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Summary  

Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain 

elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such 

circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network 

modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor 

response, an orienting behavior evoked by visual motion. We show that such motion is 

processed by diverse neural response types distributed across multiple brain regions. To 

transform sensory input into action, these regions sequentially integrate eye- and direction-

specific sensory streams, refine representations via interhemispheric inhibition, and demix 

locomotor instructions to independently drive turning and forward swimming. While experiments 

revealed many neural response types throughout the brain, modeling identified the dimensions 

of functional connectivity most critical for the behavior. We thus reveal how distributed neurons 

collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models 

from whole-brain data.  
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Introduction 

How neurons across the brain collaborate to process information that ultimately guides behavior is not 

well understood. Most progress towards understanding comprehensive sensorimotor circuits has been 

made in invertebrates (Kato et al., 2015; Ohyama et al., 2015). For example, the processes by which 

environmental stimuli drive specific motor patterns in C. elegans (Bounoutas and Chalfie, 2007; 

Chalasani et al., 2007) and Drosophila (Borst et al., 2010; Ruta et al., 2010; Silies et al., 2014) have 

been dissected at the level of individual neurons and their synapses. In these cases, the stereotypy and 

small size of the invertebrate brain and the identifiability of its neurons were indispensable for precisely 

measuring neural circuit structure and dynamics.  

With a few notable exceptions (Heiligenberg and Konishi, 1991; Lisberger, 2010), isolating the neural 

circuits implementing vertebrate behavior has only been successful for peripheral reflexes (Fink et al., 

2014; Korn and Faber, 2005). This is partly due to technical limitations, as information processing in 

vertebrates is typically coordinated by many neurons in various brain regions (Felleman and Van Essen, 

1991). Consequently, most research has focused on microcircuits that are spatially localized and 

functionally coherent, e.g. within the retina (Masland, 2012) or cortex (Ko et al., 2011). This leaves the 

understanding of central brain mechanisms linking sensation to action incomplete. Moreover, neural 

response properties in vertebrates appear heterogeneous and redundant (Bianco and Engert, 2015; 

Rigotti et al., 2013), yet the origins and significance of this redundancy and response variability remain 

poorly understood (Sompolinsky, 2014). Without access to brain-scale neuronal activity in well-defined 

behavioral contexts, it seems unlikely that we will understand why the vertebrate brain has, despite 

immense energy constraints, evolved its heterogeneous, multilayered architecture. 

The larval zebrafish is a small and translucent vertebrate, permitting cellular resolution optical imaging of 

nearly all its ~100,000 neurons (Ahrens et al., 2013a). Recent studies using brain-wide imaging have 

revealed that sensorimotor processing is indeed widely distributed across the entire zebrafish brain 

(Ahrens et al., 2012, 2013a; Portugues et al., 2014). However, the overwhelming complexity of whole-

brain imaging data has made it difficult to establish links between brain- and circuit-level descriptions of 

behavior. Such links must be established by applying both experimental and theoretical approaches to 
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behaviors that are simple enough to characterize in mechanistic detail but sophisticated enough to 

engage complex sensorimotor transformations.  

The zebrafish optomotor response (OMR), a position-stabilizing reflex to whole-field visual motion, offers 

an opportunity to dissect the central circuits underlying such a behavior using closed-loop stimulus 

delivery, detailed behavioral analysis, whole-brain imaging, functional perturbations, and network 

modeling. These approaches allowed us to follow the flow of visual information through nuclei that 

integrate binocular retina input to motor centers that drive turning and forward swims, resulting in a 

functional whole-brain circuit model that describes the sensorimotor transformation in terms of 

experimentally observed neural response types. 

Results 

The optomotor response is driven by egocentric processing of optic flow 

For binocular animals to perform the OMR, the brain must integrate motion signals from each eye. We 

thus sought to dissect this sensorimotor transformation using independent stimulus presentation to each 

eye. A closed loop system allowed us to continuously update the stimulus in each monocular visual field 

(Figure 1A, Movie S1), ensuring that fish continually experienced a particular motion pattern relative to 

the body axis. For leftward or rightward motion, we labeled these component monocular stimuli 

egocentrically, with medial motion going towards the midline and lateral motion going away from the 

midline (Figure 1A, right). Following a psychophysics approach, we presented stimuli from a matrix of all 

possible combinations of static (no motion), medial, and lateral motion, along with forward and backward 

motion (Figure 1B). By comparing the behavioral responses to monocular (i.e. motion to one eye only), 

coherent (e.g. leftward motion comprising medial “approaching” motion to the right eye and lateral 

“leaving” motion to the left eye), and conflicting stimuli (i.e. “inward” medial-medial motion or “outward” 

lateral-lateral motion to both eyes), we quantified basic algorithmic properties by which the brain 

combines binocular inputs to generate a motor output. 

As expected, leftward and rightward coherent stimuli led to leftward and rightward turning, respectively 

(Figure 1C, Figure S1A-C). In addition, average turning was larger to coherent motion than to 
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monocular stimuli and were similar to the sum of the responses to each monocular component (Figure 

1C). Interestingly, the contributions of medial and lateral components were not equal; medial contributed 

substantially more to turning than lateral. Furthermore, response latencies to stimuli containing medial 

motion were shorter than to stimuli containing only lateral motion (Figure S1D). Together, these 

observations reveal several algorithmic properties of the OMR, which are necessarily implemented in the 

brain: 1) the direction of whole-field coherent motion dictates the direction of behavioral output; 2) the 

average turning response to coherent motion approximates the sum of responses to medial plus lateral 

motion; and 3) despite representing environmentally equivalent motion cues, medial and lateral motion 

are differentially processed by the zebrafish brain to generate different behaviors.  

Eye- and direction-specific motion differentially affect forward swimming and turning 

Examination of discrete swim bouts (Figure S1E-F) revealed that histograms of individual bout angles in 

response to each stimulus were typically trimodal (Figure 1D, S1G-H), with a central peak 

corresponding to forward swimming and left/right peaks corresponding to left/right turning. As these 

peaks changed dramatically across the stimulus set, we focused our analyses on their amplitude 

changes. Coherent stimuli enhanced turning in the direction of motion (“correct”) relative to the baseline 

static condition, while turning in the opposite direction of motion (“incorrect”) was suppressed. Similar to 

coherent stimuli, monocular medial stimuli increased forward swims and correct turns while suppressing 

incorrect turns (Figure 1D, inset). In contrast, monocular lateral stimuli slightly decreased forward 

swimming and modulated turning less than medial stimuli. Hidden by averaged turning responses 

(Figure S1B-C), this analysis revealed fundamental differences in the behavioral responses to 

conflicting stimuli. While each conflicting stimulus eliminated the turning responses observed under 

monocular stimulation (Figure 1D), inward stimuli enhanced forward swimming, resulting in behavior 

that looked much like that in response to forward motion, and outward stimuli suppressed forward 

swimming, mirroring backward motion responses. These data thus establish two additional algorithmic 

properties of the OMR. First, visual motion drives correct turns and suppresses incorrect turns, and 

these effects are both stronger for medial than for lateral motion. Second, turning and forward swimming 
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are modulated separately, with medial motion driving swimming, akin to forward motion, and lateral 

motion suppressing swimming, akin to backward motion. 

To illustrate the minimal computational requirements for these observed sensorimotor transformations, 

we implemented a neural circuit architecture in which direction-selective retinal ganglion cells (DSRGCs) 

send monocular motion signals to premotor neurons presumed to independently drive peak frequencies 

of turning (T) and forward swimming (F, central diagram, Figure 1E). These premotor neurons represent 

ventromedial spinal projection neurons (vSPNs, T) (Huang et al., 2013) and the nucleus of the medial 

longitudinal fasciculus (nMLF, F) (Orger et al., 2008). Forward swimming was well modeled in this 

architecture as the sum of monocular components (left panels, Figure 1E), with medial motion driving 

swimming and lateral motion suppressing it. Although turning frequencies depended nonlinearly on 

monocular components, a biologically plausible input-output nonlinearity could reproduce the required 

transformation (right panels, Figure 1E). Thus, as few as three dedicated neurons could conceivably 

transform direct monocular inputs into the observed pattern of forward swimming and turning, concretely 

instantiating the aforementioned algorithmic properties of the OMR (Figure S1H-I).  

Whole-brain imaging identifies regions activated during the OMR 

To map brain areas for response features consistent with revealed algorithmic properties, we measured 

neural activity to visual motion using two-photon calcium imaging in transgenic Tg(elavl3:GCaMP5G) 

zebrafish. Though animals were restrained during imaging, we made motor nerve recordings (Ahrens et 

al., 2013b) in a subset of fish and observed a pattern of bout frequency modulation that matched freely 

swimming fish (Figure S2A-B).  

Combined with known zebrafish neuroanatomy (Figure 2A) (Burrill and Easter, 1994), these whole-brain 

maps highlight the route of information flow. Because the OMR was modulated by the overall direction of 

motion (Figure 1C, 1D, S1A-C), we first examined the spatial distribution of direction-selective neural 

units (Figure 2B), which revealed that motion information was distributed and segregated across a 

handful of brain areas (Figure 2C). Of the 10 arborization fields (AF) of retinal axons (Robles et al., 

2014), AF6 and 10 were strongly activated by motion stimuli (Figure 2B, S2C-D). Near AF6, responses 
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in the pretectum (Pt) (Figure 2B-C) were lateralized, with the left Pt responding primarily to leftward 

motion, and the right Pt responding to rightward motion. Responses to forward motion were bilaterally 

distributed across the Pt. Directional signals were demixed in the hindbrain and midbrain. In particular, 

forward-selective neurons were anatomically segregated from lateralized left- and right-selective 

neurons. This response segregation is reminiscent of the behavioral segregation of forward swimming 

and turning. 

To visualize binocular integration of coherent monocular signals, we generated maps overlaying 

responses to monocular medial and lateral stimuli presented sequentially to the eyes (Figure 2D, S2D). 

While responses in the AFs were exclusively monocular, neurons in the Pt exhibited the binocular 

integration required of the OMR, and downstream neurons in the anterior hindbrain (aHB) and vSPNs 

displayed qualitatively similar binocular responses (Figure S2D-E). These response maps suggest a 

qualitative brain-scale functional-anatomical model underlying the zebrafish OMR (Figure S2F).  

To move beyond map-making and characterize the local computations, we focused analyses within 

specific brain regions. Starting at the sensory end, we extracted fluorescence time series from motion-

sensitive regions containing retinal terminals. As AF10 ablations spare the OMR (Roeser and Baier, 

2003), we concentrated on AF6. Consistent with completely decussated retinal projections, responses in 

AF6 were exclusively monocular (Figure 2E, top). AF6 also showed localized regions of highly tuned 

directional responses for all direction of motion, roughly matching the size of synaptic boutons (<1 um2)  

(Figure 2F, top). To test whether information arriving in AF6 is necessary for the OMR, we ablated it 

unilaterally and found behavioral deficits specific to contralateral eye stimulation (Figure S3A-C). Thus, 

AF6 is an important site of retinal input to the OMR circuit. 

To generate the OMR, neurons must integrate this monocular information to form binocular 

representations. We observed neurons in the Pt (Figure 2E, bottom) that showed sustained, binocular 

responses and sent neurites into the ipsilateral AF6 (Figure S3D). In addition, average Pt activity 

reflected several algorithmic properties of the behavior, including ipsilateral inhibition to medial stimuli 

(Figure S3E-G). Moreover, the Pt showed enhanced and lateralized direction selectivity (Figure 2F, 
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bottom; Figure S3F) and receives direct retinal input in other species (Gamlin, 2006). The Pt is thus well 

positioned to support the sensorimotor transformation underlying the OMR. 

Pretectal activity as a neural correlate of optomotor behavior  

The Pt exhibited considerable diversity at the neuronal level, with individual neurons responding in 

various patterns to monocular, coherent, and conflicting motion (Movie S2, Figure S3F). To investigate 

the representation, we analyzed individual neurons (3070 Pt neurons, 12 fish). If the Pt coordinates the 

OMR, it must encode all directions of motion (Orger et al., 2008). Consistent with this, most neurons 

were strongly tuned to a particular direction of motion (Figure 3A, left), with forward-tuned neurons 

clustered near the midline (Figure 3A, right). Most neurons were binocularly excited (Figure S3H). 

These binocular neurons preferred medial to lateral motion and linearly integrated the monocular 

components of whole-field motion (Figure 3B). Most Pt neurons showed at least partial suppression to 

conflicting motion (Figure 3C, left), mirroring the reciprocal suppression of turns seen behaviorally. 

Finally, we found that, much like the behavior, Pt neuron responses to forward and inward motion were 

associated (Figure 3D). Similar associations were seen between backward and outward motion. 

Together, these data provide neural correlates for many OMR algorithmic properties, suggesting that the 

Pt links motion information from the retina to appropriate motor actions. 

Posterior commissure ablation disrupts binocular integration 

As retinal input is exclusively monocular, binocular Pt response properties (Figure 3B-C) require both 

excitatory and inhibitory signals to re-cross the midline. In particular, coherent motion responses require 

interhemispheric excitation from lateral motion, and negated responses to inward stimuli require 

interhemispheric inhibition from medial motion. A strong anatomical candidate for these connections is 

the posterior commissure (PC) (Figure 4A), which passes between the left and right Pt and has been 

proposed to carry motion information in rodents (Giolli et al., 1984).  

After confirming that Pt neurons project through the PC (Figure S4A), we laser-ablated the commissure 

(Figure 4B, left; Figure S4B). As expected, when we imaged Pt responses before and after PC ablation, 

both average Pt and single neuron Pt responses to inward motion were enhanced (Figure 4B, right), 
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and responses to stimuli with lateral components were attenuated. We also measured behavior following 

PC ablation and found that contributions of lateral motion to average turning diminished (Figure 4C), as 

responses to monocular lateral were eliminated and differences between coherent and monocular 

medial were reduced (Figure 4C, inset). This was not a non-specific perturbation, as overall bout 

frequencies were indistinguishable from controls (Figure S4C). Instead, these deficits resulted from a 

reduction in both correct and incorrect turn modulation in PC-ablated fish (Figure 4D-E). In response to 

inward motion, PC-ablated fish did not exhibit behavioral alternation between leftward and rightward 

turning, as might be expected from two lateralized medial turning signals that could not inhibit each 

other. Thus, although the PC carries some medial inhibition, additional inhibition must be communicated 

elsewhere. Moreover, we observed that forward swimming in response to medial was reduced (Figure 

S4C, inset). This suggests that some forward swim drive is relayed through the PC. Simulating PC 

ablation in the minimal model (Figure 1E) further supported these hypotheses (Figure S4E). Combining 

the PC ablation results with anatomy (Figure S4F) suggests that medial signals bilaterally activate, via 

the PC, the downstream region known to drive swimming (i.e. the nMLF) and that the suppression of 

incorrect turns by medial motion should occur via additional interhemispheric connections (Figure 4F). 

Most Pt neurons can be classified into a few functional response types 

Our results suggest that Pt neurons separately drive downstream circuits that control forward swimming 

and turning. To investigate how response heterogeneity across the Pt population might support these 

parallel functions, we first classified Pt neurons into functional response types (Figure 5A, S5A-C, Table 

S1, Methods). Eight bilaterally symmetric (Figure S5D) response types occurred with elevated 

frequency, together comprising more than 66% of the Pt population.  

Four of these eight classes were binocularly activated by both medial and lateral stimuli (Figure 5B, top, 

Figure 5C, left), and the remaining “monocular” classes responded to at most one monocular stimulus 

(Figure 5B, bottom, Figure 5C, right). Within the binocular group, all classes responded most strongly to 

coherent stimuli (Figure 5B), but they were distinguishable by patterns of inhibition revealed only by 

their responses to conflicting stimuli. For example, response type ioB, a binocular neuron (ioB) exhibiting 

responses to conflicting inward (ioB) and outward (ioB) motion, responded to both conflicting stimuli. On 
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the other hand, response type B (Binocular neuron) did not respond to either conflicting stimulus, despite 

responding to both monocular stimuli. This suggests that the left-selective B type might play a specific 

role in generating left turns, as conflicting stimuli do not enhance turning. Consistent with this role, the B 

type was selective for directions of motion associated with turning (Figure 5B, far right).  

The monocular classes were distinguished both by patterns of excitation in response to monocular 

medial or lateral stimuli and by inhibition in response to conflicting motion. For example, response class 

iMM was a monocular (iMM) neuron, responsive to medial motion (iMM), and activated by inward motion 

(iMM). Because it showed a strong preference for forward motion and responded to all stimuli that 

promoted forward swimming, it is a good candidate to drive this behavioral module.  

In order to generate all of the observed Pt response types, we predict the existence of at least three 

types of relay units (Figure 5D). First, excitatory oML neurons might cross the midline to generate 

binocular responses. Second, inhibitory oML neurons could suppress responses to conflicting outward 

motion in B and iB neurons. Third, inhibitory iMM neurons could project across the midline to suppress 

responses to conflicting inward stimuli. Finally, an excitatory iMM neuron may relay retinal signals within 

the Pt, as suggested by inhomogeneous retinal innervation across the Pt in other species (Gamlin 2006). 

Altogether, the overrepresented response types compactly summarize the neural correlates of forward 

swimming and turning behaviors.  

Network modeling demonstrates requirements of downstream processing  

With this response diversity, the Pt could, in theory, implement the minimal model derived from behavior 

(Figure 1E). However, no single overrepresented response class exhibited an activity profile that 

precisely matched the behavior. For instance, neurons directly driving turning should not respond to 

backward and forward motion, as neither of these stimuli significantly increased turning, yet every Pt 

response type was activated by backward and/or forward stimuli. Furthermore, although the B type 

responded most similarly to the turning behavior, many other response types reproduced features of 

turning, and no type predicted the suppression of incorrect turns. This reinforces our hypothesis that 

turning opponency occurs downstream of the Pt.  
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The observed response heterogeneity, together with the lack of a single response type that could explain 

the behavior, motivated an interpretation of the data wherein a combination of several response types 

underlies the OMR. To quantitatively formulate this hypothesis, we applied neuronal network modeling. 

Since the major Pt neural types correlated strongly with each other and with behavior, it is a priori 

possible that any of them contributed to the behaviors. We thus included all overrepresented classes in 

the model network (Figure 5E, left). Because representations were lateralized, we assumed that the left 

and right Pt drove leftward and rightward turning, respectively. However, since none of the major Pt 

response types were appreciably suppressed below baseline levels by opposing motion signals, we did 

not force the Pt network to suppress incorrect turns (Figure 5E, right). Aside from this limitation, the 

model architecture was able to account for the behavior. 

Hindbrain circuitry refines Pt representations 

To complete the model, we examined other brain regions revealed by whole-brain imaging (Figure 2B, 

Figure S6) and investigated how Pt signals are refined. Recall that neurons preferring stimuli that 

promote forward swimming were anatomically segregated in the nMLF, RoL, and cHB (Figure 2A-C, 

Figure S7A). We found that monocular medial stimuli bilaterally recruited these regions (Figure S7B), 

explaining the reduction in forward swim frequency observed after PC ablation. Neurons responding to 

swim-promoting stimuli were sparsely distributed within these regions (Figure S7C) and could ultimately 

drive forward swimming.  

Elsewhere in the hindbrain, especially in the aHB and vSPNs, neurons preferred stimuli associated with 

turning (Figure 6A). Neurons in the aHB are anatomically positioned between visual neurons in the Pt 

and premotor vSPNs and were thus good candidates for mediating the additional interhemispheric 

inhibition necessary to suppress incorrect turns. To test this hypothesis, we first classified aHB neurons 

into functional response types. We found four overrepresented types that were a subset of the Pt types 

(Figure 6B, Figure S7D-F, Table S2) and hypothesize that only this subset of Pt neurons sends 

projections to the aHB. Intriguingly, the aHB representation enhanced the B type, the strongest 

functional candidate for driving turns. Furthermore, the B type clustered within the Pt and aHB (Figure 

6C1).  
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Neurons ultimately driving turning should not respond to either forward or backward motion. We found 

that B neurons responding to forward and backward motion were enriched in the Pt (Figure 6C2), and B 

neurons lacking these responses were enriched in the vSPN region (Figure 6C3). More interestingly, 

anatomically organized subpopulations of aHB and ARTR neurons were associated with the Pt or vSPN 

representation (Figure 6C2, 6C3). We refer to these sub-regions as the early (EHB) and late (LHB) 

hindbrain, respectively, as the EHB is functionally associated with visual areas (i.e. Pt) and the LHB is 

associated with motor areas (i.e. vSPNs). Many of the B neurons in the LHB were suppressed to levels 

not seen in the Pt but expected from the behavioral output (Figure 6D3, right), indicating that necessary 

interhemispheric inhibition lies within the hindbrain. By dissecting these hindbrain circuits, we provide a 

critical link between visual processing in the Pt and behavior. 

Quantitative model for Pt and aHB control of behavior 

These considerations lead us to a model of how the Pt generates forward swimming and the Pt and aHB 

cooperate to generate turning (Figure 7A). Neurons in each major Pt response category drive premotor 

neurons controlling forward swimming. Since brain responses associated with forward swimming are 

bilaterally symmetric (Figure S7A), we assume that the left and right Pt contribute symmetrically (green 

lines, Figure 7A). Thus, the transformation of Pt signals into forward swimming behavior consists of 

eight functional connection weights, from each Pt response type to premotor nMLF units. To refine turn-

related signals, we suppose that a subset of Pt neurons project to aHB. Both EHB and LHB receive 

ipsilateral inputs from the four Pt types common to the aHB (Figure 6B). LHB also receives contralateral 

input from EHB. Thus, the transformation of right Pt and left EHB signals into rightward turning consists 

of eight functional connection weights onto neurons in right LHB, which then drives turn generation 

(Figure 7A). The model is symmetric across the midline for leftward turning and accounts for the missing 

turn suppression (Figure S7G, cf. Figure 5E). 

Identifying critical dimensions of functional connectivity 

The experimentally informed circuit architecture (Figure 7A) can account for the behavioral responses. 

However, one would not expect the model to predict every feature of the functional connectivity that 
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might be revealed by future experiments, as current experiments only provide a low-dimensional view of 

the brain (Gao and Ganguli, 2015). For example, our stimuli did not isolate behavioral drive to individual 

functional response types, as multiple sets of connections (Figure S7H, top) lead to similar behavioral 

predictions (Figure S7H, bottom). Nevertheless, a successful model should accurately predict behavior 

in experiments probing functional elements well-constrained by the current data. To identify critical 

determinants of model performance, we examined the full ensemble of models that linearly generate 

sensorimotor transformations via the circuit architecture of Figure 7A (Methods). The model 

architecture could accurately predict the behavioral data using a range of functional connections (Figure 

7B), and even the signs of connections were ambiguous. 

Such flexibility is common in multiparameter models when correlated parameter changes compensate to 

avoid error (Fisher et al., 2013; O’Leary et al., 2015). Individual connections could compensate in our 

model (Figure 7C, left), so we identified connectivity patterns that independently affect model accuracy 

(Figure 7C, right). We term these patterns functional modes. Figure 7D represents the functional modes 

as columns in a matrix, where each row represents a response type in Pt for forward swims (Figure 7D, 

left) and in Pt or EHB for turns (Figure 7D, right). For example, the eighth functional mode of swimming 

(8F) positively weighted connections from every response type (Figure 7D, left). The modes are ordered 

so that parameter changes along high-numbered modes induce large errors (Figure 7D, top). The  

models in Figure S7H performed similarly because they differed along the first mode.  

The functional modes can also be interpreted as population activity patterns that contribute 

independently to the accuracy of the sensorimotor transformation, so we could calculate the fraction of 

error eliminated by each mode (Figure 7D, bottom). A few modes eliminated the vast majority of model 

error, and the signs of abstract functional connections from these modes were reliably determined and 

positive. The seventh functional mode of swimming (7F) eliminated the most error, while 6F and 8F 

repaired discrepancies. Similarly, the seventh mode of turning (7T) was most important, while 5T refined 

model predictions. Thus, one significant mode mostly explained each behavior, but secondary modes 

helped shape detailed behavioral patterns.  
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Similar considerations reveal reliable optogenetic predictions. The model predicts that activation of a 

response type or functional mode will cause a behavioral response if there was a significant functional 

connection between them. The model also predicts that uniform activation of left Pt would drive forward 

swimming (p = 0.002), drive leftward turning (p = 2.7 x 10-13), and suppress rightward turning (p = 

0.0018). Selective activation of all binocular response classes in left Pt would likely suppress swimming 

(p = 0.11), drive left turning (p = 4.8 x 10-12), and have no effect on right turning (p = 0.41). Selective 

activation of all monocular classes in left Pt would likely drive swimming (p = 0.051), suppress left turning 

(p = 0.0069), and have no effect on right turning (p = 0.48).  

Finally, our model predicts that Pt is functionally multiplexed, with different aspects of the population 

response driving the behaviors. For example, mode 7F weighted response types according to their 

preference for inward versus outward motion (Figure 7E), which made this mode a component of the 

population response that was activated by stimuli promoting forward swimming and suppressed by 

stimuli reducing forward swimming (Figure 7F). Importantly, the model also predicts that certain aspects 

of the population response are functionally irrelevant. The irrelevance of 8T (Figure 7D, right) means that 

matched responses in right Pt and left aHB do not drive behavior. Nevertheless, such activity 

characterized several stimulus conditions (e.g. forward motion). Unsupervised techniques for parsing 

population activity risk equating response frequency with relevance. Since brains must multiplex their 

functions in ethological conditions, it is critical that future work integrate model and experiment to align 

responses to specific functions. 
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Discussion  

 

Here, we combine experiment and theory to delineate a sensorimotor transformation within the zebrafish 

brain, from sensory input to locomotor output. By sequentially evaluating possible models with 

behavioral, functional, and anatomical data, we arrived at a quantitative whole-brain circuit model that 

accounts for the observed aspects of the OMR using experimentally identified neural response types. 

We note that analyses at the behavioral, whole-brain, and systems levels were critical for defining a 

biologically plausible and functionally relevant circuit architecture. Yet, we acknowledge that our 

treatment ignores processing in the retina and spinal cord. Dedicated experiments to decipher these 

peripheral mechanisms will complement our model of central processing. Overall, our methodology 

establishes a roadmap for digesting large-scale neural data from vertebrate brains and raises 

fundamental questions that are broadly relevant to whole-brain descriptions of function and behavior.  

Relevance of eye-specific motion processing 

We dissected the routes of sensory input by decomposing motion egocentrically. For a given eye, left- 

and rightward motion should, a priori, be perceptually symmetric. Yet, sensorimotor circuitry maintained 

asymmetries (i.e. lateral vs. medial) throughout. These functional asymmetries might survive from an 

evolutionary past in which eye-specific pathways did not converge, reflecting vestigial functional 

inefficiencies: only lateral signals must re-cross the midline to drive turning behavior. The large inhibitory 

influence of medial motion on contralateral turning might be a corresponding consequence of the early 

emphasis on medial pathways. Instead, medial motion might be privileged due to the ethologically 

relevance of approaching motion in other behaviors, and reciprocal inhibition from opponent motion 

signals may help stabilize motor outputs in noisy environments (Mauss et al., 2015). 

Homologues of optomotor response circuitry 

Several features of the zebrafish OMR likely translate to processing in higher-order vertebrates. The 

mammalian anatomy of retinal projections and the Pt suggests that binocular integration may occur via 

the PC (Sun and May, 2014). The zebrafish OMR is established by separate visual channels controlling 
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multiple behavioral parameters. As visual information is organized into channels in other brains (Gollisch 

and Meister, 2010; Huberman et al., 2009; Yonehara et al., 2009), we hypothesize that distinct channels 

may activate segregated motor nuclei to generate flexible behavior in other vertebrates. In particular, the 

nMLF or neighboring neurons may be functional homologues of the mesencephalic locomotor region in 

mammals (Dunn et al., 2016; Ryczko and Dubuc, 2013; Severi et al., 2014), whereas the vSPNs are 

functionally and anatomically similar to neurons in the mammalian reticular formation (Armstrong, 1988). 

Furthermore, the prevalence of caudal interhemispheric connections in the mammalian brain (Chédotal, 

2014) is reminiscent of the zebrafish hindbrain, and these connections might also refine lateralized motor 

streams in higher-order vertebrates.  

In zebrafish, OMR circuitry overlaps with circuits activated in other stabilizing reflexes, such as the 

optokinetic reflex (OKR) of the eyes (Kubo et al., 2014; Portugues et al., 2014). In particular, neurons in 

the Pt are consistently recruited by stimuli that evoke the OKR, but binocular neural activation is far less 

common than during the OMR, perhaps suggesting that different subpopulations coordinate each 

behavior. Notably, Kubo et al. also identified frequent response types in the Pt and hypothesized a Pt 

circuit that could generate the response types (cf. Figure 5D).  

Quantitative modeling  

To understand the requirements of the system, we first built a minimal model to explain the measured 

sensorimotor transformation (Figure 1E). As this model conflicts with anatomical and functional details 

of the brain, we reassessed the model with each new result to eventually obtain a candidate whole-brain 

description (Figure 7G). This iterative migration between experiment and theory will be necessary to 

illuminate the mechanisms of complex sensorimotor transformations, which are underconstrained by 

conceivable experiments (Gao and Ganguli, 2015).  

Functional similarity between neurons resulted in a model whose output was insensitive to some aspects 

of connectivity. This will be common going forward, as neuroscientists typically characterize high-

dimensional systems using a few stimuli and behaviors (Fisher et al., 2013; Gao and Ganguli, 2015; 

O’Leary et al., 2015). Nevertheless, a few combined parameters were critical to explain the behavior, 
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thereby distilling the behaviorally relevant features of the population response. Thus, although we did not 

assign unique functional roles to each response class, we could identify model features that were well 

constrained by the data to make testable predictions for collective encoding. The model architecture also 

makes predictions for connectivity between Pt response classes, aHB classes, and premotor nuclei that 

can be tested with viral tracing, connectomics, channelrhodopsin-assisted circuit mapping, and 

electrophysiology.  

Validation of microcircuitry  

Our model uses DSRGCs and monocular relays to construct the overrepresented Pt response types. All 

retinal input arrives in AF6 from the contralateral visual field, so excitatory and inhibitory relays are 

necessary for binocular integration and reciprocal suppression. Not all Pt neurons receive direct retinal 

input in other animals (Fite, 1985; Koontz et al., 1985; Scalia, 1972; Vanegas and Ito, 1983), and relays 

might distribute input signals throughout the Pt. Future experiments measuring coarse projections, 

detailed connectivity, and neurotransmitter identity of candidate relays are necessary. We predict that 

lateral relay neurons (oML) exist in excitatory and inhibitory forms that differ in their projection patterns. 

One could use transgenic lines specifically labeling glutamatergic and GABAergic populations to test this 

hypothesis. 

Our model also predicts that LHB neurons are excited by specific ipsilateral Pt response types and 

inhibited by contralateral EHB neurons. The latter prediction is consistent with known organization in the 

zebrafish hindbrain (Kinkhabwala et al., 2011; Randlett et al., 2015; Sassa et al., 2007) and with the 

prevalence of commissures in the rhombencephalon (Koyama et al., 2011; Lee et al., 2015), but the 

detailed organization proposed here must be verified. Furthermore, a rigorous definition of EHB and LHB 

requires further experiments to distinguish each structure anatomically and functionally.  

A generalizable framework  

We provide an eminently testable framework for future studies and a detailed description of the neural 

circuitry underlying the OMR. We chose the OMR because it is an accessible gateway to a fundamental 

sensorimotor transformation layered with rich complexity. While we address the feed-forward foundation 
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of the OMR with a simple stimulus set, the circuit properties revealed here provide a basis for future 

studies. Indeed, complementary studies of visuomotor behaviors that aim to explain learning, decision-

making, and multimodal processing must first ground themselves in the circuits controlling basic 

behaviors. More generally, our study establishes a computational and experimental scaffold for 

generating testable circuit models on large scales. Our work in larval zebrafish provides a critical link 

between efforts in smaller model organisms and those in vertebrates, an essential step towards tackling 

the complexity of mammalian brains. 
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Figure 1. Eye-and direction-specific optic flow evoke distinct orienting and locomotion patterns 

A Behavioral setup. Left, freely swimming fish are monitored with a camera while moving gratings are 

presented. Heading (Δν) and position (Δx, Δy) are extracted to lock visual motion direction to body axis. 

Right, illustration of each monocular visual field (purple, green, 163°) and the small binocular overlap 

(dark gray, 12°). Scale bar 500 μm. 

B Stimulus set composed of static, medial and lateral motion, and forward and backward stimuli. 

Arrowheads indicate motion direction. Circular icons represent eyes, and white tick marks show the 

direction of motion. These icons and colors are used throughout the paper. 

C Bar graph of average angular velocity (heading direction change per second) during behavioral 

responses. The white bar represents the linear combination of monocular medial and lateral motion. 

Error bars are SEM across fish (N = 38). 

D Average histograms of absolute frequency per swim bout angle. Left, conflicting stimuli affect forward 

swim frequency (center peak, added “swims”) relative to the static condition (inward vs. static, p = 6.6 x 

10-6; outward vs. static, p = 7.7 x 10-8, paired Wilcoxon). Inward reciprocally suppressed turns (open 

circles). Middle, left/right stimuli increased correct (in motion direction, filled circles) and decreased 

incorrect (opposite of motion direction, open squares) turn frequency (inset). Medial enhanced but 

monocular lateral stimuli suppressed swimming (lateral vs. static, p = 0.006). Shaded error is SEM, N = 

38. Right, forward stimuli increased, backward stimuli significantly reduced forward swim frequency (vs. 

static, p = 2.1 x 10-6). N = 30. 

E Comparison of measured bout frequencies and minimal model output. DSRGCs connect to motor 

centers for forward swimming (F), and left (TL) and right turning (TR). Left, forward swimming. Each point 

is the mean peak response to a stimulus; lighter center indicates leftward motion. Right, turning 

behavior. ‘correct’ turns, filled circles; ‘incorrect’ turns, open circles; non-directional stimuli, open 

squares. Model input-output functions for each behavioral component, top right and left. Dotted lines 

indicate baseline rates. 

 
 
Figure 2. Whole-brain activity maps reveal processing stages underlying the OMR  

A Dorsal overview of zebrafish neuroanatomy. DSRGCs (black dots) project via the optic chiasm (OC) to 

10 contralateral retinal arborization fields (AFs). Pt, pretectum; nMLF, nucleus of the medial longitudinal 

fasciculus; aHB, anterior hindbrain; RoL, neurons in rhombomere 1; ARTR, anterior rhombencephalic 

turning region; vSPNs, ventromedial spinal projection neurons; cHB, caudal hindbrain; M/HB, midbrain-

hindbrain border; rh1-5, rhombomeres 1-5. A, anterior; P, posterior. 

B Distribution of all motion-sensitive units (n = 76,604) across 14 Tg(elavl3:GCaMP5G) fish. Each unit is 

a dot, color-coded for preferred motion direction (see Dir. color wheel). Bottom left, histogram of direction 

preference. Scale bars, 50 µm. 

C Histograms of direction preference for specific brain regions. 

D Binocular activity map generated from sequential presentation of monocular leftward motion to each 

eye. Pixels are colored for medial vs. lateral preference (Methods). Binocular regions appear white. 

Anatomy in gray.  
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E Left, two-photon micrographs from single AF6 and Pt planes. Right, average ∆F/F for ROIs (dashed 

white lines). Gray rectangles indicate stimulus presentation periods. Shaded areas are SEM over n = 10 

stimulus repetitions. 

F Left, responses to 8 whole-field motion stimuli, see color wheel, top. Right, polar plots (+/-SEM, 

shaded area) of average normalized ∆F/F in N = 7 fish.  

 
Figure 3. Population activity in the pretectum  

A Left, direction selectivity vectors for neurons in the Pt (see color wheel, top). Gray, magnitudes smaller 

than 0.4; black, population average vectors. Right, anatomical distribution of direction preference. A, 

anterior; P, posterior; L, left; R, right. Dashed line, brain midline.  

B Left, Linear binocular integration of normalized ∆F/F responses. (*) p = 1.2 x 10-37, paired Wilcoxon. 

Bars are mean ± SEM across all neurons. Right, scatter plot of individual Pt neuron responses. Red, 

least squares regression line; Dashed black, unity line. 

C Histogram of Pt neuron suppression indices (Methods).  

D Normalized ∆F/F to conflicting motion for neurons preferring either backward (-135° to +135°, n = 191) 

or forward (-45° to +45°, n = 678) motion.  

 
 
Figure 4. Laser ablation of posterior commissure disrupts binocular integration 

A The posterior commissure (PC) connects the left and right Pt, providing a putative conduit for lateral 

excitation (purple arrow) and medial inhibition (green triangle). Red spiral, target for laser ablation. (OC) 

optic chiasm. (TL) motor center for turning.  

B Left, anatomy before (top) and after (bottom) PC ablation. Red spiral, ablation site. Red arrowheads, 

bottom, tissue debris (compare to top). Right, average ∆F/F before (colored) and after (gray) PC ablation 

for the 3 ROIs. n = 6 stimulus repetitions. Vertical lines represent stimulus presentation periods. 

C Average orientation change per bout in control (N = 38 fish) and ablated (post, N = 14 fish) animals. 

Inset, difference between coherent binocular and monocular medial responses (p = 6.2 x 10-5, unpaired 

Wilcoxon). C, control; P, post.  Post-ablation monocular lateral vs. static baseline, p = 0.2; Post-ablation 

coherent vs. control monocular medial, p = 0.08. (*) p < 10-4, n.s., not significant, p > 0.05.  

D Average histograms of absolute frequency per bout angle post-ablation (N = 14 fish).  

E Change in peak turn probability (post-ablation minus control) for incorrect and correct turns. (*) p < 

0.05. 

F PC ablation reveals effect of medial motion on behavior. Medial motion activates the contralateral 

nMLF directly and the ipsilateral nMLF indirectly via the PC to drive forward swimming (F). Medial motion 

suppresses incorrect turns (TL) via the PC but also via other interhemispheric connections, potentially in 

the hindbrain. 

 
 
Figure 5. Pretectal neurons cluster into distinct functional response types 
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A Heat map of mean normalized ∆F/F within monocular and binocular response categories (Methods). 

Column width, relative frequency neuron types; brightness, mean normalized ∆F/F. Top types: oB, 

outward-responsive binocular neuron; B, binocular; iB, inward-responsive binocular; ioB, inward- and 

outward-responsive binocular; iMM, inward-responsive monocular (medial-selective); MM, monocular 

(medial-selective); oML, outward-responsive monocular (lateral-selective); S, selective for coherent 

motion. (‘) matching right-selective types. 

B Left, average normalized ΔF/F for the top 8 left-selective response types, ranked by frequency. 

Shaded area, SEM across neurons. Mirror-symmetric right-selective types in Figure S5D. Right, 

average direction selectivity. Vector width is bootstrapped standard error for each x and y vector 

component.  

C Sorted histograms of response type frequency. Major Pt types (dashed boxes) lie above the indicated 

discontinuity threshold (gray line, Methods). 

D Hypothesized circuit for generating Pt types via monocular relay neurons. In this example, the B 

neuron is activated by leftward medial and lateral but inhibited by rightward medial and lateral motion.  

E Left, Model using overrepresented Pt response types generated from relay neurons that integrate 

DSRGCs signals. Pt neurons project ipsilaterally to left and right turning centers (TL, TR) and to a forward 

swimming center (F). Right, comparison of measured bout frequencies and minimal model output. 

Insufficient suppression of Pt neurons caused model failure for incorrect turns (open squares, inset).  

 

 
Figure 6. Hindbrain circuitry refines turning behavior 
 
A Distribution of all motion-sensitive units with higher peak ∆F/F responses to any direction over forward 

(n = 44,047, N = 14). Each unit is color-coded for preferred direction of motion. Anatomical labels as in 

Figure 2. 

B Average normalized ΔF/F in response to each stimulus for the 4 overrepresented aHB response types 

(left-selective). Right, average direction selectivity vectors for each respective class (cf. Figure 5B). 

Neurons named as in Figure 5. 

C1 Distribution of all binocular units (B), colored for preferred motion direction. C2 B units activated by 

forward and backward motion. C3 Left, B units without significant responses to forward and backward 

motion. Right, motion-opponent B units suppressed by the opposite direction of motion. Traces show 

mean normalized ∆F/F traces for each population of B units. (*), active above baseline (> 1.8*STD); 

arrowhead, suppressed below baseline (< -1.8*STD); circles, no significant response.  

 

Figure 7. Neural network modeling identifies significant dimensions of functional connectivity 

A Model incorporating hindbrain circuitry. Green, F, forward premotor units. Gray circles, Pt neurons 

projecting to the ipsilateral early hindbrain (EHB, ovals) and late hindbrain (LHB). Red, T, turn premotor 

circuitry. Neurons numbered as in Figures 5B, 6B.  

B Best-fit connection strengths (95% confidence intervals) between neuron types and premotor units. 

Only two types predict significant non-zero connections (darker bars). 
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C Left, model error as a function of connectivity strength between neuron type 1 and F and neuron type 

2 and F; all others connected by best-fit connection strengths. Right, while Pt neurons do not behave 

independently, we identified independent dimensions of population connectivity (functional modes) 

by rotating the error surface. Each axis now corresponds to a pattern of activation and suppression 

across neuron types (Methods).  

D Top, independent connectivity patterns for neuronal response types (rows) within each functional 

mode (columns), sorted according to the model’s sensitivity to perturbations in the direction of each 

mode (black bars, top). Bottom, fraction of error eliminated by each mode. (*) modes with a reliable 

influence on behavior (Methods).  

E Illustration of how modes contribute to model output in response to stimuli (here shown only for 

coherent rightward motion).  

F The behavioral output associated with individual swimming modes (ModeF) and turning modes 

(ModeT). Top two rows show output for the two most significant swimming (left) and turning (right) 

modes. Bottom row shows collective output for the 6 most and 2 most significant swimming and turning 

modes, respectively. Bars colored by stimulus identity.  

G Quantitative whole-brain model for the OMR, reflecting the best-fit connectivity in Figure 7B. Neuron 

types are represented by symbols illustrating activation and suppression by motion stimuli (see legend).  
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METHODS AND RESOURCES 

CONTACT FOR REAGENTS AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to the corresponding 

author Florian Engert (florian@mcb.harvard.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Zebrafish 

For all experiments, we used 5-7 days post-fertilization (dpf) wild-type (AB or TL) or transgenic nacre -/- 

zebrafish; nacre -/- mutants lack pigment in the skin but retain wild-type eye pigmentation. All measured 

behavioral variables in nacre -/- fish were similar to wild-type, heterozygous siblings. Zebrafish were 

maintained on a 14 hrs. light /10 hrs. dark cycle and fertilized eggs were collected and raised at 28.5 °C. 

Embryos were kept in E3 solution (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4). All 

experiments were approved by Harvard University’s standing committee on the use of animals in 

research and training. All imaging experiments in this study were performed on transgenic zebrafish 

Tg(elavl3:GCaMP5G), a generous gifts from Drs. Michael Orger, Drew Robson and Jennifer Li or in 

double transgenic Tg(elavl3:GCaMP5G); Tg(α-tubulin:C3PA-GFP). The Tg(α-tubulin:C3PA-GFP) was 

kindly provided by Dr. Michael Orger. Tg(elavl3:GCaMP2), also a gift from Drs. Michael Orger, Drew 

Robson and Jennifer Li was used as anatomical reference in laser ablation of the posterior commissure.  

 

METHOD DETAILS 

Behavior in freely swimming zebrafish 

Zebrafish swam freely in a clear 5 cm diameter petri dish (VWR) in filtered E3 solution at 3-5 mm height, 

minimizing variability of visual angle. Illumination of the fish was achieved by a circular array of infrared 

light-emitting diodes (810 nm) directed from below. Fish behavior to various motion stimuli was recorded 

at 200 Hz using an infrared-sensitive, high-speed, monochrome charge coupled device (CCD) camera 

(Pike F-032, 1/3”, Allied Vision Technology, Germany). A zoom lens (Edmund Optics, USA) was used 

with an infrared pass filter (RG72, Hoya, Japan). The center of the dish was aligned with the center of an 

appropriately zoomed camera image such that the edge of the dish was not visible in the field of view; 

this simplifies the fish detection algorithm by not having to handle sidewall reflections. Stimuli were 

projected onto a 12 by 12 cm diffusing screen after reflection by a 4 x 4 inch cold mirror (both Edmund 

optics, USA) 5 mm directly below the fish using a commercial DLP projector (Optoma, USA). Custom 

image processing software (Labview, National Instruments, USA and Visual C++, Microsoft, USA) 
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extracted the position (center of mass) and orientation (vector anchored by detection of swim bladder 

and center of mass between eyes) of the fish at the camera acquisition frame rate (200 Hz) from a 

background-subtracted frame. This information was used to continuously update a stimulus rendered in 

real-time using OpenGL to provide consistent motion stimulation with respect to the body axis. To begin 

each trial, fish were induced to swim to the center of the camera field of view by concentric circular, 

converging sinusoidal gratings (Movie S1). Detection of the fish near the center triggered a trial. Each 

trial began with a 500 ms static period in which gratings (running parallel relative to the fish body axis, 

spatial period of 1 cm) were locked to fish orientation in a closed loop configuration. These orientation-

locked gratings then began to move at 10 mm/s (or remained stationary throughout the trial, depending 

on the particular stimulus identity, Movie S1). Stimulus presentation continued until either the fish 

aborted the trial early by leaving the active area or the maximum trial duration (30 s) was reached. To 

independently stimulate each eye, a 0.8 cm area was blanked (black) directly underneath the fish. In 

control experiments, we widened the blanked area and did not observe any effect on behavioral 

outcome (data not shown); this is consistent with independent stimulation of each eye. Only fish that 

completed at least 10 repetitions in less than 3 hours were included in further analysis or ablation 

experiments. Extracted the position and orientation were further analyzed as described in 

QUANTIFICATION AND STATISTICAL ANALYSIS. 

 

Fictive Behavior 

Transdermal motor nerve recordings of fictive behavior were performed as outlined in (Ahrens et al., 

2013b). Larval zebrafish (5-7 dpf) were paralyzed by immersion in a drop of fish water with 1 mg/ml 

alpha bungarotoxin (Sigma-Aldrich) and embedded in a drop of 2% low melting point agarose, after 

which the tail was freed by cutting away the agarose around it. Two suction pipettes were placed on the 

tail of the fish at intersegmental boundaries, and gentle suction was applied until electrical contact with 

the motor neuron axons was made, usually after about 10 minutes. These electrodes allowed for the 

recording of multi-unit extracellular signals from clusters of motor neuron axons, and provided a readout 

of intended locomotion. Extracellular signals were amplified with a Molecular Devices Axon Multiclamp 

700B amplifier and fed into a computer using a National Instruments data acquisition card. Custom 

software written in C# (Microsoft) recorded the incoming signals. These signals were then analyzed 

offline in Matlab (Mathworks, USA). Please see QUANTIFICATION AND STATISTICAL ANALYSIS for 

detailed analysis. 

 

Two-photon Ca2+ imaging 
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In-vivo two-photon fluorescence imaging of neural activity was performed in 5-7 dpf 

Tg(elavl3:GCaMP5G) zebrafish larvae. Prior to imaging, larvae were paralyzed in α-Bungarotoxin (1 

mg/ml, Sigma, USA) and embedded in low melting point agarose (2% w/v), which prevented movement 

artifacts. Viability was monitored before and after imaging by observing the heartbeat and blood flow 

through brain vasculature. All data acquisition and analysis was performed using custom Labview 

(National Instruments, USA), Matlab (Mathworks, USA) and C# software. Imaging was performed with a 

custom two-photon laser-scanning microscope, using a pulsed Ti-sapphire laser tuned to 920 nm 

(Spectra Physics, USA). Stimuli were projected from below with a DLP or LCOS projector (Optoma, USA 

or AAXA Technologies, USA, respectively) using only the red channel, which allowed for simultaneous 

visual stimulation and detection of green fluorescence. Visual stimuli were blanked with a black bar 

underneath the fish, as in free behavior experiments. Stimuli were 8.5 seconds in duration, which was 

long enough for neural activity to reach characteristic peaks (for transient responses) or plateaus (for 

sustained responses, see Figure 5B), and were separated by 11.5 seconds of static (no motion) 

gratings. For brain-wide mapping experiments, images were acquired at 2 Hz. For pretectal imaging, 

frames were acquired at 3.6 Hz, as afforded by the smaller field of view. For experiments spanning 

smaller brain volumes (e.g. specific pretectal imaging), 10 stimulus repetitions were presented per z-

plane. For experiments across large brain volumes (e.g. whole-brain experiments), 3 stimulus repetitions 

were presented per z-plane. The resulting image time and depth series were analyzed in Matlab 

(Mathworks, USA). Subsequent analysis was performed as described in QUANTIFICATION AND 

STATISTICAL ANALYSIS. 

 

Tracing pretectal projection patterns 

Double Tg(α-tubulin:C3PA-GFP) ;Tg(elavl3:GCaMP5G) fish at 6 dpf were embedded in 2% agarose in a 

35 mm petri dish. We modified the tracing protocol developed by Datta et al. (Datta et al., 2008) to trace 

projections from a subset of Pt neurons (Figure S3D). While presenting whole-field motion stimuli from 

below, fish were first imaged under a two-photon microscope at 925 nm to identify motion-sensitive 

neurons. Then, after taking anatomical stacks of the region, individual motion-sensitive Pt neurons were 

selected on one side of the brain. PA-GFP in selected neurons was then activated using 5-10 pulses 

(100 ms – 2 s) of 770 nm pulsed infrared laser light. Selective photoconversion was confirmed by 

switching to 925 nm and imaging the selected plane for increased fluorescence. The activation protocol 

was repeated until photoconverted fluorescence no longer increased significantly. Anatomical stacks of 

projection patterns were acquired 2 hours post-activation. The pre and post activation two-photon stacks 

were then aligned and analyzed using FIJI (Image J) software. For highlighting of the posterior 

commissure (Figure S4A and S4F, right), anatomical pre-activation stacks of Tg(α-tubulin:C3PA-GFP) 

were acquired, before activating a small region with the same protocol as described above. The pre and 
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post activation two-photon stacks were then aligned and analyzed using FIJI (Image J) software in 

separate color channels. 

Two-photon laser ablations 

After embedding zebrafish in low melting agarose, areas were targeted using neuroanatomical 

landmarks, stereotypical blood vasculature, and/or neuronal activity patterns in Tg(elavl3:GCaMP2) or 

Tg(elavl3:GCaMP5G) larvae. Mode-locked laser power (885 nm, 120-135 mW maximum at sample) was 

linearly increased while the beam was scanned in a spiral pattern over the targeted region (typically 0.5 

– 10 s). The laser scan was immediately terminated upon the detection of fluorescence saturation, which 

is presumed to result from the creation of highly localized plasma via multi-photon absorption. For single 

cells, this method resulted in the complete destruction of the target cell without affecting adjacent cells. 

Ablations in neuropil regions (like the PC) required additional validation. Due to the depth and 

anatomical position of the PC, nearly 50% of ablated fish showed non-specific side effects such as 

nearby necrotic tissue or changes in the optical density of the optic tectum, likely due to blood vessel 

cauterization from out-of-focus heating. These fish were excluded from post-ablation analysis. Before 

and after PC ablation imaging was performed in only a subset of fish. After freeing fish from agarose and 

a recovery period (10-120 minutes, until fish were swimming spontaneously), fish were tested in the 

behavioral assay. For the AF6 ablation, we specifically monitored fluorescence before and after ablation 

across AFs. Only fish that exhibited functional perturbations specific to AF6 were further analyzed. 
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Quantitative modeling 

Behavior-only modeling: 

We built the model in Figure 1E to illustrate that a simple circuit architecture could account for the 

observed binocular visuomotor transformation. For all behavioral model results error bars are SEM 

across fish (N = 38). The synaptic inputs onto the forward swimming center were 0.0395 from the medial 

responsive RGCs and -0.0088 from the lateral responsive RGCs. The magnitudes of synaptic inputs 

onto the two turning centers were 0.0133 from the medial responsive RGCs and 0.0068 from the lateral 

responsive RGCs. The sign of each connection onto a turning center was positive when the direction of 

the RGC matched the direction of the turning center. After summing the monocular components of the 

motion stimuli, we converted the resultant retinal input signals into the model rate through a transfer 

function. For forward swimming, this transfer function was the sum of the retinal input and the baseline 

static swimming rate (0.0836). For turning, we fit a cubic transfer function to generate the behavioral 

turning rates from the retinal input signals. The resulting transfer function was 𝑓(𝑥) = 114.6𝑥3 +

17.48𝑥2 + 0.5168𝑥 + 0.006175 , where 𝑥  denotes the retinal input signal. To simulate the ablation 

experiment in Figure S4E, we removed those synaptic inputs that could not reach the lateralized turning 

centers without an interhemispheric connection within the zebrafish brain.  

 

Quantifying the visuomotor transformation: 

Larval zebrafish responded to optomotor stimuli by modulating at least three elements of behavior: 

forward swimming; turning to the left; and turning to the right (Figure 1D). For each stimulus condition 

and element of behavior, we quantified the response magnitude as the amplitude of the associated peak 

of the mean bout frequency histogram. We similarly quantified the uncertainties of each mean response 

magnitude using the SEM of the histogram. Since neuronal fluorescence responses were measured 

relative to the background set by the static stimulus, we shifted the behavioral responses to also be 

relative to the static stimulus. We accordingly corrected the uncertainty of each stimulus response to 

account for the uncertainty of the static response. Since the static stimulus is zero by construction, we 

are left with ten non-trivial stimulus conditions.  

 

For each of the three behavioral classes, we construct a 10-dimensional vector 𝑦 whose components are 

the experimental motor response magnitudes for the 10 stimulus conditions. We also define the 10 × 10 

diagonal matrix C whose diagonal elements, 𝜎𝑖
2, are the squares of the response uncertainties. Suppose 

that �̂� is a 10-dimensional vector of predicted response magnitudes by some circuit model. We quantify 

the error of the model as  
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𝑒 = (𝑦 − �̂�)𝑇𝐶−1(𝑦 − �̂�) =∑
(𝑦𝑖 − �̂�𝑖)

2

𝜎𝑖
2

10

𝑖=1
 

 

where the superscript 𝑇 denotes the matrix transpose, and 𝑖 indexes the stimulus condition. Note that 𝑒 

is simply the squared error weighted by the uncertainty in each stimulus condition. 

 

Linear regression framework for functional connectivity: 

As discussed in the main text and illustrated by Figure 7A, our model uses functional connections from 

neurons in the major Pt and aHB response categories to premotor neurons to generate each element of 

behavior. For example, eight functional connection strengths, from the {oB, B, iB, ioB, iMM, MM, oML, S} 

major Pt neuron categories (and their rightward selective counterparts) to nMLF neurons, parameterize 

the forward swimming component of the visuomotor transformation (green lines, Figure 7A). The model 

parameters for the rightward turning component of the visuomotor transformation also consists of eight 

functional connection weights, now from the {oB’, B’, iMM’, S’} major right-selective Pt neuron categories 

and the {oB, B, iMM, S} major left-selective aHB neuron categories to right LHB units. The circuit driving 

leftward turning is the mirror-reflection of the circuit driving rightward turning. 

 

Our task is to understand how the choice of these functional connection weights affects the accuracy of 

the modeled visuomotor transformation. Since the formalism does not depend on the element of 

behavior under consideration, we henceforth use abstract notation to describe the general method. Let 𝑋 

denote the 𝑛 × 𝑝 response matrix, which comprises the mean fluorescence response of 𝑝 neurons to 

each of 𝑛 stimuli. Note that 𝑛 = 10 and 𝑝 = 8 for each type of behavior considered here. For example, 

the columns of 𝑋 correspond to the responses of the  {oB’, B’, MM’, S’} major right-selective Pt neuron 

categories and the {oB, B, MM, S} major left-selective aHB neuron categories to the 10 stimulus 

conditions, when considering rightward turning behavior. We model the visuomotor transformation as a 

linear combination of these responses 

 

�̂� = 𝑋𝛽, 

 

where 𝛽 denotes the 𝑝-dimensional weight vector of functional connection weights.  
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Choosing the weight vector to minimize 𝑒 is mathematically equivalent to performing maximum likelihood 

parameter estimation with the generative model 

 

𝑦 = 𝑋𝛽 + 𝜂, 

 

where 𝜂 is an 𝑛-dimensional vector of zero-mean Gaussian noise with covariance matrix 𝐶. In particular, 

the log-likelihood function for this model is 

 

𝑙(𝛽) = −
1

2
𝑒(𝛽) + 𝐴, 

 

where 𝐴  is a constant that does not depend on the model parameters. We thus applied standard 

techniques from maximum likelihood parameter estimation to compute confidence intervals for the best-

fit model parameters (Figure 7B-D). Similarly, we computed p-values for the model’s predictions 

regarding the effects of optogenetic activation of a neural activity pattern, 𝑥, by considering the null 

hypothesis that 𝑥𝑇𝛽 = 0. 
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Structure of the error function:  

With the assumptions described in the previous sections, the error associated with the visuomotor 

transformation is a quadratic function of the functional connection strengths 

 

𝑒(𝛽) = 𝑒min + (𝛽 − �̂�)
𝑇
𝐻(𝛽 − �̂�), 

 

where  

 

�̂� = 𝐻−1𝑈 

 

is the best fit functional connection strengths (colored bars in Figure 7B),  

 

𝐻 = 𝑋𝑇𝐶−1𝑋 

 

is proportional to the Hessian matrix of the error function, and 𝑈 is defined by 

 

𝑈 = 𝑋𝑇𝐶−1𝑦. 

 

The minimal error achievable by the model architecture is  

 

𝑒min = 𝑦𝑇𝐶−1𝑦 − 𝑈𝑇𝐻−1𝑈, 

 

Let 𝑉 denote the 𝑝 × 𝑝 matrix in which each column is a right eigenvector of 𝐻. Then 𝑉𝑉𝑇 = 𝑉𝑇𝑉 = 𝐼, 

where 𝐼 is the identity matrix, Λ = 𝑉𝑇𝐻𝑉 is a diagonal matrix whose diagonal contains the eigenvalues of 

𝐻, and 𝑉𝑇𝛽 is the weight vector in the basis of eigenvectors of 𝐻. The matrices in Figure 7D simply 
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show 𝑉 for both swimming and right turning behavior. The eigenvectors of 𝐻 correspond to the principal 

axes of the quadratic error surface, and we refer to each eigenvector of 𝐻 as a functional connectivity 

mode.  

 

The basis of functional modes is useful because the error function receives independent contributions 

from the component of the weight vector along each functional mode, 

 

𝑒(𝛽) = 𝑒min +∑ 𝜆𝑖(𝛾𝑖 − 𝛾𝑖)
2

𝑝

𝑖=1
, 

 

where the 𝜆𝑖 are eigenvalues of 𝐻,  

 

𝛾𝑖 = (𝑉𝑇𝛽)𝑖 =∑ 𝑉𝑗𝑖𝛽𝑗
𝑝

𝑗=1
 

 

is the projection of 𝛽 onto the 𝑖𝑡ℎ mode, and 𝛾𝑖 is the projection of the optimal weight vector onto the 𝑖𝑡ℎ 

mode. Note that the black bar plots in Figure 7D show the eigenvalue associated with each functional 

mode. Departures of 𝛽 from the optimal weight induce large errors when they project onto modes that 

are associated with large eigenvalues. Thus, the confidence interval for 𝛾𝑖  is narrow for the modes 

associated with large eigenvalues. 
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This basis transformation is also useful because the projections of the optimal weight vector along each 

mode contribute independent error reduction to model. In particular, note that we can rewrite the minimal 

error as 

 

𝑒min = 𝑦𝑇𝐶−1𝑦 −∑
(𝑉𝑇𝑈)𝑖

2

𝜆𝑖

𝑝

𝑖=1
= 𝑦𝑇𝐶−1𝑦 (1 −∑ 𝑟𝑖

2
𝑝

𝑖=1
), 

 

where  

 

𝑟𝑖
2 =

1

𝑦𝑇𝐶−1𝑦

(𝑉𝑇𝑈)𝑖
2

𝜆𝑖
. 

 

Because the error of the fully disconnected model is 𝑦𝑇𝐶−1𝑦, 𝑟𝑖
2 is the fraction of error eliminated by 

each mode. The bottom panels in Figure 7D shows 𝑟𝑖
2 for each mode. 
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Interpreting the functional modes as neural activity patterns:  

In the previous section, we defined 𝑉 as the 𝑝 × 𝑝 matrix in which each column is a right eigenvector of 

𝐻. If 𝑥 is a 𝑝-dimensional pattern of neural activation across a population of behaviorally relevant major 

neuron categories, then 𝑉𝑇𝑥 represents the same activity pattern in the basis defined by the columns of 

𝑉, and any activity pattern can be written as a linear combination of the columns of 𝑉. Thus, we can thus 

think of the columns of 𝑉 as defining functional modes of activity. Thus, an activity mode is the pattern of 

activation that maximizes the projection of the response vector onto the corresponding vector of 

connectivity weights. In this framework, the functional modes replace the major neuron categories as the 

elemental components of neural population activity. Figure 7F displays the stimulus response profiles of 

several functional modes (6F, 7F, 5T, 7T). Each component of the functional connectivity, 𝛾𝑖, corresponds 

to a functional connection strength from one functional mode of activity to a premotor neuron driving 

behavior. The characterization of the error surface provided in the previous section implies that the 

functional modes define patterns of activity from which functional connections contribute independently 

to the accuracy of the modeled visuomotor transformation. The bottom panels of Figure 7D show that 

the functional modes provide a description of neural activity in which only a few dimensions contribute to 

the model’s ability to generate appropriate motor activity under the experimental stimulus conditions. 

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Quantification of swim kinematics 

Offline behavioral analysis was performed using custom Matlab scripts (Mathworks, USA). Because we 

did not assume that data were normally distributed, we used non-parametric statistics for all hypothesis 

testing. Angular velocity for each fish was calculated as total angle turned over total stimulus 

presentation time. Single swim bouts were extracted by peak detection in traces obtained via 

multiplication of orientation change records by box-smoothed (20 ms) swim velocity records (calculated 

from fish center-of-mass). Latency was calculated as time between motion onset of moving gratings and 

first detected swim bout. Bout frequency was computed as the total number of detected swim bouts over 

total stimulus time. Heading angle change for each bout was calculated as orientation directly before (2 

ms) and after (10 ms) a detected swim bout. By convention, negative values indicate rightward (or 

clockwise) and positive values indicate leftward (or counterclockwise) heading angle change. For Figure 

S1C, we corrected for innate turn biases by subtracting the angular velocity measured during the static 

stimuli from all other measurements on a fish-by-fish basis before averaging. For all behavioral bar 
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graphs (Figure 1C, 4C,E) error bars represent standard error of the mean (SEM) across fish. For 

histograms, shaded error is SEM across fish for angle bout type (Figure 1C, 4D). For supplemental 

figures, consult associated legends. 

Fictive behavior analysis 

Analysis of fictive behavior was performed on filtered signals, which consist of the standard deviation of 

the raw signal in 17 ms time bins. For fictive bout frequency analysis, bouts were marked at peaks in the 

filtered signal separated by at least 100 ms and crossing an amplitude threshold (adjusted for signal 

noise: 1 fish at 4.35, 2 fish at 1.95 times the peak baseline noise, as assayed by frequency histogram). 

Visual stimuli were presented as outlined in two-photon Ca2+ imaging, below. Because baseline fictive 

swim frequency was reduced relative to freely swimming experiments, we restricted our analyses only to 

active stimulus epochs (at least 0.1 Hz bout frequency). 

 

Functional imaging analysis 

To generate activity maps (Figures 2E-F, S3E-F), fluorescence movies were averaged separately 

across all frames corresponding to each individual stimulus. A baseline image, the average of all frames 

during interstimulus periods, was then subtracted from these average images, which were masked to 

exclude regions outside of the brain. The resulting images, which were thresholded at 0.5* standard 

deviation (STD) above the mean and eroded and dilated to reduce noise, reflected normalized activity 

for each stimulus that was less polluted from noise in regions of low baseline fluorescence than 

traditional ΔF/F maps. These activity images, specific to each individual stimulus, were then combined to 

produce each type of map. For maps of direction selectivity, activity images for each of the 8 directions 

of whole-field motion were linearly combined using weighted projections into HSV color space, such that 

the combined color is related to the vector sum of activity elicited in response to each direction of motion: 

ultimately, the hue indicates directionality, the value reflects overall motion sensitivity, and the saturation 

represents the vector magnitude (strength of direction selectivity).  For maps of medial/lateral selectivity, 

activity images for medial and lateral stimulus epochs were combined similarly, with the medial activity 

image represented in the green channel and the lateral activity image represented in the magenta 

channel. All other maps were generated analogously, with colors adjusted as indicated.  

 

To generate whole-brain activity maps, Figures 2D, S2D, we used a method that better captured 

correlated activity in neuropil regions, as follows. First, we constructed an average regressor based on 

strongly responding voxels, as extracted from manual ROIs in persistently active regions, which we 

deduced were more related to the OMR, given the persistent properties of the behavior. We used this 
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regressor to calculate the correlation coefficient for each pixel time series in every plane of the acquired 

image stack for each individual stimulus. Maps were then generated by assigning the resulting 

correlation images to appropriate color channels and combining as in the activity maps above. Map 

shown in Figure 2D is a maximum intensity projection through 135 µm of brain tissue, with ventral AF10 

as the most dorsal plane. 

The quantifications of pretectal data presented in Figure 3 were based on ROI selection using a method 

adapted from (Ahrens et al., 2012a). For this analysis, an activity map for each imaged plane was first 

extracted by sweeping a square ROI roughly equal to half the size of a cell body across the spatial 

extent of an imaging movie. For each swept ROI, the spatially averaged fluorescence time series was 

normalized by the ROI’s mean fluorescence across time and the average fluorescence of all pixels 

across space and time. This signal was then cubed to amplify peaks, and each square’s average 

processed signal was assigned to each square’s spatial location. This analysis produced maps of activity 

that were robust to noise in regions of low baseline fluorescence. These activity maps were then overlaid 

on mean fluorescence images (reflecting anatomy) and used to guide manual neuron ROI selection. To 

make composite maps of the pretectal population across fish, all imaged planes were registered to a 

standard Tg(elavl3:GCaMP2) brain, which has an expression pattern indistinguishable from 

Tg(elavl3:GCaMP5G), using cross-correlation. 

 

Fluorescence traces from these ROIs were then divided by a stable baseline amplitude averaged across 

all interstimulus intervals to generate ∆F/F traces. The means of trial-averaged ∆F/F for individual stimuli 

were then used to calculate functional indices. Binocularity index was calculated as [(xM or xL)max – (Mx 

or Lx)max]/ [(xM or xL)max + (Mx or Lx)max], where xM and xL are right-eye monocular medial and lateral 

responses, respectively, and Mx and Lx are left-eye monocular medial and lateral responses, 

respectively. By construction, a value of 0 corresponds to equal activation by left and right eyes, and -1 

and 1 correspond to exclusive activation by the left or right eye, respectively. The inward medial-medial 

suppression index was computed as [(xM or Mx)max – MM]/[(xM or Mx)max + MM], where MM is the 

response to inward motion. By construction, an index of 0 corresponds to no suppression and an index 

of 1 indicates that medial motion in the contralateral eye completely suppresses the response to medial 

motion in the other. The outward lateral-lateral suppression index was calculated analogously. To restrict 

indices to the [-1 1] range, all values were thresholded at 10% ∆F/F (calculated noise floor) to exclude 

negative ∆F/F deflections (or suppressed responses), which we did not integrate into our indices. To 

calculate direction selectivity vectors, we performed a vector sum of responses to the 8 directions of 

motion after normalizing to the maximum response across all directions.  
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For automatic ROI segmentation (Figures 2 and 6), we adapted a method from Portugues et al. 

(Portugues et al., 2014). In brief, we performed a neighborhood correlation analysis for each pixel in 

each plane of the fluorescence movie to generate maps of local correlation. This metric was typically 

high for pixels within the same cell body and discrete, local regions of high local correlation were easily 

segmented into individual ROIs automatically by seeding an ROI at a pixel with a local correlation 

maximum and growing the ROI spatially until the correlation dropped below a fixed threshold (0.15). To 

support ROI selection at the single cell level, ROIs were also limited in size between 30 and 200 pixels, 

or cells approximately 1.7 to 4.3 microns in radius at standard imaging resolution. Because this method 

was blind to the underlying anatomy, this automatic ROI segmentation also selected correlated regions 

of neuropil that met the stated size requirements. 

 

Classification of functional response types 

As we were confronted with complex response patterns in each brain region (Figure S6, Movie S2), we 

classified neural response types with barcode analysis. We assigned each neuron an 8-bit barcode 

(Kubo et al., 2014), which encodes whether or not the neuron significantly increased its fluorescence 

upon motion onset for each of the coherent, monocular, and conflicting stimuli. ∆F/F fluorescence traces 

for ROIs were trial-averaged for each individual stimulus (Figure 1B) but excluding forward and 

backward epochs, as we were primarily interested in how information from both eyes was combined. 

The resulting traces were then baseline corrected with a first-degree polynomial fit to the baseline 

period. We then assessed whether activity during stimulus periods was significantly different from its 

baseline. For a given neuron and stimulus, if the mean of the trial-averaged signal exceeded 1.8*STD 

above its baseline, then the neuron was assigned a ‘1’ for that particular stimulus; otherwise, it was 

assigned a ‘0.’ This resulted in a binary barcode for each neuron across all stimuli in the orthogonal set. 

Based on these 8 stimuli, neurons could fall into 256 (28) different response combination classes. This 

method, and the associated significance threshold, provided the most consistent classification across 

fish during visual inspection of individual neurons, and deviations from this threshold did not markedly 

change relative frequency distributions. While we tried other clustering methods, our barcode technique 

provided the most intuitive results reflecting the stimulus-behavior relationship. Other methods we 

tested, like k-means clustering, required arbitrary parameterizations of the data (like estimated number 

of clusters). We labeled a response class as over-represented if, in sorted histograms of class 

frequency, the class (or its mirror-symmetric partner) was separated from the others by a graphical non-

linearity (see Figure 5C) and was present in all fish. These functional response types allowed us to 

summarize this heterogeneity in our model. Although studies have analyzed heterogeneous population 

responses without classifying neurons (Raposo et al., 2014), our classification helped us in several 

ways. First, a model that references response types rather than individual neurons can make predictions 

for how activity of sub-populations of neurons will translate into behavior. Second, Kubo et al. classified 
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Pt responses during the OKR using this scheme (Kubo et al., 2014), permitting a comparison of Pt 

responses across behaviors. Third, response type classification helped us to identify elements of the 

representation that transformed across brain areas. Fourth, certain response types had a natural 

interpretation (e.g. Pt relay neurons). These neuronal response classes could have subtypes that are 

crucial to more complex behaviors and stimuli. 

 

 

 

For analyses where relative differences in activity across stimuli were most meaningful (e.g. Figure 2F, 

right, Figure 3B, left, Figure 5B), we used normalized ∆F/F metrics. In these cases, we calculated trial-

averaged ∆F/F traces for each ROI and then divided by the maximum ∆F/F value across all time points 

and stimuli. These normalized traces were then averaged across ROIs (where indicated). All ∆F/F 

metrics using single values from stimulus epochs (Figure 2F, right, Figure S3E, bottom, Figure S3F, 

bottom, Figure S3G, Figure 3B, left, Figure 3D) were calculated as mean normalized ∆F/F across all 

time points during each respective stimulus presentation. 

  



                                      Naumann et al. 2016 

 
42 

DATA AND SOFTWARE AVAILABILITY 

 

Data Resources 

We are providing two supplementary data files (Table S1, S2) containing information for the pretectum 

and anterior hindbrain for each response type, including frequency, average peak calcium response, and 

identifying metadata (e.g. monocular vs. binocular, barcode representation). Other data on behavior or 

imaging will be made available upon request. 

 

Software 

Software for data acquisition, analysis and quantitative modeling will be made available upon request. 

 

ADDITIONAL RESOURCES 

 

N/A 
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Supplemental item legends 

Figure S1. Behavioral kinematics necessitate distinct features of underlying neural circuitry. 
Related to Figure 1. 
 
A Example trials of fish heading direction (orientation) change over time during presentation of the full 

stimulus set. Traces are aligned to the onset of visual motion (black arrowheads), with colors as in panel 

B and Figure 1B. Enlarged trace shows the orientation change (ΔΘ) for two individual swim bouts from 

boxed region. Note that fish behavior is characterized by periods of activity (turning or swimming) and 

periods of inactivity.  

B Mean cumulative orientation change over time for a single zebrafish in response to the full stimulus 

set, as indicated by the icons to the right. Note that conflicting (inward and outward) and symmetric 

(forward and backward) stimuli produced no net orientation change, similar to the static control 

response. Shaded error is SEM across trials, n = 117 – 156 trials. 

C Bar graph of average fish angular velocity (orientation change per second) to the full stimulus set, 

colors and icons as in B. Baseline angular velocity was subtracted for each fish. Error bars are SEM 

across N = 38 fish.  

D Bar graph of average latency to bout initiation after motion onset, colors and icons as in B. Stimuli 

containing medial or forward motion information (open circles) evoked responses faster than any lateral 

or backward stimulus. Dotted line signifies the average latency for the static condition. Error bars 

represent SEM across N = 38 fish. 

E Top, x-y trajectory of a single fish during a single trial (30 s) in which the fish was presented with 

binocular leftward motion. Fish responded with discrete, consecutive bouts (open black circles) oriented 

to the left. Below, a velocity plot of the same trial illustrates the bout structure of the behavior, which 

allowed for detection of single locomotion events (open circles). 

F Scatterplots of distance and orientation change (Δ Angle) for extracted bouts during presentation of 

the full stimulus set (N = 1 fish, n = 24,558 bouts, 117 – 156 stimulus repetitions, 11.8 hours). Each bout 

is plotted as a black point, illustrating the distance moved and angle change for each locomotion event. 

Note the symmetric distribution of right and left bouts for static, conflicting outward (magenta), and 

conflicting inward (blue). In contrast, stimuli with net motion (coherent, monocular medial, and monocular 

lateral) caused behavioral biases in the direction of motion (left for leftward stimuli, right for rightward 

stimuli). Note how stimuli containing a medial stimulus evoked bouts with larger distances and biased 

forward swims. While lateral motion stimuli evoked turns in the correct direction (following the direction of 

motion), incorrect turns (opposite the direction of motion) were still permitted. Colors and icons as in 

Figure 1B. 

G Histogram of bout angles for a single fish, plotted on top of mean ± standard deviation (shaded area) 

across all fish.  

H Annotated average bout frequency histograms for each stimulus. Each panel illustrates the effect of 

motion on behavioral output. Colors and icons as in Figure 1B. “Swims” refer to the central forward 

swimming peaks. Accompanying arrows denote the direction and magnitude of each highlighted effect. 

sF, baseline forward swimming frequency during the static condition; sT, baseline turning frequency 

during the static condition. 
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I Table of behavioral observations (algorithmic properties) matched with hypothesized neural 

computations. 

 

Figure S2. Fictive locomotion patterns and identification of optic flow processing centers with 

whole-brain imaging. Related to Figure 2. 

A Schematic of paralyzed, head-restrained larval zebrafish with fictive recording electrodes measuring 

intended locomotion via peripheral motor nerve electrophysiology. Right top, transmission image of 

electrode configuration. Right bottom, example traces of fictive recordings from the left (top) and right 

(bottom) electrodes during presentation of whole field leftward motion. Three stimulus repetitions (gray) 

are shown with intermittent baseline periods, concatenated.  

B Left, average freely swimming bout frequency (N = 38 fish) during presentation of the full stimulus set. 

Stimuli containing medial or forward motion (open circles) increased bout frequency above baseline 

(during static condition, gray dotted line). Bars are color-coded as in Figure 1B. Right, average fictive 

bout frequency (N = 3 fish, see Experimental Procedures) during presentation of the full stimulus set. 

The general pattern of visually evoked bout frequency modulation was comparable to freely moving fish. 

Error bars represent SEM across fish.  

C Schematic reference drawing of frontal (top) and dorsal (bottom) views of the larval zebrafish brain. A, 

anterior; P, posterior; D, dorsal; V, ventral; l, left; r, right. Anatomical outlines show the locations of 

relevant brain regions that process motion information. Pt, pretectum; OC, optic chiasm; OT, optic 

tectum; AF6, 9, 10, retinal arborization fields 6, 9, 10; nMLF, nucleus of the medial longitudinal 

fasciculus; vSPNs, ventromedial spinal projection neurons; ARTR, anterior rhombencephalic turning 

region; aHB, anterior hindbrain; RoL, neurons in rhombomere 1; cHB, caudal hindbrain; M/HB, midbrain-

hindbrain border (dashed line); rh1-5, rhombomeres 1-5. 

D Left, monocular whole-brain activity map generated by sequential presentation of monocular lateral 

and monocular medial motion to the right eye (see icons on top). Pixels are colored if their activity was 

significantly correlated with either monocular medial or lateral stimulus presentation. Pixels more 

correlated with medial are green, and pixels more correlated with lateral are purple. Regions that 

responded to both directions of motion appear white (see colorbar). The map is a maximum intensity 

projection through 135 µm of tissue, with ventral AF10 as the most dorsal plane. Note that signals 

converged in AF6 and AF10 but diverged in the Pt. Scale bar, 50 μm. Right, single planes showing 

activation in AF10, AF6, Pt, and aHB. Adjacent, average ∆F/F traces of the indicated ROIs (dashed 

white lines). Scale bars, 10 μm. Shaded areas represent SEM over 10 stimulus repetitions. 

E Top left, schematic of spinal projection neuron morphology in the zebrafish hindbrain (adapted from 

Orger et al. 2008), with vSPNs highlighted in red. Right, average ∆F/F traces for left and right vSPNs 

backfilled with Oregon Green BAPTA-488 (bottom left). vSPNs showed strong direction selectivity and 

binocular activation, with minimal responses to conflicting motion. Colors and icons as in Figure 1B. 

Gray bars are stimulus presentation periods. Left, N = 7 fish. Right, N = 9 fish. Shaded areas represent 

SEM across fish. 

F Whole-brain, map-derived model of information flow for the zebrafish OMR. DSRGCs in the retina 

(gray circles) send motion streams to contralateral AF6 and AF10. Moving from anterior to posterior, the 

left Pt, which exhibits the binocularity predicted from behavior, then collects leftward (blue) and forward 

(green) motion signals, and the right Pt collects rightward (red) and forward (green) motion signals. 

Anatomically distinct regions in the hindbrain (cHB, RoL) and midbrain (nMLF) are highly forward-



                                      Naumann et al. 2016 

 
45 

selective activity and may thus influence forward swimming. Other regions in the hindbrain (aHB, ARTR, 

vSPNs) show strong tuning to either leftward or rightward motion and may thus influence turning. The 

nMLF and vSPN regions contain spinal projection neurons (descending arrows) that are known to 

directly affect behavior. M/HB, midbrain-hindbrain border (dotted line). rh1-5, rhombomeres 1-5. 

 

Figure S3. Laser ablations, anatomical tracing, and Ca2+-imaging demonstrate the role of AF6 and 

Pt in optic flow processing. Related to Figure 2. 

A Schematic illustrating a unilateral laser ablation of AF6 and its expected effect on behavior. If AF6 is 

the main entry site for OMR-relevant motion information, AF6 lesions (red spiral) should lead to 

disruption of behavior normally evoked by stimulation of the contralateral eye. M, medial; L, lateral; A, 

anterior; P, posterior. 

B Example of AF6 laser ablation in a Tg(elavl3-GCaMP2) fish across 3 imaging planes. Damage (blue 

arrow heads, bottom) was observed surrounding the ablation site (red spiral). Th, thalamus; Pt, 

pretectum; OT, optic tectum. Scale bar, 10 µm. 

C Average angular velocity (orientation change per second) in response to the stimulus set in control fish 

(N = 38) and fish after unilateral AF6 ablation (N = 8). Effects generally suggest that AF6 ablated fish 

behave as if stimulated in only one eye (symbols show how a given stimulus would look to the fish if no 

motion would be perceived through the eye associated with the ablated AF). After ablation, fish 

interpreted conflicting inward motion as monocular medial motion, and behavior appeared to be driven 

only by motion presented to the eye contralateral to the ablation site. Colors and icons as in Figure 1B. 

Error bars are SEM across fish. 

D Left, PA-GFP imaging after photoactivating a single neuron in the Pt in a Tg(α-tubulin:PA-GFP) fish. 

Side and top view show neurites in AF6. Right, imaging a group of photoactivated direction-selective 

neurons in the Pt. Side and top view show projections into AF6 and dim ventrally descending projections 

(white arrows). A, anterior; D, dorsal; L, lateral.  

E Left, two-photon micrographs showing anatomy (gray) and average ∆F/F activity (colors) in the left and 

right AF6 (AF6Left and AF6Right, respectively) for a representative fish. Stimulus icons as in Figure 1B, 

with activity is color-coded accordingly. Right, trial-averaged ∆F/F time series for the entire AF6Left and 

indicated subROIs. The spatial extent of these regions roughly matched the size of synaptic boutons (<1 

um2), reinforcing the idea that AF6 activity represents direct preprocessed motion signals from retinal 

axons. To emphasize relative differences in activity across stimuli, the ∆F/F for each ROI was 

normalized to its maximum response across the stimulus set (horizontal dotted lines). Gray bars 

represent stimulus presentation periods. Bottom, responses to 8 whole-field motion stimuli. Here, active 

pixels are colored according to preferred motion direction (see color wheel). Polar plots for indicated 

ROIs show mean normalized ∆F/F ± SEM across trials in response to each motion direction. Note that 

AF6 was exclusively monocular and contained all directional information.  

F Left, two-photon micrographs showing anatomy (gray) and average ∆F/F activity (colors) in the left and 

right Pt (PtLeft and PtRight, respectively) for a representative fish (color-coded as in E). Right, trial-

averaged ∆F/F time series for the entire PtLeft and indicated subROIs. To emphasize relative differences 

in activity across stimuli, the ∆F/F for each ROI was normalized to its maximum response across the 

stimulus set (horizontal dotted lines). Gray bars represent stimulus presentation periods. Bottom, 

responses to 8 whole-field motion stimuli. Here, active pixels are colored according to preferred motion 

direction (see color wheel). Polar plots for indicated ROIs show mean normalized ∆F/F ± SEM across 
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trials in response to each motion direction. Note that the Pt integrated motion information binocularly and 

showed sharp directional tuning. 

G Top left, bar graphs of average normalized RGC terminal ∆F/F in AF6Left in response to each stimulus. 

Top right, responses for AF6Right. N = 9 fish. Motion presented to the ipsilateral eye did not result in 

activation (black arrowheads), and there was no difference in activation between monocular medial 

stimuli and binocular coherent stimuli. Bottom, bar graphs of average normalized Pt ∆F/F for the PtLeft 

and PtRight in response to the same stimulus set. Pt responses were segregated by motion direction, and 

showed binocular integration and inward suppression. N = 7 fish. Error bars are SEM across fish. (*) p < 

0.001; (ns.) p > 0.05, paired Wilcoxon. 

H Left, distribution of neurons in the Pt activated by the left eye only (blue), mostly left eye (darker), 

mostly right eye (lighter), or only by the right eye (red). Right, spatial distribution of Pt neurons, color-

coded according to binocularity index. Histograms show the relative distribution along the anterior-

posterior axis (left) and also left to right across the midline (top). Monocular neurons (red or blue) were 

located predominantly in the Pt contralateral to the respective stimulus.  

 

Figure S4. Ablation of posterior commissure disrupts interhemispheric communication. Related 

to Figure 4. 

A Two-photon maximum intensity projection of the brain region containing the PC in a Tg(α-tubulin:PA-

GFP) fish. Composite images show neural tissue before (red) and after (blue) photoactivation of a small 

region (white spiral). Unchanged areas appear magenta, while activated projections appear blue, 

revealing neuronal cell bodies ipsilateral to the activation and axonal tracks crossing the midline (white 

arrow heads). Dotted white line, fish midline. A, anterior; P, posterior. Scale bars, 10 µm. 

B Two-photon micrographs showing the dorsal section of the PC before and after ablation in a 5 dpf 

Tg(elavl3-GCaMP2) fish. Red spiral, ablation site. Red arrowheads, neurites (Pre-ablation image) and 

debris (Post-ablation images). 

C Bar graphs of average bout frequency show no significant differences after ablation (static control vs. 

post-ablation, p = 0.33; coherent control vs. post-ablation, p = 0.08, unpaired Wilcoxon). Inset, difference 

between average bout frequency for monocular medial stimuli and baseline (static condition) reveals a 

significant reduction in relative bout frequency after PC ablation. C, control; P, post-ablation. Bar colors 

match icons (top left) as in Figure 1B. Error bars are SEM across fish (N = 38 for control, N = 14 post-

ablation). (*) p = 1.4 x 10-5, unpaired Wilcoxon. 

D Cumulative probability histograms of bout angle for control fish and fish post-PC ablation. The change 

in turn probability for coherent and monocular lateral motion indicates that commissure ablation 

disrupted correct turns generated by lateral motion stimuli. 

E Left, schematic of minimal model in which DSRGCs drive turning (T) and forward swim motor 

command centers (F), without ipsilateral connections (spirals); this represents the hypothesized 

perturbation by PC ablation. Middle, comparison of measured peak swim frequency in ablated fish and 

model output without ipsilateral connections. Each point represents the mean peak response to a 

stimulus, with colors as in panel D and Figure 1B; lighter center indicates leftward motion. Error bars are 

SEM across fish. Although the model predicts no effect on swim frequency, the measured PC behavior 

indicated that medial-evoked swim frequency was affected by PC ablation. Right, the model can predict 

post-ablation peak turn frequencies well regarding the reduction of the lateral contribution to binocular 
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integration (monocular lateral indistinguishable from baseline, coherent indistinguishable from monocular 

medial), but incorrectly predicts high turn frequencies in response to inward motion (blue circle). The 

model also fails to describe the persistence of incorrect turn suppression for coherent and monocular 

medial stimuli (black and green open squares). Dotted lines indicate static baseline rates. 

F Left, PC ablation (at spiral) in an example Tg(elavl3-GCaMP5G) fish resulted in activation or injury of 

all passing axons. The concomitant increase in fluorescence can be used to visualize the axonal 

projections of Pt (gray boxed regions) neurons through the PC into nMLF (dotted ovals, yellow 

arrowheads). Right, this result agrees with data collected from PA-GFP fish after photoactivating a small 

region of the PC (spiral). 
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Figure S5. Functional classification of pretectal neurons. Related to Figure 5. 
 
A Frequency of neuron response types, based on significant ∆F/F increases during presentation of 

monocular and binocular motion patterns (Experimental Procedures). Top, overrepresented types 

(numbered 1-8) are highlighted in gray (left-selective) or black (right-selective). All types below the 

dotted line have frequencies below the apparent discontinuity evident from sorted histograms in Figure 

5C. Bottom, matrix representation of all possible response types, aligned with the plot above so that 

each column reveals a particular response pattern across the stimulus set. Combinatorial matrix 

represents significant responses (colored) and non-responses (black) to the stimulus indicated in each 

row, color-coded according to the stimulus icons to the left. Most frequent response type oB is 

highlighted in yellow. 

B Top, sorted frequency histogram of neuronal response profiles, based on significant increases in 

GCaMP5 ΔF/F during presentation of motion stimuli (Experimental Procedures, Figure 5A). Bar 

corresponding to the most frequent response type (oB) is highlighted in yellow. The dip in neuronal 

frequency shows that the 8 most frequent response types (Figure 5A-C) make up 66% of all neurons. 

Furthermore, only 188 response types of all possible categories are found. Bottom, associated sorted 

response matrix, aligned with the plot above so that each column reveals a particular response pattern 

across the stimulus set; combinatorial matrix represents significant responses (colored) and non-

responses (black) to the stimulus indicated in each row, color-coded according to the icons on the left. 

C The response type matrix from A but with the width of each column dictated by the share of neurons in 

each category. Response type oB is highlighted in yellow and now expanded. 

D Average normalized ΔF/F in response to each stimulus for left-selective neurons (left), matched with 

the responses of their mirror symmetric counterparts (right), for each of the top 8 response types. 

Shaded areas are SEM across neurons in each category. Gray bars denote stimulus presentation 

periods. Middle, average (vector sum) direction selectivity vectors for each respective type along with 

vectors for each individual neuron in each category. oB, outward-responsive binocular neuron; B, 

binocular; iB, inward-responsive binocular; ioB, outward- and inward-responsive binocular; iMM, inward-

responsive monocular (medial-selective); MM, monocular (medial-selective); oML, outward-responsive 

monocular (lateral-selective); S, selective for coherent motion. Rightward-selective types are indicated 

by (‘). Each class is labeled according to its response profile, illustrated by adjacent circular icons; 

center, fraction of medial (dark gray) or lateral (light gray) activation; black outer ring, suppression by 

inward or outward motion. See symbol legend in Figure 7.  
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Figure S6. Brain-wide recruitment of turning- and swimming-related neural networks. Related to 

Figure 6.  

Top left, anatomy reference. DSRGCs, direction-selective retinal ganglion cells; OC, optic chiasm; AF6, 

9, 10, retinal arborization fields 6, 9, 10; Pt, pretectum; nMLF, nucleus of the medial longitudinal 

fasciculus; aHB, anterior hindbrain; RoL, neurons in rhombomere 1; ARTR, anterior rhombencephalic 

turning region; vSPNs, ventromedial spinal projection neurons; cHB, caudal hindbrain; M/HB, midbrain-

hindbrain border (dashed line); rh1-5, rhombomeres 1-5. A, anterior; P, posterior. 

Other panels, anatomical distributions of units recruited during motion stimuli (icons as in Figure 1B). In 

total, n = 76,604 units isolated with automatic segmentation across 14 fish. Each unit is plotted on a 

standard brain map as single dot, 80% transparency, color-coded for preferred motion direction as in 

Figure 2B (see Dir. color wheel).  
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Figure S7. Analysis of hindbrain circuitry supports functional whole-brain model. Related to 
Figures 6 and 7.  
 
A Distribution of units with higher peak ∆F/F responses to forward than the other 7 directions (42.5% of 

all motion sensitive units). Activity in these units is thus more associated with forward swimming than 

turning. Each unit is plotted on a standard brain map as a single dot, color-coded for preferred direction 

of motion (see color wheel). Regions with high unit density appear darker. AF6, arborization field 6; Pt, 

pretectum; nMLF, nucleus of the medial longitudinal fasciculus; aHB, anterior hindbrain; RoL, region in 

rhombomere 1; ARTR, anterior rhombencephalic turning region; vSPNs, ventral spinal projection 

neurons. 

B Distribution of all units significantly activated by monocular medial regardless of their activation by 

other stimuli. Units are color-coded according to direction preference (see color wheel). Note the strong 

lateralization of neural recruitment in the left Pt and aHB (blue hues) and the symmetric recruitment of 

forward-selective units in nMLF, RoL, cHB (green hues). Bottom, mean normalized ∆F/F traces for all 

displayed units, color-code and stimulus sequence as in panel D and Figure 1B. A simplified mask is 

overlaid to compare anatomy to A. 

C1 Distribution of all units that are categorized as either iMM (left-selective) or iMM’ (right-selective). 

These units are good candidates for the drive of forward swimming. Note units in nMLF, RoL. C2 All iMM 

units that show large responses to the stimuli marked with an asterisk (inward, coherent, monocular 

medial), which promote forward swimming. Note their clustering in nMLF and their high activation by 

forward motion. C3 All units showing significant suppression below baseline for stimuli that suppress 

forward swimming (outward, monocular lateral, backward motion, arrowheads). Note their symmetric 

distribution in brain regions associated with forward swimming (nMLF, RoL, cHB). Below, mean 

normalized ∆F/F traces across all units displayed in each respective plot. 

D Heat map of mean normalized ∆F/F within monocular (left) and binocular (right) neuron response 

categories in the anterior hindbrain. Categories are based on significant ∆F/F increases during 

presentation of monocular and binocular motion patterns (Experimental Procedures). The width of 

each column corresponds to the frequency of each neuron type, the hue to stimulus icons on the left, 

and brightness to mean normalized ∆F/F within each category. Each type is labeled according to its 

response profile: oB, outward-responsive binocular neuron; B, binocular; MM, monocular (medial-

selective); S, selective for coherent motion. 

E Average normalized ΔF/F in response to each stimulus for left-selective neurons (left), matched with 

the responses of their mirror symmetric counterparts (right), for the 4 over-represented aHB response 

types (numbers correspond to labels above bars in D). Middle, average (vector sum) direction selectivity 

vectors for each respective type along with vectors for each individual neuron in each category. Each 

type is labeled according to its response profile, illustrated by adjacent icons; center, fraction of medial or 

lateral activation; black outer ring, suppression by inward or outward motion. See symbol legend in 

Figure 8. Neuronal abbreviations as in D. 

F Sorted histograms of aHB response type frequency, plotted separately for binocular (left) and 

monocular (right) types. Major types have frequencies above the indicated discontinuity threshold 

(dotted line, see Experimental Procedures). 

G Comparison of measured peak turn frequency with model including the hindbrain (cf. Figure 7A). 

repairs the prior deficiency in incorrect turn suppression (cf. Figure 5E). Each point represents the mean 

peak response to a stimulus, with colors as in panel Figure 1B.  
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H Diverse models can predict similar behavioral outputs. Top, comparison of two sets of connection 

weights to F (left, green) and two sets of connection weights to T (right, red). Each point represents a 

neuron type. Bottom, each set of connection weights effectively recapitulates the behavior. Each point 

represents the behavioral response to a stimulus (like in panel G). 

 

Movie S1. Zebrafish optomotor response to monocular and binocular motion patterns. Related to 

Figure 1.  

 

Example of closed-loop behavioral system, exhibiting bout structure and binocular separation. 

 

Movie S2. Neural dynamics of pretectal neurons during visual stimulation. Related to Figures 3.  

 

Left, filtered ΔF/F movie (hot color map) overlaid on pretectal anatomy (gray) for 5 repetitions of each 

primary motion stimulus (concatenated from longer recordings with randomized trial structure). Stimuli 

are moving when the white arrows (top) appear. Labeled ROIs correspond to the traces on the right, in 

order (top trace is ROI 1; bottom trace is ROI 8). Colors and symbols follow standard stimulus 

convention. 

 

 

Table S1. Pretectal response type distributions. Related to Figure 5.  

 

Supplemental data for Figures 5A-C, S5A-D. The table includes the observed frequency of each 

pretectal response type, along with the mean ΔF/F across time and all cells in each category. For each 

cell, ΔF/F was normalized to the maximum trial-averaged response across all stimuli presented, 

including the 8 directions of whole-field motion. These mean values were used in subsequent 

quantitative modeling. 

 

Table S2. Anterior hindbrain response type distributions. Related to Figure 6. 

Supplemental data for Figures 6B, S7D-F. The table includes the observed frequency of each anterior 

hindbrain response type, along with the mean ΔF/F across time and all cells in each category. For each 

cell, ΔF/F was normalized to the maximum trial-averaged response across all stimuli presented, 

including the 8 directions of whole-field motion. These mean values were used in subsequent 

quantitative modeling. 
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