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A tennis assignment algorithm

Mike Maher FIMA, University College London

For some years, I have played social tennis at a local club and have recently organised midweek

men’s doubles matches for those who are retired, work part-time or have flexible working

arrangements. This used to consist of asking each member of the group about their availability in

the coming week, and how much they would like to play, and from their responses, putting together

a set of fours using just pen and paper. However as the numbers increased, I started to think about

how I could make the process easier and more efficient by writing some code and treating it as an

optimisation problem. This article describes how I tackled the problem.

The initial purpose of the algorithm was to automate what I had done manually, by finding a feasible

assignment of players to groups across the week and to maximise the number of groups formed. As

it is clear that generally there are many possible solutions, the next step was to remove any bias or

favouritism in the choice of the groups, by generating all possible feasible and equally-optimal

assignments and choosing randomly from them.

The player availability matrix ܣ consists of 0s and 1s, with a 1 indicating that player �݅(= 1, ܯ… ) is

available to play on day �݆(= 1, …ܰ). See the example in Table 1. The column on the right shows ܶ

the maximum number of times in the week that the player has indicated that he is willing / able to

play.

Table 1: the player availability matrix 

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2

Tom B 1 1 0 1 0 3

Gordon B 0 0 0 0 1 1

Peter W 1 1 0 0 0 2

Colin C 1 0 0 1 0 2

Mike M 0 1 1 1 1 3

Keith I 0 1 1 0 0 1

Alan C 1 0 0 1 0 2

John S 0 1 0 0 0 1

Keith B 1 0 1 0 0 2

George StC 1 1 1 1 0 1

Michael L 0 0 1 0 0 1

Phil M 0 1 0 0 0 1

Brian F 1 1 0 0 0 2

Peter K 0 1 0 1 0 2

Willie McM 0 0 0 1 0 1

Ken L 0 1 0 0 0 1

The variables in the problem are denoted by ݔ which are 1 if player ݅is assigned to play on day ݆

and zero otherwise, and are only defined for those cells where ܣ = 1; plus ݃, the number of

groups assigned to play on day ݆. There are then two sets of constraints: firstly on the number of

times in the week that a player is assigned to play (which should not exceed the maximum

specified):
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∑ ݔ ≤ �ܶ  for�݅= 1, ܯ… (1)

and secondly on the number of players assigned to play on each day which of course must be a

multiple of 4:

∑ −ݔ 4 ݃ = 0 for�݆ = 1, …ܰ (2)

The objective is to maximise the total number of player-games in the week whilst satisfying these

constraints. So we want to maximise the objective function:

=ݖ ∑ ݔ (3)

This is a linear programming problem with some of the variables, the ,ݔ being binary (0-1)

variables, and the rest, the ݃, being integer variables. It can be solved in the software package R [1]

by using the lp function (part of the lpSolve package, which is a Mixed Integer Linear

Programming solver [2]) and taking as input the availability matrix in the form of a .csv file. The

constraints matrix and RHS constants are constructed from the coefficients in (1) and (2), and the

coefficients in the objective function (3) consist of 1s in front of each of the variables. For the

availability matrix shown in Table 1, it turns out that ݖ ௫= 24: that is, six groups can be formed over

the week. One such optimal solution is shown in Table 2.

Table 2: one possible optimal solution

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2

Tom B 1 1 0 1 0 3

Gordon B 0 0 0 0 0 0

Peter W 0 0 0 0 0 0

Colin C 0 0 0 1 0 1

Mike M 0 1 1 1 0 3

Keith I 0 1 0 0 0 1

Alan C 1 0 0 1 0 2

John S 0 1 0 0 0 1

Keith B 1 0 1 0 0 2

George StC 0 0 0 1 0 1

Michael L 0 0 1 0 0 1

Phil M 0 1 0 0 0 1

Brian F 1 1 0 0 0 2

Peter K 0 1 0 1 0 2

Willie McM 0 0 0 1 0 1

Ken L 0 1 0 0 0 1

But there will generally be other, equally-optimal solutions (that is, different sets of ݔ that also

provide an objective function value of 24, and satisfy the constraints). But a comparison of solutions

might reveal that in one solution players A and B each play once in the week, whereas in another

solution (identical in all other respects) A plays twice whilst B does not play at all. On grounds of

equity this latter case is undesirable, so for any of the equally-optimal solutions we can calculate ଵܲ

the number of players who get at least one game. In the solution shown in Table 2 ଵܲ = 15 whilst in

some other possible solutions ଵܲ = 16. In an extension to this idea there might be a solution in
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which A and B each get two games in the week whilst in a different solution (again identical in all

other respects) A gets three games whilst B only gets one. So to compare equally-optimal solutions

further we can calculate, for each solution, ଶܲ, the number to get at least two games. Then what we

would like to do is identify only those equally-optimal solutions that have the highest possible values

of (firstly) ଵܲ and (then) ଶܲ by including these in a hierarchical manner in the objective function.

To do this, we count up the number of matches played by any player and have a pair of 0-1 variables

ݕ
(ଵ)

and ݕ
(ଶ)

to indicate whether or not player h݅as played respectively at least one and at least two

matches in the week. This is achieved by the following sets of constraints:

݉ = ∑ ݔ for�݅= 1, ܯ… (4)

ݕ
(ଵ)

≤ �݉  ≤ ቀ1 − ݕ
(ଵ)
ቁ(1 − (ߝ + ݕ5

(ଵ)
for�݅= 1, ܯ… (5)

ݕ2
(ଶ)

≤ �݉  ≤ ቀ1 − ݕ
(ଶ)
ቁ(2 − (ߝ + ݕ5

(ଶ)
for�݅= 1, ܯ… (6)

where isߝ a small positive quantity. Finally the objective function in (3) is modified to become:

=ݖ ∑ ݔ ∑ଵߙ�+ ݕ
(ଵ)

∑ଶߙ�+ ݕ
(ଶ)

 (7)

With the coefficients ଵߙ and ଶߙ assigned values of, for example, 0.01 and 0.0001 respectively. The

enhanced MILP problem then has objective function (7), with the constraints in (1), (2), (4), (5) and

(6), the ݃ and ݉ as integer-valued variables, and the ݔ , ݕ
(ଵ)

and ݕ
(ଶ)

as binary variables.

Table 3: the final assignment of groups

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2

Tom B 0 1 0 1 0 2

Gordon B 0 0 0 0 0 0

Peter W 1 1 0 0 0 2

Colin C 1 0 0 1 0 2

Mike M 0 1 0 1 0 2

Keith I 0 0 1 0 0 1

Alan C 0 0 0 1 0 1

John S 0 1 0 0 0 1

Keith B 1 0 1 0 0 2

George StC 0 0 0 1 0 1

Michael L 0 0 1 0 0 1

Phil M 0 1 0 0 0 1

Brian F 1 1 0 0 0 2

Peter K 0 1 0 1 0 2

Willie McM 0 0 0 1 0 1

Ken L 0 1 0 0 0 1
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It is then found that the optimal solution has ݖ ௫ = 24.1608, so that there are six groups playing in

the week, and ଵܲ = 16 and ଶܲ = 8, and is shown in Table 3. There may still be multiple solutions and,

to avoid any bias arising from the order of names in the input file, a random permutation of rows in

that file may be carried out before the program is run so as to produce a randomly-chosen one of

the possible equally-optimal solutions.

To complete the process, the final set of groups is printed out, ready to be copied and pasted into

the email message to all members of the group:

Mon: Peter W, Colin C, Keith B, Brian F

Tues: Tom B, Peter W, Mike M, John S, Phil M, Brian F, Peter K, Ken L

Wed: Barry T, Keith I, Keith B, Michael L

Thurs: Barry T, Tom B, Colin C, Mike M, Alan C, George StC, Peter K, Willie McM

The process, which has considerably simplified my task of organising the groups each week, has

worked well now for some time and whilst many members of the group are intrigued or amused to

know that the assignment of players to groups is done by an algorithm, they appear to have trust in

the fairness and efficiency with which it produces the results.

Finally, a Shiny app (Cheng et al, 2015) has been written to implement the algorithm and enable it to

be used by other users who do not necessarily have R installed on their computer. It is available for

use at: https://mikemaher.shinyapps.io/TennisApp/.

Note

An earlier version of this paper appeared in Mathematics Today in June 2016. The algorithm

described in that earlier version did not incorporate the constraints in (4) – (6) or the extended

objective function in (7) but instead randomly generated a large number of equally-optimal solutions

and ranked them by their values of ଵܲ and ଶܲ.
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