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The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model 
contributions to electron–quark scattering. Combined measurements of the inclusive deep inelastic cross 
sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb−1 have 
been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive 
ep data is presented; simultaneous fits of parton distribution functions together with contributions of 
“new physics” processes were performed. Results are presented considering a finite radius of quarks 
within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 
0.43 · 10−16 cm.
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1. Introduction

Precision measurements of deep inelastic e± p scattering (DIS) 
cross sections at high values of negative four-momentum-transfer 
squared, Q 2, allow searches for contributions beyond the Standard 
Model (BSM), even far beyond the centre-of-mass energy of the 
e± p interactions. For many “new physics” scenarios, cross sections 
can be affected by new kinds of interactions in which virtual BSM 
particles are exchanged. The cross sections would also be influ-
enced were quarks to have a finite radius. As the HERA kinematic 
range is assumed to be far below the scale of the new physics, all 
such BSM interactions can be approximated as contact interactions 
(CI). In all cases, deviations of the observed cross section from the 
Standard Model (SM) prediction are searched for in ep scattering 
at the highest available Q 2. The predictions are calculated using 
parton distribution function (PDF) parameterisations of the proton.

The H1 and ZEUS collaborations measured inclusive e± p scat-
tering cross sections at HERA from 1994 to 2000 (HERA I) and from 
2002 to 2007 (HERA II), collecting together a total integrated lumi-
nosity of about 1 fb−1. All inclusive data were recently combined 
[1] to create one consistent set of neutral current (NC) and charged 
current (CC) cross-section measurements for e± p scattering with 
unpolarised beams. The inclusive cross sections were used as in-
put to a QCD analysis within the DGLAP formalism, resulting in 
a PDF set denoted as HERAPDF2.0. Due to the high precision and 
consistency of the input data, HERAPDF2.0 can be used to calculate 
SM predictions with small uncertainties. A search for BSM contri-
butions in the data should take into account the possibility that 
the PDF set may already have been biased by partially or totally 
absorbing previously unrecognised BSM contributions.
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In the ZEUS CI analysis of HERA I e± p data [2], the uncertain-
ties on the PDFs used were a dominant source of systematic error. 
Estimated uncertainties of the parton densities were used to smear 
model predictions in the limit-setting procedure. Such an approach 
was valid as the CTEQ5D parameterisation [3,4] used for calculat-
ing model predictions included only 1994 HERA data in addition 
to many other data sets. The limits were dominated by statistical 
uncertainties. For the CI analysis presented here, in which the data 
are identical to those used for the HERAPDF2.0 determination and 
the statistical uncertainties are no longer dominant, a new pro-
cedure to set limits on the BSM model contributions is required. 
In this analysis BSM contributions and the QCD evolution are fit-
ted simultaneously. Results of a search for a finite quark radius are 
presented within the formalism of the quark form-factor model [5].

2. QCD analysis

The QCD analysis presented in this paper was performed sim-
ilarly to that for the HERAPDF2.0 determination [1]. It was used 
to predict cross sections without BSM contributions. The HERA 
combined data on inclusive e± p scattering [1] were used as in-
put to the perturbative QCD (pQCD) analysis. Only cross sections 
with Q 2 � 3.5 GeV2 were used. A fit to the data, resulting in a set 
of PDFs, was obtained by solving the DGLAP evolution equations 
at NLO in the MS scheme. This was done using the programme 
QCDNUM [6] within the HERAFitter framework [7]. For the PDF pa-
rameterisation, the approach adopted in the HERAPDF2.0 study [1]
was followed. The PDFs of the proton were described at a start-
ing scale of 1.9 GeV2 in terms of 14 parameters. These parameters 
were fit to the data using a χ2 method, taking into account statis-
tical uncertainties, as well as uncorrelated and correlated system-
atic uncertainties on the experimental data. The corresponding χ2

formula is:

χ2 (m, s) =
∑

i

[
mi + ∑

j γ
i
j m

i s j − μi
0

]2

(
δ2

i,stat + δ2
i,uncor

)
(μi

0)
2

+
∑

j

s2
j , (1)

where μi
0 is the measured cross-section value at the point i. The 

quantities γ i
j , δi,stat and δi,uncor are the relative correlated system-

atic, relative statistical and relative uncorrelated systematic uncer-
tainties of the input data, respectively. The vector m represents the 
set of pQCD cross-section predictions mi and the components s j of 
the vector s represent the correlated systematic shifts of the cross 
sections (given in units of γ i

j ). The summations extend over all 
data points i and all correlated systematic uncertainties j.

The χ2 formula used in this analysis differs from that of 
HERAPDF2.0 study [1] in order to facilitate the production of data 
replicas within the HERAFitter framework [7], see Section 4. The 
resulting sets of PDFs, referred to as ZRqPDF in the following, are 
nevertheless in good agreement with HERAPDF2.0.

The experimental uncertainties on the predictions from ZRqPDF 
were determined with the criterion �χ2 = 1. The uncertainties 
due to the choice of model settings and the form of the param-
eterisation were evaluated as for HERAPDF2.0.

3. Quark form factor

One of the possible parameterisations of deviations from SM 
predictions in ep scattering is achieved by assigning an effective 
finite radius to electrons and/or quarks while assuming the SM 
gauge bosons remain point-like and their couplings unchanged. 
The expected modification of the SM cross section can be de-
scribed using a semi-classical form-factor approach [5]. If the ex-
pected deviations are small, the SM predictions for the cross sec-
tions are modified, approximately, to:

dσ

dQ 2
= dσ SM

dQ 2

(
1 − R2

e

6
Q 2

)2 (
1 − R2

q

6
Q 2

)2

, (2)

where R2
e and R2

q are the mean-square radii of the electron and 
the quark, respectively, related to new BSM energy scales. In the 
present analysis, only the possible finite spatial distribution of the 
quark was considered and the electron was assumed to be point-
like (R2

e ≡ 0). Both positive and negative values of R2
q were consid-

ered. Negative values of R2
q can be obtained if a charge distribution 

is assumed which changes sign as a function of the radius. The 
term “quark radius” is only one possible interpretation of BSM ef-
fects parameterised as form factors.

The QCD analysis described in the previous section was ex-
tended by introducing R2

q as an additional model parameter 
and modifying all e± p DIS cross-section predictions according to 
Eq. (2). Values for R2

q were extracted using a χ2-minimisation pro-

cedure, where all PDF parameters were also simultaneously fit; R2
q

was treated as a test statistic to be used for limit setting. The value 
of this test statistic for the data is R2 Data

q = −0.2 · 10−33 cm2. The 
probability distributions for R2

q were determined as described in 
the next section.

4. Limit-setting procedure

The limit on the effective quark-radius squared, R2
q , is derived 

in a frequentist approach [8] using the technique of replicas. Repli-
cas are sets of cross-section values that are generated by varying 
all cross sections randomly according to their known uncertain-
ties. For the analysis presented here, multiple replica sets were 
used, each covering cross-section values on all points of the x, Q 2

grid used in the QCD fit. For an assumed true value of the quark-
radius squared, R2 True

q , replica data sets were created by taking the 
reduced cross sections calculated from the ZRqPDF fit and scal-
ing them with the quark form factor, Eq. (2), with R2

q = R2 True
q . 

This results in a set of cross-section values mi
0 for the assumed 

true quark-radius squared, R2 True
q . The values of mi

0 were then var-
ied randomly within statistical and systematic uncertainties taken 
from the data, taking correlations into account. All uncertainties 
were assumed to follow a Gaussian distribution.1 For each replica, 
the generated value of the cross section at the point i, μi , was 
calculated as:

μi =
[

mi
0 +

√
δ2

i,stat + δ2
i,uncor · μi

0 · ri

]
·
⎛
⎝1 +

∑
j

γ i
j · r j

⎞
⎠ , (3)

where variables ri and r j represent random numbers from a nor-
mal distribution for each data point i and for each source of cor-
related systematic uncertainty j, respectively.

The approach adopted was to generate sets of replicas that were 
used to test the hypothesis that the cross sections were modified 
by a fixed R2

q value according to Eq. (2). The value of R2 Data
q de-

termined by the fit to the data themselves was taken as a test 
statistic, to which values from fits to replicas, R2 Fit

q , could be com-

pared. Positive (negative) R2 True
q values that, in more than 95% of 

1 It was verified that using a Poisson probability distribution for producing repli-
cas at high Q 2, where the event samples are small, and using the χ2 minimisation 
for these data did not significantly change the probability distributions for the fitted 
parameter values.
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Fig. 1. The probability of obtaining R2 F it
q values smaller than that obtained for the 

actual data, R2 Data
q , calculated from Monte Carlo replicas, as a function of the as-

sumed value for the quark-radius squared, R2 T rue
q . Points with statistical error bars 

represent Monte Carlo replica sets generated for different values of R2 T rue
q . The 

solid circles correspond to the results obtained from the simultaneous fit of R2
q and 

PDF parameters (PDF + Rq ). For comparison, the open circles represent the depen-
dence obtained when fixing the PDF parameters to the ZRqPDF values (Rq-only). 
The dashed line and the dashed-dotted line represent the cumulative Gaussian dis-
tributions fitted to the PDF+ Rq and Rq -only replica points, respectively. The vertical 
line represents the 95% C.L. upper limit on R2

q .

the replicas, result in the fitted radius squared value, R2 Fit
q , greater 

than (less than) that obtained for the data, R2 Data
q , were excluded 

at the 95% C.L.. The details of these procedures are described be-
low.

To set the limit, a number of MC replica cross-section sets for 
each value of R2 True

q was used for a QCD fit with the PDF parame-
ters and the quark radius as free parameters, yielding a distribution 
of the fitted values of the quark radius, R2 Fit

q . The χ2 formula of 
Eq. (1), with the measured cross-section values, μi

0, in the nu-
merator of the first term replaced by the generated values of the 
replica, μi , was used for fitting R2

q and the PDF parameters.

In a last step, the probability of obtaining a R2 Fit
q value smaller 

than that obtained for the actual data, Prob(R2 Fit
q < R2 Data

q ), was 
plotted as a function of R2 True

q , for positive R2 True
q values, as shown 

in Fig. 1. The probability distribution was interpolated to calculate 
the R2

q value corresponding to the 95% C.L. upper limit. About 5000 
Monte Carlo replicas were generated for each value of R2 True

q re-
sulting in a relative statistical uncertainty of the extracted limit of 
about 0.3%. The corresponding plot for negative R2 True

q values is 
shown in Fig. 2.

As a cross check, the limits on R2
q were also estimated from 

the simultaneous PDF and R2
q fit to the data by looking at the 

variation of the χ2 value minimised with respect to the PDF pa-
rameters when changing the R2

q value. Both limits are in good 
agreement with the results based on the Monte Carlo replicas. 
The limit-setting procedure was also repeated for different model 
and parameter settings, considered as systematic checks in the 
HERAPDF2.0 analysis [1]. The resulting variations of the limits on 
R2

q are negligible.
Fig. 2. The probability of obtaining R2 F it
q values larger than that obtained for the 

actual data, R2 Data
q , calculated from Monte Carlo replicas, as a function of the as-

sumed value for the quark-radius squared, R2 T rue
q . Other details as for Fig. 1.

5. Results

The results of the limit-setting procedure using the simultane-
ous fit to PDF parameters and R2

q , based on sets of Monte Carlo 
replicas testing the possible cross-section modifications due to a 
quark form factor, yield the 95% C.L. limits on the effective quark 
radius of

−(0.47 · 10−16 cm)2 < R2
q < (0.43 · 10−16 cm)2 .

Taking into account the possible influence of quark radii on the 
PDF parameters is necessary as demonstrated in Figs. 1 and 2, 
because the limits that would be obtained for fixed PDF param-
eters are too strong by about 10%. The limits are consistent with 
the estimated experimental sensitivity, calculated as the median 
of the limit distribution for the SM replicas, corresponding to a 
quark radius of 0.45 ·10−16 cm (for both positive and negative R2

q ). 
Cross-section deviations given by Eq. (2), corresponding to the pre-
sented 95% C.L. exclusion limits, are compared to the combined 
HERA high-Q 2 NC and CC DIS data in Figs. 3 and 4, respectively.

The 95% C.L. upper limit for the quark radius presented here 
is almost a factor of two better than the previous ZEUS limit of 
0.85 · 10−16 cm, based on the HERA I data [2]. The present re-
sult improves the limit set in ep scattering by the H1 collabora-
tion [9] (Rq < 0.65 · 10−16 cm) and is similar to the limit pre-
sented by the L3 collaboration (Rq < 0.42 · 10−16 cm), based on 
quark-pair production at LEP2 [10]. It is important to remember 
that the possible BSM physics parameterised by the Rq at LEP and 
HERA can be very different, so that the LEP and HERA limits are 
largely complementary. The limit on negative R2

q values presented 
here is an improvement compared to the published ZEUS limit of 
R2

q > −(1.06 · 10−16 cm)2.

6. Conclusions

The HERA combined measurement of inclusive deep inelastic 
cross sections in neutral and charged current e± p scattering was 
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Fig. 3. Combined HERA (a) e+ p and (b) e− p NC DIS data compared to the 95% C.L. 
exclusion limits on the effective mean-square radius of quarks. Also shown are the 
expectations calculated using the ZRqPDF parton distributions. The bands represent 
the total uncertainty on the predictions. The insets show the comparison in the 
Q 2 < 104 GeV2 region with a linear ordinate scale.

used to set limits on possible deviations from the Standard Model 
due to a finite radius of the quarks. The limit-setting procedure 
was based on a simultaneous fit of PDF parameters and the quark 
radius. The resulting 95% C.L. limits for the quark radius are

−(0.47 · 10−16 cm)2 < R2
q < (0.43 · 10−16 cm)2 .

This result is competitive with a determination from LEP2 and sub-
stantially improves previous HERA limits.
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