q and GapP function f, let h: {0,1}* — Z bedefined forall x € {0,1}* by
hx) = Y fx)

[yl<q(|x])
y€E€L,
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where L, is some set (that may depend on x) with the property that membership of y in L, can be determined in time
polynomialin |x|. Thenhisa GapP function.

Nowlet g: {0,1} — Z bedefined forall x € {0,1} by
g = [ r=in,

1<igq(|x])
i€L,

where the symbol i appearing as the second argument on the pairing is a binary encoding of i and Ly is some set with
the property that membership of iin Ly can be determined in time polynomial in |x |. Then g is also a GapP function.

Proof. We will prove the first statement only as the second statement follows from a similar generalization of a
standard argument. Let f (x) = M, (X) — M,j(x) for some non-deterministic poly-time Turing machine, M.

Let N be anon-deterministic poly-time Turing machine that, oninput x € {0, 1}*, guesses a string y of length
<q(|x|), decides whether yisin L,, and

e Ify € L,,simulates M oninput {x, y).

o Ify & L,,guessesabitbandacceptsifand onlyif b=0.
Nruns in poly-time, and for every x € {0, 1}*, Nycc (x) — Nij(x) = h(x), hence his a GapP function. n

For the rest of this section, assume that the pairing function is used whenever a function has two or more
arguments. GapP functions are intimately related to computation in generalised probabilistic theories, as the
following result shows.

Theorem B.0.14. Let {C, } be a poly-size uniform family of circuits in a generalised probabilistic theory. Then for any
polynomialw and constant D, there exists a function ¢ (|x|) < 1/D" D, and an e (|x|)-approximation { C} to
{C.}, such that the amplitude for acceptance8 of a circuit Cr e {C,lis given by

f(T)

22(TD’

Pr (accept) =

where fis a GapP function and p (| T'|) is a polynomial in the size of the input string.

Proof. It follows from the uniformity condition that for any polynomial w, there is an ¢ (]x|)-approximation
{Cyto{C,},withe(]x|) < 1 /D" (5D, such that the entries in the matrices representing gates in the circuit

‘Cr € {C,} have rational entries, and can be computed in time polynomial in | T'|. Furthermore, the rational
entries can be taken to have the form ¢/2%, with ¢ € Z, d € N, and da polynomial function of | T |. Padding
circuits with identity gates if necessary, assume that the number of gates in the circuit Cy is given by a polynomial

function g (| T'|). A particular outcome of the circuit corresponds to matrices an’l oo ar‘]’q, where 5” represents
the r;th outcome of the ith gate in Cr. States and effects are included in this sequence.

By tensoring these gates with identity transformations on systems on which they do not act and padding the
corresponding matrices with rows and columns of zeros, we can obtain a sequence of square matrices
M™, ..., M™% such that (i) rows and columns of these matrices are indexed by bit strings of length y (| T'|),
with y (| T|) a polynomial function, and (ii) the amplitude of outcome z = 1, ..., 7, is given by

bT. M MM b,

where bis the vector (1, 0, ..., 0)and blisits transpose. Note that for each M"™ the matrix 2 M ™" has integer
entries.

Consider the function 4 : {0,1}* — Z givenby

W(T, fs oo 1 1y i) = MJ
where iy, ..., i arebit strings of length y (| T'|),and M;"" 'isthe i, i,_, entry of the matrix 2¢M™" By the
uniformity condition, these matrix entries can be calculated in polynomial time by a Turing machine, so by
theorem B.0.12, his a GapP function.

Note that, as { C,} is a mathematical construction, it need not correspond to a valid circuit family in the theory and so cannot be said to
accept or reject an input string. However, for ease of notation, we will say an approximating circuit ‘accepts’ an input stringif a (z) = 0
where zis the outcome sequence of that approximating circuit, and ‘rejects’ the input string otherwise.
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The amplitude for outcome z = #...r, is given by

5 _ T9q 2,2 7,1
Pla)=— > oM MEME,
2 {11 ..... ig-1
1 . . . .
= Z H h(T, Bis vovs Tgy My G0 = 1, disuny fgoyy g = 1),
2 {i1 ,...,iq,1}1<n<q
1
=— T, Ty oo Ty it seen g1 )
dq z g( b b b q) e q— b
2 1] 50y iq—l}
_ (T, 2)
240

where gis a GapP function by proposition B.0.13, hence f is a GapP function by another application of
proposition B.0.13.
The amplitude for the circuit Cr to accept is given by

~ B N (T, 2)
P (accept) = Z Pr(z) = 2 7,
a(z)=0 a(z)=0

where a(z) is the function that determines if z is an accepting or rejecting outcome. By the uniformity condition,
a(z) can be calculated in polynomial time by a Turing machine, hence proposition B.0.13 gives

5 _ f(
Pr(accept) = So T’
where fis a GapP functionand d (|T|)q(|T|) = p(|T|) is a polynomial that takes values in N. n

The class AWPP time can be defined [35] as follows.

Definition B.0.15. The class AWPP consists of those languages £ such that there exists a GapP function f, and a
polynomial r such that

o Ifx € Lthen2/3 < f(x)/27D < 1.

o Ifx & Lthen0 < f(x)/270x) < 1/3.

The 1/3 — 2/3 separation can be replaced by any constant, positive, separation [35].
Theorem B.0.16. For any generalised probabilistic theory G, BGP C AWPP.

Proof. Ifalanguage £ € BGP, then there is a poly-size uniform circuit family {C, } such that P, (accept) > 2/3
if x € L£,and P, (accept) < 1/3if x & L. Assume that forallx, 1/10 < P, (accept) < 9/10.° By theorem B.0.14,
thereisan e (|x|)-approximation to {C, } such that the amplitudes determined by the approximating family
satisfy

fx)
2p(x)’

B (accept) =

with fa GapP function. Furthermore, for any polynomial w, € (|x|) can be chosen so that ¢ (|x|) < 1/D" (=,
Hence by proposition A.0.9, ¢ (|x|) can be chosen small enough that B (accept) > 7/12if x € £ and

B (accept) < 5/12 ifx & £,andforallx, 0 < B, (accept) < 1. Taking p (]x|) to be the function r (]x]) in
definition B.0.15 and noting that 5/12 — 7/12 is a constant, positive, separation, gives the result. O

Itis well known that AWPP C PP C PSPACE (see, for example, [36] and references therein).

Appendix C. Proof of theorem 4.0.5
An alternate definition of the class PP can be stated [35, 37] as follows.

? This can be ensured, if necessary, by considering the circuit Cyto be carried out in parallel with a biased coin toss. With probability 1/5, the
coin is tails, in which case the output of the circuit is ignored, and acceptance/rejection are returned with probability 1/2 each. Taken
together, these circuits and coin tosses define a modified circuit family {Cy }, and in the following, approximating circuit families can be
assumed to be defined relative to {C, }.
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Definition C.0.17. The class PP consists of those languages £ such that there exist GapP functions fand h so
that for all x

o Ifxe Lthen2/3 < f(x)/h(x) < 1.
o Ifx ¢ Lthen0 < f(x)/h(x) < 1/3.

The 1/3 — 2/3 separation can be replaced by any constant, positive, separation [35].

In order to prove theorem 4.0.5, consider a uniform family of circuits {C, } in the generalised probabilistic
theory G. Let Sybe a subset of the possible outcomes of the circuit Cz, with respect to which post-selection is
defined, so that Pr (accept|St) > 2/3for T € L and <1/3for T ¢ L. Asin the proof of theorem 3.4.1, assume
that these probabilities are also bounded away from 0 and 1 so that for all T,1/10 < P; (accept|Sy) < 9/10."

By theorem B.0.14, there is an € (|x|)-approximation to {C, } such that, in the approximating family, the
jointamplitude to accept the computation and have an outcome from the set Stis

5 _ f(D
Pr(accept, St) = TR
with fa GapP function. Similarly,
5 _ &M
PT(ST) = Zq(lTl) >

with ga GapP function and g a polynomial. Furthermore, for any polynomial w and constant D, € (|x|) can be
chosensso that e (|x|) < 1/D**D. Hence by proposition A.0.9 and the fact that we are post-selecting on at most
exponentially-unlikely outcomes, € (|x|) can be chosen small enough that for the approximating circuit family,

Pr(Sy) > 0. This means that for the approximating circuit family, the conditional
~ P t, S
Pr(accept|Sr) = M
Pr(Sr)

is well defined. Furthermore, € (|x|) can be chosen small enough that 137 (accept|St) > 7/ 12ifx € L,
ﬁT (accept|St) < 5 / 12if x ¢ L,and using the assumption that the original circuit family probabilities are
bounded away from 0 and 1, the approximating amplitudes satisfy 0 < Py (accept|Sy) < 1.

Now,

zq(\Tl)f(T) 3 1(T)
2UThg(T) (T

P (accept|Sr) =

where h(T) = 20UV g (T)and I (x) = 2247V f (T) are GapP functions. This follows from theorem B.0.12,
proposition B.0.13, and the fact that both p and g are polynomials taking values in N. The result follows.

Appendix D. Proof of theorem 5.0.8

Denote by PH the polynomial time hierarchy: the union of an infinite hierarchy of classes X, Ay and II; for
k € N,where ¥y = A, = II, = Pand X, = NP*, A;,; = P*and IT;,,; = coNP> The polynomial time
hierarchy is a natural way of classifying the complexity of problems beyond the class NP. It is a strongly held
belief in computer science that NP includes non-polynomial-time problems.

Theorem 5.0.8 is a corollary of two results, the first of which is due to [36] and [38]:

Theorem D.0.18. There exists an oracle A such that PA = AWPPA and the polynomial time hierarchy is infinite.
The second is that theorem B.0.16 relativizes.

Theorem D.0.19. For any classical oracle A we have that BGPA C AWPPA for any causal G.

Proof. Given the uniformity condition for circuit families with an oracle, entries in the matrices representing

gates in a circuit are all computable in polynomial time by a Turing machine with access to the oracle A. Thus

the proof of theorem B.0.14 goes through essentially unchanged, except that in this case the conclusion is that

This can be done, as before, by the introduction of a biased coin parallel to the circuit. If the circuit outcome is in Syand the coin is heads,
then accept or reject, depending on the circuit outcome. If the outcome is in Sand the coin is tails then accept or reject with probability 1/2
each.
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the acceptance amplitude is

f x)

2p(Ix]) ’

B (accept) =

where p (|x|) is a polynomial function of the size of the input and fis a GapP* function. A GapP* function is
defined in a similar fashion to a GapP function, except instead of counting the difference between the number of
accepting and rejecting paths for any input into a non-deterministic Turing machine, GapP* functions count
the difference between the number of accepting and rejecting paths for any input into a non-deterministic
Turing machine with access to the oracle A. AWPPA can be defined with respect to GapP functions by just
replacing every mention of GapP functions with GapP# functions in definition B.0.15. Thus the proof that
BGP4 C AWPPA, for any causal GPT and oracle A, goes through exactly the same as the proof of theorem
B.0.16. O

Hence we obtain

Theorem D.0.20. There exists a classical oracle A relative to which BGPﬁ C P4, forall causal G, and the
polynomial time hierarchy is infinite.

This implies that there exists a classical oracle relative to which NP is not contained in BGP, for any causal
theory G satisfying tomographic locality. This generalizes the results of [30] from quantum theory to general
theories.
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