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LOGISTIC REGRESSION
Previous notes in this series have been
concerned with the common situation in
ophthalmic and other clinical fields of
describing relationships between one or
more ‘predictors’ (explanatory variables)
and, usually, one outcome measure
(response variable). A classic method used
in deriving relationships between out-
comes and predictors is linear regression
analysis. Linear regression is a member of
a family of techniques known as general
linear models, which also include analysis
of variance and analysis of covariance; the
latter of which was covered in a previous
Ophthalmic Statistics Note.1

A key feature of all these models is that
the outcome measure—for example, post-
operative refractive prediction error or
intraocular pressure—is continuous.
While other notes in the series2 warn of
the dangers of unnecessary dichotomisa-
tion of variables, sometimes outcomes
naturally fall into two categories.

Example 1: A study was conducted on
137 patients to identify risk factors for
intraoperative retinal breaks caused by
induction of a posterior hyaloid face
separation during 23-gauge pars plana
vitrectomy.3 Putative risk factors for
breaks were age at surgery, axial length
of the operated eye and diagnosis, but
the outcome variable here was whether
or not the patient suffered a retinal
break—a yes/no or dichotomous
outcome.
Example 2: A study was conducted on
58 patients undergoing surgery for idio-
pathic macular hole identifying whether
or not a patient develops an outer

foveal defect (OFD).4 Putative risk
factors were age at surgery, character-
istics of the macular hole such as base
diameter and whether or not there was
ocular comorbidity, but the outcome
was whether or not the patient devel-
oped an OFD in their operated eye—a
yes/no or dichotomous outcome.
In both examples, our objective is to

examine relationships between a single
outcome variable and several predictors.
Typically, when faced with this challenge,
we would use linear regression. Linear
regression, however, requires a continuous
outcome and thus if we were to use this
method we would be violating a statistical
assumption. In our last statistical note, we
introduced the concept of transforming
data in order to conduct valid statistical
analyses. Focus in that note was on trans-
formations of the explanatory or inde-
pendent variables. It is, however, also
possible to conduct transformations on
outcomes so that while the outcome itself
is not continuous, a transformation based
upon that outcome is. We can then apply
regression in the same manner we are
accustomed to and identify associations
between outcomes and risk factors,
acknowledging that our associations actu-
ally relate to the transformation. As was
the case in our previous note, the chal-
lenge, therefore, is in the interpretation of
results after application of the
transformation.
The transformation that we use to

achieve this is called logistic regression.
We assign our outcome variable numerical
values of 1 and 0, representing yes and
no, respectively. If we had 10 subjects and
5 had breaks and 5 did not, we would say
intuitively that the probability of an event
(p) was 5/10—the proportion of our
group who had the event of interest. In
logistic regression, our outcome of interest
is based on this probability. However,
probabilities are bounded by 0 and 1,
where 0 indicates impossible and 1 indi-
cates certainty. It, just like our original
outcome, is not therefore normally dis-
tributed. A transformation of probability,
known as the logit transformation, is not,
however, constrained by bounds of 0 and
1 and logistic regression may then be used
to explore associations between the

covariates of interest and our logit trans-
formation, where

log it p ¼ 1n
p

1� p

While this transformation may appear
unintuitive, it should be noted that the

quantity
p

1� p
on the right-hand side of

this equation is known as the odds. Odds
will be familiar to those who attend horse
racing—it is the probability that the event
occurs divided by the probability that the
event does not occur. This quantity will
be familiar to gamblers who are used to
seeing horses quoted as having, say, odds
of 5 to 1 of winning a race. This does not
mean that the probability of winning is 1
in 5, but rather that the horse has 1
‘winning chance’ and 5 ‘losing chances’;
hence, a winning probability of 1 in 6.

Logistic regression was used in a study5

to see whether macular hole inner
opening was predictive of anatomical
success of surgery to repair the hole. The
regression equation for this model was

log it p¼10:89�0:016

�macularhole inner opening (inmmÞð1Þ

The estimated probability of anatomical
success can then be calculated, so that for
a patient with a macular hole inner
opening of 650 μm, the logit of p is given
by

10:89� 0:016� 650 ¼ 0:49

Logits have no direct interpretation, and
so to interpret this equation in a useful
predictive sense, we need to ‘undo’ the
logistic transformation. This can be
achieved in two steps. First, the odds of
the event are calculated by exponentiating
or ‘antilogging’ the regression function:

p
1� p

¼ odds ð pÞ ¼ expð0:49Þ ¼ 1:63

Next, a bit of simple algebra is used to
convert these odds to a probability:

p ¼ odds( p)
1þ odds( p)

¼ 0:62

So, preoperatively, our patient is predicted
to have a 62% chance of anatomical
success. This procedure (exponentiation
and algebra) would not normally be the
responsibility of the researcher: most stat-
istical packages will routinely perform
these transformations as part of their
logistic regression function. In fact, unlike
simple linear regression, in which para-
meters may be estimated using the
least-squares method, it is not generally
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practical to conduct logistic regression, in
which parameters are generally estimated
using other means, by hand: computer
software is usually required.

Assessing the effect of a covariate also
requires us to undo the logistic trans-
formation. The computer output (slightly
edited) summarising the model above
(table 1) includes the ORs associated
with the model parameters (some soft-
ware will label these columns as ‘Exp(B)’:
the exponent of the parameter estimate
in eq. (1) above). These represent the
ratio of two odds: the odds of the base-
line event and the odds of the event asso-
ciated with a unit increase in the
predictor variable (defined to be a
100 μm increase in macular hole inner
opening in this case). If the ratio is sig-
nificantly different from 1 (ie, if the asso-
ciated CI does not include 1), then the
variable is associated with the outcome:
either positively if the OR is greater than
1 or negatively if the OR is less than
1. As such, the OR is a generally more
meaningful quantity than the parameter
estimate (typically labelled B as in this
table) from which it was derived. We do
not need the columns in the table headed
‘SE’ , ‘Wald’ or ‘df ’ (degrees of freedom)
to interpret the OR.

The OR for a particular parameter is
not the same as the risk ratio (relative
risk), although for rare events it is a rea-
sonable approximation. Although it is not
as intuitive as the risk ratio, it possesses
certain advantages; for instance, it is not
constrained by large baseline risks. The
relationship between odds and risk ratios,
and other quantities such as prevalence
and exposure rates, may be found in
many standard texts, for example.6

The estimation of the OR may be con-
sidered to be the back-transformation of
the results into the original data units. In
this example, we see that an increase of
100 μm in macular hole inner opening
leads to a significant reduction (p=0.002)
in odds of anatomical success of 80.5%
(calculated by multiplying 1–0.195 by
100). The associated CI for the OR
(0.068 to 0.560) confirms that this reduc-
tion is statistically significant as it excludes
the value 1.00, which corresponds to no
effect. We can ignore the line of the
output for the constant: these statistics
have little practical value.

Lessons learnt
▸ Mathematical functions (transforma-

tions) may be applied to outcome
(explanatory) variables.

▸ Studies exploring relationships
between one or several predictor vari-
ables and a dichotomous outcome typ-
ically make use of one such
transformation the logit in a technique
known as logistic regression.

▸ Logistic regression typically yields ORs
with 95% CIs. An OR of 1 corre-
sponds to no association with the pre-
dictor variable and so a CI excluding 1
is evidence of association.

Contributors JS drafted the paper. CB, CJD and NF
critically reviewed and revised the paper. JS and CB
redrafted the paper after review. JS, CB and CJD
critically reviewed the redraft.

Funding CB is partly funded by the National Institute
of Health Research (NIHR) Biomedical Research Centre
at Moorfields Eye Hospital NHS Foundation Trust and
UCL Institute of Ophthalmology.

Competing interests None declared.

Provenance and peer review Not commissioned;
externally peer reviewed.

Open Access This is an Open Access article
distributed in accordance with the Creative Commons
Attribution Non Commercial (CC BY-NC 4.0) license,
which permits others to distribute, remix, adapt, build
upon this work non-commercially, and license their
derivative works on different terms, provided the
original work is properly cited and the use is non-
commercial. See: http://creativecommons.org/licenses/
by-nc/4.0/

To cite Stephenson J, Bunce C, Doré CJ, et al. Br J
Ophthalmol 2016;100:1594–1595.

Published Online First 3 November 2016

▸ http://dx.doi.org/10.1136/bjophthalmol-2016-
308824

Br J Ophthalmol 2016;100:1594–1595.
doi:10.1136/bjophthalmol-2016-309223

REFERENCES
1 Nash R, Bunce C, Freemantle N, et al. Ophthalmic

Statistics Note 4: analysing data from randomised
controlled trials with baseline and follow-up
measurements. Br J Ophthalmol 2014;98:1467–9.

2 Cumberland PM, Czanner G, Bunce C, et al.
Ophthalmic Statistics Note 3: the perils of
dichotomising continuous variables. Br J Ophthalmol
2014;98:841–3.

3 Rahman R, Murray CD, Stephenson J. Risk factors for
iatrogenic retinal breaks induced by separation of
posterior hyaloid face during 23-gauge pars plana
vitrectomy. Eye 2013;27:652–6.

4 Rahman R, Oxley L, Stephenson J. Persistent outer
retinal fluid following non-posturing surgery for
idiopathic macular hole. Br J Ophthalmol
2013;97:1451–4.

5 Wakely L, Rahman R, Stephenson J. A comparison of
several methods of macular hole measurement using
optical coherence tomography, and their value in
predicting anatomical and visual outcomes. Br
J Ophthalmol 2012;96:1003–7.

6 Kirkwood BR, Sterne JAC. Essential medical statistics.
2nd edn. Oxford: Blackwell Science, 2003.

Table 1 Computer output from macular hole study (edited)

95% CI for OR

B SE Wald df p Value OR Lower Upper

Macular hole inner opening −1.637 0.539 9.214 1 0.002 0.195 0.068 0.560
Constant 10.890 3.293 10.938 1 0.001 53647.735
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