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Abstract

Modern cohort studies include self-reported measures on disease, behavior and
lifestyle, sensor-based observations from mobile phones and wearables, and rich
-omics data. Follow-up is often achieved through electronic health record (EHR)
linkages across primary and secondary healthcare providers. Historically however,
researchers typically only get to see the tip of the iceberg: coded administrative
data relating to healthcare claims which mainly record billable diagnoses and
procedures. The rich data generated during the clinical pathway remain submerged
and inaccessible. While some institutions and initiatives have made good progress in
unlocking such deep phenotypic data within their institutional realms, access at scale
still remains challenging. Here we outline and discuss the main technical and social
challenges associated with accessing these data for data mining and hauling the
entire iceberg.

In January 2015, President Barack Obama launched the Precision Medicine Initiative

[1], a $215-million investment aiming to facilitate data-driven precision research by

forging a cohort of at least one million participants. Primary data collection includes

self-reported measures on disease, behavior and lifestyle, sensor-based observations

from mobile phones and wearables, and rich -omics data. Follow-up will be achieved

through electronic health record (EHR) linkages across primary and secondary health-

care providers. Historically however, researchers typically only get to see the tip of the

iceberg: coded administrative data relating to healthcare claims which mainly record

billable diagnoses and procedures. The rich data generated during the clinical pathway

[2] (e.g. laboratory measurements, investigations, clinical notes, imaging, medications)

remain submerged and inaccessible. While some institutions and initiatives [3–6] have

made good progress in unlocking such deep phenotypic data within their institutional

realms, access at scale still remains challenging. Here we outline and discuss the main

technical and social challenges associated with accessing these data for data mining

and hauling the entire iceberg.

It is often said that the field of informatics consists of people and technology inter-

twined. It comes as no big surprise that the greatest challenges are observed around

interacting with clinical informatics staff and information systems. Research is usually

not directly within the remit of informatics departments whose primary role is to

support patient care through the provision and maintenance of various platforms and
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systems. This provision substantially varies between healthcare providers and across

clinical specialties: providers might use a single unified EHR platform (e.g. Cerner, Epic)

or a set of isolated platforms and systems integrated through bespoke middleware

solutions. Often, these systems have been developed by subcontracted external software

vendors which leads to substantial interaction costs when attempting to access data

outside the standard clinical care use. In both cases however, it is usually the case that

access to data for research has not been a key requirement and as a result the deployed

platforms critically lack the functionality to facilitate it out of the box.

While the majority of secondary care clinical specialties generate electronic data, the

manner in which data get captured and the context under which they are recorded

differs. This results in a heterogeneous ecology of healthcare process models that even

within a single provider are challenging to identify, integrate and re-use. It is often hard

to get the “big picture” and discover the data flows between clinical departments

and systems. The irregular utilization of metadata and health data standards makes

it challenging to establish data provenance and assess data quality in a meaningful

manner. More importantly, given the complexity of healthcare provision, it is difficult to

establish the context under which data were generated and which is essentially required

to enable the reuse of data for research. For example, the same piece of information,

such as a blood pressure measurement or a white blood cell count, can be recorded

across multiple systems but at differing temporal and clinical resolutions and in different

contexts [7, 8].

Large amounts of information are also often stored in semi-structured or unstruc-

tured format. Biochemistry, haematology, microbiology and cellular pathology investi-

gations and results are usually stored as semi-structured reports whose format varies

significantly both within and between healthcare providers [9]. In some clinical special-

ties, such as mental health, the majority of information generated and recorded during

interactions with clinical staff is stored as free-text [10]. Unstructured data are increa-

singly hard to access for research purposes and scalable natural language processing

methods [11] and pipelines [12] are required in order to extract, clean and format these

data at scale. Developing these tools however is equally difficult as access to large

corpora of text which are required for algorithm training is restricted.

Data generated during clinical care are almost exclusively from unconsented patients

which leads to ethical and governance challenges [13]. The reuse of such data for

research requires a set of complex approvals from multiple governing entities which

are challenging to navigate and obtain and operate in an opaque manner. Furthermore,

significant concerns are often raised in terms of information security patient confiden-

tiality and minimizing the risk of re-identification [14]. Researchers find themselves

between a rock and a hard place. Research-driven environments offer substantially

more flexibility in terms of analyzing the data such as for example through the

provision of high performance clusters or flexible technology stacks that enable the

development and evaluation of novel computational methods and approaches. At the

same time, they are considered poorly in terms of information security and governance

from healthcare providers who are reluctant to release data for storage there in large

numbers or at high fidelity. Researchers often need to choose between working with a

limited subset of the data in their own environment or with richer data in restrictive

settings that directly hinder their productivity.
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The challenges highlighted here underline the urgent need for new clinical informa-

tics tools, theories and approaches in order to bridge the gap between the clinical care

and research strata and accelerate the full translational continuum from basic research,

to clinical trials and evaluation and integrated provision of healthcare at a population

level [15, 16]. The complex and interdependent relationships that are observed between

staff, platforms and data pose significant challenges for accessing data for research

(e.g. in terms of cost or obtaining contextual knowledge) and performing research within

hospitals (e.g. deploying a clinical decision support tool or undertaking integrated

pragmatic clinical trials [17, 18]). Meaningful and sustainable relationships with clinical

informatics staff need to be developed and nurtured in order to facilitate the bidirectional

flow of knowledge. Furthermore, research should inform the requirements of such

complex systems early on, enabling the scalable collection and curation of data in

a transparent manner early on. Data mining is the key to insights from clinical big data

but the data need to accessible and contain the information needed to improve

healthcare.
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