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Abstract

The large-scale deployment of intermittent renewable energy sources may cause substantial

power imbalance. Together with the transmission grid congestion caused by the remoteness

of these sources from load centers, this creates a need for fast-adjusting conventional capacity

such as gas-fired plants. However, these plants have become unprofitable because of lower

power prices due to the zero marginal costs of renewables. Consequently, policymakers

are proposing new measures for mitigating balancing costs and securing supply. In this

paper, we take the perspective of the regulator to assess the effectiveness of support pay-

ments to flexible generators. Using data on the German power system, we implement a

bi-level programming model, which shows that such payments for gas-fired plants in southern

Germany reduce balancing costs and can be used as part of policy to integrate renewable energy.
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1. Introduction

In deregulated electricity industries, the expansion of wind and solar power has decreased

power prices and, thus, eroded the viability of coal, lignite, and gas-fired conventional electricity

generation units (Winkler et al., 2016). At the same time, the intermittency of renewables and

insufficient transmission capacity has increased the need for grid congestion management and

flexible conventional generation capacity (Van den Bergh et al., 2015). Indeed, the lack of

flexibility may risk grid stability under scenarios with high load or sudden changes in renewable

energy generation.

As a potential solution to the threat to security of supply in the long term, capacity markets

to entice conventional power plants have been proposed. In these schemes, an authority ensures

a sufficient level of capacity through payments or obligations (Hary et al., 2016). On the other

hand, German Federal Ministry for Economic Affairs and Energy (BMWi) (2014) envisages an

energy-only “electricity market 2.0” scheme that permits high price peaks, develops intraday

markets, and promotes new technologies such as demand response, for instance.

As a response to insufficent flexible generation capacity in southern Germany, a regional

transmission system operator (TSO), TenneT, and the Federal Network Agency, Bundesnet-

zagentur, have agreed to compensate fixed costs of two flexible plants via support payments

(TenneT TSO GmbH, 2013). Therefore, in this paper, we develop a complementarity model to

assess the increased dispatch of fast-adjusting conventional capacity through support payments,

which, in effect, reduce the bid prices of these generators. Specifically, we cast the sequential

model in Kunz (2013) as a bi-level problem in which the day-ahead decisions are taken at the

upper level and congestion management decisions at the lower level. The latter are guided by

the upper-level support payment decisions that the regulator takes in order to minimize the

total generation costs. We develop a novel set of constraints to enforce the merit order and

cast the problem as a mixed-integer linear program (MILP) by using a linearization technique

(Gabriel and Leuthold, 2010). Hence, we assess the performance of a recently implemented

regulation for a realistic test network via a rigorous mathematical programming approach.
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We calibrate the model to the German power system using realistic data and identify the

congested parts of the transmission network to provide insights about the geographical distri-

bution of optimal support payments under different demand and renewable energy scenarios.

We also test the performance of the optimal decisions by introducing spatially correlated imbal-

ances in the balancing market. Moreover, we contribute to the ongoing debate by comparing

the optimal support payments to the nodal pricing mechanism (Leuthold et al., 2008) and

demonstrate that they lead to similar patterns of generation that reduce re-dispatching. In

particular, we find that re-dispatch volumes are halved when support payments are introduced.

We also extend the model to multiple time periods to show how support payments mitigate the

intermittency of renewables by utilizing the fast-ramping capabilities of the flexible units. Thus,

alternative market designs such as support payments and nodal pricing improve the flexibility

of the power system and reduce the costs of integrating renewables.

The paper is organized as follows. In Section 2, we discuss complementarity models of

electricity markets, the challenges posed by the higher penetration of renewables in the day-

ahead and balancing markets, and the relevant policy alternatives. Section 3 presents the

structure of our bi-level model, and Section 4 gives numerical results for a model calibrated to

the German power system along with sensitivity analysis of the optimal decisions. We provide

conclusions on the likely impacts of support payments in Germany and discuss directions for

future research in Section 5.

2. Literature review

Complementarity models are often used to analyze electricity markets in which prices are

formed endogenously and strategic interactions occur among players. Ruiz et al. (2013) give an

overview of these models, and a thorough treatise can be found in Gabriel et al. (2013). Leuthold

et al. (2012) develop a large-scale perfect competition model of the European electricity market

that covers transmission, variable demand, wind power, and pumped storage, for example. In

bi-level models, a group of players in the lead role make optimal decisions anticipating the

reaction of a group of follower players, e.g., see Baringo and Conejo (2011).

3



Kunz (2013) presents a sequential model for Germany with a high level of wind generation

in which the production schedules determined by a day-ahead market model ignoring the phys-

ical transmission network are fed into a congestion management model, which minimizes the

re-dispatch costs, i.e., the costs of relieving congestion. Kunz (2013) uses data on realistic pro-

jections to 2020 of the increase in demand and renewable energy generation in Germany and

finds that annual national congestion management costs increase from ¤40 million to ¤147

million without transmission grid extensions.

The need for fast-ramping units to balance generation from intermittent renewables is sup-

ported by recent empirical data, e.g., Rintamäki et al. (2014) show that the variability of wind

and solar power increases the volatility of German hourly and daily electricity prices. Huber

et al. (2014) conclude that there is a dramatic increase in flexibility requirements when the

share of renewables of annual electricity consumption exceeds 30%. However, renewable gen-

eration has a negative impact on power prices due to its zero marginal costs and prevents the

deployment of high-cost flexible plants (Würzburg et al., 2013).

Also, Ueckerdt et al. (2015) show that gas-fired plants are required when short-term vari-

ability of renewables is introduced into a long-term German power system model with an 80%

emission reduction target. Indeed, gas-fired plants have lower CO2 emissions and higher fuel

efficiency than coal plants (Gutiérrez-Mart́ın et al., 2013). However, major utilities in the UK,

France, Germany, and Italy, among others, have recently closed or mothballed gas-fired power

plants in response to low profitability (Caldecott and McDaniels, 2014).

Apart from flexible gas-fired plants, there are several other mechanisms to integrate renew-

ables into power systems. At specific sites, the variability of wind power can be reduced by

coupling it with wave power (Fusco et al., 2010). Weigt et al. (2010) analyze the economic viabil-

ity of high-voltage direct current (HVDC) transmission lines from windy northern Germany to

load centers in the west and south assumping extensive wind power deployment. They conclude

that the welfare gains resulting from full wind power utilization and lower price levels would

quickly cover the lines’ investment costs. In a similar vein, Jaehnert et al. (2013) postulate that

the expansion of the cross-border HDVC network allows the hydro-dominant power systems in
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the Nordic countries to balance the variability of renewable generation in continental Europe

by adjusting hydro production. On the demand side, more flexible pricing schemes could also

integrate renewables (Dupont et al., 2014). Likewise, storage and power-to-gas technologies

have been explored to increase flexibility (Jentsch et al., 2014; Schill and Kemfert, 2011).

Price-based policies, which directly grant the generating capacity a payment, have been

implemented in Spain and Italy, for example (Batlle et al., 2007). In Italy, in particular, the

policy aimed to keeping existing capacity in operation and compensates generators when prices

are too low (Benini et al., 2006). Conversely, quantity-based policies, e.g., as implemented in

the UK, determine the capacity payment in an auction to cover a quantity considered to secure

supply. Typically, they enforce the availability of the procured capacity by setting a strike

price for the spot market price above which the generators need to compensate the regulator

(Vazquez et al., 2002). Hach and Spinler (2016) show that capacity payments can reduce the

impact of renewable energy generation on the profitability of gas-fired plants and, thus, prevent

their mothballing.

By contrast, energy-only policies such as the “electricity market 2.0” concept have the virtue

that they minimize interventions in the electricity market. Even under these policies, some

kind of back-up reserves are maintained (Batlle and Rodilla, 2010). A BMWi white paper

(Bundesministerium für Wirtschaft und Energie (BMWi), 2015) outlines a reserve capacity

based mainly on old lignite plants, which are started up when a market price cannot be formed.

Moreover, the white paper describes a reserve to relieve congestion in southern Germany.

Conceptually, our model resembles Morales et al. (2014) and Khazaei et al. (2014) in using a

bi-level approach for integrating renewables by comparing alternative market-clearing schemes.

However, we seek to find the optimal trade-off between the least-cost day-ahead market dispatch

and the support payments, which have the potential to reduce congestion management and

balancing costs by enticing the dispatch of flexible but more expensive power plants.
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3. Mathematical formulation

3.1. Notation

Sets and indices

Φ auxiliary decision variables

ΩDV lower-level dual variables

ΩUL upper-level primal decision variables

ΩLL lower-level primal decision variables

n,k ∈ N nodes

n′ ∈ N reference node

u,o ∈U generation types

t ∈ T time periods

i ∈ I discrete support payment levels

` ∈ L transmission lines

Parameters

consn,t consumption at node n during period t

s̄n,u,i support payments levels for unit u at node n

cm
n,u bid price of generation of unit u at node n

cup
n,u up-reserve bid price of unit u at node n

cdown
n,u down-reserve bid price of unit u at node n

gmax
n,u,t maximum generation capacity of unit u

at node n during period t

εdaup
n,u day-ahead ramp-up rate of unit u at node n

εdadown
n,u day-ahead ramp-down rate of unit u at node n

εreserveup
n,u up-reserve deployment rate of unit u at node n

εreservedown
n,u down-reserve deployment rate of unit u at node n

capmax
` thermal capacity of power line `

H`,k branch susceptance matrix `× k

Bn,k node susceptance matrix n× k

swn reference node switch variable

Scalars

eps a small positive constant

M1 a large positive constant

K1, ...,K8 constants for disjunctive constraints

Kgda ,Kv constants for linearization

Variables

λ cm
n,t re-dispatch price at node n during period t

δn,t phase angle at node n during period t

γn,t dual for the swing bus constraint at node n

during period t

Positive variables

sn,u support payment for unit u at node n

g f
n,u,t full generation of unit u at node n

during period t in the day-ahead market

gr
n,u,t residual generation of unit u at node n

during period t in the day-ahead market

gda
n,u,t total day-ahead generation of unit u at node n

during period t

gup
n,u,t up-reserve deployment of unit u at node n during period t

gdown
n,u,t down-reserve deployment of unit u at node n during period t

β da
n,u,t dual for maximum generation capacity of unit u

at node n during period t in the day-ahead market

β
up
n,u,t dual for absolute maximum up-reserve deployment of unit u

at node n during period t

β down
n,u,t dual for absolute maximum down-reserve deployment of unit u

at node n during period t

θ
up
n,u,t dual for relative maximum up-reserve deployment of unit u

at node n during period t

θ down
n,u,t dual for relative maximum down-reserve deployment of unit u

at node n during period t

µ`,t dual for positive line capacity constraint on line ` during t

µ`,t dual for negative line capacity constraint on line ` during t

vn,u,i,t discretization of sn,u ·gda
n,u,t of unit u at node n during t

Binary variables

r1, ...,r8 disjunctive variables

qgda

n,u,t indicator variables equal to 1 when gda
n,u,t > 0

qn,u,i indicator variables equal to 1 if ith support payment level

is selected

qv
n,u,i,t indicator variables equal to 1 when qgda

n,u,t and qn,u,i are 1

fn,u,t indicator variables equal to 1 when unit u is fully dispatched

rn,u,t indicator variables equal to 1 when unit u is partially dispatched

6



3.2. Bi-level formulation

In the upper level of our bi-level model, the objective function of a regulator (1) is to

minimize the costs of day-ahead generation, including the possible support payments and the

anticipated costs of re-dispatch and real-time balancing power, i.e., increasing (deploying up-

reserves) and decreasing (deploying down-reserves) the generation of power plants. In the

day-ahead market, supply and demand match at every time period (2) and the generation of

plant (n,u) in time period t is the sum of full generation g f
n,u,t and residual generation gr

n,u,t

(3). As per the rules of the German market, physical transmission constraints are neglected at

the time of day-ahead dispatch and applied only in the re-dispatching phase. If the decision

variable fn,u,t equals to 1, then constraint (4) forces the plant to produce at its maximum

capacity. Otherwise, the plant is not fully dispatched. However, if the decision variable rn,u,t in

(5) equals to 1, then the plant is operating at a level below its maximum capacity that is set by

the decision variable gr
n,u,t . Constraint (6) ensures that the plant cannot be fully and partially

dispatched at the same time. Finally, the inequalities (7) and (8) exclude unrealistic ramping

of power plants and avoid discontinuities between time periods.

Minimize
ΩUL ∑

t
∑
n

∑
u

((
cm

n,u + sn,u
)

gda
n,u,t + cup

n,ugup
n,u,t− cdown

n,u gdown
n,u,t

)
(1)

s.t.

∑
n

consn,t = ∑
n

∑
u

gda
n,u,t ∀t (2)

gda
n,u,t = g f

n,u,t + gr
n,u,t ∀n,u, t (3)

g f
n,u,t = fn,u,tgmax

n,u,t ∀n,u, t (4)

gr
n,u,t ≤ rn,u,t(gmax

n,u,t− eps) ∀n,u, t (5)

fn,u,t + rn,u,t ≤ 1 ∀n,u, t (6)

gda
n,u,t− (gda

n,u,t−1 + gup
n,u,t−1)≤ ε

daup

n,u gmax
n,u,t ∀n,u, and ∀t ≥ 2 (7)

(gda
n,u,t−1−gdown

n,u,t−1)−gda
n,u,t ≤ ε

dadown

n,u gmax
n,u,t ∀n,u, and ∀t ≥ 2 (8)

cm
n,u− sn,u−M1(1− fn,u,t)≤ cm

k,o− sk,o + M1 fk,o,t ∀t,(n,u) 6= (k,o) (9)

cm
n,u− sn,u−M1(1− rn,u,t)≤ cm

k,o− sk,o + M1 fk,o,t ∀t,(n,u) 6= (k,o) (10)
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

Minimize
ΩLL ∑

t
∑
n

∑
u

(
cup

n,ugup
n,u,t− cdown

n,u gdown
n,u,t

)
s.t.

consn,t−∑
u

(
gda

n,u,t + gup
n,u,t−gdown

n,u,t

)
−∑

k
Bn,kδk,t = 0 λ

cm
n,t (free) ∀n, t

gda
n,u,t + gup

n,u,t ≤ gmax
n,u,t β

up
n,u,t ≥ 0 ∀n,u, t

gdown
n,u,t ≤ gda

n,u,t β
down
n,u,t ≥ 0 ∀n,u, t

gup
n,u,t ≤ ε

reserveup

n,u gmax
n,u,t θ

up
n,u,t ≥ 0 ∀n,u, t

gdown
n,u,t ≤ ε

reservedown

n,u gmax
n,u,t θ

down
n,u,t ≥ 0 ∀n,u, t

∑
n

H`,nδn,t ≤ capmax
` µ`,t ≥ 0 ∀`, t

−∑
n

H`,nδn,t ≤ capmax
` µ`,t ≥ 0 ∀`, t

swnδn,t = 0 γn,t (free) ∀n, t

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

where Ω
UL =

{sn,u,gda
n,u,t ,g

f
n,u,t ,g

r
n,u,t ,︸ ︷︷ ︸

≥0

fn,u,t ,rn,u,t︸ ︷︷ ︸
∈{0,1}

}
and Ω

LL =
{gup

n,u,t ,g
down
n,u,t ,︸ ︷︷ ︸

≥0

δn,t
}
.

The support payments are determined by constraints (9) and (10). If plant (n,u) is fully

dispatched and plant (k,o) is not, then the final bid price of plant (n,u), i.e., the original bid

price of (n,u) minus the possible support payment, is less than or equal to the final bid price of

plant (k,o); otherwise Eq. (9) is not binding. Moreover, constraint (10) requires that the final

bid price of (n,u) is less than or equal to the final bid price of (k,o) if plant (n,u) is partially

dispatched and plant (k,o) is not fully dispatched; otherwise, (10) is not binding. Consequently,

Eqs. (3)-(10) make sure that no expensive generator is dispatched before the cheaper ones.

At the lower level, the TSO chooses the cost-minimizing (11) deployment of up- (gup
n,u,t) and

down-reserves (gdown
n,u,t ) as well as voltage angles (δn,t) to match supply to demand at every node

(12). These nodes represent subregions, which aggregate demand and generation, and in which

transmission constraints can be ignored. Eqs. (13)-(16) define the feasible up- and down-reserve
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deployment intervals for each plant. Furthermore, Eqs. (17)-(19) implement the linearized DC

load flow transmission in keeping with Gabriel and Leuthold (2010) and Kunz (2013).

The regulator can perfectly anticipate the outcomes of the lower level. Also, generation

cost parameters are not affected by support payments, although producers who do not receive

them may increase their bid prices because they know that producers who receive them are

dispatched in any case. Consequently, the results of our model on given support payments and

the associated costs need to be regarded as a lower bound. This interpretation is supported by

the simplification that there is one cost-minimizing TSO inside a price area (in Germany, there

are four) and imperfect coordination does not cause extra costs.

In general, bi-level problems of this form require re-formulation as mathematical programs

with equilibrium constraints (MPECs) and subsequently as MILPs in order to be solved. How-

ever, in this case, our problem has a special structure that reduces it to a single-level problem

in which there is no lower-level objective function. This is because all of the terms from the

lower-level objective function are present in the upper level and there is no interaction between

lower-level dual variables and upper-level primal variables. Thus, the two objective functions

are not in conflict, and the upper-level objective function may simply be minimized subject to

upper- and lower-level constraints (see Garcés et al. (2009) and Proposition 1 of Zeng and An

(2014)). Nevertheless, we will proceed with the re-formulation because a regulator may have

other concerns besides simply minimizing generating costs, e.g., minimizing costs of emissions

(Siddiqui et al., 2016) or congestion, which may cause the upper- and lower-level objective func-

tions to be in conflict. Indeed, while we use previously developed resolution techniques, our

methodological contribution here is the development of a novel set of constraints in Eqs. (3)-

(10) that enforce the day-ahead merit order regardless of the objective function. This technique

may now be applied by researchers exploring the impact of policy measures on both day-ahead

and balancing markets through customized upper-level objective functions. Otherwise, only

social welfare maximization would be possible without violating the merit order. We provide

the detailed MPEC and MILP formulations in the Appendices A and B, respectively.
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4. Numerical examples

4.1. A three-node example

To illustrate the effect of different policies, we run our model with and without support

payments as well as a nodal pricing model similar to Kunz (2013) (see Appendix E for the

formulation) by considering a three-node network in which there is one generation unit at each

node (see Figure 1). The nodes represent locations in the network with generation units and

load, while transmission lines connect the nodes. The network as well as demand and generation

parameters are in Tables 5 and 6 of the Appendix C, respectively.

The detailed transmission and generation results of our model are in Tables 7 and 8 of

Appendix C, while Table 1 summarizes the key outcomes of the policies. In the absence of

support payments, only power plants at nodes 1 and 2 are dispatched because they have the

lowest bid prices, thereby leading to the lowest day-ahead cost of ¤3000. However, because

lines 2 and 3 to node 3 are congested, the day-ahead solution does not allow demand to be

served at node 3. The situation is resolved by deploying down-reserves of the plants at nodes

1 and 2 and up-reserves of the plant at node 3, which causes a re-dispatch cost of ¤700.

When support payments are introduced, it is optimal to give the plant at node 3 a support

payment of ¤10/MWh. This reduces the bid price of the plant 3 so that it is dispatched in

the day-ahead market, thereby replacing part of the generation of the plant at node 2. The

support payments increase the cost of day-ahead dispatch to ¤3600, but now, transmission

lines can be utilized to serve demand at all nodes without re-dispatching. Consequently, the

total generation cost of ¤3600 is slightly lower than that of the case without support payments.

Finally, the nodal pricing model achieves an even lower cost of ¤3300 by considering the

transmission constraints already in the day-ahead dispatch. Consequently, the plant at node 3

is dispatched out of merit order in the day-ahead market without giving any support payments.
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Figure 1: Three-node network indicating conventional direction of flow

measure

policy
no support support nodal

day-ahead cost (¤) 3000 3600 3300

re-dispatch cost (¤) 700 0 0

total cost (¤) 3700 3600 3300

re-dispatch volume (MW) 40 0 0

congested lines 2, 3 1, 3 -

Table 1: Summary of the results of the three-node example

4.2. German power system

Next, we model the German power system to assess the impacts of the different policies on

the welfare and power system. More specifically, we use demand, generation and transmission

network data from Egerer et al. (2014) to divide Germany into 18 DENA nodes (Deutsche

Energie-Agentur, 2010), which correspond to large cities and their surroundings. The nodes

and the transmission lines between them are shown in Figure 2. Demand, generation capacity,

generation cost, and transmission network parameters are provided in Tables 9-12 of Appendix

D, in which we specify the calibration process.

In the following cases, we limit the set of discrete support payment levels only to zero and

the differences in bid prices of different power plant types. Other support payment levels would

be sub-optimal because the regulator at the upper level can, in view of lower-level outcomes,

select which plants to dispatch from a set of plants with equal final bid prices. These restrictions
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decrease the size of the problem and speed up the computation without having an impact on the

results. The model is implemented with GAMS 24.2 and solved with CPLEX 12.6 on an Intel i5

2.40GHz processor and 4 GB RAM. The results for the following single- and multi-period cases

are computed in less than five seconds. Constraints with continuous variables (such as ramping

constraints) are not expected to affect the computational efficiency significantly, whereas new

binary variables for constraints (such as startups of power plants) are likely to increase the

computation time appreciably.

Figure 2: Germany as an 18-node network with 33 cross-node transmission lines
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4.3. Single-period case

In the single-period case, we neglect the time index t in the formulation of Section 3. Con-

sequently, constraints (7) and (8) can be disregarded. We examine two scenarios to study the

need for support payments. First, in our base scenario, the demand is at the baseline level (Ta-

ble 9), while wind, solar, and hydro power production are at 40%, 20%, and 20% levels of their

maximum generation capacities (Table 10 in Appendix D), respectively. By comparison, since

the average wind power generation was 17%, solar 11%, and hydro 13% in 2012 (EEX, 2014),

we have taken a day with relatively high renewable generation as our base. In this scenario,

support payments do not improve the welfare (see Table 2). Table 13 in Appendix D shows

that coal plants are the last plants to be dispatched, and, thus, the day-ahead price is at the

level of their bid price of ¤40/MWh. Only small re-dispatch volumes are needed for (i) some

deployment of gas-fired up-reserves in southern and western Germany and (ii) deployment of

down-reserves of coal plants in eastern Germany (Table 14 in Appendix D). Table 15 in Ap-

pendix D shows that lines l14 and l18 are congested, which indicates strong flow to western

and southern Germany.

Second, we run an extreme scenario in which we increase demand by 15% in southern and

western German nodes (specifically, nodes 4-14). Furthermore, we increase wind power produc-

tion to a very high 80% level of maximum capacity and decrease solar power production to 10%,

while keeping hydro power production at the 20% level. Such hours occurred, for example, from

3 January 2012 to 5 January 2012, when hourly prices declined to ¤-75.04/MWh at minimum

and increased to ¤57.42/MWh at maximum. Now, gas plants at nodes 5 (Nuremberg area)

and 6 (Munich area) are given an optimal support payment of ¤15/MWh, which decreases

their final bid price to the level of coal plants. Consequently, gas plants are dispatched at those

nodes, while production from coal plants in northern Germany decreases (Table 16 in Appendix

D). Table 17 in Appendix D shows that re-dispatch volumes increase from the base scenario,

and up-reserves of gas-fired plants are now deployed in southern and western Germany, whereas

the down-reserves of lignite and coal plants are deployed in eastern and northern Germany.

Table 2 shows that support payments increase day-ahead generation costs but decrease re-
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dispatch costs resulting in equal or lower total costs in both scenarios. In particular, when we

disable support payments in the extreme scenario, both re-dispatch volumes and costs triple.

The resulting re-dispatch volume of 9.6 GW can be compared with the maximum re-dispatch

of 10.8 GW in 2014 (Netztransparenz.de, 2015). However, we note that the change in total

welfare is mainly affected by the costs of support payments relative to those of deploying up-

reserves, and it is dependent on the parameters cm
n,u and cup

n,u in the model. Nevertheless, nodal

pricing achieves even lower costs in both scenarios. Table 20 in Appendix D shows that nodal

pricing finds it optimal to dispatch gas plants in the extreme scenario and that their dispatch at

nodes 5 and 6 is close to that of the model with support payments in Table 16 in Appendix D.

Consequently, support payments enable policymakers to increase the flexibility and the stability

of the power system because they decrease the need for re-dispatch and increase the dispatch

of flexible gas-fired plants already in the day-ahead market. Furthermore, the need for north-

to-south grid expansion considered by Kunz (2013) is alleviated as nodal pricing and the model

with support payments cause the flow to drop in this direction compared to the model without

support payments (see Tables 18, 19, and 21 in Appendix D).

Scenario Base Extreme

measure

policy
no support support nodal no support support nodal

day-ahead cost (M¤) 1.379 1.379 1.388 1.289 1.400 1.381

re-dispatch cost (M¤) 0.018 0.018 0 0.175 0.061 0

total cost (M¤) 1.397 1.397 1.388 1.464 1.461 1.381

re-dispatch volume (GW) 1.2 1.2 0 9.6 3.0 0

congested lines 14, 18 14, 18 - 14, 18 14, 18 9, 14, 18

Table 2: Summary of the results of the German single-period case
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4.4. Multi-period case

Next, we combine our scenarios in a multi-period model in which the system moves from

the base scenario to the extreme scenario. Thus, the main drivers are the increase of wind

power from the 40% level to the 80% level, the 15% increase of demand at nodes 4-15, and the

decrease of solar power from 20% to 10% level. We note that such a large change is hypothetical,

but, given the trend toward increasing penetration of intermittent renewables, greater absolute

hourly fluctations (in MW) are likely to be observed in the future.

As in the extreme case, we see that a support payment of ¤15/MWh to gas-fired plants

at nodes 5 and 6 displaces coal-fired production in north-eastern Germany (Tables 22 and 23

in Appendix D). Unlike in the single-period base scenario, in which support payments are not

optimal, there is now gas-fired production at node 5 at time t1, which decreases the need for

re-dispatch by 42% (Table 24 in Appendix D). Consequently, support payments can reduce the

costs of re-dispatch under normal, non-extreme wind conditions, too. Similar to the single-

period extreme scenario, down-reserves of lignite plants are deployed in eastern Germany in

period 2, but, additionally, some slow-ramping coal plants dispatched in period 1 need to

deploy their down-reserves in north-eastern Germany.

If we disable support payments in the multi-period case, then there is only a 0.1% increase in

total costs (see Table 3), while the re-dispatch volumes increase by 50%. More specifically, the

deployment of gas-fired up-reserves and down-reserves of coal as well as lignite plants increases,

whereas with support payments, the gas-fired plants offset the significant change in demand and

renewable generation already in the day-ahead market. Thus, policymakers can utilize support

payments to mitigate short-term variability, which allows for higher penetration of renewables.

As a comparison, Table 3 shows that nodal pricing saves 3% on total costs vis-à-vis support

payments by eliminating the need for re-dispatching.

15



measure

policy
no support support nodal

day-ahead cost (M¤) 2.668 2.732 2.774

re-dispatch cost (M¤) 0.193 0.125 0

total cost (M¤) 2.861 2.857 2.774

re-dispatch volume (GW) 10.8 7.2 0

congested lines 14, 18 14, 18 9, 14, 18

Table 3: Summary of the results of the German multi-period case

4.5. Sensitivity analysis with respect to uncertainty in demand and renewable generation

To test the robustness of the support payment decisions, we run a stochastic version of the

lower-level problem in Eqs. (11)-(19) with fixed upper-level decisions from the single-period

extreme scenario in Section 4. Specifically, we introduce imbalances such as demand as well

as wind and solar power forecast errors by adding the term imbn,t to the left-hand-side of the

nodal power balance equations (12) and evaluate the expected balancing volume and cost by

averaging the total balancing volume and cost of all imbalance scenarios, respectively. These

scenarios are generated by sampling N unique four-dimensional vectors from quarter-hourly

imbalances for the four German TSOs in 2012 (Regelleistung, 2015) using the MATLAB 2015a

function datasample. Each TSO-wise imbalance is distributed to its nodes in accordance to

their shares of demand and generation capacity. The samples have weak positive correlation,

and the marginal distributions are characterized by a spike close to zero and relatively fat tails.

With N = 10000 and expected imbalances of 1.2 GW, the expected total generation costs

with and without support payments are equal at ¤1.461 million (see Table 4 in which ex-

pected congestion is defined as congestion in more than 50% of the scenarios). As the expected

balancing volumes are 3.4 GW and 9.7 GW, respectively, both models need to do substantial

re-dispatching in order to eliminate the imbalances. By contrast, the nodal pricing model is able

to net positive and negative imbalances as the expected re-dispatch volume at 0.8 GW is lower

16



than the expected imbalance. Nevertheless, support payments to gas-fired plants in southern

Germany can reduce re-dispatch volumes caused by imbalances substantially, and, thus, re-

spond better to forecast errors of variable renewable generation, for example. Performing the

sensitivity analysis with N = 10000 scenarios takes approximately seven minutes.

In addition, we test the multi-period model by increasing consumption in the second time

step. Only a 3% increase in consumption causes the model without support payments to

become infeasible due to inadequate flexibility to deploy down-reserves in northern and eastern

Germany and to deploy up-reserves in southern and western Germany. However, the model

with support payments finds a solution even when consumption is 9% higher by dispatching

gas-fired plants, thereby indicating that policymakers can proactively increase the reliability of

the power system with support payments.

measure

policy
no support support nodal

day-ahead cost (M¤) 1.289 1.400 1.381

expected re-dispatch cost (M¤) 0.172 0.061 0.002

expected total cost (M¤) 1.461 1.461 1.383

expected re-dispatch volume (GW) 9.7 3.4 0.8

expected congested lines 14, 18 14, 18 9, 14, 18

Table 4: Summary of the results of the sensitivity analysis

5. Conclusions

In this paper, we have developed a complementarity model to study the impacts of support

payments on total generation costs and balancing market volumes in Germany and, thus, their

implications for power system flexibility. In our base scenario - which corresponds to normal

conditions with modest renewable energy generation - support payments are not needed, but

with high wind power production in northern Germany and high demand in southern and west-

ern Germany, support payments to gas-fired power plants in southern Germany become optimal.
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However, the savings in total generation costs are small because the costs of support payments

and re-dispatch largely offset each other, but re-dispatch volumes decrease significantly by a

factor of 1 to 2. Moreover, in the multi-period scenario, we find that support payments allow

gas-fired plants to be dispatched day-ahead and reduce re-dispatch volumes by offsetting the

variability of renewable energy generation by utilizing their fast-ramping capabilities. Even in

non-extreme wind conditions, re-dispatch costs are reduced so that the uneven distribution of

wind power is mitigated.

Sensitivity analysis of the optimal support payments indicates that they can reduce ex-

pected balancing volumes and costs. Also, the power system with support payments is able to

withstand quicker changes in consumption and renewable generation. On the other hand, our

results show that nodal pricing would be the most effective method to decrease balancing and

re-dispatch volumes. However, the regulator has outlined that uniform pricing will be main-

tained (Bundesministerium für Wirtschaft und Energie (BMWi), 2015). Therefore, support

payments would be an effective medium-term measure to integrate renewables. One drawback

is that the regulator cannot predict the market outcomes perfectly, and, thus, excess support

payments may be needed, thereby resulting in welfare losses. Also, some capacity mechanisms

have failed to enforce timely availability (Batlle and Rodilla, 2010).

From the modeling perspective, the lack of cross-border flows and the simplicity of the

day-ahead bidding model, in particular, can give overly strong indications about the need for

support payments. Extending the model to a stochastic bi-level problem would give more

insight into optimal support payments under spatio-temporally correlated imbalances. More

extensive vulnerability assessment of short-term supply adequacy could be conducted with a

so-called interdiction model, where the upper- and lower-level conflict. On the one hand, future

research could seek to develop more detailed short-term models, but on the other hand, long-

term security of supply or possible market power issues were not addressed. However, as we

maintain the merit order using constraints, we can specify customized objective functions that

do not minimize generation costs only, which allows for new types of power market simulations.

For example, one such possibility is to replace support payments with CO2 prices in order to
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study their impacts on power systems.
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Appendix A MPEC formulation

We cast the bi-level program (1)-(19) as a single-level MPEC, which is then used to formulate

the linearized model. In the MPEC, the upper-level Eqs. (1)-(10) remain unchanged, and the

decision variables consist of upper- and lower-level decision variables as well as the dual variables

of the lower-level problem (Gabriel et al., 2013). Since the lower-level problem is convex, it can

be replaced by its Karush-Kuhn-Tucker (KKT) conditions (A-2)-(A-12).

Minimize
ΩUL∪ΩLL∪ΩDV ∑

t
∑
n

∑
u

((
cm

n,u + sn,u
)

gda
n,u,t + cup

n,ugup
n,u,t− cdown

n,u gdown
n,u,t

)
(A-1)

s.t.

Eqs. (2)-(10)

λ
cm
n,t (free), consn,t−∑

u
(gda

n,u,t + gup
n,u,t−gdown

n,u,t )−∑
k

Bn,kδk,t = 0 ∀n, t (A-2)
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δn,t (free), −∑
k

Bk,nλ
cm
k,t +∑

l
Hl,nµl,t−∑

l
Hl,nµl,t + swnγn,t = 0 ∀n, t (A-3)

γn,t (free), swnδn,t = 0 ∀n, t (A-4)

gup
n,u,t ≥ 0⊥ cup

n,u−λ
cm
n,t + β

up
n,u,t + θ

up
n,u,t ≥ 0 ∀n,u, t (A-5)

gdown
n,u,t ≥ 0⊥−cdown

n,u + λ
cm
n,t + β

down
n,u,t + θ

down
n,u,t ≥ 0 ∀n,u, t (A-6)

β
up
n,u,t ≥ 0⊥ gmax

n,u,t−gda
n,u,t−gup

n,u,t ≥ 0 ∀n,u, t (A-7)

β
down
n,u,t ≥ 0⊥ gda

n,u,t−gdown
n,u,t ≥ 0 ∀n,u, t (A-8)

θ
up
n,u,t ≥ 0⊥ ε

reserveup

n,u gmax
n,u,t−gup

n,u,t ≥ 0 ∀n,u, t (A-9)

θ
down
n,u,t ≥ 0⊥ ε

reservedown

n,u gmax
n,u,t−gdown

n,u,t ≥ 0 ∀n,u, t (A-10)

µ`,t ≥ 0⊥ capmax
` −∑

n
H`,nδn,t ≥ 0 ∀`, t (A-11)

µ`,t ≥ 0⊥ capmax
` +∑

n
H`,nδn,t ≥ 0 ∀`, t (A-12)

where Ω
DV =

{
λ

cm
n,t ,γn,t ,β

up
n,u,t ,β

down
n,u,t ,θ up

n,u,t ,θ
down
n,u,t ,µ`,t ,µ`,t︸ ︷︷ ︸

≥0

}
.

Appendix B MILP formulation

Our MPEC is non-linear due to the bi-linear terms sn,ugn,u,t in Eq. (A-1) and complemen-

tarity conditions (A-5)-(A-12). We apply the linearization procedure of Gabriel and Leuthold

(2010). First, the complementarity conditions in (A-5)-(A-12) are associated with disjunctive

variables r1, . . . ,r8 and two corresponding disjunctive constraints in the set of Eqs. (A-20)-

(A-35). Second, we introduce valid discrete support payment levels s̄n,u,i and binary indicator

variables qn,u,i that equal 1 only when the ith discrete support payment level is selected. More-

over, the binary indicator variables qgda

n,u,t equal to 1 when gda
n,u,t > 0 and 0 otherwise. Thus, the

bi-linear terms in the objective function can be replaced with the following variable

vn,u,i,t =


s̄n,u,igda

n,u,t if qn,u,i = qgda

n,u,t = 1

0 otherwise

(A-13)

The logic is modeled with constraints (A-15) - (A-19) as follows. If plant (n,u) is running at

time period t, then qgda

n,u,t is equal to one (Eq. (A-15)). Constraint (A-16) ensures that the
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variable qn,u,i is equal to 1 when the ith discrete support payment level s̄n,u,i is selected and zero

otherwise. Constraint (A-17) ensures that only one payment level is selected for each (n,u).

Next, constraint (A-18) allows the binary variable qv
n,u,i,t to be one only if both qgda

n,u,t and qn,u,i

are one. Consequently, if qv
n,u,i,t is zero, then constraint (A-19) drives the bi-linear term vn,u,i,t

to zero. When qv
n,u,i,t becomes one, the lower bound of vn,u,i,t becomes s̄n,u,igda

n,u,t , which is the

optimal value for vn,u,i,t to minimize the objective function.

Minimize
ΩUL∪ΩLL∪ΩDV∪Φ

∑
t

∑
n

∑
u

[(
cm

n,ugda
n,u,t + cup

n,ugup
n,u,t− cdown

n,u gdown
n,u,t

)
+∑

i
vn,u,i,t

]
(A-14)

s.t.

Kgdaqgda

n,u,t−gda
n,u,t ≥ 0 ∀n,u, t (A-15)

sn,u = ∑
i

qn,u,is̄n,u,i ∀n,u (A-16)

∑
i

qn,u,i−1 = 0 ∀n,u (A-17)
qv

n,u,i,t ≤ qgda

n,u,t ∀n,u, i, t

qv
n,u,i,t ≤ qn,u,i ∀n,u, i, t

qn,u,i + qgda

n,u,t−1≤ qv
n,u,i,t ∀n,u, i, t

(A-18)


0≤ vn,u,i,t ≤ Kvqv

n,u,i,t ∀n,u, i, t

0≤ s̄n,u,igda
n,u,t− vn,u,i,t ≤ Kv(1−qv

n,u,i,t) ∀n,u, i, t
(A-19)

Eqs. (2)-(10)

Eqs. (A-2)-(A-4)

K1r1n,u,t ≥ cup
n,u−λ

cm
n,t + β

up
n,u,t + θ

up
n,u,t ≥ 0 ∀n,u, t (A-20)

K1(1− r1n,u,t)≥ gup
n,u,t ≥ 0 ∀n,u, t (A-21)

K2r2n,u,t ≥−cdown
n,u + λ

cm
n,t + β

down
n,u,t + θ

down
n,u,t ≥ 0 ∀n,u, t (A-22)

K2(1− r2n,u,t)≥ gdown
n,u,t ≥ 0 ∀n,u, t (A-23)

K3r3n,u,t ≥ gmax
n,u,t−gda

n,u,t−gup
n,u,t ≥ 0 ∀n,u, t (A-24)

K3(1− r3n,u,t)≥ β
up
n,u ≥ 0 ∀n,u, t (A-25)
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K4r4n,u,t ≥ gda
n,u,t−gdown

n,u,t ≥ 0 ∀n,u, t (A-26)

K4(1− r4n,u,t)≥ β
down
n,u,t ≥ 0 ∀n,u, t (A-27)

K5r5n,u,t ≥ ε
reserveup

n,u gmax
n,u,t−gup

n,u,t ≥ 0 ∀n,u, t (A-28)

K5(1− r5n,u,t)≥ θ
up
n,u,t ≥ 0 ∀n,u, t (A-29)

K6r6n,u,t ≥ ε
reservedown

n,u gmax
n,u,t−gdown

n,u,t ≥ 0 ∀n,u, t (A-30)

K6(1− r6n,u,t)≥ θ
down
n,u,t ≥ 0 ∀n,u, t (A-31)

K7r7`,t ≥ capmax
` −∑

n
H`,nδn,t ≥ 0 ∀`, t (A-32)

K7(1− r7`,t)≥ µ`,t ≥ 0 ∀`, t (A-33)

K8r8`,t ≥ capmax
` +∑

n
H`,nδn,t ≥ 0 ∀`, t (A-34)

K8(1− r8`,t)≥ µ`,t ≥ 0 ∀`, t (A-35)

where Φ =
{

vn,u,i,t ,︸ ︷︷ ︸
≥0

qgda

n,u,t ,q
v
n,u,i,t ,qn,u,i,r1, . . . ,r8︸ ︷︷ ︸

∈{0,1}

}
.

Appendix C Calibration and detailed results of the three-node example

Parameter l1 l2 l3

capmax
` (MW) 10 10 10

Table 5: Network parameters of the three-node example

Parameter node 1 node 2 node 3

consn (MW) 40 40 40

cm
n,u (¤/MWh) 20 30 40

cup
n,u (¤/MWh) 60 60 60

cdown
n,u (¤/MWh) 20 30 40

gmax
n,u (MW) 60 60 60

Table 6: Demand and generation parameters of the three-node example
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Support payments Disabled Enabled

l1 l2 l3 l1 l2 l3

flow (MW) 0 10 10 10 0 10

Table 7: Network flow results of the three-node example

Support payments Disabled Enabled

Variable node 1 node 2 node 3 node 1 node 2 node 3

sn,u (¤/MWh) 0 0 0 0 0 10

gda
n,u (MW) 60 60 0 60 30 30

gup
n,u (MW) 0 0 20 0 0 0

gdown
n,u (MW) 10 10 0 0 0 0

Table 8: Generation results of the three-node example

Appendix D Calibration and detailed results of the German power system model

We use data for the 18 DENA nodes from Egerer et al. (2014). The baseline demand for

each zone in Table 9 is computed by averaging the off-peak and on-peak demand share of each

zone. Furthermore, we scale these figures up by 10% to remove the impact of weekends and

holidays.

In compiling the maximum generation capacities in Table 10, we neglect power plants that

use biomass, waste, or oil because they have relatively small generation capacities. For sim-

plicity, we combine different types of power plants using the same fuel under one category.

Furthermore, the capacities of nuclear, lignite, and coal plants have been reduced by 15% to

account for maintenance outages. Table 11 shows the different costs and ramping efficiencies

of the power plants based on our rough estimations. We note that wind, solar, and nuclear

production cannot be up- or down-reserved and that lignite and coal plants ramp-up relatively

slowly, whereas gas-fired plants are characterized by flexibility (Gutiérrez-Mart́ın et al., 2013).
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The transmission network parameters in Table 12 have been compiled by adding the ther-

mal capacities, resistances, and reactances of all 220 kV and 380 kV circuits for each pair of

nodes. In calculating the thermal capacity, we assume that one 220 kV circuit corresponds to

thermal capacity of 490 MW and one 380 kV to 1700 MW (Egerer et al., 2014). We assume

bi-directional current flow on every line, and if technical characteristics of the line depend on the

flow direction, then we take the maximum of every parameter. To account for network security

constraints, we limit the thermal capacity of each line to 80% of the maximum capacity.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18

consn,t 1.1 3.0 4.4 3.2 3.1 5.2 3.6 5.4 1.2 9.9 3.7 6.5 5.6 1.5 4.8 1.9 2.4 3.4

Table 9: Baseline demand for each node in GW
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node

type
wind solar nuclear hydro lignite coal gas

n1 3.6 1.1 1.2 0 0 0.4 0

n2 4.4 1.5 0 0 0 1.4 0.7

n3 2.9 1 1.2 0.3 0.3 2 0.6

n4 1 1.4 0 0.7 0 0.9 0.5

n5 0.7 3.3 1.1 0.5 0 0 1.3

n6 0.1 4 1.2 1.4 0 0.7 2.4

n7 0.2 1.3 2.3 0.1 0 1.5 0.6

n8 0.4 3.1 0 2.5 0 0.8 0.4

n9 1.1 1 1.1 0 0 0.7 1.8

n10 0.5 1.4 0 0.2 2.2 6.2 2.6

n11 1.3 1.3 0 0.2 0 1.8 2

n12 1.3 1.1 0 0.2 6.6 0 1.5

n13 1.6 1.8 0 0.2 0 3.1 1.9

n14 0.1 2.1 2.2 0.4 0 0 0.1

n15 7.2 2.7 0 0 0.2 1.1 2.2

n16 0.4 0.2 0 0.1 0 0.4 0.1

n17 2.4 1.7 0 1.6 0.9 0 0.8

n18 2.9 2.5 0 1.2 7.6 0 0.7

Table 10: Maximum generation capacity (gmax
n,u,t) for each node in GW

type cm
n,u (¤/MWh) cup

n,u (¤/MWh) cdown
n,u (¤/MWh) εdaup

n,u εdadown
n,u εreserveup

n,u εreservedown
n,u

u1 (wind) 0 999 -999 1 1 0 0

u2 (solar) 0 999 -999 1 1 0 0

u3 (nuclear) 1 100 -100 0 0 0 0

u4 (hydro) 5 30 5 0.5 0.7 0.5 0.7

u5 (lignite) 30 40 25 0.3 0.7 0.2 0.6

u6 (coal) 40 50 35 0.3 0.7 0.2 0.6

u7 (gas) 55 65 55 0.9 1 0.8 0.9

Table 11: Power plant cost and efficiency parameters
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line capacity (GW) resistance (Ω) reactance (Ω)

l1 2.7 1.7 14.9

l2 4.3 11.4 67.5

l3 2.2 5.2 38.3

l4 2.7 3.2 27.4

l5 2.7 1.4 7.7

l6 3.5 3.5 27.3

l7 1.4 2.4 20.6

l8 3.5 5 31.7

l9 2.7 1.5 12.7

l10 2.7 0.9 7.4

l11 2.7 4.4 38

l12 4.1 2.6 22.8

l13 1.4 1.6 14.2

l14 2.7 1.3 11.5

l15 2.7 5.7 49

l16 5.3 17.9 115.4

l17 2.7 5.8 50.4

l18 2.7 1.7 14.6

l19 2.7 1.5 13

l20 9.4 15 122.9

l21 2.6 15.4 98.2

l22 2.7 13.3 72

l23 6.6 8.9 56.5

l24 3.1 9.1 66.4

l25 3.1 8.1 61.8

l26 4.3 11.8 66.2

l27 13.4 15.6 102.5

l28 0.8 3.1 16.6

l29 7.6 20.7 147.3

l30 2.7 2.6 22.7

l31 2.7 3.6 31

l32 5.8 20.5 165.4

l33 5.3 33.1 212.7

Table 12: Transmission network parameters
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node

type
wind solar nuclear hydro lignite coal gas

n1 1.44 0.22 1.19 0.43

n2 1.76 0.30 1.36

n3 1.16 0.20 1.19 0.06 0.34 2.04

n4 0.40 0.28 0.14 0.94

n5 0.28 0.66 1.11 0.10

n6 0.04 0.80 1.19 0.28 0.68

n7 0.08 0.26 2.30 0.02 1.53

n8 0.16 0.62 0.50 0.77

n9 0.44 0.20 1.11 0.68

n10 0.20 0.28 0.04 2.21 6.21

n11 0.52 0.26 0.04 1.79

n12 0.52 0.22 0.04 6.63

n13 0.64 0.36 0.04 3.06

n14 0.04 0.42 2.21 0.08

n15 2.88 0.54 0.17 0.76

n16 0.16 0.04 0.02 0.43

n17 0.96 0.34 0.32 0.85

n18 1.16 0.50 0.24 7.57

Table 13: Day-ahead generation of each power plant type in GW in the base scenario (empty

cells are zero)

node

type
coal gas

n7 0.43

n13 0.17

n15 -0.59

Table 14: Deployment of up- and down-reserves in the base scenario (empty rows and columns

have been removed to save space)
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l1 1.67 l2 0.51 l3 0.42 l4 0.45 l5 1.24 l6 -1.93 l7 -0.18 l8 1.25 l9 -1.12 l10 -0.87 l11 -0.07

l12 -0.56 l13 -0.72 l14* 2.70 l15 -0.86 l16 1.33 l17 0.36 l18* -2.70 l19 -0.85 l20 1.19 l21 0.15 l22 -1.79

l23 -0.36 l24 0.78 l25 0.71 l26 -0.12 l27 -0.06 l28 0.14 l29 0.28 l30 0.34 l31 0.81 l32 -3.35 l33 -2.70

Table 15: Transmission flows in the base scenario (congested lines are indicated by *)

Support payments enabled Support payments disabled

node

type
wind solar nuclear hydro lignite coal gas wind solar nuclear hydro lignite coal

n1 2.88 0.11 1.19 2.88 0.11 1.19 0.26

n2 3.52 0.15 3.52 0.15 0.48

n3 2.32 0.10 1.19 0.06 0.34 2.32 0.10 1.19 0.06 0.34 2.03

n4 0.80 0.14 0.14 0.94 0.80 0.14 0.14 0.94

n5 0.56 0.33 1.11 0.10 1.05 0.56 0.33 1.11 0.10

n6 0.08 0.40 1.19 0.28 0.68 2.39 0.08 0.40 1.19 0.28 0.68

n7 0.16 0.13 2.30 0.02 1.53 0.16 0.13 2.30 0.02 1.53

n8 0.32 0.31 0.50 0.77 0.32 0.31 0.50 0.77

n9 0.88 0.10 1.11 0.88 0.10 1.11 0.68

n10 0.40 0.14 0.04 2.21 6.21 0.40 0.14 0.04 2.21 6.21

n11 1.04 0.13 0.04 1.79 1.04 0.13 0.04 1.79

n12 1.04 0.11 0.04 6.63 1.04 0.11 0.04 6.63

n13 1.28 0.18 0.04 3.06 1.28 0.18 0.04 3.06

n14 0.08 0.21 2.21 0.08 0.08 0.21 2.21 0.08

n15 5.76 0.27 0.17 5.76 0.27 0.17

n16 0.32 0.02 0.02 0.32 0.02 0.02

n17 1.92 0.17 0.32 0.85 1.92 0.17 0.32 0.85

n18 2.32 0.25 0.24 7.57 2.32 0.25 0.24 7.57

Table 16: Day-ahead generation of each power plant type in GW in the extreme scenario with

and without support payments (empty cells are zero)
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Support payments enabled Support payments disabled

node

type
lignite gas lignite coal gas

n1 -0.26

n2 -0.48

n3 -0.97

n5 0.22 1.04

n6 1.92

n7 0.48 0.48

n8 0.32 0.32

n13 0.69 0.97

n14 0.08

n17 -0.51 -0.51

n18 -1.20 -2.60

Table 17: Deployment of up- and down-reserves in the extreme scenario with and without sup-

port payments (empty rows and columns have been removed to save space)

l1 2.40 l2 0.68 l3 0.58 l4 1.09 l5 1.42 l6 2.22 l7 0.36 l8 1.72 l9 -2.57 l10 -1.53 l11 -0.58

l12 -0.25 l13 -0.05 l14* 2.70 l15 -1.25 l16 1.10 l17 0.84 l18* -2.70 l19 0.18 l20 1.17 l21 0.11 l22 -1.82

l23 -0.98 l24 1.37 l25 0.77 l26 -0.65 l27 -0.37 l28 0.29 l29 0.21 l30 0.94 l31 1.03 l32 -3.17 l33 -2.59

Table 18: Transmission flows in the extreme scenario with support payments (congested lines

are denoted with *)

l1 2.38 l2 0.70 l3 0.59 l4 0.90 l5 1.60 l6 2.49 l7 0.10 l8 1.82 l9 -1.80 l10 -1.35 l11 -0.25

l12 -0.42 l13 -0.20 l14* 2.70 l15 -1.00 l16 1.26 l17 0.78 l18* -2.70 l19 -0.13 l20 1.21 l21 0.01 l22 -2.02

l23 -0.76 l24 1.46 l25 0.91 l26 -0.61 l27 -0.33 l28 0.40 l29 0.23 l30 0.56 l31 1.36 l32 -2.36 l33 -2.01

Table 19: Transmission flows in the extreme scenario without support payments (congested lines

are denoted with *)
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node

type
wind solar nuclear hydro lignite coal gas

n1 2.88 0.11 1.19

n2 3.52 0.15

n3 2.32 0.10 1.19 0.06 0.34

n4 0.80 0.14 0.14 0.94

n5 0.56 0.33 1.11 0.10 1.30

n6 0.08 0.40 1.19 0.28 0.68 2.31

n7 0.16 0.13 2.30 0.02 1.53 0.55

n8 0.32 0.31 0.50 0.77 0.26

n9 0.88 0.10 1.11

n10 0.40 0.14 0.04 2.21 6.00

n11 1.04 0.13 0.04 1.79

n12 1.04 0.11 0.04 6.63

n13 1.28 0.18 0.04 3.06 0.73

n14 0.08 0.21 2.21 0.08

n15 5.76 0.27 0.17

n16 0.32 0.02 0.02

n17 1.92 0.17 0.32

n18 2.32 0.25 0.24 6.91

Table 20: Day-ahead generation of each power plant type in GW in the extreme scenario with

nodal pricing

l1 2.40 l2 0.68 l3 0.58 l4 1.13 l5 1.39 l6 2.27 l7 0.41 l8 1.77 l9* -2.70 l10 -1.56 l11 -0.58

l12 -0.23 l13 -0.02 l14* 2.70 l15 -1.25 l16 1.15 l17 0.82 l18* -2.70 l19 0.15 l20 1.21 l21 0.12 l22 -1.87

l23 -0.96 l24 1.45 l25 0.78 l26 -0.72 l27 -0.42 l28 0.29 l29 0.21 l30 1.00 l31 1.13 l32 -3.47 l33 -2.84

Table 21: Transmission flows in the extreme scenario with nodal pricing

34



node

type
wind solar nuclear hydro lignite coal gas

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 1.44 2.88 0.22 0.11 1.19 1.19 0.43 0.26

n2 1.76 3.52 0.30 0.15 1.36 0.60

n3 1.16 2.32 0.20 0.10 1.19 1.19 0.06 0.06 0.34 0.34 2.04 0.61

n4 0.40 0.80 0.28 0.14 0.14 0.14 0.94 0.94

n5 0.28 0.56 0.66 0.33 1.11 1.11 0.10 0.10 0.26 1.30

n6 0.04 0.08 0.80 0.40 1.19 1.19 0.28 0.28 0.68 0.68 0.34

n7 0.08 0.16 0.26 0.13 2.30 2.30 0.02 0.02 1.53 1.53

n8 0.16 0.32 0.62 0.31 0.50 0.50 0.77 0.77

n9 0.44 0.88 0.20 0.10 1.11 1.11 0.68 0.20

n10 0.20 0.40 0.28 0.14 0.04 0.04 2.21 2.21 6.21 6.21

n11 0.52 1.04 0.26 0.13 0.04 0.04 1.79 1.79

n12 0.52 1.04 0.22 0.11 0.04 0.04 6.63 6.63

n13 0.64 1.28 0.36 0.18 0.04 0.04 3.06 3.06

n14 0.04 0.08 0.42 0.21 2.21 2.21 0.08 0.08

n15 2.88 5.76 0.54 0.27 0.17 0.17 0.50

n16 0.16 0.32 0.04 0.02 0.02 0.02 0.43 0.13

n17 0.96 1.92 0.34 0.17 0.32 0.32 0.85 0.85

n18 1.16 2.32 0.50 0.25 0.24 0.24 7.57 7.57

Table 22: Day-ahead generation in each power plant type in the multi-period case with support

payments (empty cells are zero)
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node

type
wind solar nuclear hydro lignite coal

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 1.44 2.88 0.22 0.11 1.19 1.19 0.43 0.26

n2 1.76 3.52 0.30 0.15 1.36 0.82

n3 1.16 2.32 0.20 0.10 1.19 1.19 0.06 0.06 0.34 0.34 2.04 1.06

n4 0.40 0.80 0.28 0.14 0.14 0.14 0.94 0.94

n5 0.28 0.56 0.66 0.33 1.11 1.11 0.10 0.10

n6 0.04 0.08 0.80 0.40 1.19 1.19 0.28 0.28 0.68 0.68

n7 0.08 0.16 0.26 0.13 2.30 2.30 0.02 0.02 1.53 1.53

n8 0.16 0.32 0.62 0.31 0.50 0.50 0.77 0.77

n9 0.44 0.88 0.20 0.10 1.11 1.11 0.68 0.68

n10 0.20 0.40 0.28 0.14 0.04 0.04 2.21 2.21 6.21 6.21

n11 0.52 1.04 0.26 0.13 0.04 0.04 1.79 1.79

n12 0.52 1.04 0.22 0.11 0.04 0.04 6.63 6.63

n13 0.64 1.28 0.36 0.18 0.04 0.04 3.06 3.06

n14 0.04 0.08 0.42 0.21 2.21 2.21 0.08 0.08

n15 2.88 5.76 0.54 0.27 0.17 0.17 0.76 0.38

n16 0.16 0.32 0.04 0.02 0.02 0.02 0.43 0.26

n17 0.96 1.92 0.34 0.17 0.32 0.32 0.85 0.85

n18 1.16 2.32 0.50 0.25 0.24 0.24 7.57 7.57

Table 23: Day-ahead generation in each power plant type in the multi-period case without sup-

port payments (empty cells are zero)
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Support payments enabled Support payments disabled

node

type
lignite coal gas lignite coal gas

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 -0.26 -0.26

n2 -0.60 -0.82

n3 -0.61 1.04

n5 0.42 1.92

n6 1.92

n7 0.48 0.48

n8 0.32 0.32

n9 -0.20

n13 0.34 0.71 0.17 0.97

n14 0.08 0.08

n15 -0.34 -0.59 -0.38

n16 -0.13 -0.26

n17 -0.51 -0.51

n18 -1.20 -2.60

Table 24: Deployment of up- and down-reserves in the multi-period case with and without sup-

port payments (empty rows and columns have been removed to save space)

Appendix E Nodal pricing model

For the nodal pricing model below, we introduce non-negative dual variables β daup

n,u,t and

β dadown

n,u,t for Eqs. (A-39) and (A-40), respectively.

Minimize
gda

n,u,t
≥0

,δn,u,t
∑
t

∑
n

∑
u

cm
n,ugda

n,u,t (A-36)

s.t.

consn,t−∑
u

gda
n,u,t−∑

k
Bn,kδk,t = 0 λ

cm
n,t (free) ∀n, t (A-37)

gda
n,u,t ≤ gmax

n,u,t β
up
n,u,t ≥ 0 ∀n,u, t (A-38)
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gda
n,u,t−gda

n,u,t−1 ≤ ε
daup

n,u gmax
n,u,t β

daup

n,u,t ≥ 0 ∀n,u, and ∀t ≥ 2 (A-39)

gda
n,u,t−1−gda

n,u,t ≤ ε
dadown

n,u gmax
n,u,t β

dadown

n,u,t ≥ 0 ∀n,u, and ∀t ≥ 2 (A-40)

∑
n

H`,nδn,t ≤ capmax
` µ`,t ≥ 0 ∀`, t (A-41)

−∑
n

H`,nδn,t ≤ capmax
` µ`,t ≥ 0 ∀`, t (A-42)

swnδn,t = 0 γn,t (free) ∀n, t (A-43)
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