
Geosci. Model Dev., 9, 2441–2457, 2016
www.geosci-model-dev.net/9/2441/2016/
doi:10.5194/gmd-9-2441-2016
© Author(s) 2016. CC Attribution 3.0 License.

Quantitative evaluation of numerical integration schemes for
Lagrangian particle dispersion models
Huda Mohd. Ramli and J. Gavin Esler
Department of Mathematics, University College London, London, UK

Correspondence to: J. Gavin Esler (j.g.esler@ucl.ac.uk)

Received: 26 February 2016 – Published in Geosci. Model Dev. Discuss.: 15 March 2016
Revised: 27 June 2016 – Accepted: 28 June 2016 – Published: 22 July 2016

Abstract. A rigorous methodology for the evaluation of in-
tegration schemes for Lagrangian particle dispersion models
(LPDMs) is presented. A series of one-dimensional test prob-
lems are introduced, for which the Fokker–Planck equation
is solved numerically using a finite-difference discretisation
in physical space and a Hermite function expansion in ve-
locity space. Numerical convergence errors in the Fokker–
Planck equation solutions are shown to be much less than
the statistical error associated with a practical-sized ensem-
ble (N = 106) of LPDM solutions; hence, the former can be
used to validate the latter. The test problems are then used
to evaluate commonly used LPDM integration schemes. The
results allow for optimal time-step selection for each scheme,
given a required level of accuracy. The following recom-
mendations are made for use in operational models. First,
if computational constraints require the use of moderate to
long time steps, it is more accurate to solve the random dis-
placement model approximation to the LPDM rather than use
existing schemes designed for long time steps. Second, use-
ful gains in numerical accuracy can be obtained, at moderate
additional computational cost, by using the relatively simple
“small-noise” scheme of Honeycutt.

1 Introduction

State-of-the-art Lagrangian particle dispersion models
(LPDMs hereafter), for example FLEXPART (Stohl et al.,
2005) and NAME (Jones et al., 2007), are key scientific tools
for the study of the long-range transport and dispersal of
the transport of atmospheric trace gases and aerosols. Ap-
plications are diverse, e.g. establishing the relationship be-
tween emissions of pollutants and air quality downstream

Cassiani et al. (2013), aerosol dispersal following volcanic
eruptions (Devenish et al., 2011; D’Amours et al., 2010),
modelling of nuclear accident scenarios (Stohl et al., 2012),
and determination of constraints on chemical emissions via
inverse modelling (Seibert and Frank, 2004; Stohl et al.,
2010). More fundamentally, LPDMs can be used to address
key scientific questions concerning the nature of transport in
the atmosphere (Legras et al., 2005; Berthet et al., 2007), in-
cluding how transport might be influenced by a changing cli-
mate.

Mathematically speaking, LPDMs are formulated as
stochastic differential equations (SDEs hereafter). (It is no-
table that it is possible to include jump processes (Platen
and Liberati, 2010) as a representation of non-local con-
vective parameterisations (Forster et al., 2007), but we will
not be concerned here with this possibility.) Although the
numerical analysis of solution techniques for SDEs (e.g.
Kloeden and Platen, 1992; Milstein and Tretyakov, 2004)
is a mature subject in mathematics, LPDMs have not, gen-
erally speaking, exploited developments in the subject, and
are typically formulated using numerical schemes adapted
from those used for ordinary differential equations (see e.g.
Stohl et al., 2005). Validation of LPDMs has focussed instead
on direct comparison with observational data (Stohl et al.,
1998; Ryall and Maryon, 1998). Our contention is that ob-
servational comparison, while clearly a necessary aspect of
model development, will be insufficient if any uncertainty
exists concerning the accuracy of the numerical solution of
the underlying equations.

The aim of the present work, therefore, is to introduce
a rigorous framework for the testing and evaluation of
numerical schemes for LPDMs. The framework is based
on a standard one-dimensional dispersion model problem
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(Rodean, 1996; Wilson and Sawford, 1996) modelling the
vertical dispersion of air parcels in the atmospheric boundary
layer (ABL hereafter). Vertical profiles of turbulent statistics
representative of both stable and neutral conditions will be
considered, and the LPDM equations will be of the “well-
mixed” class (Thomson, 1987), meaning that long time prob-
ability distribution of the solutions (the invariant measure of
the SDEs) is given by a pre-specified “atmospheric” distri-
bution (taken here to be uniform in physical space and Gaus-
sian in velocity space). Hence the model problem, while ide-
alised, captures key elements of the physics of dispersion in
the stable and neutral ABL. The convective case, in which
the vertical velocity statistics are non-Gaussian (see e.g. Cas-
siani et al., 2015), will require a separate test case and is not
discussed here.

Our approach to evaluating a given LPDM numerical
scheme is to cross-validate its performance against a numer-
ical solution of the corresponding Fokker–Planck equation
(FPE hereafter; see e.g. Gardiner, 2009). The FPE describes
the time evolution of the probability density function (pdf) of
the stochastic process, and is formulated in position-velocity
space, and so in the context of the current problem of disper-
sion in one spatial dimension is a partial differential equation
in 2+ 1 dimensions. Note that in three spatial dimensions in
which the FPE is a 6+ 1 dimensional PDE, it will be compu-
tationally impractical in most circumstances to obtain accu-
rate solutions to the FPE, and consequently LPDMs will be
the only practical tool to solve the problem.

A solution method based on a Hermite function expan-
sion is introduced in order to obtain accurate solutions of the
FPE with computational efficiency. Evaluation of the LPDM
scheme proceeds by a comparison of pdfs in appropriate er-
ror norm, where the LPDM pdf is generated from an en-
semble of solutions, using the kernel density method (e.g.
Silverman, 1986; Wand and Jones, 1994). The performances
of various schemes are evaluated, as a function of time step
1t , including the textbook (basic) Euler–Maruyama scheme,
the second-order and third-order weak Runge–Kutta scheme
of Platen (see Sect. 15.1 of Kloeden and Platen, 1992), the
“small-noise” second-order Runge–Kutta method of Honey-
cutt (Honeycutt, 1992), the “long time-step” scheme used
operationally in FLEXPART (Stohl et al., 2005), and a sug-
gested improvement to this last scheme.

The outline of the work is as follows. In Sect. 2, the SDEs
describing the evolution of particle trajectories in the LPDM
are introduced, together with the corresponding FPE. A nu-
merical solution scheme for the FPE is described and so-
lutions are obtained and benchmarked for a number of test
cases. In Sect. 3, the methodology for using the FPE solu-
tion to assess specific numerical schemes for the LPDM is
presented, and in Sect. 4 this methodology is then applied
to specific schemes discussed above. In Sect. 5 the conse-
quences of our findings are discussed and conclusions are
drawn.

2 The model problem

2.1 The model problem formulated as an LPDM

Consider a horizontally homogeneous turbulent ABL of uni-
form density, with a vertical velocity distribution that is
Gaussian with zero mean and standard deviation σw(z),
and which has a Lagrangian decorrelation timescale τ(z).
The canonical stochastic differential equation model (e.g.
Rodean, 1996; Wilson and Sawford, 1996) for one-
dimensional vertical dispersion in the ABL is

dWt =

(
−
Wt

τ
+

1
2

(
1+

(
Wt

σw

)2
)
∂σ 2

w

∂z

)
dt

+

(
2σ 2
w

τ

)1/2

dBt , (1)

dZt =Wt dt.

Here Wt and Zt are the vertical velocity and height of a
given air parcel. Both are stochastic variables, with each in-
dividual realisation determined by that of the Brownian (or
Wiener) process Bt . Further σw = σw(Zt ) and τ = τ(Zt ) are
the values of σw(z) and τ(z) local to the parcel. In opera-
tional LPDMs, such as FLEXPART, appropriate vertical pro-
files for σw(z) and τ(z) are specified based on empirical fits
to observations of different ABL conditions, as will be dis-
cussed below. The equation set (1) is typically augmented
with reflecting boundary conditions at the Earth’s surface and
at the ABL top (see Thomson et al., 1997, for a detailed dis-
cussion of the top boundary condition). For definiteness, for
our test-case runs, the initial velocity for Eq. (1) at t = 0 is
sampled from a normal distributionW0 ∼N (0,σ 2

w(z0)) and,
for ease of comparison to the FPE results below, the initial
position is sampled from a distribution Z0 ∼N (z0,σ

2
z ) cen-

tred on an initial height z0 with standard deviation σz.
For the purposes of numerical solution, it is more conve-

nient (e.g. Sect. 3.1 of Rodean, 1996) to use Ito’s lemma to
express Eq. (1) in terms of the variables �t =Wt/σw(Zt )

and Zt , leading to

d�t =
(
−
�t

τ
+
∂σw

∂z

)
dt +

(
2
τ

)1/2

dBt ,

�0 ∼N (0,1) (2)

dZt =�tσw dt, Z0 ∼N (z0,σ
2
z ).

The simpler form (2) is exactly equivalent to Eq. (1). More-
over, the FPE of Eq. (2) has a considerably simpler form than
the corresponding FPE of Eq. (1), a fact which will prove
useful below.

It is simplest to view Eq. (2) as a non-dimensional equa-
tion, given that in particular �t is already a non-dimensional
variable. The natural non-dimensionalisation has length,
velocity, and timescales of ABL height h, surface fric-
tion velocity u∗, and h/u∗ respectively. Under this non-
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Figure 1. Vertical profiles of vertical velocity fluctuations σ̄w(z) (a) and vertical velocity Lagrangian decorrelation time τ̄ (z) (b) used in the
test-case problems (see Table 1). The dimensions for σ̄w and τ̄ are frictional velocity u∗ and h/u∗ respectively, where h is the ABL height.

Table 1. The non-dimensional profiles of σw(z) and τ(z) suitable for (i) a constant τ profile, (ii) a stable ABL, and (iii) a neutral ABL (e.g.
Hanna, 1982). The non-dimensional parameter ε = u∗/f h is a boundary layer Rossby number (the value ε = 0.8 is taken in the test case).
For the purposes of numerical stability (see text), in practice the modified profiles σ̄w(z) and τ̄ (z) are used, where Zm(z)= zb + z(1− 2zb)
is chosen to avoid singular behaviour at the boundaries (zb = 0.05).

σw(z) τ (z) Modified σ̄w(z) Modified τ̄ (z)

Constant τ 0.5(1+ z) Constant – –

Stable 1.3(1− z)
0.1z4/5

σw
σw(Zm(z)) τ (Zm(z))

Neutral 1.3exp(−2z/ε)
z

2σw(1+ 15z/ε)
σw(Zm(z)) τ (Zm(z))

dimensionalisation, the spatial domain for Eq. (2) is 0≤
Zt ≤ 1.

To specify our test-case problems it is necessary to choose
suitable (non-dimensional) profiles for σw(z) and τ(z). Here
we choose to focus on three such profiles, two of which are
widely used (Hanna, 1982; Stohl et al., 2005) empirical fits
to observed statistics in stable and neutral conditions respec-
tively. The third has τ(z) constant and a linear profile for
σw(z), and is used to demonstrate a new LPDM scheme in-
troduced below. The details of the profiles used are given in
Table 1 and are plotted in Fig. 1. In practice, the exact profiles
suggested by Hanna (1982) are modified slightly, as detailed
in Table 1, to avoid singular behaviour at the ABL top and
bottom. This is necessary because in Hanna’s original pro-
files either σw→ 0 or τ → 0 as z→ 0,1, with neither type
of behaviour being physical.

In Sect. 4 large ensembles of numerical solutions of
Eq. (2) will be calculated using different numerical integra-
tion schemes. The accuracy of each numerical scheme, as
a function of time step 1t , will be assessed by comparison
with the corresponding solution of the FPE, to be detailed
next.

2.2 The model problem formulated as an FPE

Following the standard procedure in stochastic calculus (e.g.
Sect. 3.4.1 of Gardiner, 2009), the FPE which describes
the time evolution of the probability density p(ω,z, t) of
(�t ,Zt ) in Eq. (2) can be obtained as

∂p

∂t
=−

∂ (ωσwp)

∂z
−
∂

∂ω

((
−
ω

τ
+
∂σw

∂z

)
p

)
+

1
τ

∂2p

∂ω2 . (3)

Explicitly, here ω = w/σw. The initial conditions consistent
with those given in Eq. (2) are (for σz� 1 and z0 not near
the boundaries)

p(ω,z,0)=
1

2πσz
exp

(
−
ω2

2
−
(z− z0)

2

2σ 2
z

)
. (4)

The FPE Eq. (3) also requires boundary conditions at
z= 0,1 which are consistent with the reflecting boundary
conditions for the LPDM. The boundary conditions consis-
tent with reflection are

p(ω,0, t)= p(−ω,0, t), p(ω,1, t)= p(−ω,1, t), (5)

which in probabilistic terms is equivalent to the reflec-
tion condition �t →−�t being applied at the boundaries.
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Wilson et al. (1993) found that this perfect reflection algo-
rithm is exactly consistent with the “well-mixed constraint”
in homogeneous Gaussian turbulence (see also the appendix
of Sect. 11 of Rodean, 1996).

Equations (3)–(5) constitute a well-defined initial-value
problem which is suitable for numerical solution. An im-
portant quantity obtained from the solution p(ω,z, t) is the
physical concentration of parcels given by

c(z, t)=

∞∫
−∞

p(ω,z, t) dω. (6)

(In general, tracer concentrations and the marginal probabil-
ity given in Eq. 6 can differ by a normalisation constant.) The
concentration c(z, t) will be our main benchmark quantity in
Sect. 4 below.

3 Numerical solution of the FPE

3.1 The Hermite expansion for the FPE

The non-dimensionalised FPE Eq. (3) is a hypo-elliptic dif-
ferential equation defined on R×[0,1]. Our approach to its
numerical solution is to seek a solution based on the follow-
ing Hermite polynomial expansion:

p(ω,z, t)=
1
√

2π

∞∑
k=0

Ck(z, t)Hek(ω)e−ω
2/2. (7)

In statistics, this expansion is also known as the Gram-
Charlier series of Type A (see p. 23 of Barndorff-Nielsen and
Cox, 1989). Here the functions Ck(z, t) denote the projec-
tion, at the vertical level and time (z, t), of p(ω,z, t) onto the
(probabilists’) Hermite function Hek(ω)e−ω

2/2/
√

2π where
Hek(ω) is the Hermite polynomial defined by

Hek(ω)= (−1)keω
2/2 dk

dωk
e−ω

2/2. (8)

Notice that it follows that the particle concentration Eq. (6)
satisfies c(z, t)= C0(z, t).

Before inserting the expansion Eq. (7) into the FPE Eq. (3)
it is helpful to rewrite the FPE in the form

∂p

∂t
=

1
τ

(
∂2p

∂ω2 +ω
∂p

∂ω
+p

)
−
∂

∂ω

(
∂σw

∂z
p

)
−
∂ (ωσwp)

∂z
. (9)

In this form the Hermite function identity Eq. (A2) can be
used to evaluate the first term on the right-hand side. Fur-
ther, the second and third terms on the right-hand side can
be simplified using the derivative and recursion formulae for
Hermite polynomials (Eqs. A5, A6). After some working the

result is (using the convention C−1 ≡ 0)

∞∑
k=0

Hek(ω)e−ω
2/2
(
∂Ck

∂t
+
k

τ
Ck + (k+ 1)

∂

∂z
(σwCk+1)

+σw
∂Ck−1

∂z

)
= 0. (10)

Using the orthogonality property of Hermite functions (A3)
it follows that

∂C0

∂t
=−

∂

∂z
(σwC1)

∂Ck

∂t
=−

k

τ
Ck − (k+ 1)

∂

∂z
(σwCk+1)− σw

∂Ck−1

∂z
,

for k ≥ 1. (11)

The system (11) constitutes an infinite system of coupled
1+ 1 dimensional first-order partial differential equations for
the coefficients Ck . For a numerical solution this series can
be truncated as we describe below.

The initial conditions for Eq. (11) are easily obtained from
(4) using the orthogonality property,

C0(z,0)=
1

√
2πσz

exp
(
−
(z− z0)

2

2σ 2
z

)
,

Ck(z,0)= 0 (for k ≥ 1). (12)

The boundary conditions can be obtained using the symme-
try Hek(ω)= (−1)kHek(−ω). Substituting the expansion (7)
into the boundary condition (5), it follows that

∑
kodd

Ck(z, t)Hek(ω)
e−ω

2/2
√

2π
= 0, at z= 0,1, (13)

and consequently

Ck(0, t)= Ck(1, t)= 0, for k odd. (14)

It may seem surprising that the even equations have no
boundary condition and the odd equations take two bound-
ary conditions. However, as the system (11) consists of first-
order PDEs it is clear that the total number of boundary con-
ditions will be correct, provided that the series is truncated at
k =K odd.

It is worth noting that the series (11) can also be truncated
at K = 0 by using an (approximate) quasi-stationary balance
in the k = 1 equation of the form

C1 =−σwτ
∂C0

∂z
, (15)

which results in the diffusion equation

∂C0

∂t
=
∂

∂z

(
σ 2
wτ
∂C0

∂z

)
,
∂C0

∂z
(0, t)=

∂C0

∂z
(1, t)= 0. (16)
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It is well known (e.g. Sect. 3.5 of Thomson, 1987) that the
LPDM Eq. (1) can be approximated by a random walk (“ran-
dom displacement” or RDM) model

dZt =
∂

∂z

(
σ 2
wτ
)

dt +
(

2σ 2
wτ
)1/2

dBt . (17)

Equation (16) is simply the Fokker–Planck equation of the
RDM model (Eq. 17), with the diffusivity κ of the RDM
being κ = σ 2

wτ . Note that the RDM model can be derived
formally from the LPDM in the distinguished limit of a short
decorrelation time, σw→∞, τ → 0 with σ 2

wτ = κ finite (see
e.g. Sect. 6.3 of Rodean, 1996). It is much easier to obtain
accurate solutions of Eq. (17), compared to Eq. (1) at rela-
tively large time steps; hence, an interesting question con-
cerns when exactly it is preferable to solve Eq. (17) rather
than Eq. (1). This question is best answered by quantifying
the difference between the solution of Eqs. (16) and (11) and
using this difference as a benchmark for assessing the errors
in LPDM calculations, as will be done in Sect. 4 below.

3.2 The numerical method and benchmark solutions
for the FPE

Based on the analysis above, Eq. (3) can be solved numeri-
cally by integrating the system (11) with boundary conditions
(Eq. 14), truncated at k =K odd. Our approach is to use a
standard finite-difference discretisation with Nz grid points,
equally spaced with 1z= 1/Nz, on a staggered cell-centred
grid (i.e. zi = (i− 1/2)1z, for i = 1, . . .,Nz) in order to ap-
ply the boundary conditions at z= 0,1 systematically. The
details of the implementation of the boundary conditions are
described in Appendix B.

The set (11) is stiff and a naive solution method would
have the time step 1t bounded above by 1t.Minzτ(z)/K ,
i.e. the timescale of exponential decay of the highest Her-
mite function mode. However, considerably longer time steps
can be used if an exponential time-stepping scheme is cho-
sen. Our choice is the Exponential Time-Differencing fourth-
order Runge–Kutta (ETDRK4) scheme of Kassam and Tre-
fethen (2005), with the “linear” operator in that scheme taken
to be the first term on the right-hand side of Eq. (11) only, be-
cause it is this first term that is responsible for the stiffness
of Eq. (11).

To obtain our benchmark solutions of Eq. (11) and there-
fore Eq. (3), tests of the convergence of the solutions as
both 1t and 1z are decreased and K is increased have
been performed. For all three case studies, it was found to
be adequate to take K = 19 to obtain fully converged so-
lutions, because the Hermite series was found to converge
rapidly, i.e. |C19|.10−16 everywhere in the domain. Com-
parison of a sequence of solutions with 1z= 1/Nz with
Nz = 27,28, . . .,212 revealed quadratic convergence with1z
as expected for our scheme. Figure 2 shows the relative error
Ej (t), with reference to the next-highest resolution solution,
in the L2 norm for the mean concentration c(z, t) at fixed
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Figure 2. Relative error Ej (see Eq. 18) of the FPE solutions as
a function of grid resolution 1z= 2−j for j = 7,8, . . .,12 for the
two test-case problems. Stars: stable ABL (Ej (t = h/u∗)). Squares:
neutral ABL (Ej (t = 3h/u∗)).

times, for the two test cases. That is,

Ej (t)=

 1∫
0

(
C
j

0 (z, t)−C
j+1
0 (z, t)

)2
dz

1/2

, (18)

where Cj0 (z, t) denotes the solution with Nz = 2j . Quadratic
convergence is evident from the slope of the graphs in Fig. 2.
For example, typical numerical errors at Nz = 212 (highest
resolution) are E12(t1)= 9.7× 10−5 (stable boundary layer
at t1 = h/u∗) and 1.3× 10−4 (neutral boundary layer at t1 =
3 h/u∗) respectively. The numerical accuracy above is suf-
ficient for benchmarking our LPDM solutions, because the
statistical error associated with reasonable-sized ensembles
(N = 106) of the LPDM is of order E(t1)≈ 10−2, as will be
discussed below.

Figure 3 shows snapshots of the particle concentration
c(z, t) for each of the three FPE benchmark solutions de-
scribed above. The left panel shows the constant τ case, the
middle panel shows the stable ABL case, and the right panel
the neutral ABL. In all three cases particles are initialised
close to z= z0 = 1/2 and disperse to become well mixed
throughout the ABL at late times. The neutral and stable
cases differ in that mixing is rather more rapid (in terms of
the dimensional timescale h/u∗) for the stable case compared
to the neutral case. Also, in the neutral case, mixing is rela-
tively slow towards the top of the ABL where the amplitude
of turbulent fluctuations decays exponentially.
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Figure 3. Snapshots of particle concentration c(z, t) from the numerical FPE solutions for the three test-case problems. (a) Constant τ
(t = 0,1,1.5,2 h/u∗). (b) Stable ABL (t = 0,1,2,4 h/u∗). (c) Neutral ABL (t = 0, 3, 6, 12 h/u∗). For clarity, c(z,0)/4 is plotted (instead
of c(z,0)) for the initial condition at t = 0 in both panels.

4 Evaluation of numerical schemes for LPDMs

In this section, a range of textbook, commonly used and
new numerical schemes for LPDMs will first be introduced
and then evaluated using the FPE solutions described above
as a benchmark. The task is somewhat simplified because
the equation set (2) is time-independent (autonomous). Note
that it may be necessary to modify some of the schemes de-
scribed below if an ABL with time-dependent statistics is to
be modelled with the same formal accuracy. Note that, in
the terminology of SDE numerical schemes (Kloeden and
Platen, 1992), we are able to use “weak” schemes (conver-
gent in probability) in addition to “strong” schemes (conver-
gent in path), because we are primarily interested in the con-
centration of particles, which can be obtained from the pdf
p(ω,z, t). The rate of convergence of a scheme, as measured
by quantities which depend on the pdf such as the concen-
tration c(z, t), with respect to the time step 1t is known as
its “weak” order (see e.g. Chap. 9 of Kloeden and Platen,
1992). The weak order is the relevant measure of compari-
son between schemes for our study, and should not be con-
fused with the “strong” order of a scheme, which refers to the
rate of convergence of solution paths with respect to specific
stochastic realisations.

It is important to note, however, that it is by no means ob-
vious that a given scheme will attain its formal weak order
when solving Eq. (2). This is because the assumptions under
which the weak order of each scheme is derived are not met
in the case of Eq. (2) because of the reflection boundary con-
ditions. It is therefore necessary to solve Eq. (2) explicitly to
assess each scheme.

4.1 LPDM numerical schemes

Tables 2–3 summarise the SDE numerical schemes to be
investigated. The first, most obvious scheme to test is the
Euler–Maruyama (E-M) scheme (Maruyama, 1955), i.e. the

simplest and lowest order time-stepping scheme for SDEs.
Next, as with ordinary differential equations (ODEs), it is
possible to construct schemes with higher orders of formal
accuracy in the spirit of Runge–Kutta schemes for ODEs.
Here we test the performance of Platen’s “explicit order 2.0
weak scheme” (EXPLICIT 2.0) and “explicit order 3.0 weak
scheme” (EXPLICIT 3.0) (see Chap. 15 of Kloeden and
Platen, 1992). In common with schemes for ODEs, higher or-
der schemes are somewhat more complicated to implement,
and are more computationally expensive per time step 1t .
The advantage, however, is that the schemes have weak or-
der1t2 (EXPLICIT 2.0) and1t3 (EXPLICIT 3.0) compared
to 1t for E-M.

A single candidate from a second class of schemes, the so-
called “small-noise” schemes, to be investigated is the HON-
SRKII scheme of Honeycutt (1992). Small-noise schemes
typically have the same weak order (1t) as E-M (see e.g.
the discussion in Chap. 3 of Milstein and Tretyakov, 2004),
but the schemes are designed so that the leading-order er-
ror depends on the “noise amplitude” in the equation, which
in many practical situations is sufficiently small that higher-
order convergence is observed in practice (at least for inter-
mediate length time steps; see discussion below). The HON-
SRKII scheme will be shown below to converge with global
error ∼1t2 in this intermediate time-step regime.

A third class of schemes to be investigated is designed to
work well with long time steps. Such schemes are of interest
operationally, because the practical advantages of calculating
large ensembles efficiently are thought to outweigh the disad-
vantage of loss of accuracy due to time-stepping errors. The
FLEXPART model (Stohl et al., 2005), for example, switches
between using E-M and a long time-stepping scheme due to
Legg and Raupach (1982, LEGGRAUP). It is of some inter-
est to verify that long time-stepping schemes such as LEG-
GRAUP do indeed outperform E-M at operationally relevant
values of1t . In fact, in Appendix C we review the derivation
of the LEGGRAUP scheme, and show that additional care is
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Table 2. The LPDM numerical schemes investigated in Sect. 4. Here1t is the time step,1Bn ∼N (0,1t),1n ∼N (0,1) and σi = σw(Zi),
and τn = τ(Zn). The drift function is denoted by Fi =−�i/τ(Zi)+ σ ′w(Zi) where i = n,µ.

Scheme Algorithm Reference and notes

E-M �n+1 =�n+Fn1t + (2/τn)1/21Bn Maruyama (1955)
Zn+1 = Zn+�nσn1t

EXPLICIT 2.0 �n+1 =�n+
1
2
(
Fn+Fµ

)
1t + 1

2

(
(2/τn)1/2+ (2/τµ)1/2

)
1Bn Sect. 15.1 of Kloeden and Platen (1992)

Zn+1 = Zn+
1
2
(
�nσn+�µσµ

)
1t

�µ =�n+Fn1t + (2/τn)1/21Bn,
Zµ = Zn+�nσn1t

HON-SRKII �n+1 =�n+
1
2
(
Fn+Fµ

)
1t + (2/τn)1/21Bn Honeycutt (1992)

Zn+1 = Zn+
1
2
(
�nσn+�µσµ

)
1t

�µ =�n+Fn1t + (2/τn)1/21Bn,
Zµ = Zn+�nσn1t

LEGGRAUP �n+1 = Rn�n+ σ
′
n τ(1−Rn)+

(
1−R2

n

)1/2
1n Legg and Raupach (1982)

Zn+1 = Zn+ σn�n1n
Rn = e−1t/τn

LONGSTEP �n+1 = Rn�n+ σ
′
n τ(1−Rn)+

(
1−R2

n

)1/2
1n See Appendix C.

Zn+1 = Zn+
σn
σ ′n

(
exp

(
σ ′n Sn

)
− 1

)
Rn = e−1t/τn

Sn =�nτn

(
1− e−1t/τn

)
+ σ ′nτ

2
n

(
1t
τn
− 1+ e−1t/τn

)
+21/2α2n(t)

(
βn 11n+ (1−βn)1/212n

)
βn =

(1−Rn)2

21/2 α1nα2n
, α1n = (1−Rn)1/2

α2n =
(
1t
τn
− 2(1−Rn)+ 1

2

(
1−R2

n

))1/2

needed to couple the velocity and position equations. A cor-
rected scheme (LONGSTEP) is derived in Appendix C and
is then compared with the schemes listed above in Sect. 4.2.

The method used to compare the results from a particular
scheme, at fixed time step 1t , to the particle concentration
c(z, t) obtained from the numerical solution of the FPE, is as
follows. First, a large ensemble (typically N = 106) of tra-
jectories is calculated using the scheme under investigation.
Next, the density of particles ĉ is reconstructed from the re-
sulting ensemble {Z(i)t , i = 1, . . .,N} using kernel density es-
timation

ĉ(z, t;hb)=
1
Nhb

N∑
i=1

K

(
z−Z

(i)
t

hb

)
+ “image terms”. (19)

Here hb > 0 is a (small) smoothing parameter known as the
bandwidth, and “image terms” refer to contributions from
the images of trajectories, introduced to satisfy the bound-
ary conditions. The function K(·) is the kernel function, and
is non-negative with zero mean and has unit integral. Here
we use a Gaussian kernel. Details, including how the opti-
mal bandwidth hb = h∗ is chosen in practice, are given in
Appendix D.

The error associated with a given scheme, at time step 1t ,
is measured by the L2 norm

‖c− ĉ‖2 =

 1∫
0

(
c(z, t)− ĉ(z, t;h∗)

)2 dz

1/2

. (20)

In practice the error (Eq. 20) is effectively bounded below
by the so-called statistical error, which is defined as the
expected value of ‖c− ĉ‖2 in the event that the ensemble
{Z

(i)
t , i = 1, . . .,N} were sampled from the exact distribu-

tion c(z, t) itself. It is important to emphasise that it is not
possible, using our method, to investigate schemes with er-
rors below the statistical error. The statistical error can of
course be reduced by using a larger ensemble N , but conver-
gence is slow as the dependency is N−1/5, as discussed in
Appendix D where details are given.

In the results below, in the interests of reproducibility, the
error is presented as a function of the fixed time step 1t for
each scheme. However, the schemes have different compu-
tational costs per time step, which will depend on both the
method of implementation of each algorithm and on the ma-
chine used for the simulations. To give a rough idea of rep-
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Table 3. EXPLICIT 3.0 scheme tested in Sect. 4, with τn = τ(Zn), σi = σw(Zi), andσ̃φ = σw(Z̃φ), where i = n,u,φ. The drift function
is denoted by Fi =−�i/τ(Zi)+ σ ′w(Zi) or F̃φ =−�̃i/τ(Z̃φ)+ σ ′w(Z̃φ). Here 1t is the time step and we use two correlated Gaussian
random variables 1Bn ∼N (0,1t) and 1Cn ∼N (0, (1t)3/3), with E(1Bn1Cn)= (1t)2/2.

Scheme Algorithm Reference and notes

EXPLICIT 3.0 �n+1 =�n+Fn1t + (2/τn)1/21Bn Sect. 15.2 of

+
1
2

(
F+ζ +F

−

ζ −
3
2 Fn−

1
4

(
F̃+ζ + F̃

−

ζ

))
1t Kloeden and Platen (1992)

+

(
1√
2

(
F+ζ −F

−

ζ

)
−

1
4

(
F̃+ζ − F̃

−

ζ

))
ζ 1Cn (2/1t)1/2

+
1
6

(
Fn+Fu−F

+

ζ −F
+
ρ

)(
(ζ + ρ)1Bn (1t)

1/2
+1t + ζ ρ

(
(1Bn)

2
−1t

))
Zn+1 = Zn+�nσn1t

+
1
2

(
σζ

(
�+ζ +�

−

ζ

)
−

3
2�nσn−

1
4 σ̃ζ

(
�̃+ζ + �̃

−

ζ

))
1t

+

(
σζ
√

2

(
�+ζ +�

−

ζ

)
−
σ̃ζ
4

(
�̃+ζ − �̃

−

ζ

))
ζ 1Cn (2/1t)1/2

+
1
6

(
�nσn+�uσu− σζ

(
�+ζ +�

−
ρ

))(
(ζ + ρ)1Bn (1t)

1/2
+1t + ζ ρ

(
(1Bn)

2
−1t

))
�±φ =�n+Fn1t ± (2/τn)

1/2(1t)1/2φ

Zφ = Zn+�nσn1t

�̃±φ =�n+ 2Fn1t ± (2/τn)1/2(21t)1/2 φ
Z̃φ = Zn+ 2�nσn1t

�u =�n+
(
Fn+F

+

ζ

)
1t + (2/τn)1/2 (ζ + ρ)(1t)1/2

Zu = Zn+
(
�nσn+�

+

ζ σζ

)
1t ,

where φ = ζ,ρ and P(ζ =±1)= P(ρ =±1)= 1
2
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Figure 4. L2 error (Eq. 20) as a function of non-dimensional time step 1t u∗/h for the constant τ = 0.1 test case with N = 106 ensemble
integrated at time t = h/u∗. The LONGSTEP scheme (purple diamonds) gives the best results in this case. Blue lines of slopes 1,2, and 3
are plotted for reference.

resentative computational costs, in Table 4 the relative cost
measured with reference to the E-M scheme is shown for our
calculations. Following best practice in large operational cal-
culations (see e.g. Stohl et al., 2005), the random numbers
used to simulate the Wiener processes are pre-calculated so
the costs of their generation are not included in the compari-
son. Another possible computational saving comes from the
use of variable time steps. To test whether or not a signifi-
cant computational saving is easily attainable, we have made
some calculations in which 1t ∝ τ (the local Lagrangian
decorrelation time). For each scheme tested, the use of vari-
able time steps was found to lead to a computational saving

of a factor of around 2 to 3 compared to fixed time steps, with
the schemes otherwise performing as detailed below. More
details on variable time-stepping schemes will be given else-
where.

4.2 Results

The main results, showing the performance of the six
schemes described in Tables 2–3 over a wide range of time
steps 1t , are shown in Figs. 4–6. Figures 4–6 detail the re-
sults for the constant τ test case, the stable ABL test case and
the neutral ABL test case respectively (see Table 1). In each
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Figure 5. L2 error (Eq. 20) as a function of non-dimensional time step 1t u∗/h for the stable ABL test case integrated at intermediate time
t = h/u∗ (a) and at late time t = 4h/u∗ (b). From left to right, blue lines of slopes 1,2, and 3 are plotted for reference.

Table 4. Computational clock times, measured relative to the E-M
scheme, for all of the schemes detailed in Tables 2 and 3. The calcu-
lations are forN = 106 trajectories, with time step1t = 10−3h/u∗
and integration time h/u∗. The computational times are obtained by
taking the average of times elapsed in seconds from several simu-
lations, coded in MATLAB, on a MacBook Pro with no other pro-
grams running.

Scheme Relative computational time

E-M 1.0
EXPLICIT 2.0 2.0
EXPLICIT 3.0 5.8
HON-SRKII 1.9
LEGGRAUP 1.2
LONGSTEP 1.5

figure, the L2 error (Eq. 20) is plotted as a function of non-
dimensional time step 1t u∗/h. Logarithmic scales are used
so that lines of constant slope correspond to the observed or-
der of the schemes. Blue lines with slopes 1, 2, and 3 are
plotted for reference. The statistical error, which is the low-
est possible error that can be measured for a given scheme, is
plotted as a solid black line in each panel.

Also plotted in Figs. 4–6, as a dotted black line, is the L2-
norm difference ‖c−C0‖2 between the concentration field

c(z, t) obtained from the solution of the FPE Eq. (3) and
C0(z, t) obtained from the diffusion Eq. (16). The dotted
black line marks an important boundary on each panel. If
the time step 1t is such that the error of a given scheme
lies above this line, then it is preferable to solve the RDM
Eq. (17) in place of Eq. (2), because (at fixed1t) the numer-
ical error for the former is more easily controlled.

Figure 4 shows results for the constant τ test case at time
t = h/u∗ (see Fig. 3 and Table 1 for details). The lowest
order schemes, LEGGRAUP (blue circles) and E-M (black
squares), are seen to realise their formal weak order 1t . EX-
PLICIT 2.0 (red hexagons) and HON-SRKII (green solid tri-
angles) have weak order 1t2, whereas EXPLICIT 3.0 (blue
triangles) has weak order 1t3, as expected. The best per-
forming scheme for this particular case is the new scheme
LONGSTEP (purple diamonds) derived in Appendix C. The
rationale for LONGSTEP is that there is a conceptual error
in the derivation of LEGGRAUP, which results in its perfor-
mance at large 1t being no better than E-M. When this error
is corrected in LONGSTEP, the performance is better than
even EXPLICIT 3.0. LONGSTEP in effect uses exact solu-
tions of the LPDM equations for constant τ and linear σw,
meaning that if the same calculations had been performed
in an infinite domain, the numerical error would be zero. In
the constant τ test case, errors in LONGSTEP arise only
from the reflection boundary conditions at z= 0,1. How-
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Figure 6. L2 error (Eq. 20) as a function of non-dimensional time step 1t u∗/h for the neutral ABL test case integrated at intermediate time
t = 3h/u∗ (a) and at late time t = 12h/u∗ (b). From left to right, blue lines of slopes 1 and 2 are plotted for reference.

ever, LONGSTEP does not fare well in the remaining two
test cases to be described next.

Figure 5 shows results for the stable ABL test case at
intermediate time t = h/u∗ (upper panel) and at late time
t = 4h/u∗ (lower panel), when the concentration is almost
well mixed across the ABL (see Fig. 3). The results are sim-
ilar to those of the constant τ case, except LONGSTEP (pur-
ple diamonds) now performs as poorly as E-M. Both E-M
and LONGSTEP outperform LEGGRAUP. It was not found
to be possible to obtain solutions for EXPLICIT 3.0 using
time steps longer than 1t = 0.02h/u∗ because of problems
with the reflective boundary conditions.

Figure 6 shows the results for the neutral ABL case at
intermediate time t = 3h/u∗ (upper panel) and at late time
t = 12h/u∗ (lower panel). In this case the performance of
LONGSTEP and LEGGRAUP are comparable, but with the
E-M scheme performing better than both, except at very
long time steps where LEGGRAUP has slightly better ac-
curacy at long time steps. As for the previous test cases, the
EXPLICIT 3.0 (blue triangles) scheme gives the lowest er-
rors (weak order 1t3), and EXPLICIT 2.0 (red hexagons)
along with HON-SRKII (green solid triangles) perform con-
sistently well with weak order 1t2.

To give an impression of where the particle concentra-
tion errors are accumulating, Fig. 7 shows snapshots of par-
ticle density ĉ(z, t) for the stable ABL case, at t = h/u∗.

Results are shown for each scheme when a long time step
1t = 0.05h/u∗ is used (left panel) and a moderate time step
1t = 0.007h/u∗ (right panel). The errors in the long time-
step case are large and are largely due to issues with the
reflection of trajectories at the surface (z= 0). Numerical
accuracy requires that 1t � τ , which is evidently violated
close to the boundary where τ(z) is small (see Fig. 1). Er-
rors due to reflection are particularly acute for the higher or-
der schemes (such as EXPLICIT 2.0 and HON-SRKII) that
require the treatment of an intermediate step(s). See the dis-
cussion in Appendix B for how this step is implemented. The
stable boundary layer case, where τ decays most rapidly near
the z= 0 boundary, is the case which appears to be the most
sensitive to the treatment of reflection there.

5 Conclusions

The main contribution of this paper is to introduce a protocol
for the quantitative assessment of SDE numerical schemes,
applied to the problem of dispersion in an idealised atmo-
spheric boundary layer, as modelled by LPDMs. Accurate
solutions of the Fokker–Planck equation (FPE, Eq. 3) are
used to benchmark the distribution obtained from an ensem-
ble of LPDM solutions obtained using a particular scheme
with a fixed time step1t . By using the FPE solution, our pro-
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Figure 7. Snapshots of reconstructed particle density ĉ(z, t) for the stable ABL case at time t = h/u∗, shown at each scheme. (a) When long
time step 1t = 0.05h/u∗ is used and errors due to boundary conditions dominate. (b) When moderate time step 1t = 0.007h/u∗ is used.

tocol avoids the possibility of the LPDMs exhibiting spurious
convergence to an incorrect distribution as 1t→ 0 (e.g. by
a poor treatment of reflection boundary conditions), and the
FPE provides independent verification of the correctness of
a specific implementation.

The convergence results obtained in our model test prob-
lems are valuable because, due to the importance of reflection
of particles from the surface and top of the boundary layer,
it is not possible to rely on the formal convergence rates of
different SDE schemes (as given by e.g. Kloeden and Platen,
1992). All of the schemes tested attain their formal conver-
gence rates at early times in the model test problem, i.e. be-
fore reflection becomes important, and thereafter are limited
to an extent by the details of how reflection is implemented
(see Appendix B for discussion).

Our results allow the following recommendations to be
made, for consideration by operational modellers.

– For our test problems, the best results with respect
to accuracy as a function of 1t were obtained with
the EXPLICIT 3.0 weak order 1t3 scheme. However,
this scheme is time-consuming to implement and more
expensive per step compared to the weak order 1t2

schemes investigated, so the gains associated with it
are marginal. A good compromise between ease-of-
implementation, flexibility and accuracy is the “small-
noise” scheme of Honeycutt (1992, here HON-SRKII).
Formally, the weak order of HON-SRKII is just 1t , i.e.
the same as Euler–Maruyama. However, the scheme de-
signed so that at fixed1t , in the limit of small noise, the
weak error scales with1t2 (e.g. Chap. 3 of Milstein and
Tretyakov, 2004). Although the boundary layer disper-
sion problems examined here are not formally “small-
noise” problems, our results show clearly that they be-
have as such in a practical implementation. As a con-
sequence HON-SRKII scheme performs at least as well

as the formally weak order 1t2 scheme EXPLICIT 2.0
(which in fact has a very similar implementation for the
specific LPDM problem we have examined here).

– The “long-step” scheme due to Legg and Raupach
(1982, here LEGGRAUP), which is used operationally
for global integrations of trajectories in FLEXPART (for
example), should be avoided. LEGGRAUP does not sig-
nificantly outperform Euler–Maruyama at any time step
for any of the three profiles we have studied. The rea-
son for this is a conceptual error in its derivation, which
we have corrected here in the development of a new
scheme – LONGSTEP – see Appendix C. LONGSTEP
performs very well in the case of τ(z)= constant, but no
better than LEGGRAUP for other τ(z) profiles; hence,
we do not recommend it for operational use either.

– Global calculations often require the use of long time
steps for reasons of computational efficiency. For such
calculations, we recommend switching to the random
displacement model (Eq. 17) rather than solving the
LPDM Eq. (2). The reason for this recommendation is
apparent in Figs. 4–6, where the numerical error for all
of the schemes investigated is seen to exceed the differ-
ence between RDM and LPDM solutions when the time
step 1t&0.02h/u∗. Given that the unit of time in our
non-dimensionalisation is T = h/u∗, where h= 100−
1000 m is boundary layer height and u∗ = 0.1−1 m s−1

is surface friction velocity, for a typical T ≈ 1000 s er-
rors will be minimised by using the RDM whenever a
time step 1t&20 s is required.

Naturally, the recommendations above are based only on the
limited set of schemes which we have studied. It is to be
hoped that the protocol and test cases introduced here will
be helpful to other researchers developing and testing novel

www.geosci-model-dev.net/9/2441/2016/ Geosci. Model Dev., 9, 2441–2457, 2016



2452 H. M. Ramli and J. G. Esler: Evaluation of LPDM schemes

methods for LPDMs. A key challenge in such development
will be the careful treatment of reflection boundary condi-
tions, including their generalisation to more complex physi-
cal situations (e.g. Wilson and Flesch, 1993; Thomson et al.,
1997; Wilson and Yee, 2007).

6 Code availability

The MATLAB source code of the FPE solver can be found
online via GitHub and by searching for the repository “MRE
FPE solver” (https://github.com/nhramli/MRE-FPEsolver.
git).
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Appendix A: Useful properties of (probabilists’)
Hermite polynomials and functions

In this appendix we detail some useful properties of the prob-
abilists’ Hermite polynomials Hek(ω), defined by Eq. (8),
and the associated Hermite functions Hek(ω)e−ω

2/2/
√

2π .
We concentrate on those identities necessary to derive
Eq. (11); all can be obtained easily from results found in the
book of Abramowitz and Stegun (1965, see Chap. 22).

First, the Hermite polynomials are solutions of Hermite’s
equation(
∂2

∂ω2 −ω
∂

∂ω

)
Hek(ω)=−kHek(ω), (A1)

from which it follows that the Hermite functions satisfy(
∂2

∂ω2 +ω
∂

∂ω
+ 1

)(
Hek(ω)e−ω

2/2
√

2π

)

=−k
Hek(ω)e−ω

2/2
√

2π
. (A2)

Second, because Hermite’s equation can be written as an
eigenvalue problem with a self-adjoint linear operator, the
Hermite polynomials can be shown to satisfy an orthogonal-
ity relation, specifically

∞∫
−∞

Hej (ω)Hek(ω)
e−ω

2/2
√

2π
dω = k! δjk, (A3)

where δjk is the Kronecker delta. Notice that a special case
of Eq. (A3), for j = 0, is the integral identity

∞∫
−∞

Hek(ω)e−ω
2/2 dω = 0, (k ≥ 1). (A4)

Thirdly and fourthly, the following differentiation and recur-
sion relations can be obtained:

d
dω

Hek(ω)= kHek−1(ω), (A5)

ωHek(ω)= Hek+1(ω)+ kHek−1(ω). (A6)

The results (Eqs. A2–A6) are used in the derivation of
Eq. (11).

Appendix B: Boundary condition implementation

B1 FPE numerical boundary conditions

The FPE Eq. (3) is solved numerically by integrating Eq. (11)
using the central finite difference method

∂Ck

∂t
(zi)=−

k

τ(zi)
Ck(zi)− (k+ 1)

σw(zi+1)Ck+1(zi+1)− σw(zi−1)Ck+1(zi−1)

21z

− σw(zi)
Ck−1(zi+1)−Ck−1(zi−1)

21z
, (B1)

where 1z= 1/Nz and zi = (i− 1/2)1z, for i = 1, . . .,Nz.
Careful treatment is necessary at the boundaries. For k odd,
the physical boundary conditionsCk(0, t)= Ck(1, t)= 0 im-
ply the following substitutions for the values at the vir-
tual points at z= z0 and z= zNz+1, Ck(z0)=−Ck(z1) and
Ck(zNz+1)=−Ck(zNz). For k even, the equation itself with
k odd requires Ck(z0)= Ck(z1) and Ck(zNz+1)= Ck(zNz).
These substitutions allow the right-hand side of Eq. (B1) to
be expressed as aNzK×NzK matrix equation and completes
the discretisation.

B2 LPDM numerical boundary conditions

In the numerical implementation of LPDM Eq. (2), the re-
flection condition �t →−�t is applied at the bottom and
top of the ABL, where Zt = 0 and Zt = 1 respectively. This
means that perfect reflection at the boundaries is also as-
sumed for the Zt computation.

– At the end of every time step of the numerical
scheme tj = j 1t (j = 1,2,3, . . .), any “illegal” particle
(�∗tj ,Z

∗
tj
) that crosses the boundaries, i.e. below Z = 0

or above Z = 1, will be reflected back into the domain
and its velocity direction is reversed, i.e. �tj =−�

∗
tj

.

– Higher-order schemes involve intermediate time steps.
Our treatment of intermediate time steps is as follows.
First, the z domain is extended to z ∈ (−∞,∞), by re-
peated reflection of the σw(z) and τ(z) profiles in the
boundaries. In this extended domain, all intermediate
time steps are completed according to the algorithm in
question, and then, at the end of the completed time-step
reflection, as detailed above, take the particle back into
the z ∈ [0,1] domain where necessary. The domain ex-
tension device thus uniquely determines an unambigu-
ous treatment of reflection of particles near the bound-
aries in the higher weak order schemes EXPLICIT 2.0,
HON-SRKII, and EXPLICIT 3.0 detailed in Tables 2–3.
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Appendix C: Derivation of a new long time-stepping
scheme (LONGSTEP)

Here we derive a new long time-stepping scheme – LONG-
STEP. The scheme is designed to give acceptable results
when integrating Eq. (2) using time steps 1t&Min τ(z), for
use in operational models. The starting point for the scheme
is the velocity update equation for the LEGGRAUP scheme
(see Table 2)

�n+1 = Rn�n+ σ
′
n τn(1−Rn)+

(
1−R2

n

)1/2
1n, (C1)

where τn = τ(Zn), σ ′n = (∂σw/∂z)(Zn),Rn = exp(−1t/τn)
and 1n ∼N (0,1) is a random variable drawn from a Gaus-
sian distribution with zero mean and unit variance. This
scheme is obtained by first transforming Eq. (2) using Itô’s
lemma to obtain

d
(
�tet/τ

)
= et/τ

∂σw

∂z
dt + et/τ

(
2
τ

)1/2

dBt .

If both τ and ∂σw/∂z are taken to be constant (i.e. σw(z)=
σ0+ σ

′

0z), this equation can be integrated to give

�t =�0 e−t/τ + σ ′0 τ(z)
(
1− e−t/τ

)
+

(
2
τ

)1/2 t∫
0

e(s−t)/τ dBs . (C2)

Stochastic integrals of the form

t∫
0

f (s)dBs ∼N

0,

t∫
0

f (s)2 ds

 ;
hence, the final term in Eq. (C2) can be replaced by a Gaus-
sian random variable to give

�t =�0 e−t/τ + σ ′0 τ
(
1− e−t/τ

)
+α1(t)11, (C3)

where 11 ∼N (0,1) and α1(t)=
(
1− e−2t/τ )1/2. Equa-

tion (C1) used by LEGGRAUP follows immediately from
this solution.

The point where our analysis departs from that of Legg and
Raupach (1982) is in the derivation of the position update.
Under the approximation of linear σw the position Eq. (2) is

dZt =�t
(
σ0+ σ

′

0Zt
)

dt, (C4)

which, applying Itô’s lemma, can be written as

d
(
log

(
σ0+ σ

′

0Zt
))
= σ ′0�t dt (C5)

and integrated to obtain

1
σ ′0

(
log

(
σ0+ σ

′

0Zt
)
− log

(
σ0+ σ

′

0Z0
))
=

t∫
0

�s ds. (C6)

The update equation used in LEGGRAUP, i.e. from Table 2,

Zn+1 = Zn+ σn�n dt, (C7)

would be correct (only in the limit σ ′0→ 0) in the event that
�s were a deterministic variable in the interval 0≤ s ≤ t .
However, �s is a stochastic variable, and hence it is a very
crude approximation (error O(t)) to replace the integral on
the right-hand side of Eq. (C6) by �0t (which leads to the
update Eq. C7). Instead, the integral needs to be considered
carefully, as follows.

To evaluate the stochastic integral on the right-hand side
of Eq. (C6) integral, we can insert the solution (Eq. C2) for
�s to obtain

t∫
0

�s ds =�0 τ
(
1− e−t/τ

)
+ σ ′0 τ

2
(
t

τ
− 1+ e−t/τ

)

+

(
2
τ

)1/2 t∫
0

s∫
0

e(q−s)/τ dBq ds. (C8)

The final term can be evaluated following a switch in the
order of integration:

t∫
0

s∫
0

e(q−s)/τ dBq ds =

t∫
0

t∫
q

e(q−s)/τ ds dBq

= τ

t∫
0

(
1− e(q−t)/τ

)
dBq = τ 3/2 α2(t) 1̂2, (C9)

where 1̂2 ∼N (0,1) and

α2(t)=

(
t

τ
− 2

(
1− e−t/τ

)
+

1
2

(
1− e−2t/τ

))1/2

.

The issue for implementation is that the Gaussian random
variables 11 and 1̂2 are not independent. In fact, they have
covariance given by

E(111̂2)≡ β(t)=

√
2

τ 2 α1(t) α2(t)

t∫
0

e(s−t)/τ
(

1− e(s−t)/τ
)

ds

=

(
1− e−t/τ

)2
√

2α1(t) α2(t)
.

Independent random variables can be introduced by writing

1̂2 = β(t) 11+
(

1−β(t)2
)1/2

12, (C10)

where 11 and 12 are independent with 11,12 ∼N (0,1).
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The explicit solution of Eq. (C6) can therefore be written
as

Zt = Z0 exp
(
σ ′0S0

)
+
σ0

σ ′0

(
exp

(
σ ′0S0

)
− 1

)
, where

S0 =�0τ
(
1− e−t/τ

)
+ σ ′0τ

2
(
t

τ
− 1+ e−t/τ

)
+ 21/2α2(t)

(
β(t) 11+ (1−β(t))1/212

)
. (C11)

The LONGSTEP scheme, given explicitly in Table 2, con-
sists of the LEGGRAUP velocity update (Eq. C1) and a po-
sition update obtained from the solution (Eq. C11) by lin-
earizing σw about the current position Zn. Similar to E-M,
LONGSTEP converges with weak error ∼1t ; however, it is
designed to perform better at long time steps, as is tested in
Sect. 5.

Appendix D: Bandwidth selection and statistical error

Physical concentrations of the particles ĉ(z, t) can be recon-
structed from the resulting LPDM trajectory ensemble solu-
tion, {Z(i)t , i = 1, . . .,N} using the kernel density estimation
(KDE) (e.g. Silverman, 1986; Wand and Jones, 1994). KDE
is a statistical technique used to estimate an unknown pdf
from a finite set of N independent samples drawn from a
random variable with that same pdf. KDE works by weight-
ing each particle by a smoothed kernel function so that the
probability represented by each particle becomes continu-
ously spread out in space; see Eq. (19).

Once a sensible kernel function is chosen, and here we
use the Gaussian kernelKG(x)= e−x

2/2/
√

2π , the challenge
in KDE is to choose the optimal kernel bandwidth hb = h∗
that will result in the most accurate reconstruction of the pdf.
Suppose that c(z) is a pdf and ĉ(z,hb) is a reconstruction of
c(z) based on N samples drawn independently from a ran-
dom variable with pdf c(z), using Eq. (19) with bandwidth
hb. The optimal h∗ is then typically chosen to minimise the
expected value of ‖c− ĉ‖22, i.e. the square of the L2-error
norm (often called the mean integrated square error or MISE
in the statistics literature). The key result (see e.g. Silverman,
1986) is that

h∗ =N
−1/5I−1/5α−2/5β1/5

where I =
∫ 1

0 (∂zzc(z, t))
2 dz, β =

∫
∞

−∞
KG(z)

2 dz= 1/
√

4π
and α =

∫
∞

−∞
z2KG(z)dz= 1. The choice hb = h∗ results in

the expected minimum error being

Min‖c− ĉ‖22 =
5
4
β4/5α2/5I 1/5N−4/5, (D1)

which is the formula for statistical error which allows the
solid line to be calculated and plotted in Figs. 4–6.
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