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Abstract 

Maintaining a sense of direction requires combining information from static environmental 

landmarks together with dynamic information about self-motion. This is accomplished by 

the head direction system, whose neurons – head direction cells – encode specific head 

directions. When the brain integrates information in sensory domains, this process is almost 

always “optimal” – that is, inputs are weighted according to their reliability. Evidence 

suggests cue combination by head direction cells may also be optimal. The simplicity of the 

head direction signal, together with the detailed knowledge we have about the anatomy 

and physiology of the underlying circuit, therefore makes this system a tractable model with 

which to discover how optimal cue combination occurs at a neural level. 

In the head direction system, cue interactions are thought to occur on an attractor network 

of interacting head direction neurons, but attractor dynamics predict a winner-take-all 

decision between cues, rather than optimal combination. However, optimal cue 

combination in an attractor could be achieved via plasticity in the feedforward connections 

from external sensory cues (i.e., the landmarks) onto the ring attractor. Short-term plasticity 

would allow rapid re-weighting that adjusts the final state of the network in accordance 

with cue reliability (reflected in the connection strengths), while longer term plasticity 

would allow long-term learning about this reliability. Although these principles were derived 

to model the head direction system, they could potentially serve to explain optimal cue 

combination in other sensory systems more generally. 

Abbreviations 

MEC: medial entorhinal cortex 

PoS: postsubiculum 

RSC: retrosplenial cortex 

  



3 
 

Introduction 

Self-localisation and navigation benefit from maintenance of a stable sense of direction so 

that a navigator knows which way they are facing, and therefore how to interpret the field 

of view and plan movements through the surrounding space. In the mammalian brain, this 

sense is constructed and maintained by a network of structures known collectively as the 

head direction system (Taube et al., 1990; Taube, 2007). Cells in these areas, called head 

direction cells, fire when an animal’s head faces in a particular direction; they do this by 

combining external, environment-based information together with internally generated, 

dynamic information about self-motion (Blair & Sharp, 1996).  

When an animal enters a new environment the head direction system first has to learn 

about the local landmarks, which it uses to establish a frame of reference relative to which 

head directions can thereafter be specified (Taube & Burton, 1995). To do this, the animal 

has to identify those environmental features that are directionally useful; namely, features 

that are stable, and are thus part of the static background (or allocentric) frame of 

reference. Instability can take two forms – it can occur because the objects themselves 

move, or it can occur because small and nearby fixed objects, which can be walked around, 

also change their apparent direction relative to the background and so are less useful as 

directional landmarks. Deciding which objects are distant and stable vs nearby and/or 

unstable poses something of a chicken-and-egg problem because the purpose of stable 

landmark identification is to establish the directional reference frame, but the reference 

frame itself is used to decide whether a given landmark is stable or not. Landmark-learning 

thus involves a process of continual cue conflict resolution as the system constantly judges, 

on balance of probabilities, whether its own signal has accrued an error or whether a given 

landmark is uninformative.  

The question addressed by this article, then, is how – at a neural level – the head direction 

system resolves conflicts between sets of incoming signals. Cue integration and conflict 

resolution is an area that has had extensive theoretical treatment in other domains, but the 

neural basis of this process remains unknown. Understanding cue combination by head 

direction cells, which form a relatively simple sensory system, may shed light not just on 

navigation computations but also on more general principles of optimal cue combination.  
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Optimal sensory integration 

Sensory integration in the nervous system is often optimized (Ernst & Banks, 2002), such 

that better or more reliable information is given a stronger role in the final sensory decision. 

Several experiments have shown that subjects are able to combine sensory information in a 

way that gives more weight to the more reliable cue: for example, Ernst and Banks found 

that subjects judging the texture of a surface using both vision and touch benefitted from 

use of both senses, and tended to weight the lower-variance visual stimulus more strongly. 

Similar findings have arisen from studies investigating the combination of stereo cues and 

texture cues to estimate surface slant (Knill & Saunders, 2003), and combination of vision 

and sound to estimate speaking direction (the so-called "ventriloquist effect": Alais & Burr, 

2004) or temporal order (Shams et al., 2005).  

Cue combination has been well described by maximum likelihood estimation (Ernst & Banks, 

2002), in which each parameter (e.g., a visual stimulus and a tactile stimulus) is modelled by 

a Gaussian curve, which depicts the probability of the stimulus location in parameter space 

(for example, the probability that surface has a given texture, given its visual appearance). 

The height of these Gaussian curves is proportional, and width inversely proportional, to the 

reliability of the estimate (Figure 1), so that a tall narrow curve reflects a more accurate 

estimate, and a lower broader one a more diffuse or uncertain estimate. The process has 

been formulated in Bayesian terms (Knill & Pouget, 2004), in which the height and width of 

the Gaussian probability density estimates reflects the prior information present in the 

system about each cue. For example, if a subject has learned that tactile cues are less 

reliable (let’s say they are wearing gloves, and have learned from experience that gloves 

reduce tactile accuracy), then the shape of the tactile Gaussian probability distribution will 

change to reflect the lower informativeness, and so tactile cues should have less impact on 

the final decision. Given two such distributions, corresponding to two sets of cues, cue 

combination in theory simply involves multiplication of these probabilities. It is a property of 

Gaussians that the product of two curves is itself a Gaussian curve, located between the 

originals and closer to the taller narrower one, producing optimal cue combination exactly 

as required.  

--------------------------------------------------------------------------- 
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Insert Figure 1 near here 
--------------------------------------------------------------------------- 

Cue combination and prior-informed sensory processing are highly relevant to spatial 

processing (Cheng et al., 2007), including directional estimation. Cue combination could 

occur when head direction cells are faced with more than one indicator of direction and 

have to decide how best to exploit these. Examples of multiple directional cues include self-

motion cues from the vestibular and motor systems vs static landmarks in the environment, 

both of which can vary in reliability: animals can become internally disoriented, or 

landmarks can be unstable. Studies in which landmark stability and/or internal cues have 

been manipulated have found a re-weighting of the relative influence of these cues, both in 

behavioural and physiological observations. Behaviourally, one of the first experiments, by 

Biegler and Morris, found that rats would only use landmarks as a guide to food location if 

the landmarks were spatially stable (Biegler & Morris, 1993). Physiologically, Knierim et al 

found that place and head direction cells would not use landmarks to reset their firing 

directions if the landmarks were not consistently aligned with the rats’ sense of direction 

(Knierim et al., 1997). Similarly, hippocampal place cells would not use landmarks to orient 

their firing if the landmarks had been experienced by the rats as spatially unstable (Jeffery & 

O’Keefe, 1999)(Figure 2A). This latter experiment also found that weighting could shift 

progressively from one cue to another: if rats were deprived of vision for only short periods 

of time, so that the internal sense of direction had had less time to drift and lose accuracy, 

cells followed the internal cues more and the cue card less: with longer periods of visual 

deprivation the balance reversed, and cells were more likely to be “reset” by the landmark 

(Figure 2B). Thus, it seems that the weighting of cues can be adjusted by experience of their 

relative reliability. 

--------------------------------------------------------------------------- 
Insert Figure 2 near here 

--------------------------------------------------------------------------- 

If optimal cue combination involves reliability-weighted integration, then how might this 

occur at a neural level? As yet, there currently exists no generally accepted neural-level 

model of how these Gaussian likelihood estimations might be accomplished by real neurons, 

although some investigators have started to tackle this issue (Ma et al., 2006; Fetsch et al., 
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2012). The head direction system may offer some new insights: it may be that the same 

mechanism that head direction cells use for optimal landmark use might be employed for 

optimal cue combination in other sensory systems too. 

The head direction ring attractor 

To begin with we will examine the basic principles of landmark processing by the head 

direction system, before turning to the question of how the network might achieve cue 

combination. The basis of the head direction signal, generated in the brainstem (Clark & 

Taube, 2012), is thought to comprise a ring attractor (Skaggs et al., 1995; Zhang, 1996), in 

which excitatory interconnections between neurons of similar preferred directions (e.g., two 

“north” neurons both firing when the animal faces north) cooperate with inhibitory 

interconnections between neurons with dissimilar preferences (“north” vs “south”, etc) to 

restrict activity to just one part of the imaginary ring of neurons (Figure 3A).  Activity can be 

moved from one part of the ring to another, either by the animal’s own movements or by 

detection of familiar landmarks which adjust the signal to correct errors (Figure 3B). Note 

that in mammals, these neurons are not arranged in an actual physical ring (Figure 3C), 

although recent evidence suggests that in insects they might be (Seelig & Jayaraman, 2015). 

While the generative and updating parts of this process are intrinsic and may even operate 

in the absence of visual landmark information (in the dark, or – in infant rats – pre eye-

opening (Bjerknes et al., 2015; Tan et al., 2015), the landmark-based setting and resetting 

depend on learned information about the environment and about which elements of it are 

stable and thus useful as directional indicators.  Since excitatory interconnections have not 

been observed in the known head direction areas, variants of the basic attractor model have 

been proposed that use inhibitory interconnections to achieve the same result (Song & 

Wang, 2005). The lack of excitatory interconnections may be due to the deleterious effect 

these are predicted to have on the speed of updating during movement (Page et al., 2015). 

--------------------------------------------------------------------------- 
Insert Figure 3 near here 

--------------------------------------------------------------------------- 

The attractor model in its simplest form predicts that sensory cue integration should be not 

Bayesian but rather “winner take all”, with the strongest cue dominating over all the others, 
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because the sensory cue with the strongest inputs to the attractor would continue to 

preferentially drive activity in that part of the ring until the activity moves there (Touretzky, 

2005). Thus, when there are conflicting information sources onto head direction cells 

(Figure 3D), one source should always win out. However, numerous experiments over many 

years show that when there is a conflict between a landmark and the current state of the 

network (“current state” being the animal’s current estimate of its directional heading) then 

the landmark’s correction of the error is incomplete (see (Knight et al., 2014) for a 

compilation of these studies). This incomplete correction is manifested as an under-rotation 

of the head direction cell’s firing direction relative to the cue rotation, and indicates that the 

strongest cues – the landmarks – do not always capture the network completely. The degree 

to which the system “compromises” between the two cue sets – the cues that supported 

the initial firing direction, and the now-rotated landmarks that drive the new one –  can be a 

function of experience (Knight et al., 2014) suggesting that head direction cells can also 

perform weighted cue integration.  

How could a ring attractor perform weighted cue integration, in light of the capture 

dynamics discussed above? Given the two basic premises: (i) that weighted cue integration 

requires the resulting final activation on the ring attractor to be located between the two 

initial external (cue-driven) inputs, but closer to the stronger one, and (ii) that activation of a 

ring attractor will always settle to a stable state centred at the location of the strongest 

drive onto the ring attractor, then logically, there is only one solution, which is to 

dynamically rewire the connections so that the incoming afferents shift their drive onto the 

ring to the desired intermediate location. In other words, for cue integration, inputs should 

be adjusted so that the strongest drive onto the attractor is the location corresponding to 

the integrated decision. For this shift to occur, there needs to be plasticity that alters the 

pattern of incoming synaptic weights. This plasticity would have to occur rapidly and 

dynamically as the attractor is processing the cues, so that the strongest cue comes to drive 

activation at a new location predicted by a weighted combination of the two original 

contributing cues. 

In a recent modelling study we have found that Hebbian long term potentiation (LTP) based 

on co-activation of pre- and post-synaptic neurons, combined with long term depression 

(LTD) due to synaptic weight vector renormalisation, can in principle accomplish this re- 
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weighting, in the direction and by the amount required (Page et al., 2013). To see how this 

could occur, this re-weighting process is shown using a linearized attractor in Figure 4. The 

pattern of drive from the two cue sets, one broad/weak (corresponding to the activation of 

the network from self-motion – “idiothetic” – cues, and corresponding to current head 

direction estimate) and one narrow/strong (corresponding to a landmark), is shown by the 

two Gaussian curves, whose “reach” far exceeds the zone of actual cell spiking (shown as 

red cells in the Figure). Because of an additive co-activation effect in the overlap zone 

between the weak and strong cues, plasticity occurs in the connections onto those cells 

within reach of both of the activations. This has the effect of selectively strengthening those 

connections only, such that the distribution of synaptic weights now becomes shifted in the 

direction of the weaker cue, although still remaining close to the strong one. As this process 

iterates, activation eventually comes to settle in in the intermediate portion of the ring, 

between the two cues but closer to the stronger one, exactly as required. 

--------------------------------------------------------------------------- 
Insert Figure 4 near here 

--------------------------------------------------------------------------- 

Landmark-learning and dynamic re-weighting 

Dynamic re-weighting can in principle explain within-trial cue integration; it can account for 

the online adjustment of the head direction signal when there is a transient mismatch. 

However, a second important function of cue conflict resolution is to produce long-term 

learning about relevant and irrelevant landmarks. If a landmark is unstable, for example, 

then it may fail to acquire the ability to influence, or “reset”, the head direction network 

(Knierim et al., 1997; Jeffery, 1998). Even if a landmark is spatially stable, its proximal 

location relative to an exploring animal may mean that it is located at many different 

directions relative to the animal and hence is not useful as a directional cue (Zugaro et al., 

2001). In such cases, it is necessary to disconnect the irrelevant (i.e., unstable) landmarks 

from the network so that they can no longer drive head direction cell activity (Figure 5A), 

and also necessary to strengthen the relevant ones so that they can reorient the head 

direction network in future. How does this occur? 
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--------------------------------------------------------------------------- 
Insert Figure 5 near here 

--------------------------------------------------------------------------- 

For this, we need to recruit longer-term plasticity; that lasting days or more. Using a Hebb-

Stent rule in which connections become stronger with repeated agreement, while with 

repeated conflicts then the connections become weaker (Figure 5B), the system could 

become strongly attached to stable landmarks (those that constantly agree with the 

attractor state) while disconnecting from unstable ones. In this way the system is able to 

assimilate long-term learning about landmark reliability, and in so doing establish a stable 

reference frame which can be used in short-term correction of a drifted ring attractor 

network. 

Future directions 

How could cue combination in the head direction system be investigated further? The first 

task is to identify where, in the head direction network, such plasticity (both short- and 

long-term) between landmarks and the ring attractor might occur. Likely candidate areas 

are the cortical head direction areas, including retrosplenial cortex (RSC), postsubiculum 

(PoS) and medial entorhinal cortex (MEC; Yoder et al., 2011), because of their proximity to 

the incoming sensory signals pertaining to landmarks. RSC and PoS cortices both have direct 

connections with primary visual areas (Vogt & Miller, 1983), and it seems likely that these 

two areas perform different functions that may be related to visual landmark processing, 

although what these might be remains a mystery. Interestingly, evidence from human 

neuroimaging suggests a function for RSC in learning about landmark stability, both in 

processing familiar landmarks (Auger et al., 2012) and in learning about novel ones (Auger 

et al., 2015). Humans also show RSC activation guided by local environmental cues rather 

than by global directional ones (Marchette et al., 2014). In further support of a role for RSC 

in landmark processing, we have recently found neurons in dysgranular RSC that respond to 

environmental directional cues in preference to the main head direction signal (Jacob et al., 

2014), suggesting that this region might indeed be the interface between landmarks and the 

head direction ring attractor. The cortical head direction areas also show plasticity (Garden 

et al., 2009; Dumont et al., 2012; Shires et al., 2013). Little is yet known about the 

interactions between these three cortical structures, nor of how such interactions may 
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adapt with experience, but it seems likely that this would be the place to start looking for 

such cue combination processes. 

Having identified the locus of plasticity, the next step is to determine what happens when a 

cue is moved. The first prediction of our model is that blocking synaptic plasticity should 

abolish the undershoot of head direction cells in response to a shifted landmark. Although 

the mechanisms of synaptic plasticity in this system have not yet been identified, a good 

place to start would be the NMDA receptor, since these receptors have been widely 

implicated in plasticity in a wide range of brain systems (Sweatt, 2016). Ultimately, however, 

imaging of dendritic networks will be necessary to determine how the pattern of incoming 

landmark projections alters with learning. 

The third task is to find out where in the system the putative attractor dynamics occur. The 

hypothesis, well established though it is, still lacks strong experimental support (Knierim & 

Zhang, 2012) but it remains a compelling idea, and one that has applicability to other brain 

systems (Hopfield, 1982; Lansner, 2009). If so, then perhaps the ideas about cue 

combination presented here have general utility: in any attractor system we can apply the 

notion of short-term dynamic plasticity acting to “drag” the network state as it tries to move 

towards one cue and away from another, together with long-term plasticity acting to re-

weight the cues, and in doing so yield a potential mechanism for cue combination in these 

other domains too.  

Conclusion 

This review has examined optimal cue combination, a widely studied form of perceptual 

decision-making and learning, in the context of landmark learning by the head direction 

network. Understanding this network is important in understanding spatial cognition, but 

more than that, it is a simple perceptual/cognitive system that provides a useful model 

system with which to study the neural basis of sensory processing. We have reviewed the 

proposal that the head direction system might undertake optimal cue combination by re-

weighting the incoming inputs from landmarks, as a function of experience of their stability. 

This re-weighting achieves, in practical terms, the same reliability-weighted cue 

combination that has been seen experimentally in a variety of settings, and modelled 



11 
 

mathematically by maximum likelihood estimation. We suggest that such synaptic plasticity 

might subserve cue combination in other sensory domains too.  
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Figure legends 

Abstract figure – Optimal cue combination using a ring attractor. (A) Hypothetical head 

direction cells ring attractor being activated by two cues, one highly reliable (cue 1, red) and 

one less reliable (cue 2, pink). According to classic attractor winner-take-all dynamics, cue 1 

should capture activity in the ring. According to optimal cue combination theory, the 

resultant activation should be between the two activations, and closer to the stronger one. 

(B) The two scenarios could be reconciled if Gaussian inputs onto a ring attractor experience 

Hebbian plasticity in the overlap region, causing re-weighting of the inputs, and a shift 

towards the other cue. (C) The final outcome of this re-weighting process is that the strong 

cue captures activity in a winner-take-all fashion, but does so at a part of the ring attractor 

that is close to the other cue, as predicted by optimal cue combination theory.  

Figure 1 – Cue conflict by combination of Gaussian activations. The x-axis refers to some 

quantifiable parameter distributed across a sensory network such as size, optical slant, 

spatial location, heading direction etc, and the y-axis reflects intensity of the sensory drive. 

The Gaussian curves depict the distribution of drive across the parameter space: the red 

curve denotes a strong (tall) and reliable (narrow) cue, and the pink curve a weaker and less 

reliable one. The blue curve reflects the outcome of a decision process that has taken both 

cues into account and derived a weighted average, in which the more reliable cue has 

exerted a stronger positioning effect. 

Figure 2 – Re-weighting of internal vs. external directional cue use by hippocampal place 

cells (adapted from Jeffery and O’Keefe, 1999). Place field rotation was assessed in rats 

exposed to a combination of landmark cue-card rotation and self-rotation: rats either saw 

the cue card move, or did not. (A) For those that saw the cue card move, cells stopped 

rotating with (“following”) it (left) and started rotating with the rat’s internal direction sense 

(right). (B) The longer the rats were deprived of visual cues, less likely they were to rotate 

with the rat and the more likely they were to rotate with the cue card. This suggests that the 

propensity to follow one or other cue type was a function of its reliability (longer visual 

deprivation = less reliability of internal direction sense).  
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Figure 3 – Hypothetical ring attractor structure for neurons in the rodent head direction 

system. The diagram shows neurons arranged according to their preferred firing direction. 

(A) When the animal faces a landmark, neurons corresponding to that facing direction 

become activated (shown in red). (B) When the animal turns to face a new landmark, the 

combination of internally generated self-motion information together with the sight of the 

new landmark now drives activity in the part of the network corresponding to the animal’s 

new facing direction. (C) The physical arrangement of the neurons is thought to be random 

in mammals. (D) When two cues simultaneously try to drive activity in different parts of the 

network (for example, due to conflict between the rat’s current directional estimate and 

one of the landmarks), theory makes one of two predictions. In a winner-take-all scenario, 

the strongest cue dominates, and activity moves to the appropriate part of the network. In 

cue combination, both cues influence the final outcome to a degree proportional to their 

intensity and/or reliability, with the final result being a compromise.  

Figure 4 – Shift of activation in a ring attractor network from a strong cue towards a weaker 

one. The attractor is shown linearized for convenience; the Gaussian curves depict the 

external drive (from sensory cues; idiothetic for the weak cue and landmark-based for the 

strong one) onto the network. Because of the overlap of this drive, an asymmetry of 

activation occurs, with greater activation in the zone between the two cues. For the 

stronger cue, which is able to drive neurons to their activation threshold, this asymmetry 

results in asymmetric synaptic strengthening (dotted line), which will result in a shift of the 

activation peak in the direction of overlap, with the final result as shown in Figure 1.   

Figure 5 – Disconnection (“re-weighting”) of spatially unstable sensory cues from the head 

direction cell attractor network. (A) Top: Landmarks become associated with activation of 

the HD ring attractor by Hebbian re-weighting, forming strong connections (red arrows). 

Bottom: When a landmark moves, the existing connection with the ring attractor weakens 

(dotted arrow). (B) How unstable landmarks could become disconnected by Hebbian re-

weighting. When a given set of sensory neurons has activity reliably associated with the 

same set of head direction neurons (left-hand panels), connections become stronger by 

Hebbian associativity. If the cues are spatially unstable and are associated with different 

parts of the attractor network on different trials, the connections will weaken by an anti-

Hebbian mechanism (Hebb-Stent rule) and connections will lose strength. 
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Figure 1 – Cue conflict by combination of Gaussian activations. The x-axis refers to some 
quantifiable parameter distributed across a sensory network such as size, optical slant, spatial 
location, heading direction etc, and the y-axis reflects intensity of the sensory drive. The 
Gaussian curves depict the distribution of drive across the parameter space: the red curve 
denotes a strong (tall) and reliable (narrow) cue, and the pink curve a weaker and less reliable 
one. The blue curve reflects the outcome of a decision process that has taken both cues into 
account and derived a weighted average, in which the more reliable cue has exerted a stronger 
positioning effect. 
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Figure 2 – Re-weighting of internal vs. external directional cue use by hippocampal place cells 
(adapted from Jeffery and O’Keefe, 1999). Place field rotation was assessed in rats exposed to 
a combination of landmark cue-card rotation and self-rotation: rats either saw the cue card 
move, or did not. (A) For those that saw the cue card move, cells stopped rotating with 
(“following”) it (left) and started rotating with the rat’s internal direction sense (right). (B) The 
longer the rats were deprived of visual cues, less likely they were to rotate with the rat and the 
more likely they were to rotate with the cue card. This suggests that the propensity to follow one 
or other cue type was a function of its reliability (longer visual deprivation = less reliability of 
internal direction sense).  
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Figure 3 – Hypothetical ring attractor structure for neurons in the rodent head direction system. 
The diagram shows neurons arranged according to their preferred firing direction. (A) When the 
animal faces a landmark, neurons corresponding to that facing direction become activated (shown 
in red). (B) When the animal turns to face a new landmark, the combination of internally generated 
self-motion information together with the sight of the new landmark now drives activity in the part of 
the network corresponding to the animal’s new facing direction. (C) The physical arrangement of 
the neurons is thought to be random in mammals. (D) When two cues simultaneously try to drive 
activity in different parts of the network, theory makes one of two predictions. In a winner-take-all 
scenario, the strongest cue dominates, and activity moves to the appropriate part of the network. In 
cue combination, both cues influence the final outcome to a degree proportional to their intensity 
and/or reliability, with the final result being a compromise.  
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Figure 4 – Shift of activation in a ring attractor network from a strong cue towards a weaker one. 
The attractor is shown linearized for convenience; the Gaussian curves depict the external drive 
(from sensory cues; idiothetic for the weak cue and landmark-based for the strong one) onto the 
network. Because of the overlap of this drive, an asymmetry of activation occurs, with greater 
activation in the zone between the two cues. For the stronger cue, which is able to drive neurons 
to their activation threshold, this asymmetry results in asymmetric synaptic strengthening (dotted 
line), which will result in a shift of the activation peak in the direction of overlap, with the final result 
as shown in Figure 1.   
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Figure 5 – Disconnection (“re-weighting”) of spatially unstable sensory cues from the head direction 
cell attractor network. (A) Top: Landmarks become associated with activation of the HD ring attractor 
by Hebbian re-weighting, forming strong connections (red arrows). Bottom: When a landmark moves, 
the existing connection with the ring attractor weakens (dotted arrow). (B) How unstable landmarks 
could become disconnected by Hebbian re-weighting. When a given set of sensory neurons has 
activity reliably associated with the same set of head direction neurons (left-hand panels), connections 
become stronger by Hebbian associativity. If the cues are spatially unstable and are associated with 
different parts of the attractor network on different trials, the connections will weaken by an anti-
Hebbian mechanism (Hebb-Stent rule) and connections will lose strength.   


