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Abstract | For clinicians grappling with quantifying the complex spatial and temporal patterns 
of cardiac structure and function (such as myocardial trabeculae, coronary microvascular 
anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-
pressure variability) fractal analysis is a powerful, but still underused, mathematical tool. In 
this Perspectives article, we explain some fundamental principles of fractal geometry and 
place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in 
which fractal methods have successfully been used to investigate disease mechanisms, and 
suggest potential future clinical roles in cardiac imaging and time-series measurements. We 
believe that clinical researchers can deploy innovative fractal solutions to common cardiac 
problems that might ultimately translate into advancements for patient care. 
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Fractal patterns are everywhere: in mathematics1, industry2, the stock market3, climate 
science4, galaxies5, trees6, and even in the films we watch and games we play7,8 (FIG. 1). 
Fractal theory has a major role in biology, including in the human heart. As in the 
entertainment industry, the role of fractals in biology has gone beyond helping us to 
formulate theoretical abstractions, and has reached a practical level that expands the 
boundaries of the field. Indeed, one of the first lessons learned from studying the fractal 
nature of the cardiovascular system was that it strives to preserve not stability, but adaptive 
variability — a discovery that redefined canonical notions of cardiac homeostasis9,10. Today 
in cardiology, we face a new frontier in translating lessons learned from fractal theory to care 
at the bedside11,12. In this Perspectives article we update the field with salient results from the 
studies in the cardiovascular sciences that have successfully used fractal analyses to 
investigate disease mechanisms and we outline their potential future clinical role in 
measuring the complex biological processes of the human heart.  
 
Fractal theory and the heart 
The link between fractal theory and practical applications to cardiovascular medicine is the 
fractal dimension (FD), a unitless number that measures nontrivial, self-similar scaling. A 
phenomenon is self-similar if the whole resembles its scaled parts, and its self-similarity is 
‘nontrivial’ if, in essence, the design detail and repetitive arrangement creates a pattern too 
‘rough’ or ‘irregular’ to be defined by Euclidean geometry. For example, a simple line is self-
similar, but only trivially so. By contrast, a branching line that sprouts four branches each 
two-fifths the size of, but otherwise identical to, the parent is nontrivially self-similar. 
Moreover, this branching line is infinitely self-similar if every branch forever sprouts new 
branches using that same four to two-fifths scaling rule (FIG. 2)13. 
 In fractal parlance, the FD measures a phenomenon’s ‘complexity’, which is the 
logarithmic ratio of the change in detail to the change in scale. The changes in detail and 
scale are related by the fundamental fractal relation N ∝ εFD, from which the FD is found by 
taking the log of each side and solving for the exponent: FD = log N/log ε (REF. 13). The 
change in detail in our hypothetical pattern is the number of sprouts per branch (N = 4), and 
the change in scale is the factor relating sprout size to parent size (ε = (2/5)–1 = 5/2). Its FD, 
then, is log 4/log (5/2) = 1.51. This number describes a phenomenon existing between the 
bounds of the familiar notion of dimension: a simple line, for instance, has an FD of 1, and a 
plane has an FD of 2 (FIG. 3), but the length of the branching line described above falls 
between these. This example illustrates a general rule that separates the FD from traditional 
notions of dimension: whereas the familiar dimension must adopt only integer values, fractal 
dimensions can be integer or fractional1,13. 
 The FD can be calculated for other types of patterns. One type is the classic example 
of a theoretical contour, analogous to the classic example of a coastline13 or — relevant to 
cardiology — the edge of an infarction scar. If the pattern of a contour scales as a fractal, the 
boundary appears equally invaginated regardless of the magnification with which it is 
examined or, in other words, it never resolves into a smooth curve lacking detail. Measuring 
the changes in detail and scale for a contour can be understood through the mental exercise of 
measuring it by laying sticks of a fixed length, end to end, along the contour and counting the 
sticks, then reiterating the process using shorter and shorter sticks. The number of sticks at 
any size is the detail (N) and the length of the measuring stick relative to its previous length is 
the scale (ε–1) in the fundamental fractal relation. If the pattern scales as a fractal, the number 
of sticks required increases as shorter and shorter sticks are used. For an infarction, 
decreasing the size of the measuring stick is analogous to zooming in with a microscope or 
increasing the resolution of a digital image. 
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 The essential principles inherent in the fundamental fractal relation can be applied to 
virtually any pattern type or number set. In cardiology, this means, in addition to the 
branching patterns and contours discussed above, textures, 2D and 3D spaces, and time-series 
data. In practice, fractal analysis is usually done with automated, user-friendly software that 
rapidly analyses patterns obtained from a variety of digital signal recording methods, 
bioinformatics tools, and imaging modalities. 
 The empirical FDs thus determined differ from theoretical FDs in particular ways. 
One is the limit of scaling, which manifests in two important ways: in the phenomenon itself 
and in the methods of determining the FD. The limits of natural spatial phenomena relevant 
to cardiology rest in the body not allowing infinite self-similarity over progressively smaller 
distances, because organs are composed of cells, solutions, and embedding matrices, all of 
which are in turn made up of components that at some point reach a finite size. Just as spatial 
fractal behaviour can be seen in anatomical structures, temporal fractals can be seen in 
physiological signals such as blood pressure or heart rate, characterized by fluctuations that 
show equivalence across a range of time-scales (cf. space-scales).14 Again, these parameters 
are limited at short time-scales because heart rate is observable only once per heart beat. 
 The second factor — scaling limits attributable to methodology — rests in the 
resolution of the method used to obtain and then analyse temporal and spatial signals. In 
cardiology, examples include low-resolution versus high-resolution echocardiography for 
temporal signals and the resolution available in magnetic resonance versus X-ray versus light 
microscopy for spatial signals. Further methodologically imposed limits exist in the process 
of obtaining a pattern: for digital images of cardiovascular fractals, for instance, pixel and 
image size limits of the software and particular computer hardware used superimpose limits 
on the original signal-gathering methods. 
 Another way in which empirical FDs differ from theoretical FDs is that phenomena in 
nature generally do not reproduce the identical pattern, but statistically similar patterns. As an 
example, the branching coronary tree (FIG. 4a) differs from our hypothetical branching 
model (FIG. 2) by sprouting not in a strictly repeated pattern relative to parent branches, but 
in an essentially similar repeating pattern. This general feature of natural scaling is not an 
error of imprecision; rather, in biology it supports adaptive variability15 and is likely to be 
determined by different recursive generative processes that operate across space-scales within 
systems (for example, the ‘rules’ responsible for generating capillaries are not identical to 
those generating large arteries, probably because physical influences of viscosity and inertia 
differ). Consequently, the fractal complexity of spatial structures in cardiology would be 
expected to differ based on physiology16–18. It has been argued that such natural patterns are 
more accurately called ‘random’, ‘statistical’, or ‘quasi’ fractals rather than simply ‘fractals’, 
and that the term ‘scale-invariant’ should be used to distinguish patterns that are not strictly 
self-similar. In most of the published literature and in this Perspectives article, however, the 
term ‘fractal’ is used to describe biological phenomena irrespective of practical limits, just as 
the terms ‘cyclical’ and ‘constant’ are used for behaviours that are not so in a mathematical 
sense. Readers should, therefore, consider the idiom as well as the method by which fractal 
scaling is measured when reading that a biological phenomenon has a fractal dimension or 
fractal architecture13,19. The important point is that fractal patterns in the heart, although they 
might not scale indefinitely in space or time, are nevertheless perfectly amenable to fractal 
analysis20, so the FD can still be used to describe them (FIG. 3b–e). 
 
[H1] Biological systems and organogenesis 
In general, biological systems do not have one overarching FD. From genome to proteome to 
morphology to function, developmentally and over time, the heart exhibits features in both 
the spatial and temporal domains that are amenable to fractal analysis. Features for which 



5 
 

FDs have been found in the heart include temporal recordings of signals, such as 
electrocardiograms14, pulse21, pressure and flow22,23, as well as arrangements of spatial 
components such as DNA sequences24, proteins25, extracellular matrix constituents26, 
trabeculae27, and, as already alluded to, coronaries and infarction scar boundaries28–30. Spatial 
fractal patterns in the heart are extracted by imaging instruments and bioinformatics tools at 
various levels of its organization (genome, proteome, organellar, cellular, tissue, whole-
organ), and they can describe the complexity of signalling pathways, metabolic networks, and 
macroscopic structures28. 
 Despite the diverse range of phenomena within the cardiovascular system amenable to 
fractal analysis, some motifs can be expected to repeat over broad scales. Cells, tissues, and 
organs perform specific tasks in a coordinated manner. At the cellular and subcellular levels, 
diffusion has a major role in the transport of food, waste, gas, and heat. At this end of the 
scale, cell size is constrained by the surface-to-volume ratio needed for efficient diffusion31, 
as dictated by the fundamental laws of thermodynamics32. 
 For multicellular organisms, the smallest theoretical unit is not really ‘one cell’, but 
the combined ‘service volume–transport system complex’. This theoretical unit supports 
transportation, distribution, and exchange over a wide range in volume and mass as it fills the 
3D space of organs and organisms18, covering nine orders of magnitude from the cell to a 
gram of tissue33 and, for mammals, a further eight orders of magnitude (for example, from 
the 1.5 g of a white-toothed pigmy shrew to the 130 tonnes of a blue whale34). 
 The allometric scaling required for organogenesis is a familiar and pervasive topic in 
biology, and typically follows simple quarter-power laws (such as three-quarter power 
scaling for metabolism, or one-quarter power for growth rates, size, or heart rates). Indeed, 
the whole of metazoan organogenesis is underlain by fractal principles, whether by 
confluence, intussusception, clefting, or sprouting35, resulting in hierarchical, branching 
patterns of cellular clusters and transportation networks that repeat a fundamental design 
detail over many orders of magnitude. Several human organs are founded on such a fractal 
anatomy. Some examples are coronary vessels and Purkinje fibres in the heart, neurones, 
bronchial trees, and the biliary and urinary tubing systems in liver and kidneys, 
respectively30. From material science, moreover, we have learned that fractal 3D solids can 
be created using only three things: growth, competition or selective pressure (for a resource 
needed for energy-efficient growth), and a degree of randomness36. All these factors also 
apply to biological tissues, in which controlled intercellular communication is layered on top 
of diffusion to determine the destination architecture. 
 
Fractal applications in cardiology 
 ‘Omic’ complexity 
Many of the FDs that have been determined for the heart have far-reaching practical 
implications. One practical matter that fractal analysis is helping to resolve is today’s data 
deluge of genomic, transcriptomic, proteomic, and metabolomic information (FIG. 5)37. At 
the cellular level, the cardiac myocyte, like all cells, is a complex series of highly 
interconnected ‘omic’ systems whose structure and functional behaviour are fractal, variable, 
and adaptive15. With regard to the genome, for instance, two topics that fractal analysis is 
helping to clarify are the inherited heart muscle disease hypertrophic cardiomyopathy (HCM) 
and our understanding of so-called ‘junk DNA’. HCM is the most common monogenic heart 
disease, predominantly caused by autosomal dominant mutations in sarcomere protein 
genes38,39, in 20% of patients involving mutations in the β myosin heavy chain (myosin 7) 
gene (MYH7) — an intron-containing gene40. Unexpected MYH7 intron retention in mature 
mRNA transcripts has been linked to heart failure41, suggesting that the introns might be 
especially important in HCM. 1D DNA walks that provide a graphical representation of the 
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human MYH7 DNA sequence24 have shown statistical scale-invariance in the arrangement of 
introns, in the form of long-range correlations consistent with a fractal pattern24. Coding 
DNA and intron-free genes do not have this property24. Given that these introns can be 
pathogenic, coupled with the assumption that their fractal complexity and algebraic 
distribution42 potentially underlies a biologically relevant organizational role, adds support to 
a growing body of evidence43 suggesting that their designation as ‘junk DNA’ might be a 
misnomer. This fractal landscape does not stop with the genome, but persists into the human 
proteome: the distribution of pentapeptide redundancies in human proteins has been studied 
by fractal analysis, and the proteomic FD has been used to qualitatively distinguish and 
catalogue short linear peptide motifs critically involved in cell biology25. 
 
Cellular and tissue complexity 
Fractal analysis has also provided insights into the cardiovascular system at the cellular and 
tissue levels. Fractal concepts have been used to study the morphology of microtubules and 
the actin cytoskeleton44 in cardiac myocytes (FIG. 4b), to grade the severity of acute rejection 
in haematoxylin and eosin-stained biopsy samples from patients who have undergone heart 
transplantation45, and to compare collagen deposition and organization in the hearts of 
normotensive and hypertensive mice26. The last study suggested that FD results can be used 
to quantitate differences between two types of myocardial extracellular matrix fibrosis: 
reparative fibrosis, in which voids from myocyte loss fill in with characteristically disordered 
and space-filling collagen; and reactive fibrosis, in which there is little myocyte loss but 
increased collagen deposition occurs in a characteristically ordered, less space-filling pattern. 
The investigators suggest that what the FD quantitates is potentially related to stiffening of 
the myocardium and might be relevant to models of scarring in general, and specifically to 
pharmaceutical strategies targeting transcription factors implicated in human cardiac fibrosis. 
 In cardiac electrophysiology, a need exists to combine in vivo imaging techniques 
with computational modelling to reconstruct accurately the 3D geometry of the complex 
human Purkinje network. These technologies could support the design of personalized 
strategies for single-ventricle or biventricular pacing, radiofrequency ablation, and cardiac 
defibrillation. Manual generation of Purkinje networks is complicated, low-quality, and time-
consuming, so electrophysiologists and bioengineers have partnered to develop fractal tree 
algorithms for a more realistic simulation of the human cardiac excitation sequence46. 
 Clinical, high-resolution myocardial tissue perfusion imaging technologies across 
modalities, including cardiovascular magnetic resonance (CMR)22, stand to gain from fractal 
insights into the roles of myocardial local mechanics, metabolism, and regional flows in 
causing regional myocardial blood flow heterogeneity. Animal-based fractal analysis 
research of the myocardium using microspheres has shown that, in the absence of coronary 
disease, regional myocardial blood flow heterogeneity was caused by local, metabolically-
driven differences in vasomotor regulation and not by local differences in vascular 
anatomy23. This revelation — that physiologically there are normally some low-flow regions 
in the heart that are not at all ischaemic — might be highly clinically relevant. If this 
phenomenon is occurring on the macroscopic scale, appreciating it could potentially avoid 
some false-positive diagnoses of regional ischaemia and unnecessary referrals for invasive 
coronary angiography. 
 
Macroscopic structure and function 
Fractal analysis has been applied to transthoracic echocardiography images, and recent work 
indicates that the FD might have a role in clinical echocardiography. One study, for example, 
used texton-based feature extraction to detect areas of myocardial infarction automatically47. 
‘Texton’ refers to fundamental microstructures in natural images or subtleties of image 
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texture related to preattentive human visual perception48. The algorithm used in the study 
examined minute pixel variations in single echocardiographic views of the heart. It used a 
total of eight features, including one based on fractal analysis that measured surface 
roughness as an FD47. The results from the 160 individuals (50% with infarction) are 
especially promising given that the method is automated, foregoing the need for the operator 
manually to define the part of the image to assess. 
 We have successfully applied box-counting fractal analysis (FIG. 3b–d) to CMR 
images to quantify left ventricular myocardial trabeculae.49 We initially used the ImageJ 
Fraclac plug-in50, then translated to MATLAB, and finally to dedicated commercially and 
publicly available (link to download: http://j.mp/29xOw3B) plugins (implemented in cvi42 
[Circle Cardiovascular Imaging Inc., Calgary, Canada] and OsiriX51, respectively). Using this 
method, the endocardial complexity of the normal human left ventricle can be measured (that 
is, a measure of the extent to which endocardial contours fill the 2D image space). The FD of 
the human left ventricle changes in a characteristic pattern from base to apex49, recapitulating 
the fractal observations along the length of the left ventricle in the developing mouse heart, 
where a ‘compaction’ process accompanies the development of the coronary arteries52. The 
FD of trabeculae varies considerably in the adult population (FIG. 3e), differing by ethnicity, 
left ventricular mass, the presence of hypertension, and increased body mass index53. 
 In another study, CMR fractal analysis revealed how heart failure with either reduced 
or preserved ejection fraction54 shared a common trabecular phenotype, and how the method 
could have a role in refining the diagnosis of left ventricular noncompaction49. CMR 
trabecular fractal analysis could be used to detect the subtle abnormalities in HCM before the 
development of left ventricular hypertrophy.27 An increased trabecular FD seems to be a 
feature of the subclinical HCM phenotype, and might be useful as part of a scoring system for 
the prediction of genetic carriage in relatives of affected probands during family screening. 
Further work is needed to understand the role of such imaging approaches in family 
screening when genotyping finds no pathogenic mutation in the proband55. Fractal analysis 
could be particularly useful in HCM, because studies in mouse models suggest that HCM 
might be a form of ‘cardiac neotonization’56, with preservation of embryological crypts and 
alterations in trabeculae. These alterations would be expected to manifest as increased FD. 
 
Heart physiology analysis 
Embedded in the signal of the healthy human heart rate and blood pressure power spectrum is 
a characteristic frequency regime over time with three power components: a high-frequency 
component reflecting respiratory fluctuations, a low-frequency component, and a very low-
frequency component. Fractal measures have been used to provide a quantitative description 
of irregularities within these complex signals and to study their autonomous modulation at 
multiple levels14. Generally, a loss of heart-rate variability predicts higher mortality. Results 
have aided the diagnosis, characterization, and classification of cardiac pathologies, informed 
about patients’ risks of adverse events (malignant and nonmalignant arrhythmias, sudden 
cardiac death) and, applied to intrapartum fetal heart-rate variability monitoring, yielded 
better acidosis detection compared with traditional methods57, thus potentially reducing 
morbidity, mortality, and long-term sequelae associated with fetal hypoxia. 
 Temporal fractal analysis of physiological signals aims to identify the presence of one 
or more of the following features: self-similarity, power law scaling relationship, and scale 
invariance58. Signals in physiology can be regarded as analogous to either of two types of 
discretely sampled fractal processes: stationary fractional Gaussian-type (of constant variance 
over time) or nonstationary fractional Brownian-type (more common for physiological 
signals, where variance increases with time)58. Dichotomizing a signal by this model a priori 
can guide the choice of fractal method for a given time-series analysis. The three main fractal 



8 
 

methods (two monofractal, and one multifractal) that have been used to study physiological 
cardiac signals are respectively: a power law analysis using the Fourier method that evaluates 
the inter heart-beat intervals to generate a power spectrum density (PSD) summarizing the 
frequency harmonics embedded within the cardiac rhythm (that is, it characterizes power law 
scaling in the frequency domain); a detrended fluctuation analysis (DFA), which measures 
the degree of correlation among time-scales embedded within the heart-beat intervals (that is, 
it characterizes power law scaling in the time domain); and a multifractal analysis which 
assumes that different subparts of the heterogeneous heart-rate signal are characterized by 
local regularities, each with different FD (it also characterizes power law scaling in the time 
domain). Although these methods differ in their operational domain (frequency versus time), 
their fractal measures do relate to each other and to the overarching FD in a simple manner 
(conversion equations linking PSD and DFA outputs to the FD are provided in the legend to 
FIG. 6). 
 For the PSD/Fourier method, the slope of the line relating log frequency to log PSD is 
the single fractal scaling exponent, β (FIG. 6a). For the DFA method, the average amount of 
fluctuation over bins of different sizes is measured (similar to the box-counting method, but 
this time in the temporal domain). DFA, therefore, measures the root mean square deviation 
between the signal and its trend in each bin and then plots this as a function of bin size. DFA 
generates a short-term exponent (α1) and a long-term exponent (α2)21 (FIG. 6b). The DFA for 
a healthy (young) heart forms almost straight-line segments with two slopes, α1 and α2 — a 
hallmark of ideal fractal behaviour. Patients with type 2 diabetes mellitus, for example, show 
increased α slopes which are suggested as indicators of autonomic dysfunction59. Fractal 
indices of heart-rate variability have demonstrable prognostic capacity when applied 
clinically: α1 predicts sudden cardiac death in the elderly60 and echocardiographic 
deterioration in dilated cardiomyopathy61, whereas α2 predicted sudden cardiac death and 
survival functions in patients with heart failure and implantable cardioverter–defibrillators in 
SCD-HeFT62. Although survival in patients with heart failure can be improved by 
implantable defibrillators, <25% of patients who receive a device actually experience sudden 
cardiac death or appropriate shock therapy. If sudden cardiac death prediction models for 
heart failure were to incorporate fractal indices of heart-rate variability, patient selection for 
implantable defibrillators might be refined, helping to exclude those unlikely to benefit from 
device implantation. Multifractal analysis, which produces a range of exponents (FIG. 6c), 
has been used to distinguish between healthy and diseased heart signals in heart failure and 
coronary artery disease63,64, and to measure the effect of percutaneous coronary intervention 
and open-heart surgery on the behaviour of the human heartbeat65. 
 
Practical challenges 
Clinicians seeking to use fractal algorithms to interrogate human biology should bear in mind 
this statement published in The Lancet: “Since fractal analysis is essentially mathematical, as 
with all mathematical models, there must be a close link with the biological event, if the 
model is to be useful”66. For spatial or temporal fractal analyses to be deployed securely in 
clinical hands, their mathematical bases need to be understood; they must be applied using 
rigorous, repeatable, and validated methods; and their outputs must be interpreted within an 
ever-changing clinical context. 
 If a spatial fractal analysis is to be undertaken in patients, many aspects of image 
acquisition and postprocessing (such as segmentation algorithm to create a binary outline, 
mask size, limits of the bounding box, range of grids) need to be carefully specified because 
they can affect the computed FD. For example, in the case of boundary-line fractal analysis 
of myocardial trabeculae by CMR, initial studies have shown that the most valid trabecular 
contours were obtained using an automated level-set segmentation algorithm that avoided 
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user-dependent image-intensity histogram adjustment and incorporated a correction for 
intensity inhomogeneities across the cine slice. Using a standardized image 
acquisition/postprocessing protocol, the box-counting FD was shown to be robust to field 
strength change (from 1.5 to 3.0 Tesla) and to limited cine slice-thickness variations (from 7 
to 8 mm)55.  
 For fractal analysis of time-series in patients, similar challenges exist. For heart-rate 
variability analysis, some fractal techniques still require the preprocessing or editing of 
premature beats in the recordings67, and particular methods remain sensitive to artefacts and 
alterations in recording conditions (such as duration, body temperature, body position, free-
breathing versus controlled-breathing and physical activities68, and effect of drug therapy and 
dosage alteration65). These factors can all substantially affect short-term metrics, making 
comparisons between studies challenging. Clinicians should also bear in mind that fractal 
measures of heart-rate variability provide only an indirect (qualitative) assessment of cardiac 
autonomic activity, because no direct measurement of either cardiac parasympathetic or 
sympathetic nerve activity is currently possible69. 
 
Future directions 
The fractal nature of the human heart should be harnessed for its descriptive, diagnostic, 
prognostic, and therapeutic insights70, which requires the development of innovative bedside 
products based on fractal mathematics. For both spatial and temporal fractal analyses, it is not 
unreasonable to expect these metrics to be of greatest prognostic utility when combined with 
other more familiar clinical or imaging cardiac biomarkers (such as blood pressure and serum 
cholesterol level), so researchers in future studies should aim to investigate prospectively the 
role of such novel compound risk-scoring systems in clinical practice. Large-scale studies are 
needed to explore the superiority of fractal analysis methods compared with standard 
methods in diagnostics and risk stratifications. 
 For the best-studied application of fractal analysis in heart-rate variability, the global 
boom of wearable fitness technologies means that longitudinal, valid, and potentially reliable 
RR-interval data71 are now suddenly available for billions of people around the world. This 
development calls for the establishment of an open-source, Internet-based, high-availability, 
high-throughput, fractal analysis pipeline in which participants can deposit their heart-rate 
data in exchange for meaningful personalized health statistics, while also providing vital 
cardiac insights72. 
 Many cardiac research groups are already working on new and repurposed fractal 
tools for use in the clinic, but a major barrier to their routine bedside delivery remains the 
need to demonstrate meaningful improvements in patient care when used in randomized, 
controlled trials — an arduous, expensive, and time-consuming process. Thankfully, a 
number of successful and fascinating research applications of fractal analyses have been 
presented here, underscoring the versatility, sensitivity, and multiple potential applications in 
the cardiovascular domain. 
 We suggest that clinical delivery of any fractal tool across the cardiovascular domain 
will require three important elements: close collaboration among researchers from different 
disciplines; shared access to good-quality, multi-centre ‘big data’72 (imaging, functional 
phenotyping, and multi-omics); and fractal toolkits of open-source software, discussion sites, 
online tutorials, publications, and openly accessible training datasets. 
 
Conclusions 
The cardiovascular system exhibits fractal complexity at every level and systematic analysis 
has the potential to identify pathological patterns of cardiac ‘decomplexification’ (such as the 
loss of heart-rate variability in heart failure) or ‘hypercomplexification’ (such as the 
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excessive trabeculation in left ventricular noncompaction). Creative experimentation with 
fractals has yielded encouraging results — cardiologists moonlighting as mathematicians are 
steadily working out the fractal sums to expand our understanding of cardiac development, 
structure, and function. 
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Figure 1 | Examples of natural fractal phenomena. a | This photograph by NASAs Spitzer 
Space Telescope shows the spectacular fractal complexity of barred spiral galaxy Messier 83 
(colloquially, the Southern Pinwheel), constellation Hydra at 15 million light years away. 
Image reprinted courtesy NASA/JPL-Caltech. b | Multifractal patterns have been spotted in 
the quantum realm — at the atomic-scale resolution of a scanning tunnelling microscope, the 
sudden transition at which a material changes from a metal to an insulator, the waves 
associated with individual electrons gain a distinct multi-fractal pattern. Image reprinted 
courtesy of Ali Yazdani (Physics Department, Princeton University, USA)73. c | The 
quasifractal complexity of the ‘conceptually impossible’ fivefold symmetrical arrangement 
seen in the atomic model of an aluminium–palladium–manganese quasicrystal surface. Its 
surface structure can be modelled by a mathematical Penrose tiling that is self-similar at 
different scales. Image reprinted courtesy of The Israel Journal of Chemistry and James W. 
Evans (The Ames Laboratory, Iowa State University, USA)74. 
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Figure 2 | Theoretical fractal dimension (FD). The concept of nontrivial and infinite self-
similarity can be appreciated in this hypothetical branching fractal set with theoretical FD of 
1.51. Although the diagram illustrates three levels of branching, the theoretical pattern 
persists infinitely. ε–1, scale; N, number of measuring segments. 
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Figure 3 | Traditional geometry and spatial fractals. a | The regular Euclidean dimension, 
meaning the familiar geometrical descriptors, assigns an integer to each point or set of points 
in space: 0 to a point, 1 to a straight line, 2 to a plane surface, and 3 to a volume or 3D figure. 
Complex macroanatomical or microanatomical structures cannot be analysed by regular 
Euclidean geometry, but can be described quantitatively by fractal geometry as a fractal 
dimension (FD) falling inclusively between these integer topological dimensions. b | The FD 
for the trabeculae in a 2D digitized image such as this cardiovascular magnetic resonance 
cine left ventricular short-axis slice will lie inclusively between 1 and 2, and for a 3D image, 
between 2 and 3. c | The box-counting method works by applying a grid of boxes of side 
length (e) over the image of the fractal (>60 grids are needed for this contour, but only three 
are shown) and counting the number (Ne) of the smallest number of boxes of side length (e) 
required to cover the surface or outline of the object completely. d | The empirical box-
counting FD (1.401 in this example) is estimated from the slope of a regression line when 
log(Ne) is plotted against log(1/e); therefore, FD = log (Ne)/log(1/e). e | Summary of the 
clinically relevant ranges of FD in health and disease derived from cardiovascular magnetic 
resonance research studies in the literature to date. All data reported as mean ± SD or mean 
and interquartile ranges (denoted by *). HCM, hypertrophic cardiomyopathy; HFpEF, heart 
failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; 
LVNC, left ventricular noncompaction. 
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Figure 4 | Cardiology is replete with examples of fractal structures. a | The coronary 
arterial tree is an example of a space-filling fractal network. The fractal branching of the 
coronary vasculature of a mouse heart at embryonic day 18.5 is shown here as a 3D 
composite image derived by high-resolution episcopic microscopy. Image reproduced 
courtesy of NIMR, MRC/Wellcome Images [B0007341]. b | Fractal patterning is seen in this 
confocal micrograph of cardiac muscle stained for mitochondria. Image reproduced courtesy 
of NIMR, MRC/Wellcome Images [B0006854]. c | Aspirin, the most iconic cardiovascular 
drug has a beautiful crystalline structure of fractal complexity. Image reproduced courtesy of 
Annie Cavanagh/Wellcome Images [B0006216]. 

 
 
 
 
 
 
 
 
 
 



18 
 

Figure 5 | Omic-level complexity in the human heart. Mutations in the lamin gene (LMNA) 
cause dilated cardiomyopathy. The edge-weighted spring embedded human LMNA protein–
protein interactome can be regarded as an example of a ‘Sierpinski’ weighted fractal network. 
It is constructed from a single node (LMNA) as the initial network (G1), emanating from 
which are further network generations (G2–G4). This interactome was constructed from 287 
binary interactions and excludes spoke-expanded complexes. Topological and functional 
clusters (modules) are visible and it is now possible to use multifractal analysis (a modified 
sandbox algorithm75) to quantify the probability distribution of the clustering coefficient in 
such weighted real-world networks. Interactions sourced using IntAct76 and The Molecular 
INTeraction database [MINT] and manually curated; network created using IntAct View 
v.4.2.3.2 and Cytoscape v.3.0.2. For example dataset, see Supplementary information S1 
(spreadsheet). 
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Figure 6 | Monofractal and multifractal analyses applied to heart-rate variability. a | In 
power law analysis, the fractal index β (negative slope) is derived from a log–log plot of the 
power spectrum density (PSD) analysis (calculated from Fourier analysis of heart-rate 
intervals) versus frequency. β is related to fractal dimension (FD) by the following equation: 
FD = (5 – β)/2 (REF. 58). b | In detrended fluctuation analysis (DFA), the short-term and 
long-term exponents, α1 and α2, are derived from a plot of the amplitude of detrended 
fluctuations (F(n)), calculated from heart-rate intervals versus the block size n (in beats), on a 
logarithmic scale. The short-term exponent, α1, is a measure of the degree to which the beat 
intervals are correlated on a scale of 4–16 beats, whereas the long-term exponent, α2, is a 
measure of the degree to which the beat intervals are correlated on a scale of 16–64 beats. α 
is related to FD by the following equation: FD = 3 – α (REF. 58). Fractal indexes from 
systems with paradigmatic properties are represented by a solid line for the ideal fractal 
signal which has a β, α1, or α2 of 1. Increase in the slopes implies allostasis and rigidity with 
the maximum being Brownian motion at ~1.5 for α1 or ~–2 for β (double line). Decrease in 
the slopes implies more randomness, i.e. approaching white noise (dashed line). *Some 
cardiovascular time-series exhibiting antipersistent behaviour, can occasionally have α1 <0.5 
(REF. 67,77). c | The plot of FD versus the generalized (DFA-derived) Hurst coefficient 
(h(q))78 is referred to as the multifractal spectrum79 (single solid line). The width of the 
spectrum in this example is consistent with multifractal behaviour which contrasts with the 
narrower spectrum (with more constant h(q)) that is observed with monofractal signals 
(double line) or white noise (dashed line) to the left. h(q)MIN and h(q)MAX indicate the 
multifractal spectrum width. 
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