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Abstract
From the general difficulty of simulating quantum systems using classical systems, and in particular
the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is
intrinsicallymore powerful than classical computation. At present, the best upper bound known for
the power of quantum computation is that BQP AWPP⊆ , where AWPP is a classical complexity
class (known to be included in PP, hence PSPACE). This work investigates limits on computational
power that are imposed by simple physical, or information theoretic, principles. To this end, we define
a circuit-basedmodel of computation in a class of operationally-defined theoriesmore general than
quantum theory, and ask: what is theminimal set of physical assumptions underwhich the above
inclusions still hold?We show that given only an assumption of tomographic locality (roughly, that
multipartite states and transformations can be characterized by localmeasurements), efficient
computations are contained in AWPP. This inclusion still holds evenwithout assuming a basic notion
of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future
measurement choices). FollowingAaronson, we extend the computationalmodel by allowing post-
selection onmeasurement outcomes. Aaronson showed that the corresponding quantumcomplexity
class, PostBQP, is equal to PP. Given only the assumption of tomographic locality, the inclusion in
PP still holds for post-selected computation in general theories. Hence in aworldwith post-selection,
quantum theory is optimal for computation in the space of all operational theories.We then consider
whether one can obtain relativized complexity results for general theories. It is not obvious how to
define a sensible notion of a computational oracle in the general framework that reduces to the
standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a
‘classical oracle’. Then, we show there exists a classical oracle relative towhich efficient computation in
any theory satisfying the causality assumption does not include NP.

1. Introduction

Quantum theory offers dramatic new advantages for various information theoretic tasks [1]. This raises the
general question of what broad relationships exist between physical principles, which a theory like quantum
theory may or may not satisfy, and information theoretic advantages. Much progress has already been made
in understanding the connections between physical principles and some tasks, such as cryptography and
communication complexity problems. It is now known that the degree of non-locality in a theory is related
to its ability to solve communication complexity problems [2] and to its ability to perform super-dense
coding, teleportation and entanglement swapping [3]. Teleportation and no-broadcasting are now better
understood than they were when investigated solely from the viewpoint of quantum theory [4, 5].
Cryptographic protocols have been developed whose security relies not on aspects of the quantum
formalism, but on general physical principles. For example, device-independent key distribution schemes
have been developed that are secure against attacks by post-quantum eavesdroppers limited only by the no-
signalling principle [6].
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By comparison, relatively little has been learned about the connections between physical principles and
computation. It was shown in [7] that amaximally non-local theory has no non-trivial reversible dynamics and,
thus, any reversible computation in such a theory can be efficiently simulated on a classical computer. Aside
from this result,most previous investigations into computation beyond the usual quantum formalism have
centred around non-standard theories involvingmodifications of quantum theory. These theories often appear
to have immense computational power and entail unreasonable physical consequences. For example, non-linear
quantum theory appears to be able to solve NP-complete problems in polynomial time [8], as does quantum
theory in the presence of closed timelike curves [9, 40]. Aaronson has considered othermodifications of
quantum theory, such as a hidden variablemodel inwhich the history of hidden states can be read out by the
observer [11], and these have also been shown to entail computational speedups over the usual quantum
formalism.

This work considers computation in a framework suitable for describing essentially arbitrary operational
theories, where an operational theory specifies a set of laboratory devices that can be connected together in
different ways, and assigns probabilities to experimental outcomes. Theories within this framework can be
described that are different from classical or quantum theories, butwhich nonethelessmake good operational
sense and do not involve peculiarities like closed timelike curves. The framework, described in section 2 suggests
a naturalmodel of computation, analogous to the classical and quantum circuitmodels, described in section 3.

The strongest knownnon-relativized upper bound for the power of quantum computation is that the class
BQP of problems efficiently solvable by a quantum computer is contained in the classical complexity class
AWPP. The class AWPP has a slightly obscure definition, but is well known to be contained in PP, hence
PSPACE. Section 3.4 shows that the same result holds for any theory in the operational framework that satisfies
the principle of tomographic locality, where thismeans, roughly, that transformations can be completely
characterized by product states and effects. That is, if the complexity class of problems that can be efficiently
solved by a specific theory G is denoted schematically BGP, then for tomographically local theories,
BGP AWPP⊆ . Once suitable definitions are in place, the proof is essentially the same as the proof for the
quantum case: the idea is that this proof can be cast in a theory-independentmanner, and be seen to follow from
a veryminimal set of assumptions on the structure of a physical theory. In fact, the containment BGP AWPP⊆
still holds even in the absence of a basic principle of causality (which, if it does hold, ensures that there can be no
signalling from future to past).

It was suggested in [14] that quantum theory achieves, in some sense, an optimal balance between its set of
states and its dynamics, and that this balance entails that quantum theory is powerful for computation by
comparisonwithmost theories in the space of operational theories. Although the status of this suggestion is
unknown, it turns out to be exactly correct in the context of aworld allowing post-selection ofmeasurement
outcomes. Aaronson showed that the class of problems efficiently solvable by a quantum computer with the
ability to post-selectmeasurement outcomes is equal to the class PP [10]. Section 4 extends the idea of
computationwith post-selection to general theories, and shows that given (as always) tomographic locality,
problems efficiently solvable by any theorywith post-selection are contained in PP. In other words: any problem
efficiently solvable in a tomographically local theory with post-selection, is also efficiently solvable by a quantum
computer with post-selection.

Finally, oracles play a special role in quantum computation, forming the basis ofmost known computational
speed-ups over classical computation. Section 5 discusses the problemof defining a sensible notion of oracle in
the general framework, that reduces to the standard definition in quantum theory. This problemmay not have a
solution that is completely general, hencewe introduce instead a notion of ‘classical oracle’ that can be defined in
any theory that satisfies the causality principle. There then exists a classical oracle such that relative to this oracle,
NP is not contained in BGP for any theory G satisfying tomographic locality and causality .

2. The framework

Wewill work in the circuit framework for generalised probabilistic theories developed byHardy in [15, 16] and
Chiribella, D’Ariano and Perinotti in [12, 13]. The presentation here ismost similar to that of Chiribella et al.

2.1. Tests and circuits
The idea of a generalised probabilistic theory is that a set of physical, or laboratory, devices is specified, which can
be connected together in different ways, such that the theorywill give probabilities for different outcomes. Such
theories take tests as their primitive notions, where a test can be thought of as corresponding to a physical device
with input ports, output ports, and a classical pointer.Whenever the test is applied, the pointer ends up in one of
a number of positions indicating a classical outcome. Input and output ports are typed, with types given by labels
A B C, , .... As discussed inmore detail below, tests can be composed both sequentially and in parallel, andwhen
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tests are composed sequentially, typesmustmatch: the output ports of thefirst devicemust have the same types
as the corresponding input ports of the second.

Suppose that for a particular test, the classical outcome r takes values in a setX.We shall assume throughout
that X∣ ∣ isfinite. A test  , with specified input and output types, then defines a set of events, one for each classical
outcome, { }r r X ∈ .With an input port of typeA and an output port of typeB, for example, the test can be
represented diagrammatically as

and a specific event as

A test is deterministic if its outcome setX is the singleton set.
Although tests, with input and output ports, and a pointer, form the primitives of the operational theory, it is

also useful to introduce a notion of physical system. A systemmay be thought of as passing between the output
port of a device, and the input port of the next, and has the same type as the ports. In otherwords, in the diagrams
above and below, systems correspond towires. Given two systems of typesA andB, we can form a composite
system of typeAB. Operationally, a test with input systemAB corresponds to a physical device with a set of input
ports labelled byA and a disjoint set of input ports labelled byB.

A test with no input ports corresponds to a preparation of a system—more precisely, such a test corresponds
to a set of preparations, with the classical pointer indexingwhich preparation actually occurs. Such a test can be
represented diagrammatically as:

A test with no output ports corresponds to ameasurement (that destroys or discards the system), with the
classical pointer indexing themeasurement outcome.Diagrammatically, such a test can bewritten:

Both tests and events can be composed in sequence and in parallel. If { }r r X1 1 1
 ∈ is a test from systemA toB and

{ }r r X2 2 2
 ∈ is a test from systemB toC, then their sequential composition is a test fromA toCwith outcomes

r r X X( , )1 2 1 2∈ × and events { }r r r r X X( , )2 1 1 2 1 2
 ◦ ∈ × . Similarly, if { }r r X1 1 1

 ∈ is a test from systemA toB and

{ }r r X2 2 2
 ∈ is a test from systemC toD, then their parallel composition is a test from the composite systemAC to
the composite systemBDwith outcomes r r X X( , )1 2 1 2∈ × and events { }r r r r X X( , )2 1 1 2 1 2

 ⊗ ∈ × . Sequential and
parallel composition satisfy

( ) ( ) ( ) ( ),r r r r r r r r3 4 1 2 3 1 4 2       ⊗ ◦ ⊗ = ◦ ⊗ ◦

for every , , ,r r r r3 4 1 2
    with the property that the output of r1 (respectively, r2

 )matches the input of r3


(respectively, r4
 ). A generalised probabilistic theory specifies a set of tests, closed under sequential and parallel

composition.
A circuit in a generalised probabilistic theory corresponds to a number of tests, connected in sequence and in

parallel, such that there are no unconnected ports (i.e., no dangling input or outputwires), and no cycles1. For
example:

A specific outcome of the above circuit corresponds to a particular classical outcome for each of the tests, i.e., to a
collection of events, connected in sequence and in parallel:

1
Connected sets of tests with danglingwiresmay be called open circuits, but this work has no need to consider open circuits, sowe use the

term circuit throughout to refer to a closed circuit.

3
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2.2. Probabilistic structure
So far, we have described the operational part of a generalised probabilistic theory, but not the probabilistic part.
In addition to specifying a set of tests, hence sets of circuits and circuit outcomes, a probabilistic theory should
assign probabilities to circuit outcomes. In a generalised probabilistic theory, every outcome of a circuit is
assigned a probability P r r r( )n1 2… , understood as the joint probability of outcomes r r, , n1 … for the individual
tests occurring on a single run. The joint probabilities satisfy P r r r( ) 1r r r n1 2n1 2

∑ … =… . A further constraint is that

probabilities for unconnected, i.e., independent, circuits factorize. Thismeans that for events r r rm1 2
 … and

s s sn1 2
 … , each of which corresponds to the outcome of a closed circuit, probabilities assigned to the composite
events r r r s s sm n1 2 1 2

 ⊗… … , and r r r s s sm n1 2 1 2
 ◦… … , each satisfy P r r s s P r r P s s( , ) ( ) ( )m n m n1 1 1 1… … = … … .

The introduction of probabilities into the theory induces linear structure that will be crucial in what
follows. Consider two events 0 and 1 , whose input and output ports havematching types. Suppose that for
every closed circuit, and every outcome of the circuit, replacing 0 with 1 does not change the probability of
the outcome. In this case, 0 and 1 are equivalent. The events 0 and 1 may be easily distinguished
operationally by the fact that the corresponding physical devices look quite different, but there is no
distinction between 0 and 1 from the point of view of the probabilistic predictions of the theory.We refer to
the equivalence classes of events formed in this way as transformations. The followingwill mostly be concerned
with transformations, rather than the underlying primitive events. Transformations with no input ports we
will sometimes call states, and transformations with no output ports, effects. For system typesA and B, the sets
of transformations fromA to B, states onA and effects onB are denoted Transf A B( , ), St A( ), and Eff B( )
respectively.

Quantum theory provides a specific example of a theory that can be described in this framework. A system is
associatedwith a complexHilbert space, with the type of the system given by the dimension of theHilbert space.
States and effects are associatedwith positive operators, and transformations are associatedwith trace non-
increasing completely positivemaps. A test with no input ports corresponds towhat is sometimes called a
‘random source of quantum states’, and is associatedwith positive operators { }rρ such that Tr( ) 1r rρ∑ = .When
the test is performed, the probability that the classical pointer takes position r is given by Tr( )rρ , and the
quantum state that is prepared, conditioned on the pointer reading being r, is the normalized operator Tr( )r rρ ρ .
A test with no output ports is associatedwith a positive operator-valuedmeasurement, that is a set of positive
operators E{ }i satisfying Ei i∑ = . A test with both input and output ports is associatedwith a quantum
instrument, that is a set of trace non-increasing completely positivemaps, one for each value of the pointer
reading r, that sum to a trace-preservingmap.Given these associations, the standard rules of quantum theory
allow the probability to be calculated for any circuit outcome.

Returning to the general framework, it is convenient to use the ‘Dirac-like’notation )r Aσ∣ to represent a state
of system typeA, and (A rλ ∣ to represent an effect on system typeA, so that if the state )r A1

σ∣ is followed by the
effect (A r2

λ ∣, the joint probability of obtaining outcome r1 for the preparation and outcome r2 for the
measurement is given by

P r r( ) ( , ).A r r A 1 22 1λ σ∣ ≔

In the following, we shall sometimes drop the input/output type label. A state )r A1
σ∣ can be identifiedwith a

function from effects onA into probabilities, such that

( ( ) .A r A r r A2 2 1λ λ σ∣ ↦ ∣

Since one can take linear combinations of functions, the set of states St A( ) can be extended to a real vector space,
whichwe denote VA. In quantum theory, for example, states are positive operators, which span the real vector
space VA ofHermitian operators.

Similarly, an effect (A r2
λ ∣ can be identifiedwith a function frompreparation events to probabilities:

) ( ) ,r A A r r A1 2 1σ λ σ∣ ↦ ∣

and the set of effects Eff A( ) can be extended to a real vector space VA. A more general kind of
transformation, from (possibly composite) system type A to (possibly composite) system type B, defines
a function into probabilities, where the domain is now circuit fragments with the property that there are
unconnected input and output ports, such that adding in a transformation of this type results in a closed
circuit. Again, this means that the set of transformations Transf A B( , ) can be extended to a real vector
space, denoted VB

A.

4
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Throughout the paper, we adopt

Assumption 1. For every pair of system typesA andB, and every transformation fromA toB, VB
A isfinite

dimensional.

As a consequence, the vector space generated by effects on a system can be regarded as dual to the space of

states, and vice versa:V V( )*A
A= andV V( )*A

A= . In otherworks on generalised probabilistic theories, it is
quite often assumed that the sets Transf A B( , ), St A( ), and Eff B( ) are convex subsets of the corresponding
vector spaces, the idea being that probabilisticmixtures of allowed transformations should also be allowed
transformations. This work, however, doesn’t need this assumption: themain constraints on sets of
transformations, states and effects are closure under sequential and parallel composition.

2.3. Tomographic locality
Every transformationTs fromA toB induces a linearmap from VA to VB, uniquely defined by

TSt A St B) ( ) ) ( ), (2.3.1)r A s r Aσ σ∈ ↦ ∈

whereT )s r Aσ∣ is the state of typeB, corresponding to composition ofTswith )r Aσ∣ .Without further assumptions,
however, thismap is in general not sufficient to specify the transformationTs. To see this, consider the situation
inwhich the transformationTs is applied to one half of a bipartite state )ACσ∣ . The composition defines a
bipartite state of typeBC, which can be schematically represented T I) ( ) )BC s C ACσ σ∣ ′ = ⊗ ∣ , with IC understood
as an identity transformation (or the absence of any transformation) on systemC. The action ofTs on bipartite
states of typeAC induces a linearmap from VAC to VBC. In general, however, there need be no simple
relationship between thismap, and themap above from VA to VB. Indeed, there need not be any simple
relationship between the vector space VAC and the vector spaces for the individual systems, VA and VC. For each
possible system typeC, this structure is ultimately specified by the theory, via the assignments of probabilities to
circuit outcomes2.

The representation of transformations in a generalised probabilistic theory is greatly simplified by the
assumption of tomographic locality. A theory satisfies tomographic locality if every transformation can be fully
characterized by local process tomography.More formally, consider transformations Ts

1
1
andTs

2
2
, both of which

have input type A Am1⋯ and output type B Bn1⋯ . Consider circuit outcomes of the form

with corresponding probability P r r t t s( , , )i
m n i1 1… … , where i {1, 2}∈ . Tomographic locality states that for all

transformations Ts
1
1
andTs

2
2
withmatching input and output types, if

P r r t t s P r r t t s( , , ) ( , , ) ), , ), ( , , (m n m n r r
n

t t
n1

1 1 1
2

1 1 2
1 1

m n1 1
σ σ λ λ… … = … … ∀ ∣ … ∣ ∣ … ∣

then

T T .s s
1 2
1 2

=

Thewhole of the rest of this work adopts

Assumption 2.Tomographic locality is satisfied.

A consequence of tomographic locality is that for a transformationwith input typeAB and output typeCD,
the corresponding real vector space has the form [12–14] ,

V V V V V ,CD
AB A B

C D≅ ⊗ ⊗ ⊗

where⊗here denotes the ordinary vector space tensor product (as opposed to the symbolic⊗ used above to
denote parallel composition). In particular, for a bipartite state of typeAC, the corresponding vector space
V V VAC A C≅ ⊗ . Furthermore, a transformation T Transf A B( , )s ∈ is completely specified by its action on
St A( ), henceTs can be identifiedwith the linearmap defined by equation (2.3.1).WhenTs acts on part of a

2
The operational content of assumption 1 is that there does at least exist a finite set of system typesC, such that specification of the action of

T Is C⊗ on VAC for each of the system types in thisfinite set is sufficient to characterizeTs.

5
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bipartite state of typeAC, the induced linearmap V VAC BC→ is given byT Is C⊗ , where again, the symbol⊗
represents the ordinary vector space tensor product, and IC is now the identity operator on the vector space VC.
In view of assumptions 1 and 2, the symbol⊗will fromhere on denote the ordinary tensor product offinite
dimensional vector spaces.

Fixing a basis for each system type, a transformationTwith inputAB and outputCD can bewritten as a
matrix

( )T M ,
i j k l

ij kl i
A

j
B

k
C

l
D

, , ,

,∑ α α α α= ⊗ ⊗ ⊗

where Mij kl, ∈ , { }i
Aα , { }j

Bα are bases for VA and VB respectively, and { }l
Cα , { }m

Dα are bases for VC and VD

respectively. The probability associatedwith a circuit outcome, e.g., of the formof figure (2.1.1), can bewritten

( )M M I M. . ,r r C r
3 2 1
3 2 1

⊗

where Mr
1
1
(a column vector) is thematrix formof the transformation corresponding to the event r1 , Mr

2
2

corresponds to r2
 , and Mr

3
3
(a row vector) corresponds to r3

 .

2.4. Causality
Anice feature of the Pavia-Hardy frameworkwe have described is that a basic assumption of causality is not
implicit, but can be articulated explicitly and theories considered that do not satisfy this assumption. A
generalised probabilistic theory is said to be causal if themarginal probability of a preparation event is
independent of the choice of whichmeasurement follows the preparation.More formally, if St A{ )} ( )i i Xσ∣ ⊂∈
are the states corresponding to a preparation test, consider the probability of outcome i, given that a subsequent
measurement  corresponds to a set of effects {( }j j Yλ ∣ ∈ :

P i( ) ( ).
j Y

j i ∑ λ σ≔ ∣
∈

The theory is causal if for any system typeA, any preparation test with outcome i, and any pair ofmeasurements,
 and  , with input typeA,

P i P i( ) ( ). =

Note that the causality assumption is logically independent from tomographic locality: generalised probabilistic
theories satisfying one or both or neither can be defined.

If circuits are thought of as having a temporal order, with tests later in the sequence occurring at a later time
than tests earlier in the sequence, then the assumption of causality captures the intuitive notion of no signalling
from the future. It was shown in [12] that a generalised probabilistic theory is causal if and only if for every system
typeA, there is a unique deterministic effect u(A ∣. In this case, ameasurement, with corresponding effects
{( }j j Yλ ∣ ∈ , satisfies u( (j jλ∑ ∣ = ∣. A state )σ∣ is normalized if and only if u( ) 1σ∣ = . The causality assumption

also implies [12] a no-signalling principle for the states of the theory. That is, in a causal theory, if a test is
performed on theA part of a composite systemof typeAB, then it is not possible to get information aboutwhich
test was performed by only performing a test on theB part. (For an interesting extension of this idea to arbitrary
causal networks, corresponding to circuits in the Pavia-Hardy framework, see [17].)

Although the idea of no-signalling from the future seems intuitive, there is nothing obviously pathological
about generalised probabilistic theories that do not satisfy the causality assumption, as long as one does not try to
define adaptive circuits, wherein a choice of later test can depend on an earlier outcome. Indeed there is nothing
about the framework as it stands that forces an interpretation of the circuits described as a sequence of tests
applied in a temporal ordermatching the order of tests in the circuit. Perhaps an entire closed circuit is set up in
advance, and the pointers attain theirfinal resting positions together, when a ‘go’ button is pressed. Remarkably,
themajority of the results derived in this work do not require the causality assumption, hence: except where
explicitly stated, causality is not assumed inwhat follows.

2.5. Examples
As already noted, quantum theory can be formulated as a generalised probabilistic theory in the above
framework, withfinite dimensional quantum theory satisfying assumption 1. Quantum theory satisfies the
causality assumption, as the probability of an event cannot depend on the choice of ameasurement that is
subsequently performed on the system. For a system associatedwithHilbert spaceH, the unique deterministic
effect, guaranteed to exist in a theory satisfying the causality assumption, is simply the identity operator onH.
For a systemof typeA, the vector space VA is the real vector space ofHermitian operators, spanned by the density
matrices. It is well known that quantum theory satisfies the assumption of tomographic locality. This follows
from theway inwhich systems combine to form composite systems: a joint state is a positive operator acting on

6
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the tensor product of theHilbert spaces associatedwith the individual systems.One can then check that the real
vector spaces ofHermitian operators satisfy V V VAB A B≅ ⊗ .

The framework presented is also general enough to accommodate the basic classical theory offinite
dimensional probability distributions and stochastic processes, as well as probabilistic theories different from
either quantumor classical theory. The latter include ‘boxworld’ [3, 14], a causal theory allowing for arbitrarily
strong nonlocal correlations, such as the PR box correlations of Popescu andRohrlich [18] thatmaximally
violate theCHSH inequality. Quantum theory defined over real, rather than complex, Hilbert spaces supplies an
example of a theory that does not satisfy tomographic locality. See also [19] for an explicit construction that does
not satisfy the causality assumption.

3. Computation in generalised probabilistic theories

3.1. Uniform circuits
The last section showed that in a generalised probabilistic theory, one can draw circuits representing the
connections of physical devices in an experiment, and the specific events that took place in the experiment.
These circuits provide a naturalmodel of computation, based on the classical and quantum circuitmodels. A
good notion of efficient computation needs a definition of a uniform family of circuits in a generalised
probabilistic theory.

In the standard, classical or quantum, circuitmodel, a circuit family C C C{ } { , ,...}n 1 2= consists of a
sequence of circuits, each indexed by a positive integer n, denoting the input system size, whereCn is the circuit
corresponding to a problem instance of size n. In a poly-size circuit family, the number of gates inCn is bounded
by a polynomial in n, and the circuit family is uniform if a Turingmachine can output a description ofCn in time
bounded by a polynomial in n.

In a generalised probabilistic theory, there is no reason to assume that a circuitmust have the formof a
number of gates acting on some input, where the input preparation encodes the problem instance—recall that
we do not necessarily assume that the generalised probabilistic theory satisfies the causality assumption, inwhich
case a circuit does not have a preferred direction. Instead, we allow the entire circuit to encode the problem
instance, defining a circuit family as a set C{ }x such that each circuit is indexed by a classical string x x x x... n1 2= .
A circuit family is poly-size if the number of gates is bounded by a polynomial in x∣ ∣. For a particular generalised
probabilistic theory itmight not be the case that bipartite and single system transformations together are
universal for computation, as they are in classical and quantum computation.Hence for any k l, , a circuitmight
involve gates with k input systems and l output systems. In general, itmight be the case that nofinite gate set is
universal for computation.Nonetheless, wewill impose as a requirement of uniformity that any uniform circuit
family is associatedwith afinite gate set3, such that each circuit in the family is built from elements of that set. It
follows that the number of distinct system types appearing in a uniform circuit family is alsofinite.

A further requirement for a circuit family to be uniform takes the formof a constraint on the entries of the
matrices representing the transformations that appear in the finite gate set—otherwise, itmay be possible to
smuggle hard to compute quantities into the computation. Theremust exist some fixed choice of basis of VA for
each systemA, such that a Turingmachine can efficiently compute approximations to the entries of thematrices
relative to these bases.We require that for anymatrix entry M( )ij, and any ϵ, a Turingmachine can output a

rational number, within ϵ of M( )ij, in time bounded by a polynomial in log(1 )ϵ . This is physically reasonable,

since gates are supposed to represent operational devices, and itmakes sense to assume that an experimenter
with access to devices governed by some generalised probabilistic theory cannot align, or employ, themwith
arbitrary accuracy.

Finally, for a circuit family C{ }x to be uniform, theremust be a Turingmachine that, acting on input x,
outputs a classical description ofCx in time bounded by a polynomial in x∣ ∣.

The notion of a poly-size uniform circuit family C{ }x can be summarized as follows:

• The number of gates in the circuitCx is bounded by a polynomial in x∣ ∣.

• There is afinite gate set , such that each circuit in the family is built from elements of .
• For each type of system, there is afixed choice of basis, relative towhich transformations are associatedwith

matrices. Given thematrix M representing (a particular outcome of) a gate in , a Turingmachine can
output amatrix M with rational entries, such that M M( )ij ϵ∣ − ∣ ⩽ , in time polynomial in log(1 )ϵ .

3
For a uniformity conditionwhere the size of the gate set growswith circuit size, see [39].
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• There is a Turingmachine that, acting on input x x x x... n1 2= , outputs a classical description ofCx in time
bounded by a polynomial in x∣ ∣.

3.2. Acceptance criterion
Now that we have defined a uniform family of circuits, we need to discuss the acceptance criterion. In quantum
computation it is known that performing intermediatemeasurements during the computation does not increase
the computational power. So, without loss of generality, allmeasurements can be postponed until the end of the
computation. A quantum computer can be defined to accept an input string x if the outcome of a computational
basismeasurement on thefirst outcome qubit is 0∣ 〉. In a general theory, it need not be the case that all
measurements can be postponed until the end of the computationwithout loss of generality, hence the
acceptance criterion should reflect this.

Theway inwhich a generalised probabilistic theory solves a problemmight be imagined as follows. First,
given the input string x, the circuitCx is designed and built by composing gates from the fixedfinite gate set
sequentially and in parallel according to the description. An example of such a circuit is depicted below.

Once the circuit is built, the computation can be run. At the end of a run, each gate has a classical outcome
associatedwith it, where the theory defines a joint probability for these outcomes. For the example above, the
joint probability is given by

P r r T T T T I( ,..., ) ( ( ( ) ( ) ) ).r r r r r r C r r1 8
6 5 4 3

8 7 6 5 4 3 2 1χ λ ρ σ= ∣ ∣ ⊗ ⊗ ∣ ∣

Denoting the string of observed outcomes by z r r1 8= … , thefinal output of the computationwill be given by a
function a z( ) {0,1}∈ , where theremust exist a Turingmachine that computes a in time polynomial in the
length of the input x∣ ∣. The probability that a computation accepts the input string x is therefore given by

P P z(accept) ( ),x

z a z( ) 0

∑=
=

where the sum ranges over all possible outcome strings of the circuitCx.

3.3. Efficient computation
The class of problems that can be solved efficiently in a generalised probabilistic theory can be defined as follows.

Definition 3.3.1. For a generalised probabilistic theory G, a language  is in the class BGP if there exists a poly-
sized uniform family of circuits in G, and an efficient acceptance criterion, such that

• x ∈ is acceptedwith probability at least
2

3
.

• x ∉ is acceptedwith probability atmost
1

3
.

As ever, the choice of the constant 2 3 is arbitrary. Anyfixed constant k, k1 2 1< < would serve equally
well4.

For a specified G, the class BGP is the natural analogue of BPP for probabilistic classical computation, and
BQP for quantum computation. Indeed, BGP reduces to BPP or BQP in the case that the theory G is in fact the
classical or quantum theory. See, e.g., [20] for a proof that quantum circuits withmixed states andCPmaps are
equivalent in computational power to standard quantum circuits with pure states and unitary transformations.

Note that theway inwhich the acceptance criterion is defined implies that P BGP⊆ , for (almost) every
generalised probabilistic theory G. This is a consequence of the fact that thefinal output is a function a(z) of the
string of observed events, and the only constraint on a is that it can be efficiently computed by a Turingmachine.
Degenerate cases provide exceptions to this—consider, e.g., any theory such that all transformations are

4
Note that each uniform circuit (with an efficient acceptance condition) defines a randomvariable thatmaps circuit outcomes to the set

accept reject{ , } and so one can regardmultiple repetitions of a computation as a collection of i.i.d randomvariables (independence follows
from the definition of the probabilistic structure; specifically that the sequential or parallel composition of two events corresponding to
outcomes of closed circuits define independent probability distributions). This fact is independent of the formof a particular theory and so
holds true for all theories in the framework. Taking this fact in conjunctionwith the definition of BGP and applying theChernoff bound
provides the required result. See [1, p 154] formore discussion of the quantum case.
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deterministic, i.e., the outcome set of any circuit is the singleton set. One could remove these degenerate cases by
generalizing the acceptance function a(. ) so that it depend on both the outcome string z and the input string x.
Of course, the fact that P BGP⊆ does not havemuch to dowith the intrinsic computational power of aGPT,
but is an artefact of the acceptance criterion—itmight be interesting toweaken this criterion so that
computation in theories intrinsically weaker than classical can be explored.

3.4. Upper bounds on computational power
Using the above definitions of uniform circuit families, and acceptance of an input, the following upper bound
on the computational power of any generalised probabilistic theory can be obtained. Themain assumption—in
addition to those involved in uniformity—is that tomographic locality holds. The result does not require the
causality assumption.

Theorem3.4.1. For any generalised probabilistic theory G satisfying tomographic locality, BGP AWPP PP⊆ ⊆ ⊆
PSPACE.

Here, PSPACE consists of those problems that, roughly speaking, can be solved by a classical computer
using a polynomial amount ofmemory. PP stands for Probabilistic Polynomial time, which roughly speaking,
contains those problems that can be solved by a probabilistic classical computer thatmust get the answer right
with probability 1 2> . The probability does not need to be bounded away from1 2, indeedmay be greater than
1 2 only by an exponentially small amount, hence PP contains problems that are not thought to be efficiently
solvable by a classical random computer. AWPP stands for AlmostWide Probabilistic Polynomial time, and it is
known that AWPP PP⊆ . The best knownupper bound for the class of efficient quantum computations
similarly states that BQP AWPP⊆ .

To define the class AWPP, the notion of a GapP functionmust be introduced. Given a polynomial-time
non-deterministic TuringmachineM and input string x, denote byMacc(x) the number of accepting
computation paths ofM given input x, and byMrej(x) the number of rejecting computation paths ofM given x. A

function f : {0,1}* →  is a GapP function if there exists a polynomial-time non-deterministic Turingmachine
M such that f x M x M x( ) ( ) ( )acc rej= − for all input strings x. The class AWPP can be defined as follows [35].

Definition 3.4.2.The class AWPP consists of those languages  such that there exists a GapP function f, and a
polynomial r such that

• If x ∈ then f x2 3 ( ) 2 1,r x( )⩽ ⩽∣ ∣

• if x ∉ then f x0 ( ) 2 1 3r x( )⩽ ⩽∣ ∣ .

Once the appropriate definitions for generalised probabilistic theories are in place, the proof of theorem
3.4.1 is a fairly straightforward extension of similar proofs for the quantum case, and is presented in appendix B.

Although formal proofs are relegated to appendices, it is useful to sketch the proof that BGP PSPACE⊆ in
order to provide intuition about how the physical principles underlying generalised probabilistic theories lead to
computational bounds.

Sketch proof.Consider a general circuit CT , with q T( )∣ ∣ gates. Tensoring these gates with identity
transformations on systems onwhich they do not act, and padding themwith rows and columns of zeros, results
in a sequence of squarematrices M M,...,r q r, ,1q 1 , where M r n,n is thematrix representing the r thn outcome of the
nth gate. This can be done in such away that the probability for outcome z r r... q1= , is given by

{ }
b M M M b M M M ,r q r r

i i

i
r q

i i
r

i
r, ,2 ,1

,...,

1
, ,2

1
,1q

q

q

q2 1

1 1

1 2 1
2

1
1T ∑⋯ = ⋯

−

−

where b is the vector b (1, 0 ,..., 0)= and bT is its transpose. The output probability is a sumof exponentially
many terms, but each term is a product of polynomiallymany numbers, each of which can be efficiently
calculated. So a classical Turingmachine can calculate each term in the sum, one after the next, keeping a
running total. This requires only polynomial-sizedmemory. □

This proof relies on the ability to decompose the acceptance probability of the computation in a form
reminiscent of a (discrete) Feynman path integral. This is a consequence of the fact that transformations in a
generalised probabilistic theory are linear, and thus have amatrix representation. It is pertinent then to ask
where this linearity comes from.Whenwe introduced generalised probabilistic theories in section 2.1, we
associated states (respectively, effects) with functions taking effects (respectively, states) to probabilities. As one
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can take linear combinations of such functions, this induces a linear structure on the set of states (respectively,
effects). Thus the linear structure of generalised probabilistic theories arises from the requirement that a physical
theory should be able to give probabilistic predictions about the occurrence of possible outcomes.

Aside from linearity, a further requirement of the proof is the ability to compute efficiently the entries in the
matrices representing the transformations applied in parallel in a specific circuit. Section 2.3 noted that in a
theory satisfying tomographic locality, a transformation Transf A B( , ) ∈ is completely specified by its action
on St A( ), and so thematrix representing transformations applied in parallel can be easily calculated by taking
the tensor product of thematrices representing each individual transformation. This is not the case in a theory
without tomographic locality, where the tensor product structure disappears. If a transformation from A to B
acts on one half of a system AC, theremay be no simple way to relate the linearmap AC BCSt( ) St( )→ to the
action of the transformationwhen it is applied to a system A on its own, or indeed to a joint system AC′. There
may therefore be no efficient way of computingmatrix elements corresponding to a transformation considered
as part of a circuit of arbitrary size. An interesting direction for futureworkmight be toweaken the assumption
of tomographic locality such that the results still go through. RealHilbert space quantum theory provides an
example of a theorywithout tomographic locality for which the above bounds hold, since there is an efficient
way of calculating relevantmatrix entries.

4. Post-selection and generalised probbilisitic theories

In [10] Aaronson introduced the notion of post-selected quantum circuits. These are quantum circuits which, in
addition to having a specified qubit, onwhich a computational basismeasurement will bemade to provide the
outcome, have an additional qubit onwhich ameasurement can be performed such that we can post-select on
the outcome. Instead of sampling themeasurement result r directly from the computational outcome qubit
according to the distribution P(r), only those runs of the computation are counted forwhich ameasurement on
the post-selected qubit yields the outcome s=0. The outcome distribution for the computation is taken to be the
conditional distribution P r s( 0)∣ = . An extra technical condition is needed, which is that there exists a constant

D and polynomialw such that P S D( 0) 1 w x( )= ⩾ ∣ ∣ , i.e., we can only post-select on atmost exponentially-
unlikely outcomes5.

Definition 4.0.3.A language  is in the class PostBQP if there is a polynomially-sized uniformquantum circuit
family, where each circuit has a computational outcome qubit and a post-selected qubit, such that when
computational basismeasurements are performed on these qubits, with respective outcomes r and s,

• There exists a constantD and polynomialw such that P s D( 0) 1 w x( )= ⩾ ∣ ∣

• If x ∈ then P r s( 0 0)
2

3
= ∣ = ⩾

• If x ∉ then P r s( 0 0)
1

3
= ∣ = ⩽

Aaronson showed in [10] that PostBQP PP= . Combining this with theorem 3.4.1 gives

Theorem4.0.4. For any generalised probabilistic theory G, BGP PostBQP⊆ .

Roughly speaking, a post-selecting quantum computer can simulate computation in any other theory
satisfying tomographic locality. One can also define a notion of generalised circuits with post-selection
on at most exponentially-unlikely outcomes. These are poly-sized uniform circuits in a generalised
probabilistic theory, where the probability of acceptance is conditioned on the circuit outcome z lying in
a (polytime computable) subset of all possible values of z. Defining the class PostBGP in the obvious
way, one then obtains

Theorem4.0.5. For any generalised probabilistic theory G, PostBGP PP⊆ .

The proof is in appendix C. Combining this withAaronson’s result yields

5
This extra conditionwasmissing fromAaronson’s original paper on PostBQP, but is needed for the definition of PostBQP to be

independent of a choice of quantumgate set; see section 2.5 of [21].We thank Scott Aaronson for some very interesting discussions
concerning this point.
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Corollary 4.0.6. For any generalised probabilistic theory G, PostBGP PostBQP⊆ .

So, in aworld inwhichwe can post-select on atmost exponentially-unlikely events, quantum theory is
optimal for computation in the space of all tomographically local theories. Note that the class of problems
efficiently solvable on a probabilistic classical computer with the power of post-selection is unlikely to be as large
as PP: it was shown in [22] that if this class, denoted BPPpath, is equal to PP, then the polynomial hierarchy
collapses to the third level.

It was suggested in [14] (see also [31]) that quantum theory in some sense achieves an optimal balance
between the sets of available states and dynamics, in such away that quantum theory is optimal, or at least
powerful, for computation relative to the class of generalised probabilistic theories. It is interesting to ask
whether corollary 4.0.6 can be seen as evidence in favour of this idea. The following considerations show that
caution is needed. Consider, for example, the class IQP [22], of restricted quantum computationswhere the
only gates allowed in a circuit are diagonal in the { , }∣+〉 ∣−〉 basis. Clearly IQP BQP⊆ , but it is unlikely that
BQP IQP⊆ . However, it was shown in [22] that PostIQP PP PostBQP= = . Alternatively, consider the class
of restricted quantum computations DQCk, discussed in [23], known as the one clean qubit model, where the
inputs to each circuit are restricted to be one pure qubit with asmanymaximallymixed qubits as desired. At the
end of the computation, k qubits aremeasured in the computational basis. Clearly, DQC BQPk ⊆ , but again,
DQCk is not believed to be universal for quantum computation6.It was shown in [23] that
PostDQC PP PostBQPk = = for k 3⩾ . So, while PostBQP PostDQCk⊆ , under reasonable assumptions
[24] it is not the case that BQP DQCk⊆ .

5.Oracles

In classical computation, an oracle is a total function O: {0,1}→ . A number x is said to be in an oracleO if
O x( ) 1= , hence oracles candecidemembership in a language. Let C and B be complexity classes, then CB denotes
the class C with an oracle for B (see [25] for formal definitions).We can think of CB as the class of languages
decidedby a computationwhich is subject to the restrictions and acceptance criteria of C, but allowing an extra
kind of computational step: an oracle for any desired language B ∈ thatmay bequeried at any stage in the course
of the computation,with each such query counting as a single computational step. That is, bit stringsmay be
generated at any stage of the computation andpresented to the oracle,which in a single step, returns the
information ofwhether thebit string is in  ornot. Given two complexity classes, C1 and C2, we say the relation

7

C C1 2= holds relative to theoracle B, if C CB B
1 2= . Such a result is referred to as a relativized separation result.

Oracles play a special role in quantum computation, forming the basis ofmost known computational speed
ups over classical computation [1]. In quantum computation, oracle queries are represented by a family R{ }n of
quantumgates, one for each query length. EachRn is a unitary transformation acting on n 1+ qubits, whose
effect on the computational basis is given by

R x a x a A x, , ( )n = ⊕

for all x {0,1}m∈ and a {0,1}∈ , whereA is someBoolean function that represents the specific oracle under
consideration. One could also considermore general oracles that, when queried, apply some general unitary
transformation to the query state, but here, we only consider oracles that compute Boolean functions. In the
state vector formalismof quantum theory, the action of a unitary oracle is defined on amaximal set of pure and
perfectly distinguishable states, namely the computational basis. Linearly extending this to all states in the
Hilbert space uniquely defines the action of the oracle on any state.

As pointed out to us byHoward Barnum [26], the situation for generalised probabilistic theories ismore
subtle. Consider, for example, the densitymatrix formulation of quantum theory, and suppose that oracle
queries correspond to a family of trace-preserving completely-positivemaps { }n . Analogously to the state
vector formalism, define the action of the oracle on amaximal set of pure and perfectly distinguishable states
{ }i i

N
1ρ = , where each iρ is a densitymatrix, by

( ) , (5.0.1)n x a x a A x( ) ρ ρ ρ ρ⊗ = ⊗ ⊕

where x x xn1
ρ ρ ρ= ⊗ ⋯ ⊗ andA is the function computed by the oracle. Note that

x a x a A x, e , ( ) ,x a x a A x
x a

( )
i ( , )ρ ρ ρ ρ⊗ → ⊗ ⟺ → ⊕ϕ

⊕

6
In fact, under reasonable assumptions, DQCk is provably not universal for quantum computation [24].

7
The= can be replacedwith ,≠ ⊆ or ⊇ equally well.
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where a N1,...,= and e x ai ( , )ϕ is some phase factor that depends on the query state. Now, in addition to being
able to compute the functionA, a quantum computer with access to the oraclemay also acquire information
about the functionϕ, whichmay be hard to compute [27]. The usual definition of a quantumoracle therefore
prevents ‘sneaking in information’ through phase factors.

In generalised probabilistic theories (with sufficient distinguishable states), it is easy to produce a definition
of an oracle analogous to that of equation (5.0.1). But for a system typeA, amaximal set of pure and perfectly
distinguishable states does not in general span the vector space VA. Hence the action of an oracle on such a set of
states will not, in general, uniquely define its action on an arbitrary state in the state space. It is then not clear
what extra conditionmust be placed on the oracle, first to define its action on arbitrary input states, and second
to prevent non-trivial information being obtained through its action on non-basis input states (perhaps via a
generalised notion of phase [28]).

Rather than attempt to solve this problem,wewill instead consider a notion of ‘classical oracle’ that can be
defined in any generalised probabilistic theory that satisfies the causality assumption of section 2.4. The causality
assumption allows the construction of adaptive circuits without paradox (see [12] for amore thorough
discussion of the causality assumption, adaptive circuits, and conditioned transformations). In an adaptive
circuit, the choice of which test to perform can depend on the outcomes r r, , k1 … of previous tests in the circuit.
An oracle A : {0,1}→ defines an extra gate that can be used in a computation in addition to those of the finite
gate set, but with input and output that are classical wires, rather than being typed aswith the gates intrinsic to
the theory. The input to the oracle is a function f r r( , , )k1 … of the outcomes of tests that appear in the circuit
prior to the use of the oracle. The design of that portion of the circuit that is subsequent to the oracle can depend
on the outputA(f) of the oracle. An oracle can be used in this way an unlimited number of times in a circuit, with
each use counting as one gate. The uniformity conditionmust be extended, so that for each use of the oracle in a
circuit, the input f r r( , , )k1 … , and the design of the circuit subsequent to the oracle, are computable in poly-
time by a Turingmachinewith access to an oracle for A. The acceptance criterion can also be extended so that
for a circuit outcome z, the function a(z) is computable in poly-time by a Turingmachinewith access to an
oracle for A.

Definition 5.0.7. For each causal generalised probabilistic theory G, a language  is in the class BGPA
cl if there

exists a poly-size uniform family of circuits with access to the classical oracle A, and an efficient acceptance
condition, such that

• x ∈ is acceptedwith probability at least
2

3
.

• x ∉ is acceptedwith probability atmost
1

3

Wecan use the notion of classical oracle to obtain the following relativized separation result.

Theorem5.0.8.There exists a classical oracle A such that for any causal generalised probabilistic theory G,
NP BGPA A

cl⊈ .

The proof is in appendixD. This generalizes the results of [30] fromquantum theory to causal generalised
probabilistic theories that satisfy tomographic locality. The result proved in the appendix is actually stronger:
there exists a classical oracle A such that for any causal generalised probabilistic theory G that satisfies
tomographic locality, the polynomial time hierarchy is infinite and BGP PA A

cl ⊆ . The oracle in question is the
same oracle that was used by Fortnow andRogers in [30].

6.Discussion and conclusion

Thiswork has investigated the relationship between computation and physical principles. Using the circuit
framework approach to generalised probabilistic theories, introduced byHardy in [15, 16] andChiribella,
D’Ariano and Perinotti in [12, 13], the computational power of theories formulated in operational terms can be
investigated, alongwith the role played by simple information-theoretic or physical principles that a theorymay
ormay not satisfy. A rigorousmodel of computation can be defined that allows a definition of the complexity
class of problems efficiently solvable by a specific theory. The strongest known inclusion for the quantum case,
BQP AWPP⊆ , which implies BQP PP PSPACE⊆ ⊆ , still holds in any theory satisfying tomographic locality,
and it is notable that this includes even those theories that violate the causality principle. Combining these results
with a result of Aaronson’s, it follows that any problem efficiently solvable in a theory satisfying tomographic
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locality can also be solved efficiently by a post-selecting quantum computer. In fact, one can say something
stronger: any problem efficiently solvable with post-selection in a theory satisfying tomographic locality can also
be solved efficiently by a post-selecting quantum computer. Roughly speaking, then, in aworldwith post-
selection, quantum theory is optimal for computation in the space of all tomographically local theories.

We discussed the problemof defining a computational oracle for an arbitrary theory. In general, this
problemmay have no good solution, if it is required that the definition of an oracle reduce to the standard
definition in the quantum case. Nonetheless, a notion of ‘classical oracle’ can be defined in any theory that
satisfies the causality principle, and for such theories there exists a classical oracle relative towhich NP is not
contained in BGP. It is plausible that there is an interesting subclass of theories, for which a notion of oracle can
be defined that admits ‘superposition’ of inputs, and reduces to the standard definition in the quantum case. If
so, then for these theories, the solution of the ‘subroutine problem’ of [29]might serve as an interesting
computational principle that could rule out certain theories, potentially providing a new principle fromwhich
quantum theory can be derived.

An open question is to establish tighter bounds on the power of general theories. Evenwith tomographic
locality assumed, there is a lot of freedom in the construction of a generalised theory. Is there an explicit
construction that solves a hard problem, that is, a problem at least thought to be hard for quantum computers?
Even better, canwe describe a complexity class, potentially larger than BQP, and an explicit construction of a
general theory G, such that this class is contained in BGP? It would be interesting to determinewhether
violation of the causality principle can confer extra computational power. An initial thought is that there could
be a non-causal theory that can efficiently solveNP-complete problems. Given that the inclusion
BGP AWPP⊆ holds even for non-causal (tomographically local) theories, however, this can only be the case if
NP is contained in AWPP. At present, this is unknown, and establishing the question either waywould
constitute amajor advance in complexity theory. Still, it would be interesting if the violation of causality enabled
the efficient solution of other problems, thought to be hard for quantum computers, but known to be in AWPP.

Finally, although ourmain results do not require the causality principle, we have nonetheless been
considering circuits inwhich gates appear in afixed structure. It would be interesting to investigate the
computational power of theories inwhich there is no such definite structure. Frameworks for describing
situationswith indefinite causal structure have been definedwith the aimof discussing aspects of quantum
gravity [32, 33]. Some preliminary remarks on the computational power of such theories were given in [33, 41]
and a specific query complexity problem that can be solvedwith fewer queries on a quantum computer inwhich
the gates do not appear in afixed order than on a standard quantum computer was presented in [42].
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AppendixA. Approximate circuit families

Consider a poly-size uniform circuit family C{ }x , defined over afinite gate set . Each gate in  corresponds to
some finite set of transformations, one for each classical outcome of the gate. From the uniformity condition, the
entries of thematrices representing these transformations can be calculated to accuracy ϵ in time poly(log(1 ϵ)).
With x( )ϵ ∣ ∣ a function of the input size, consider a family C{ }x

 of approximations to the original circuits, where
matrix elements are replaced by rational numbers within x( )ϵ ∣ ∣ of the originalmatrix elements. Call C{ }x

 an

x( )ϵ ∣ ∣ -approximation to C{ }x . The following result shows that C{ }x
 can simulate C{ }x , to an accuracy

dependent on x( )ϵ ∣ ∣ .

PropositionA.0.9. Let C{ }x be a uniform circuit family, with the number of gates inCx bounded by a polynomial

q x( )∣ ∣ . Let C{ }x
 be an x( )ϵ ∣ ∣ -approximation to C{ }x , with x( ) 1ϵ ∣ ∣ ⩽ . If the circuit C C{ }T x∈ gives an outcome

sequence zwith probabilityP(z), then the circuit C C{ }T x∈  gives outcome sequence zwith amplitude P z( )
∼

such that

P z P z D q T T N( ) ( ) ( ) ( ) ,q T( ) 1 ϵ− ⩽∼ −
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whereN andD are constants depending on the gate set .
Theword amplitude here should not be confusedwith the complex amplitudes of quantum theory. It is used

for the real-valued quantity which approximates an outcome probability for the original circuit family, and is
used rather than the term probability, because this quantity can be (slightly) less than 0 or (slightly) greater than
1. (The approximating circuit family is amathematical construction that need not correspond precisely to a valid
circuit family in the theory.) This propositionwill be useful in themain proofs, since if C{ }x is a circuit family

that decides some language  in BGP, it follows that a
q x D N

1

12 ( ) q x( ) 1∣ ∣ ∣ ∣ −
-approximation to C{ }x will accept a

string x ∈ with amplitude at least 7 12, andwill accept a string x ∉ with amplitude atmost 5 12, hence the
success amplitude is still bounded away from 1 2. The uniformity condition ensures that such an x( )ϵ ∣ ∣
-approximation can be constructed in time polynomial in x∣ ∣.

In order to prove the proposition, two lemmaswill be helpful.

LemmaA.0.10. LetM be a real n m× matrix such that for each entry,mij, we have that mij ϵ∣ ∣ ⩽ , for 0ϵ > . Then

M nm ,op ϵ∥ ∥ ⩽

where . op∥ ∥ is the operator norm.

Proof. LetMi be the ith row ofM. Then

M m m m,i E
j

m

ij

j

m

ij

1

2

1

∑ ∑ ϵ= ⩽ ⩽
= =

where . E∣ ∣ is the Euclidean norm, hence

Mv M v m nm ,E

i

n

i

i

n

1 1

∑ ∑ϵ ϵ⩽ ⩽ =
==

for v 1∣ ∣ = , where the second inequality follows from theCauchy–Schwarz inequality. Thus M nm .op ϵ∥ ∥ ⩽ ! □

LemmaA.0.11. Let M{ }i i 1
T
= and M{ }i i 1

T
= be two sets ofmatrices. Then theT-fold product of thesematrices satisfies

M M M M D M M... ... ,T T
T

i

T

i i1 1 op
1

1

op∑∥ − ∥ ⩽ ∥ − ∥−

=

  

where D M M M Mmax{ ,..., , ,..., }T T1 op op 1 op op= ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥  .

Proof.Consider the case ofT = 2.With v 1∣ ∣ = ,

M M M M v

M M M M v M M M M v

M M M v M M M v

M M M M M M

( )

( ) ( )

( ) ( )

.

E

E

E E

2 1 2 1

2 1 2 1 2 1 2 1

2 2 1 2 1 1

2 2 op 1 op 2 op 1 1 op

∣ −
= ∣ − + −
⩽ ∣ − + −
⩽ ∥ − ∥ ∥ ∥ + ∥ ∥ ∥ − ∥

 
   

  
  

Thus

M M M M D M M D M M2 1 2 1 op 1 1 op 2 2 op∥ − ∥ ⩽ ∥ − ∥ + ∥ − ∥   

The result follows from induction onT. □

Wecan nowprove proposition A.0.9.

Proof.Aparticular outcome sequence of the circuit C C{ }T x∈ corresponds to a sequence ofmatrices

,...,r r q,1 ,q1  , where r i,i represents the rith outcome of the ith gate in CT . Note that states and effects are included
in this sequence. Tensoring these gates with identity transformations on systems onwhich they do not act and
padding the correspondingmatrices with rows and columns of zeros results in a sequence of squarematrices
M M,...,r q r, ,1q 1 such that

P z P r r b M M b( ) ( ,..., ) . ... . ,q
r q r

1
, ,1q 1T= =
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where b is the vector (1, 0 ,..., 0) and bT is its transpose. Similarly for ,...,
r r q,1 ,q1 ∼ ∼

, so that

P z P r r b M M b( ) ( , , ) . ... . .q
r q r

1
, ,1q 1T= … =∼ ∼  

Note that M r i r i,
op

,
op

i i∥ ∥ ⩽ ∥ ∥ and M r i r i,
op

,
op

i i∥ ∥ ⩽ ∥ ∥∼ , for all i. Therefore,

P z P z b M M M M b

b M M M M b

D M M D q T N T

( ) ( ) ( ... ... )

( ... ... )

( ) ( ),

r q r r q r

E
r q r r q r

E

q T

n

q
r n r n q T

, ,1 , ,1

, ,1 , ,1

( ) 1

1

, ,
op

( ) 1

q q

q q

n n

1 1

1 1

T

T

∑ ϵ

− = ∣ − ∣

⩽ ∣ ∣ ∣ −

⩽ ′ ∥ − ∥ ⩽ ′

∼

−

=

−

 

 



where if n mi i is the size of thematrix r i,i , then

N n m n mmax{ ,..., },q q 1 1=

and

{ }D max ,..., , ,..., .r r q r r q,1
op

,
op

,1
op

,
op

q q1 1   ′ = ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥∼ ∼

Note that, as circuits are built from finite gate sets,N is a constant. Thefirst inequality follows from theCauchy–
Schwarz inequality, the second from that fact that b 1T∣ ∣ = and lemmaA.0.11, the third from lemmaA.0.10, the

fact that the sumhas q T( )∣ ∣ entries and the fact that, as CT
∼

is an ϵ-approximation ofCT, thematrix M Mr i r i, ,i i− 
has entries satisfying m mij ij ϵ∣ − ∣ ⩽͠ .

The reverse triangle inequality gives

N T( ).
r i r i r i r i,

op
,

op
, ,

op
i i i i    ϵ∥ ∥ − ∥ ∥ ⩽ ∥ − ∥ ⩽∼ ∼

With T( ) 1ϵ ∣ ∣ ⩽ , and

{ }D max ,..., ,r r q,1
op

,
op

q1 ″ = ∥ ∥ ∥ ∥

wehave D D D N′ ⩽ ≡ ″ + , which completes the proof. □

Appendix B. Proof of theorem3.4.1

Onemethod of proving theorem3.4.1 is to use GapP functions. GapP functionswere first studied in the context
of quantum computation by Fortnow andRogers in [30], where, among other things, they showed that
BQP AWPP⊆ . A good discussion on GapP functions can be found inWatrous’s survey of quantum
complexity theory [34]. Proofs in this section aremodifications and generalizations of proofs presented in
[25, 30, 34].

Given a polynomial-time non-deterministic TuringmachineM and input string x, denote byMacc(x) the
number of accepting computation paths ofM given input x, and byMrej(x) the number of rejecting computation

paths ofM given x. A function f : {0,1}* →  is a GapP function if there exists a polynomial-time non-
deterministic TuringmachineM such that f x M x M x( ) ( ) ( )acc rej= − for all input strings x.

Many complexity classes can be described in terms of GapP functions. For example the class PP can be
defined as those languages  such that, for some GapP function f and any input string x, if x ∈ then f x( ) 0>
but if x ∉ then f x( ) 0⩽ . A useful class of GapP functions is provided by the following theorem.

TheoremB.0.12.Any function f : {0,1}* →  that can be computed in poly-time by a Turingmachine is a GapP
function. □

For a proof, see [25, p 237].
The notation x y,〈 〉denotes the pairing function [30]: that is, a poly-time computable function thatmaps

the pair of strings x and y bijectively to the set offinite length strings {0,1}* such that, given x y,〈 〉, both x and y
can be extracted in poly-time. The following proposition gives slight generalizations of standard closure
properties of GapP functions.

Proposition B.0.13. For a polynomial q and GapP function f, let h: {0,1}* →  be defined for all x {0,1}*∈ by

h x f x y( ) ( , ),
y q x

y L

( )

x

∑=
⩽

∈
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where Lx is some set (thatmay depend on x) with the property thatmembership of y in Lx can be determined in time
polynomial in x∣ ∣. Then h is a GapP function.

Now let g: {0,1}* →  be defined for all x {0,1}*∈ by

g x f x i( ) ( , ),
i q x

i L

1 ( )

x

∏=
⩽ ⩽
∈

where the symbol i appearing as the second argument on the pairing is a binary encoding of i and Lx is some set with
the property thatmembership of i in Lx can be determined in time polynomial in x∣ ∣. Then g is also a GapP function.

Proof.Wewill prove the first statement only as the second statement follows from a similar generalization of a
standard argument. Let f x M x M x( ) ( ) ( )acc rej= − for some non-deterministic poly-time Turingmachine,M.

LetN be a non-deterministic poly-time Turingmachine that, on input x {0,1}*∈ , guesses a string y of length
q x( )⩽ ∣ ∣ , decides whether y is in Lx, and

• If y Lx∈ , simulatesM on input x y,〈 〉.

• If y Lx∉ , guesses a bit b and accepts if and only if b=0.

N runs in poly-time, and for every x {0,1}*∈ , N x N x h x( ) ( ) ( )acc rej− = , hence h is a GapP function. □

For the rest of this section, assume that the pairing function is usedwhenever a function has two ormore
arguments. GapP functions are intimately related to computation in generalised probabilistic theories, as the
following result shows.

TheoremB.0.14. Let C{ }x be a poly-size uniform family of circuits in a generalised probabilistic theory. Then for any

polynomialw and constantD, there exists a function x D( ) 1 w x( )ϵ ∣ ∣ ⩽ ∣ ∣ , and an x( )ϵ ∣ ∣ -approximation C{ }x
 to

C{ }x , such that the amplitude for acceptance8 of a circuit C C{ }T x∈  is given by

P
f T

(accept)
( )

2
,T p T( )

=∼

where f is a GapP function and p T( )∣ ∣ is a polynomial in the size of the input string.

Proof. It follows from the uniformity condition that for any polynomialw, there is an x( )ϵ ∣ ∣ -approximation
C{ }x
 to C{ }x , with x D( ) 1 w x( )ϵ ∣ ∣ ⩽ ∣ ∣ , such that the entries in thematrices representing gates in the circuit

C C{ }T x∈  have rational entries, and can be computed in time polynomial in T∣ ∣. Furthermore, the rational

entries can be taken to have the form c 2d, with c ∈ , d ∈ , and d a polynomial function of T∣ ∣. Padding
circuits with identity gates if necessary, assume that the number of gates in the circuit CT

 is given by a polynomial

function q T( )∣ ∣ . A particular outcome of the circuit corresponds tomatrices ,...,
r r q,1 ,q1 ∼ ∼

, where
r i,i∼ represents

the rith outcome of the ith gate in CT
 . States and effects are included in this sequence.

By tensoring these gates with identity transformations on systems onwhich they do not act and padding the
correspondingmatrices with rows and columns of zeros, we can obtain a sequence of squarematrices

, ,
r r q,1 ,q1 …  , such that (i) rows and columns of thesematrices are indexed by bit strings of length y T( )∣ ∣ ,

with y T( )∣ ∣ a polynomial function, and (ii) the amplitude of outcome z r r, , q1= … is given by

b b. . ,
r q r, ,1q 1T  ⋯ 

where b is the vector (1, 0, , 0)… and bT is its transpose. Note that for each
r i,i , thematrix 2d r i,i has integer

entries.

Consider the function h : {0,1}* →  given by

( )h T r r n i i M, , , , , ,..., ,q q i i
r n

1 0
,

n n
n

1
… = −

where i i, , q0 … are bit strings of length y T( )∣ ∣ , and Mi i
r n,
n n

n

1−
is the i in n 1− entry of thematrix 2d r n,n . By the

uniformity condition, thesematrix entries can be calculated in polynomial time by a Turingmachine, so by
theoremB.0.12, h is a GapP function.

8
Note that, as C{ }x is amathematical construction, it need not correspond to a valid circuit family in the theory and so cannot be said to

accept or reject an input string.However, for ease of notation, wewill say an approximating circuit ‘accepts’ an input string if a z( ) 0=
where z is the outcome sequence of that approximating circuit, and ‘rejects’ the input string otherwise.
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The amplitude for outcome z r rq1= … is given by

( )

( )

{ }

{ }

{ }

P z M M M

h T r r n i i i i

g T r r i i

f T z

( )
1

2
... ,

1

2
, , , , , 1, ,..., , 1 ,

1

2
, , , , ,..., ,

( , )

2
,

dq
i i

i
r q

i i
r

i
r

dq
i i n q

q q q

dq
i i

q q

dq

,...,

1
, ,2

1
,1

,..., 1

1 0 1 1

,...,

1 1 1

q

q

q

q

q

1 1

1 2 1
2

1
1

1 1

1 1

∑

∑ ∏

∑

=

= … = =

= …

=
′

∼

⩽ ⩽
−

−

−

−

−

−

where g is a GapP function by proposition B.0.13, hence f′ is a GapP function by another application of
proposition B.0.13.

The amplitude for the circuit CT
 to accept is given by

P P z
f T z

(accept) ( )
( , )

2
,T

a z

T

a z
dq

( ) 0 ( ) 0

∑ ∑= =
′∼ ∼

= =

where a(z) is the function that determines if z is an accepting or rejecting outcome. By the uniformity condition,
a(z) can be calculated in polynomial time by a Turingmachine, hence proposition B.0.13 gives

P
f T

(accept)
( )

2
,T p T( )

=∼

where f is a GapP function and d T q T p T( ) ( ) ( )∣ ∣ ∣ ∣ = ∣ ∣ is a polynomial that takes values in . □

The class AWPP time can be defined [35] as follows.

DefinitionB.0.15.The class AWPP consists of those languages  such that there exists a GapP function f, and a
polynomial r such that

• If x ∈ then f x2 3 ( ) 2 1.r x( )⩽ ⩽∣ ∣

• If x ∉ then f x0 ( ) 2 1 3r x( )⩽ ⩽∣ ∣ .

The 1 3 2 3− separation can be replaced by any constant, positive, separation [35].

TheoremB.0.16. For any generalised probabilistic theory G, BGP AWPP⊆ .

Proof. If a language BGP ∈ , then there is a poly-size uniform circuit family C{ }x such that P (accept) 2 3x ⩾
if x ∈ , and P (accept) 1 3x ⩽ if x ∉ . Assume that for all x, P1 10 (accept) 9 10x⩽ ⩽ .9 By theoremB.0.14,
there is an x( )ϵ ∣ ∣ -approximation to C{ }x such that the amplitudes determined by the approximating family
satisfy

P
f x

(accept)
( )

2
,x p x( )

=∼

with f a GapP function. Furthermore, for any polynomialw, x( )ϵ ∣ ∣ can be chosen so that x D( ) 1 w x( )ϵ ∣ ∣ ⩽ ∣ ∣ .
Hence by propositionA.0.9, x( )ϵ ∣ ∣ can be chosen small enough that P (accept) 7 12x ⩾∼

if x ∈ and

P (accept) 5 12x ⩽∼
if x ∉ , and for all x, P0 (accept) 1x⩽ ⩽∼

. Taking p x( )∣ ∣ to be the function r x( )∣ ∣ in
definitionB.0.15 and noting that 5 12 7 12− is a constant, positive, separation, gives the result. □

It is well known that AWPP PP PSPACE⊆ ⊆ (see, for example, [36] and references therein).

AppendixC. Proof of theorem4.0.5

An alternate definition of the class PP can be stated [35, 37] as follows.

9
This can be ensured, if necessary, by considering the circuitCT to be carried out in parallel with a biased coin toss.With probability 1 5, the

coin is tails, in which case the output of the circuit is ignored, and acceptance/rejection are returnedwith probability 1 2 each. Taken
together, these circuits and coin tosses define amodified circuit family C{ }x′ , and in the following, approximating circuit families can be
assumed to be defined relative to C{ }x′ .
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DefinitionC.0.17.The class PP consists of those languages  such that there exist GapP functions f and h so
that for all x

• If x ∈ then f x h x2 3 ( ) ( ) 1.⩽ ⩽

• If x ∉ then f x h x0 ( ) ( ) 1 3.⩽ ⩽

The 1 3 2 3− separation can be replaced by any constant, positive, separation [35].
In order to prove theorem4.0.5, consider a uniform family of circuits C{ }x in the generalised probabilistic

theory G. Let ST be a subset of the possible outcomes of the circuitCT, with respect towhich post-selection is
defined, so that P S(accept ) 2 3T T∣ ⩾ forT ∈ and 1 3⩽ forT ∉ . As in the proof of theorem 3.4.1, assume
that these probabilities are also bounded away from0 and 1 so that for allT, P S1 10 (accept ) 9 10T T⩽ ∣ ⩽ .10

By theoremB.0.14, there is an x( )ϵ ∣ ∣ -approximation to C{ }x such that, in the approximating family, the
joint amplitude to accept the computation and have an outcome from the set ST is

P S
f T

( accept, )
( )

2
,T T p T( )

=∼

with f a GapP function. Similarly,

P S
g T

( )
( )

2
,T T q T( )

=∼

with g a GapP function and q a polynomial. Furthermore, for any polynomialw and constantD, x( )ϵ ∣ ∣ can be
chosen so that x D( ) 1 w x( )ϵ ∣ ∣ ⩽ ∣ ∣ . Hence by propositionA.0.9 and the fact that we are post-selecting on atmost
exponentially-unlikely outcomes, x( )ϵ ∣ ∣ can be chosen small enough that for the approximating circuit family,
P S( ) 0T T >∼

. Thismeans that for the approximating circuit family, the conditional

P S
P S

P S
( accept )

( accept, )

( )
,T T

T T

T T

=∼
∼

∼

is well defined. Furthermore, x( )ϵ ∣ ∣ can be chosen small enough that P S(accept ) 7 12T T∣ ⩾∼
if x ∈ ,

P S(accept ) 5 12T T∣ ⩽∼
if x ∉ , and using the assumption that the original circuit family probabilities are

bounded away from0 and 1, the approximating amplitudes satisfy P S0 (accept ) 1T T⩽ ∣ ⩽∼
.

Now,

P S
f T

g T

l T

h T
( accept )

2 ( )

2 ( )

( )

( )
,T T

q T

p T

( )

( )
= =∼

where h T g T( ) 2 ( )p T( )= ∣ ∣ and l x f T( ) 2 ( )q T( )= ∣ ∣ are GapP functions. This follows from theoremB.0.12,
proposition B.0.13, and the fact that both p and q are polynomials taking values in . The result follows.

AppendixD. Proof of theorem5.0.8

Denote by PH the polynomial time hierarchy: the union of an infinite hierarchy of classes kΣ , kΔ and kΠ for

k ∈ , where P0 0 0Σ Δ Π= = = and NPk 1
kΣ = Σ

+ , Pk 1
kΔ = Σ

+ and coNPk 1
kΠ = Σ

+ . The polynomial time
hierarchy is a natural way of classifying the complexity of problems beyond the class NP. It is a strongly held
belief in computer science that NP includes non-polynomial-time problems.

Theorem 5.0.8 is a corollary of two results, the first of which is due to [36] and [38]:

TheoremD.0.18.There exists an oracle A such that P AWPPA A= and the polynomial time hierarchy is infinite.

The second is that theoremB.0.16 relativizes.

TheoremD.0.19. For any classical oracle A we have that BGP AWPPA A
cl ⊆ for any causal G.

Proof.Given the uniformity condition for circuit families with an oracle, entries in thematrices representing
gates in a circuit are all computable in polynomial time by a Turingmachinewith access to the oracle A. Thus
the proof of theoremB.0.14 goes through essentially unchanged, except that in this case the conclusion is that

10
This can be done, as before, by the introduction of a biased coin parallel to the circuit. If the circuit outcome is in ST and the coin is heads,

then accept or reject, depending on the circuit outcome. If the outcome is in ST and the coin is tails then accept or reject with probability 1 2
each.
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the acceptance amplitude is

P
f x

(accept)
( )

2
,x p x( )

=∼

where p x( )∣ ∣ is a polynomial function of the size of the input and f is a GapPA function. A GapPA function is
defined in a similar fashion to a GapP function, except instead of counting the difference between the number of
accepting and rejecting paths for any input into a non-deterministic Turingmachine, GapPA functions count
the difference between the number of accepting and rejecting paths for any input into a non-deterministic
Turingmachinewith access to the oracle A. AWPPA can be definedwith respect to GapPA functions by just
replacing everymention of GapP functionswith GapPA functions in definition B.0.15. Thus the proof that
BGP AWPPA A

cl ⊆ , for any causal GPT and oracle A, goes through exactly the same as the proof of theorem
B.0.16. □

Hencewe obtain

TheoremD.0.20.There exists a classical oracle A relative to which BGP PA A
cl ⊆ , for all causal G, and the

polynomial time hierarchy is infinite.

This implies that there exists a classical oracle relative towhich NP is not contained in BGP, for any causal
theory G satisfying tomographic locality. This generalizes the results of [30] fromquantum theory to general
theories.
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