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Abstract Although tsunamis in the deep ocean are very long waves of quite small

amplitudes, as they propagate shorewards into shallow water, nonlinearity becomes

important and the structure of the leading waves depends on the polarity of the incident

wave from the deep ocean. In this paper, we use a variable-coefficient Korteweg–de Vries

equation to examine this issue, for an initial wave which is either elevation, or depression,

or a combination of each. We show that the leading waves can be described by a reduction

of the Whitham modulation theory to a solitary wave train. We find that for an initial

elevation, the leading waves are elevation solitary waves with an amplitude which varies

inversely with the depth, with a pre-factor which is twice the maximum amplitude in the

initial wave. By contrast, for an initial depression, the leading wave is a depression rar-

efaction wave, followed by a solitary wave train whose maximum amplitude of the leading

wave is determined by the square root of the mass in the initial wave.

Keywords Tsunami � Solitary wave � Shoaling

1 Introduction

The study of tsunamis can be described as four phases. First, there is the generation usually

by a submarine earthquake, although submarine landslides and volcanic eruptions have

also been known to produce devastating tsunamis. Second, in the deep ocean a tsunami is

essentially a long water wave of relatively small amplitude and hence propagates without

significant change of form at a speed
ffiffiffiffiffi

gh
p

where h is the ocean depth. In this phase, the

tsunami can be either a wave of depression, or a wave of elevation, or a combination of

these, see the recent assessments by Didenkulova et al. (2007), Arcas and Segur (2012) and
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Dias et al. (2014). In the third phase, the tsunami wave propagates shorewards from the

deep ocean over the continental slope and shelf into shallow water. In this process, the

wavelength decreases and the wave amplitude increases, indicating that both wave dis-

persion and nonlinearity become important. Finally in the fourth phase, the tsunami

impacts the coast, and here, turbulence and the potential to carry debris become important

factors.

In this paper, we are concerned with the third phase, where the increasing effect of

nonlinearity may lead to quite different outcomes, depending on the wave polarity as the

wave transverses the deep ocean, see Carrier et al. (2003) and Fernando et al. (2008) for

instance. Although initial depression waves are potentially just as damaging as initial

elevation waves, they have not received the same attention, although we note the theo-

retical studies by Tadepalli and Synolakis (1994, 1996), and most recently by Grimshaw

et al. (2015), the analysis of field data by Soloviev and Mazova (1994), and the experi-

ments of Kobayashi and Lawrence (2004), Klettner et al. (2012), Rossetto et al. (2011) and

Charvet et al. (2013).

Many studies of the development of a tsunami as it approaches the shore have used the

nonlinear shallow water equations to examine the connection between the incident wave

mass, amplitude and polarity, on the shoreline impact, see for instance Tadepalli and

Synolakis (1994, 1996), Carrier et al. (2003), Madsen and Schaffer (2010) and Didenku-

lova and Pelinovsky (2011). In particular, studies by Didenkulova (2009), Didenkulova

et al. (2006, 2007) and Pelinovsky (2006) using the nonlinear shallow water equations

have elucidated the role of initial steepness in increasing the eventual run-up height, and

we especially note that Didenkulova et al. (2014) found that this nonlinear steepness effect

was enhanced when the initial wave was one of depression.

However, although the nonlinear shallow water equations have been widely used and

have yielded valuable and insightful results, they are non-dispersive and hence do not

capture the effects of wavenumber dispersion which generically develops as the tsunami

propagates shorewards generating shorter length scales. In particular, the shocks which can

arise in nonlinear shallow water equations need to be resolved, either with a turbulent

wave-breaking scheme or with wave dispersion. As in the recent work by Grimshaw et al.

(2015), in this paper we make the latter choice and invoke a Korteweg–de Vries (KdV)

model to examine the contrasting evolution of elevation and depression waves as they

propagate into a region of decreasing depth.

Indeed, it is well known that the combination of weak nonlinearity and weak linear

dispersion leads to a KdV equation, or more generally to a Boussinesq system, see Segur

(2007) and related articles in the book by Kundu (2007) for a tsunami context. However,

most studies of tsunamis using the KdV equation have focussed on the classical solitary

wave solution, which is always an elevation wave. Hence, in this paper, we use a variable-

coefficient KdV equation to examine the evolution of depression waves vis-a-vis the

evolution of elevation waves and further the evolution of an ‘‘up-down’’ wave, that is an

elevation followed by a depression, and also a ‘‘down-up’’ wave, that is a depression

followed by an elevation. In particular, this will emphasise the important role of the

undular bore solutions of the KdV equation, as seen in some tsunami observations and

numerical simulations, see Arcas and Segur (2012) and Grue et al. (2008) for instance. It is

pertinent to note here that the critique of the validity of KdV models by Madsen et al.

(2008), Madsen and Schaffer (2010) and Arcas and Segur (2012), amongst others, is based

on solitary wave dynamics, and we suggest that this is an overly restrictive view of the

value of KdV models.
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In Sect. 2, we present the KdV Eq. (1) (see below) for water waves on a variable depth.

Our aim is to describe the evolution of an elevation wave and contrast that with the

evolution of a depression wave. For this purpose, we use the Whitham modulation

equations for a modulated periodic wave train in variable depth, and these are presented in

Sect. 3. Because our main interest is in the amplitude of the leading wave in the evolving

wave train, the full Whitham modulation equations are reduced to the simpler equations for

a solitary wave train. Then, in Sect. 4, we describe the long-time outcome of the initial

value problem and find asymptotic descriptions for the leading wave amplitude in both the

elevation and depression cases. These results are known for waves on a constant depth, and

here, we show how those results can be extended to variable depth. We also consider the

outcome from an initial ‘‘up-down’’ wave and an initial ‘‘down-up’’ wave. Readers wishing

to avoid the detailed analysis can go to the discussion in Sect. 5 and the plots of our

simulations.

2 Korteweg–de Vries equation

The KdV equation for water waves over variable depth was derived by Johnson

(1973a, 1973b), see also the review by Grimshaw (2007b). A similar general equation for

internal waves was derived by Grimshaw (1981), see also the reviews by Grimshaw

(2007a), Grimshaw et al. (2010), which includes surface water waves as a special case.

When expressed in terms of the usual physical variables for the free surface elevation

fðx; tÞ on a variable depth h(x), it is

ft þ cfx þ
cx

2
fþ 3c

2h
ffx þ

ch2

6
fxxx ¼ 0; c ¼

ffiffiffi

h
p

: ð1Þ

This is based on non-dimensional variables using a timescale
ffiffiffiffiffiffiffiffiffiffi

h0=g
p

and a length scale h0
where h0 is a measure of the water depth. The first two terms in (1) are the dominant terms

and, by themselves, describe the propagation of a linear long wave with speed

cðxÞ ¼
ffiffiffiffiffiffiffiffiffi

hðxÞ
p

. For tsunami waves, we cast (1) into an asymptotically equivalent form

describing evolution along the wave path determined by the linear wave speed, see for

instance Grimshaw et al. (2015),

fs þ
cs

2c
fþ 3

2h
ffX þ h

6
fXXX ¼ 0; ð2Þ

where

s ¼
Z x

0

dx0

cðx0Þ ; X ¼ s� t; c ¼ h1=2: ð3Þ

Here s is a time-like variable measuring travel time along the wave path, and now

h ¼ hðsÞ.
It is now convenient to cast (2) can into an exactly equivalent form. First,

U ¼ 3c1=2f
2

; Us þ
1

hc1=2
UUX þ h

6
UXXX ¼ 0; ð4Þ

and then make a further transformation to get

UT þ 6UUX þ bðTÞUXXX ¼ 0; ð5Þ
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where

T ¼ 1

6

Z s

0

ds0

hðs0Þc1=2ðs0 Þ ¼
1

6

Z x

0

dx0

hðx0Þ7=4
; b ¼ h9=4: ð6Þ

On a constant depth h ¼ 1; c ¼ 1 and b ¼ 1, while on a variable depth as h decreases

(increases), c; b also decrease (increase). There are two important conservation laws,

UT þ f3U2 þ bUXXgX ¼ 0 ð7Þ

U2

2

� �

T

þ 2U3 þ bUUXX � b
U2

X

2

� �

X

¼ 0: ð8Þ

corresponding to conservation of mass and wave action flux, respectively.

On a constant depth when the coefficient b is a constant, the KdV equation (5) has the

well-known solitary wave (soliton) solution, relative to a pedestal d,

U ¼ a sech2ðCðX � VTÞÞ þ d; V � 6d ¼ 2a ¼ 4bC2: ð9Þ

More generally, when the coefficient b is a constant, the KdV equation (5) supports a

periodic travelling wave UðX � VTÞ, the well-known cnoidal wave solution

U ¼ a fbðmÞ þ cn2ðch;mÞg þ d; h ¼ kðX � VTÞ; ð10Þ

where

a ¼ 2mbc2k2; bðmÞ ¼ 1� m

m
� EðmÞ
mKðmÞ ; ð11Þ

V � 6d ¼ 2a
2� m

m
� 3EðmÞ
mKðmÞ

� �

¼ 4bc2k2 2� m� 3EðmÞ
KðmÞ

� �

: ð12Þ

Here cnðx;mÞ is the Jacobian elliptic function of modulus m; 0\m\1, and K(m) and

E(m) are the elliptic integrals of the first and second kind. The expression (10) has period

2p in h so that c ¼ KðmÞ=p, while the spatial period is 2p=k. The (trough-to-crest)

amplitude is a, and the mean value over one period is d. It is a three-parameter family with

parameters k, m, d say. As the modulus m ! 1, this becomes a solitary wave, since then

b ! 0 and cnðxÞ ! sechðxÞ, while c ! 1; k ! 0 with ck ¼ C fixed. As

m ! 0; b ! �1=2; c ! 1=2, cnðxÞ ! cos ðxÞ, and it reduces to a sinusoidal wave

ða=2Þ cos ðhÞ of small amplitude a�m and wavenumber k .

3 Modulation equations

The Whitham modulation theory allows this cnoidal wave (10) to vary slowly with T, X,

that is the wave parameters such as wavenumber k, modulus m and mean level d vary

slowly with T, X. The Whitham modulation equations for a constant-coefficient KdV

equation can be obtained by averaging conservation laws, the original Whitham method,

see Whitham (1965, 1974), or by exploiting integrability, see Kamchatnov (2000) for

instance. But here we are concerned with the case when b ¼ bðTÞ varies slowly with T,

and since the variable-coefficient KdV equation (5) is not integrable, we will use the

original Whitham method, readily adapted to this situation, see Grimshaw (2007a) for
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instance. A similar strategy was used by Myint and Grimshaw (1995) for a frictionally

perturbed KdV equation. An alternative method developed by Kamchatnov (2004) for a

perturbed KdV equation requires a change of variable in (5), U ¼ b ~U and ~T ¼
R T b dT , to

generate a KdV equation for ~U with a perturbation term of the form b ~T
~U=b. This approach

was used by El et al. (2007, 2012) to study the evolution of solitary waves and undular

bores over a slope, a study similar but complementary to that described here.

As three modulation equations are needed, we supplement (7, 8) with the equation for

conservation of waves,

kT þ ðkVÞX ¼ 0: ð13Þ

The remaining two modulation equations are obtained by inserting the cnoidal wave

solution into the conservation laws (7, 8) and averaging over the phase h. The outcomes are

dT þ 6PX ¼ 0; P ¼ U2

2

� �

; ð14Þ

PT þ QX ¼ 0; Q ¼ 2U3 � 3bU2
X

2

� �

; ð15Þ

where the h� � �i denotes a 2p-average over h. The expressions P, Q are given by, see

Grimshaw (2007a, b),

P ¼ d2

2
þ a2

2
fC4 � b2g;

C4 ¼
1

3m2KðmÞ f3m
2KðmÞ � 5mKðmÞ þ 4mEðmÞ þ 2KðmÞ � 2EðmÞg;

ð16Þ

Q ¼ �4d3 þ 12dPþ 6a3 � 2b3

3
þ ð1� mÞb

2m
þ bþ 1� 2m

2m

� �

C4 þ
5

6
C6

� �� �

;

C6 ¼
1

15m3KðmÞ 15m3KðmÞ � 34m2KðmÞ þ 23m2EðmÞ þ 27mKðmÞ
	

�23mEðmÞ � 8KðmÞ þ 8EðmÞg:

ð17Þ

Here the notations C4;C6 denote the average values of cn
4 and cn6, respectively, over one

period and depend on the modulus m only.

As our main concern is with the front of the developing wave trains, where typically the

modulus m � 1, and the wave train can be described as a solitary wave train. Hence, we

take the limit m ! 1 when b� � 1=KðmÞ;C4 � 2=3KðmÞ, and C6 � 8=15KðmÞ. To

leading order P� d2=2 and Q� d3=3 and then both equations (14, 15) reduce to the same

equation for d alone,

dT þ 6ddX ¼ 0; ð18Þ

and so d can be regarded as a known quantity. The cnoidal wave expression (10) now

becomes a solitary wave train riding on a pedestal,

U ¼ a sech2ðCðX � VTÞ;mÞg þ d; V � 6d ¼ 2a ¼ 4bC2; ð19Þ

with one parameter to be determined. This is provided by a reduced form of the wave

action equation,
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a2

kc

� �

s

þV
a2

kc

� �

X

þ a2

kc
6dX ¼ 0; ð20Þ

This can be obtained by a more careful consideration of the limit m ! 1 in the modulation

equations (14, 15) by retaining the terms in 1/K(m), or more directly by averaging the wave

action conservation law (8) for a solitary wave, see Whitham (1974) for the case of the

constant-coefficient KdV equation, or Grimshaw (1979) and the discussion in El et al.

(2012) for the variable-coefficient KdV equation. The pair (13), (20) form a nonlinear

hyperbolic system for a solitary wave train and can be solved explicitly. Indeed, using the

expressions in (19), (20) can be written as

AT þ ð6d þ 2aÞAX þA6dX ¼ 0; A ¼ ðba3Þ1=2: ð21Þ

This is an equation for the amplitude a alone and is readily solved using characteristics.

Then, with a, d and hence V known, the wavenumber k, where C ¼ kc, can be found from

(13) for the conservation of waves, which is then a linear hyperbolic equation for k.

4 Evolution over a slope

We shall suppose henceforth that the depth h ¼ 1 in the region T\0 and then decreases

monotonically to a constant value h1\1 as T ! 2T1 and remains constant thereafter. The

scale for this variability is T1 and it will be assumed that this is much greater than the

intrinsic scale of the leading evolving solitary wave. Correspondingly, b ¼ 1; T\0, and

then decreases monotonically to b1\1; T [ 2T1. Note that the length of the slope in

physical space is readily found by inverting (6)

xs ¼ 6

Z 2T1

0

b7=9ðTÞ dT : ð22Þ

In this paper, we are concerned with the ‘‘initial’’ value problem when U ¼ U0ðXÞ at
T ¼ 0, which is a specification of a wave at an initial location. Using the transformations

(3, 4, 6), this corresponds to a specification f ¼ f0ðtÞ ¼ 2U0ð�tÞ=3 at x ¼ 0. The KdV

equation (5) then describes the spatial evolution of U(X, T). Further, we suppose that

U0ðXÞ has compact support and that U0ðXÞ ¼ 0 for X[ 0, so that at T ¼ 0 the initial wave

is located where the depth is a constant. The aim is then to describe the evolution of the

wave as it propagates into the region of decreasing depth, emphasising the key difference

between an initial elevation, U0ðXÞ� 0 and an initial depression, U0ðXÞ� 0. Two key

parameters are its maximum/minimum value �UM , respectively, and the mass

M ¼
Z 1

�1
U0ðXÞ dX: ð23Þ

Note that from (7) M is conserved by the KdV equation (5).

In both cases, we use an adaptation of the Gurevich–Pitaevskii asymptotic method

based on the Whitham modulation equations, Gurevich and Pitaevskii (1974) and subse-

quently developed by many others, see El (2007) for a recent review. In this approach, we

at first consider the initial value problem for the Hopf equation

UT þ 6UUX ¼ 0; UðX; T ¼ 0Þ ¼ U0ðXÞ: ð24Þ
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This is obtained from (5) by omitting the dispersive term UXXX , and formally this requires

that at least initially, dispersive effects are weak. That is, U0ðXÞ varies rather slowly with

X. Significantly note that in this asymptotic limit, there is no dependence on b. The Hopf

equation can be readily solved using characteristics and the solution of (24) is given

implicitly by

U ¼ U0ðX � 6UTÞ: ð25Þ

This is valid up to a time T0 (it is assumed that T0\2T1) when a shock forms at the place

X0, and after that time the shock must be resolved by the reintroduction of the dispersive

term in the full KdV equation. In the Gurevich–Pitaevskii asymptotic method, this is

achieved using the Whitham modulation equations, so that the shock is resolved by a

modulated periodic wave train, sometimes referred to as a dispersive shock wave or un-

dular bore. Here, we note that T0;X0 are given by

T0 ¼
1

�6UXðXmÞ
; UXðXmÞ ¼ minð�UXÞ; X0 ¼ Xm þ U0ðXmÞT0: ð26Þ

As is well known, Xm is the location of the maximum negative slope in the initial profile. In

the elevation case, the shock forms on the front face of the initial profile and in the

depression case it forms on the rear face.

In the following subsections, we use this method to analyse the evolution of the leading

waves from an initial elevation, an initial depression and from a ‘‘up-down’’ and ‘‘down-

up’’ initial condition. The analysis is supported by numerical simulations of (5) where

bðTÞ ¼ ð1þ b1Þ
2

� ð1� b1Þ
2

tanh ðjðT � T1ÞÞ; ð27Þ

where j is chosen so that jT1 	 1 and then bðTÞ varies smoothly and slowly from 1 when

T\0 to b1\1 when T [ 2T1. Correspondingly, the depth h varies from 1 at x ¼ 0 to

h1 ¼ b4=91 at x ¼ xs (22). In our simulations, we set b1 ¼ 0:333 and T1 ¼ 4 so that h1 ¼
0:614 and xs ¼ 34:5.

The initial condition U0ðXÞ for the numerical simulations is specified by a box-like

profile for the cases of an initial elevation or depression,

U0ðXÞ ¼
UMftanh ðC0ðX þ 3LÞÞ � tanh ðC0ðX þ LÞÞg

2 tanh ðC0LÞ
; M ¼ 2UML

tanh ðC0LÞ
: ð28Þ

This has a maximum (minimum) value of UM at X ¼ �2L where L[ 0 is chosen so that

C0L 	 1, and then U0ðXÞ is approximately zero in X[ 0 as required. It is effectively a

box of height UM , length 2L and mass M ¼ 2UML. Note that then Xm ¼ �L;�3L

according as the initial condition is one of elevation or depression, and that from (26)

T0 ¼ �1=3UMC0;X0 ¼ �Lþ 1=6C0;�3L� 1=6C0. If the leading solitary wave has an

amplitude a and a timescale of 1=ckV , see (19), we require that the variation of b with T be

much slower than this, that is, 1=ckV 
 T1. Using the estimates of a obtained below, we

choose T1 accordingly. Several simulations were performed, and a typical set of parameters

are UM ¼ �1;C0 ¼ 0:5, L ¼ 16; b1 ¼ 0:333; T1 ¼ 4 and j ¼ 0:75; these lead to the cor-

responding values M ¼ �32; T0 ¼ 0:667;X0 ¼ �0:667;�3:333 and b0 ¼ bðT0Þ ¼ 0:99.
For an ‘‘up-down’’ or ‘‘down-up’’ wave, the initial boxes (28) are combined into
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U0ðXÞ ¼
UMftanh ðC0ðX þ 3LÞÞ � tanh ðC0ðX þ LÞÞg

2 tanh ðC0LÞ

� UMftanh ðC0ðX þ 7LÞÞ � tanh ðC0ðX þ 5LÞÞg
2 tanh ðC0LÞ

;

ð29Þ

with similar parameter settings. The numerical simulations of the KdV equation (4) were

performed using a pseudo-spectral code, based on a Fourier interpolant.

4.1 Initial elevation

It is well known that for the constant-coefficient KdV equation, the initial wave will evolve

into a solitary wave train with a finite number N of rank-ordered solitary elevation waves,

together will some small-amplitude trailing and dispersing radiation. This can be estab-

lished using the inverse scattering transform, see Ablowitz and Segur (1981) or Drazin and

Johnson (1989), or when N is large, using the Whitham modulation equations, see El

(2007) for instance.

Here, when the depth varies, we adapt and simplify the Gurevich–Pitaevskii approach,

guided here by the detailed theory developed by El et al. (2012) for the propagation of an

undular bore up a slope. The main difference is that in El et al. (2012) the undular bore was

formed from a step initial condition (actually a box but much longer than (28) that we have

used here). Consequently, the undular bore in El et al. (2012) was well formed when

entering the slope, and in particular there was no sign in their simulations of the rarefaction

forming at the rear of the evolving disturbance, see our simulations below. Thus, as

described above by (25), the solution initially develops according to the Hopf equation and

a shock forms at a time T0 and place X0 (26). This is resolved here by an undular bore,

whose leading solitary waves are riding on an undisturbed level, since the solution is zero

ahead of the shock. Thus, we set d ¼ 0 in (18) and seek a similarity solution of (21) for

large N and large T. This is given by

b1=3a� X � X0

2r
; 0\

X � X0

2r
\a0 r ¼

Z T

T0

dT 0

b1=3ðT 0Þ
: ð30Þ

Here a0 is a constant and the leading solitary wave obeys the adiabatic law a� a0=b
1=3

which in terms of the original variables f; h is the well-known result that the amplitude for

f varies as h�1. In turn the constant a0 can be found using the theory of Gurevich and

Pitaevskii (1974) for a constant depth, see El (2007), or the adaptation of that theory for a

slope by El et al. (2012). Since the shock solution of the Hopf equation develops a jump of

UM , the outcome is that a0 ¼ 2UMb0 where b0 ¼ bðT0Þ. Note that this asymptotic solution

describes only the leading solitary wave train, and as shown by El et al. (2012) it will in

general be followed by a more complex nonlinear dispersive wave train. Here, we do not

attempt to match with the rest of the bore, and are content with using just this long-time

similarity solution. This does not require the matching used in El et al. (2012), who

essentially solved (21) (with d ¼ 0) using characteristics with ‘‘initial’’ conditions at the

front of the undular bore. Here, we are concerned mainly with the leading amplitude given

by (29). The corresponding general solution of (13) for the wavenumber is

k ¼ 1

r
k0

X � X0

2r

� �

; ð31Þ
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where k0ð�Þ is an arbitrary function, determined by matching the solution with the trailing

wave train, a task which is beyond the scope of this article.

A typical simulation is shown in Fig. 1, where b varies from 1 (top panel) to 2/3 (middle

panel) to 1/3 (bottom panel), which corresponds to h ¼ 1; 0:835; 0:614, respectively. Each
plot is at a fixed T, that is at a fixed place x and hence at a fixed depth h, while as X varies;

Fig. 1 Time series from the
simulation with the initial
condition (28) with UM ¼
1;C0 ¼ 0:5;L ¼ 16 and
b1 ¼ 0:333;T1 ¼ 4;j ¼ 0:75.
T ¼ 0; b ¼ 1; h ¼ 1, top panel;
T ¼ T1; b ¼ �0:667; h ¼ 0:835,
middle panel;
T ¼ 2T1;b ¼ 0:333; h ¼ 0:614,
bottom panel
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with x fixed, these are then time series in t, the physical (non-dimensional) time. Apart

from the factor 3c1=2=2 in the transformation between the physical wave height f and U in

(4), these are what would be observed at each corresponding depth. Note that this factor

varies as 1.5, 1.434, 1.328 and is not a hugely significant feature. It follows that the

nonlinear dynamics seen here in the transformed equation is completely replicated in the

original physical variables. Also note that the length of the shoaling region 2T1 ¼ 8 in the

transformed equation transforms to the length xs ¼ 34:5. There is very good qualitative

agreement with this asymptotic theory. Quantitatively, the leading solitary wave has a

predicted amplitude at T ¼ 2T1 of 2UMb0=b
1=3
1 ¼ 2:88 which is greater than the value of

approximately 2.5 in the simulation. This is because in the simulation, b is not sufficiently

slowly varying relative to the solitary wave. Other simulations not reported here confirm

this explanation as T1 is varied. Note also that behind the solitary wave train, there is a

rarefaction wave generated by the rear end of the initial ‘‘box-like’’ initial condition. Once

the waves pass onto the shelf where b ¼ b1 is a constant, then the whole system will

eventually transform into a finite number of rank-ordered solitary waves, as is well-known

from the theory for a constant-coefficient KdV equation. This is already beginning to be

apparent in the last panel of Fig. 1. The asymptotic description presented here is an

intermediate phase where the undular bore is resolving incipient shock formation.

Importantly, although the leading solitary wave obeys the adiabatic law, the outcome

for this solitary wave train is quite different from that for a single solitary wave. When a

single solitary wave deforms adiabatically, it does so by conserving wave action, but

cannot then also conserve mass. Instead, it generates a trailing shelf, which may itself then

deform to generate a secondary solitary wave, and so on, see El and Grimshaw (2002),

Grimshaw and Pudjaprasetya (2004). Here, mass is conserved by the whole wave train, as

expressed in the Whitham modulation equations (13, 14, 15) and their asymptotic reduc-

tion to (18, 20).

4.2 Initial depression

For the constant-coefficient KdV equation, when U0ðnÞ� 0,(depression) then no solitons

are generated, and instead the solution disperses with the front being described by a

nonlinear dispersing wave train, see Ablowitz and Segur (1977, 1981), Hammack and

Segur (1978) for an analysis using the inverse scattering transform, or El and Khodorovsky

(1993), El (2007) for an analysis based on the approach of Gurevich and Pitaevskii (1974)

using the Whitham modulation theory. This has the shape of a leading rarefaction wave of

depression, followed by a series of elevation waves riding on a negative pedestal.

Here, when the depth varies, we again adapt and simplify the Gurevich–Pitaevskii

approach. Thus, as described above by (25), the solution initially develops according to the

Hopf equation and a shock forms at a time T0 and place X0 (26). But in this depression

case, the long-time evolution can be modelled as a leading rarefaction wave followed by a

nonlinear wave train. The rarefaction wave solves the Hopf equation (24) which is the

same as (18), and is also an exact solution of (5). It is given by U ¼ d where

d ¼ X � X0

6ðT � T0Þ
; �HðTÞ\ X � X0

6ðT � T0Þ
\0;

where H ¼ jMj
3ðT � T0Þ

� �1=2

; M ¼
Z 1

�1
U0ðXÞ dX:

ð32Þ
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Outside the domain �HðTÞ\ðX � X0Þ=ð6ðT � T0ÞÞ\0; d ¼ 0. H(T) is determined by

conservation of mass, where we assume that all the mass is carried by this rarefaction

wave. Note that this part of the solution is independent of b. It is an N-wave, and at

X ¼ �6TH, there is jump H from the negative level �H to 0. The shock at the rear of the

rarefaction wave has a speed of dX=dT ¼ �3H and is resolved by an undular bore. The

laboratory experiments of Hammack and Segur (1978) for a constant depth exhibit this

behaviour, see their Figs. 2 and 3, also reproduced in the review by Arcas and Segur

(2012), as also do the experiments by Klettner et al. (2012) for wave evolution on a slope.

If H was a constant, then the leading wave in the undular bore would be a solitary wave of

amplitude 2H relative to the pedestal of �H, see El (2007) for instance. However, although

here H depends on T and decreases as T�1=2 as T increases, the theoretical results cited

above confirm that is still essentially the case. A heuristic explanation of this is that since

the total mass is carried by the rarefaction wave, the following wave train should overall

have zero mass, implying that the waves should rise from �H to H and so on. The leading

solitary wave has an amplitude of �ðX � X0Þ=3ðT � T0Þ � 2H near the jump location, a

speed V ¼ 6d þ 2a ¼ ðX � X0Þ=3ðT � T0Þ � �2H\0 and hence begins to move up the

rarefaction wave away from the jump position. But note that as T ! 1;H ! 0 and so the

solitary wave slows down and becomes smaller.

Next, to estimate the undular bore which follows, we use the solitary wave train system

(14) and (21). When d is given by (32), Eq. (21) becomes

AT þ X � X0

T � T0
þ 2a

� �

AX þ A
T � T0

¼ 0; ð33Þ

The general solution can be found using the transformation

B ¼ ðT � T0ÞA; n ¼ �X � X0

T � T0
; q ¼

Z 1

T

dT 0

ðT 0 � T0Þ5=3b1=3ðT 0Þ
: ð34Þ

so that (33) becomes

Bq þ 2B2=3Bn ¼ 0: ð35Þ

This is a Hopf equation whose general solution can readily be found using characteristics.

For our present purpose, it is sufficient note the long-time similarity solution

B ¼ n
2q

� �3=2

; A ¼ 1

T � T0

n
2q

� �3=2

; a ¼ � 1

ðT � T0Þ5=3b1=3
X � X0

2q
: ð36Þ

It is useful to note here that

q ¼ 3

2b1=3ðT � T0Þ2=3
þ
Z 1

T

bT 0 ðT 0ÞdT 0

2ðT 0 � T0Þ2=3b1=3ðT 0Þ
: ð37Þ

In constant depth, or when T [ 2T1, b is a constant, and then the second term in (37) is

zero, so that q ¼ 3=2b1=3ðT � T0Þ2=3 and the expression for the amplitude in (36) reduces

to a ¼ �ðX � X0Þ=3ðT � T0Þ in agreement with the asymptotic result from the exact

theories cited above. Interestingly, this is independent of the constant value b, an outcome

which is transparent for all solutions of (33), indicating that even when b varies, the effect

on the amplitude of the leading solitary wave is quite small.
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This asymptotic result holds only in the domain where (32) holds. The leading solitary

wave is located at ðX � X0Þ=ðT � T0Þ � �6HðTÞ, and the amplitude of this solitary rel-

ative to the pedestal is

Fig. 2 Time series from the
simulation with the initial
condition (28) with UM ¼
�1;C0 ¼ 0:5; L ¼ 16 and
b1 ¼ 0:333;T1 ¼ 4;j ¼ 0:75.
T ¼ 0; b ¼ 1; h ¼ 1, top panel;
T ¼ T1; b ¼ �0:667; h ¼ 0:835,
middle panel;
T ¼ 2T1;b ¼ 0:333; h ¼ 0:614,
bottom panel
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amax ¼
3HðTÞ

b1=3ðT � T0Þ2=3q
: ð38Þ

When b is a constant, this reduces to 2H(T), and since this is also the case when T � 2T1,

then

Fig. 3 Time series from the
simulation with the initial
condition (29) with UM ¼
1;C0 ¼ 0:5;L ¼ 16 and
b1 ¼ 0:333;T1 ¼ 4;j ¼ 0:75.
T ¼ 0; b ¼ 1; h ¼ 1, top panel;
T ¼ T1; b ¼ �0:667; h ¼ 0:835,
middle panel;
T ¼ 2T1;b ¼ 0:333; h ¼ 0:614,
bottom panel
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amax ¼
4jMj

3ðT � T0Þ

� �1=2

; T � 2T1: ð39Þ

We expect that for the remainder of the wave train, especially outside the domain where

the rarefaction wave is defined, dispersion expressed through the value of b will play a

role. Thus, the amplitude of the leading solitary wave decays as ðT � T0Þ�1=2
from a

maximum value of ð16jMj=27ð2T1 � T0ÞÞ1=2 at T ¼ 2T1. This expression is formally

independent of b, although T1 does depend weakly on how the depth changes through

expression (6) connecting T with x. But we note that from (37) that since here

bT\0; 2b1=3ðT � T0Þ5=3q\3ðT � T0Þ when T\2T1 indicating that (39) is an underesti-

mate of the amplitude, which will in fact occur somewhere in the region T\2T1. Also, of

course the shape of the leading solitary wave does vary with b through the connection

between the amplitude and wavenumber k expressed in (19). Finally, we note that the

general solution of (13) for the wavenumber is now

k ¼ q
T � T0

k0
ðX � X0Þq
T � T0

� �

; ð40Þ

where k0ð�Þ is again an arbitrary function. A typical simulation amongst several we have

done is shown in Fig. 2 and is in very good qualitative agreement with this asymptotic

theory. Quantitatively, the leading solitary wave has a predicted amplitude at T ¼ 2T1 of

2.41 (39), which is in good agreement with the value of approximately 2.3 in the simu-

lation. Again, note that once the waves pass onto the shelf where b ¼ b1 is a constant, then
the whole system will eventually transform into a nonlinear dispersing wave train

according to the well-known theory for a constant-coefficient KdV equation. The

asymptotic description presented here is an intermediate phase where the rarefaction wave

and the following undular bore are resolving incipient shock formation.

4.3 ‘‘Up-down’’ and ‘‘down-up’’ waves

Finally, we show in Figs. 3 and 4 simulations for ‘‘up-down’’ and ‘‘down-up’’ waves,

respectively. In the ‘‘up-down’’ wave case (Fig. 3), the initial elevation precedes the initial

depression, and because the elevation component travels faster than the depression com-

ponent, these two do not interact, and each evolves separately. Thus, the elevation and

depression components in Fig. 3, respectively, completely agree with those in Figs. 1 and 2

for a single elevation and depression, respectively; note that the amplitude UM ¼ 1; L ¼ 16

in the ‘‘up-down’’ case as in the separate elevation and depression wave cases. It follows

that the asymptotic theories developed above in Sects. 4.1 and 4.2 can again be applied

here to the separate elevation and depression components.

In the ‘‘down-up’’ wave case (Fig. 4), the amplitude UM ¼ �1; L ¼ 16 as in the sep-

arate depression and elevation wave cases. But now the initial depression precedes the

initial elevation, and because the elevation component travels faster than the depression

component, these two interact. The nature of the interaction can be inferred from the

solution of the Hopf equation (24) for this case. This leading depression will develop into a

depression rarefaction wave, followed by a shock, while the following elevation will

develop into a shock, followed by an elevation rarefaction wave. In the absence of any

dispersion, the shocks combine into a single stationary shock, of twice the magnitude of

each component shock, preceded and followed by a rarefaction wave. Then, according to

the Gurevich–Pitaevskii procedure, this shock will be resolved by an undular bore whose
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leading solitary wave will have an amplitude twice that of the shock. The outcome is thus a

solitary wave whose amplitude may be twice that from either an elevation or depression

initial condition alone. The simulations shown in Fig. 4 show some qualitative evidence of

this process. At the intermediate time T ¼ T1, we can see the leading and trailing

Fig. 4 Time series from the
simulation with the initial
condition (29) with UM ¼
�1;C0 ¼ 0:5; L ¼ 16 and
b1 ¼ 0:333;T1 ¼ 4;j ¼ 0:75.
T ¼ 0; b ¼ 1; h ¼ 1, top panel;
T ¼ T1; b ¼ �0:667; h ¼ 0:835,
middle panel;
T ¼ 2T1;b ¼ 0:333; h ¼ 0:614,
bottom panel
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rarefaction waves but the solitary wave trains from each component are already interacting.

At the final time T ¼ 2T1, the leading and trailing rarefaction waves are still visible, and

the interacting solitary wave trains have begun to merge into a nonlinear wave train with

three parts. The leading part is a single solitary wave train, with evidence that the leading

wave has amplitude of approximately 4, which is four times the initial amplitude. The

trailing part shows a structure similar to that for the trailing part of an undular bore. The

middle part is a rather complex interaction between the other two parts.

5 Discussion

In this work, we have examined how tsunami waves deform as they propagate shorewards

over the continental slope and shelf, using the framework of the vKdV equation (1). For

analytical and numerical convenience, we have used the transformed equation (5). We

have constructed asymptotic solutions describing the evolution of a tsunami wave over a

slope onto a shelf, using the Gurevich–Pitaevskii method based on the Whitham modu-

lation theory, reduced here to the solitary wave train equations (13, 18, 21) which are

adequate for the description of the leading waves. This is a very useful reduction; as unlike

the full Whitham modulation equations, this reduced set can be solved as a sequence of

Hopf equations for the mean level d, then the wave amplitude a and then finally the

wavenumber k. We have used this procedure for the case when the initial wave is one of

the elevation in Sect. 4.1, an initial depression in Sect. 4.2 and initial ‘‘up-down’’ and

‘‘down-up’’ waves in Sect. 4.3. In each case, the asymptotic analysis is compared

favourably with our numerical simulations.

Although we have found it convenient in the theoretical development and in the

numerical simulations to use the canonical KdV equation (5), in presenting a summary of

the obtained results we use the original physical variables, expressed through the trans-

formations (3, 4, 6). Also, as discussed above, the plots of our numerical simulations are

time series at three fixed places, namely at the base of the slope, around the middle of the

slope and at the end of the slope where the depth becomes constant. Our main findings

relevant for tsunamis are:

• The amplitude of the leading wave emerging from an initial elevation is determined by

the maximum initial amplitude fM and increases as the depth decreases, f� 2fM=h. The
mass M[ 0 of the initial elevation determines the number of waves in the following

wave train.

• The amplitude of the leading wave emerging from an initial depression is determined

by the total initial mass M\0; f�ð3jMj=TÞ1=2h�1=4, where T is defined by (6).

• For a tsunami approaching the shore with a rather small amplitude fM but quite long

wavelength, so quite large mass M, these imply that a depression wave may be more

destructive than an elevation wave.

• An initial ‘‘down-up’’ wave can produce a leading wave twice as large as that from a

single elevation or depression, and with a fourfold increase in amplitude.

In order to express our results in quantitative terms, we note that if U(X, T) is a solution

of KdV equation (5) then so is �2Uð�X; �3TÞ provided that bðTÞ is replaced by bð�3TÞ. Here
� 
 1 is a free parameter measuring the wave nonlinearity and dispersion and is implicitly

present in the derivation of the suite of KdV equations presented here. For example, choose

� ¼ 0:1, then the simulations for an initial elevation or depression wave shown in Figs. 1
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and 2 correspond to an initial wave of height �1 m on a depth h0 ¼ 100 m say, and an

initial wavelength of 160 m. For the simulations, b1 ¼ 1=3, which corresponds to

h1 ¼ 0; 61; h0 ¼ 61 m. From the simulations, the elevation wave then grows to a leading

solitary wave amplitude of 1.9 m, while the depression wave grows to 1.7 m at the location

where the depth is 61 m. But if instead the initial wavelength is 640 m, then the initial

mass is doubled, and the depression wave will grow to 3.4 m. Also the dimensional length

of the slope is xsh0�
�1 ¼ 34:5 km. This indicates inter alia that the nonlinear and dis-

persive effects contained in the KdV model can indeed develop over plausible distances

when applied as here to the near shore region. In much deeper water, where say h0 ¼
1:6 km; � ¼ 0:02 for an initial amplitude of again 1 m, the corresponding length scale

xsh0�
�1 ¼ 2760 km; 80 times larger, indicating inapplicability of a KdV model, as argued

in a different manner by Madsen et al. (2008), Madsen and Schaffer (2010) and Arcas and

Segur (2012) for instance.

As deep ocean tsunamis which impact the continental slope and shelf are typically of

quite small amplitude, that is, jfMj 
 h0, but have very long wavelengths so that the mass

|M| is large, the results obtained here suggest that depression waves may be more

destructive than elevation waves, and that the combination of a ‘‘down-up’’ wave is even

more destructive. But we caution that in this KdV framework, for the emerging waves from

an initial depression, even if the amplitudes become quite large at some intermediate time,

the whole wave train will eventually disperse. On the other hand, the emerging waves from

an initial elevation are solitary waves, which grow as h�1 and maintain their shape. Finally,

we note that in a higher-order KdV model Grimshaw et al. (2015) found ‘‘down-up’’ waves

with a fourfold amplification, but more persistent than those we have examined here.
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