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ABSTRACT

In the context of next-generation radio telescopes, like the Square Kilometre Array (SKA), the
efficient processing of large-scale data sets is extremely important. Convex optimization tasks
under the compressive sensing framework have recently emerged and provide both enhanced
image reconstruction quality and scalability to increasingly larger data sets. We focus herein
mainly on scalability and propose two new convex optimization algorithmic structures able
to solve the convex optimization tasks arising in radio-interferometric imaging. They rely
on proximal splitting and forward-backward iterations and can be seen, by analogy, with the
CLEAN major-minor cycle, as running sophisticated cLEAN-like iterations in parallel in multiple
data, prior, and image spaces. Both methods support any convex regularization function, in
particular, the well-studied ¢; priors promoting image sparsity in an adequate domain. Tailored
for big-data, they employ parallel and distributed computations to achieve scalability, in terms
of memory and computational requirements. One of them also exploits randomization, over
data blocks at each iteration, offering further flexibility. We present simulation results showing
the feasibility of the proposed methods as well as their advantages compared to state-of-the-art

algorithmic solvers. Our MATLAB code is available online on GitHub.

Key words: techniques: image processing — techniques: interferometric.

1 INTRODUCTION

Radio-interferometry (RI) allows the observation of radio emis-
sions with great sensitivity and angular resolution. The technique
has been extensively investigated and provides valuable data driving
many research directions in astronomy, cosmology or astrophysics
(Thompson, Moran & Swenson 2001). Next-generation radio tele-
scopes, such as the LOw Frequency ARray (LOFAR; van Haarlem
et al. 2013) and the future Square Kilometre Array (SKA; Dewd-
ney et al. 2009), are envisaged to produce giga-pixel images and
achieve a dynamic range of six or seven orders of magnitude. This
will be an improvement over current instruments by around two
orders of magnitude, in terms of both resolution and sensitivity.
The amount of data acquired will be massive and the methods solv-
ing the inverse problems associated with the image reconstruction
need to be fast and to scale well with the number of measure-
ments. Such challenges provided motivation for vigorous research to
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reformulate imaging and calibration techniques for RI (Wijnholds
et al. 2014).

The construction of the first phase of SKA is scheduled to start
in 2018. It will consist of two subsystems: a low-frequency aper-
ture array, the SKA1-low, operating in the 50-350 MHz frequency
range and containing approximately 131000 antenna elements; a
mid-frequency array of reflector dishes, the SKA1-mid, operating
above 350 MHz, consisting of 197 dishes (Dewdney et al. 2009;
Broekema, van Nieuwpoort & Bal 2015). Both subsystems are
planned to operate on the order of 65000 frequency bands. Data
rate estimates in this first phase are around five terabits per sec-
ond for each subsystem (Broekema et al. 2015) and will present
a great challenge for the infrastructure and signal processing. The
celebrated cLEAN algorithm (Hogbom 1974) and its variants do not
scale well given the large dimension of the problem. They rely on
local greedy iterative procedures and are slow compared to modern
convex optimization techniques, which are guaranteed to converge
towards a global optimal solution. Moreover, they are not designed
for large-scale parallelization or distributed computing (Carrillo,
McEwen & Wiaux 2014).

In the past few years, sparse models and convex optimization
techniques have been applied to RI imaging, showing the potential
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to outperform state-of-the-art imaging algorithms in the field (Rau
et al. 2009; Wiaux et al. 2009a; Li, Cornwell & de Hoog 2011;
Carrillo, McEwen & Wiaux 2012; Carrillo et al. 2013; Carrillo
et al. 2014; Garsden et al. 2015). These methods typically solve the
imaging problem by minimizing an objective function defined as a
sum of a data term, dependent on the measured visibilities, and sev-
eral regularization terms, usually promoting sparsity and positivity.
Scalable algorithms, specifically tailored for large-scale problems
using parallel and distributed schemes, are just now beginning to
gain attention in the context of imaging (Carrillo et al. 2014; Ferrari
et al. 2014) and calibration (Yatawatta 2015) for next-generation
radio telescopes.

In this context, proximal splitting methods are very popular due to
their ability to decompose the original problem into several simpler,
easier to solve, sub-problems, each one associated with one term of
the objective function (Combettes & Pesquet 2011). Another class
of algorithms currently gaining traction for large-scale problems
in optimization is based on primal-dual (PD) methods (Komodakis
& Pesquet 2015). Such methods efficiently split the optimization
problem and, at the same time, maintain a highly parallelizable
structure by solving concomitantly for a dual formulation of the
original problem. Building on such tools, the simultaneous direc-
tion method of multipliers (SDMM) was recently proposed in the
context of RI imaging by Carrillo et al. (2014). It achieves the com-
plete splitting of the functions defining the minimization task. In the
big-data context, SDMM scales well with the number of measure-
ments, however, an expensive matrix inversion is necessary when
updating the solution, which limits the suitability of the method for
the recovery of very large images.

The scope of this article is to propose two new algorithmic struc-
tures for RI imaging. We study their computational performance
and parallelization capabilities by solving the sparsity averaging
optimization problem proposed in the sparsity averaging reweighed
analysis (SARA) algorithm (Carrillo et al. 2012), previously shown
to outperform the standard cLEaN methods. The application of the
two algorithms is not limited to the SARA prior, any other con-
vex prior functions being supported. We assume a known model
for the measured data such that there is no need for calibration.
We use SDMM, solving the same minimization problem, to com-
pare the computational burden and parallelization possibilities. The-
oretical results ensure convergence, i.e. all algorithms reach the
same solution. We also showcase the reconstruction performance
of the two algorithms coupled with the SARA prior in comparison
with CS-CLEAN (Schwab 1984) and MORESANE (Dabbech et al.
2015).

The first algorithmic solver is a sub-iterative version of the well-
known alternating direction method of multipliers (ADMM). The
second is based on the PD method and uses forward-backward (FB)
iterations, typically alternating between gradient (forward) steps
and projection (backward) steps. Such steps can be seen as inter-
laced cLEAN-like updates. Both algorithms are highly parallelizable
and allow for an efficient distributed implementation. ADMM, how-
ever, offers only partial splitting of the objective function leading
to a sub-iterative algorithmic structure. The PD method offers the
full splitting for both operators and functions. It does not need
sub-iterations or any matrix inversion. Additionally, it can attain
increased scalability by using randomized updates. It works by
selecting only a fraction of the visibilities at each iteration, thus
achieving great flexibility in terms of memory requirements and
computational load per iteration, at the cost of requiring more iter-
ations to converge. Our simulations suggest no significant increase
in the total computation cost.
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The remainder of this article is organized as follows. Section 2
introduces the RI imaging problem and describes the state-of-the-
art image reconstruction techniques used in radio astronomy. In
Section 3, we review some of the main tools from convex optimiza-
tion needed for RI imaging. Section 4 formulates the optimization
problem for RI imaging, given the large-scale data scenario and
presents the proposed algorithms, ADMM and PD, respectively. We
discuss implementation details and their computational complexity
in Section 5. Numerical experiments evaluating the performance of
the algorithms are reported in Section 6. Finally, we briefly present
the main contributions and envisaged future research directions in
Section 7.

2 RADIO-INTERFEROMETRIC IMAGING

Radio-interferometric data, the visibilities, are produced by an array
of antenna pairs that measure radio emissions from a given area of
the sky. The projected baseline components, in units of the wave-
length of observation, are commonly denoted (u, v, w), where w
identifies the component in the line of sight and u = (u, v) the com-
ponents in the orthogonal plane. The sky brightness distribution x
is described in the same coordinate system, with components /, m,
nand withl = (I, m) and n(l) = V1 — 12 —m?2, I> + m? < 1. The
general measurement equation for non-polarized monochromatic
RI imaging can be stated as

y(u) = / D, w)x()e 2™t Py, (D

with D(I, u) = ﬁb(l, u) quantifying all the direction dependent
effects (DDEs). Some dominant DDEs can be modelled analyt-
ically, like the w component which is expressed as D, (I, u) =
e~ 2imw®=1 " At high dynamic ranges, however, unknown DDEs,
related to the primary beam or ionospheric effects, also affect the
measurements introducing the need for calibration. Here we work
in the absence of DDEs.

The recovery of x from the visibilities relies on algorithms solving
a discretized version of the inverse problem (1). We denote by x €
RY the intensity image of which we take M visibility measurements

y € CM. The measurement model is defined by
y=®x +n, @3]

where the measurement operator ® € C¥*V is a linear map from
the image domain to the visibility space and y denotes the vector
of measured visibilities corrupted by the additive noise n. Due to
limitations in the visibility sampling scheme, equation (2) defines
an ill-posed inverse problem. Furthermore, the large number of the
data points, M > N, introduces additional challenges related to the
computational and memory requirements for finding the solution.
In what follows, we assume the operator ® to be known is advance
such that no calibration step is needed to estimate it.

Due to the highly iterative nature of the reconstruction algo-
rithms, a fast implementation of all operators involved in the image
reconstruction is essential, for both regularization and data terms.
To this purpose, the measurement operator is modelled as the prod-
uct between a matrix G € CM*"N and an n,-oversampled Fourier
operator,

& = GFZ. 3)

The matrix Z € R""*N accounts for the oversampling and the scal-
ing of the image to pre-compensate for possible imperfections in
the interpolation (Fessler & Sutton 2003). In the absence of DDEs,
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G only contains compact support kernels that enable the compu-
tation of the continuous Fourier samples from the discrete Fourier
coefficients provided by F. Alternatively, seen as a transform from
the u—v space to the discrete Fourier space, G T, the adjoint operator
of G, grids the continuous measurements on to a uniformly sampled
Fourier space associated with the oversampled discrete Fourier co-
efficients provided by FZ. This representation of the measurement
operator enables a fast implementation, thanks to the use of the fast
Fourier transform for F and to the fact that the convolution kernels
used are, in general, modelled with compact support in the Fourier
domain, which leads to a sparse matrix G.'

2.1 Classical imaging algorithms

Various methods have been proposed for solving the inverse prob-
lem defined by (2). The standard imaging algorithms belong to the
cLEAN family and perform a greedy non-linear deconvolution based
on local iterative beam removal (Hogbom 1974; Schwarz 1978;
Schwab 1984; Thompson et al. 2001). A sparsity prior on the so-
lution is implicitly introduced since the method reconstructs the
image pixel by pixel. Thus, CLEAN is very similar to the matching
pursuit (MP) algorithm (Mallat & Zhang 1993). It may also be seen
as a regularized gradient descent method. It minimizes the residual
norm ||y — ®x||3 via a gradient descent subject to an implicit spar-
sity constraint on x. An update of the solution takes the following
form

0 =xD 4T (0 (y—dxY)), 4)

where @7 is the adjoint of the linear operator ®. In the astron-
omy community, the computation of the residual image ®f(y —
&x D), which represents a gradient step of the residual norm, is
being referred to as the major cycle, while the deconvolution per-
formed by the operator 7~ is named the minor cycle. All proposed
versions of CLEAN use variations of these major and minor cycles
(Rau et al. 2009). cLEAN builds the solution image iteratively by
searching for atoms associated with the largest magnitude pixel
from the residual image. A loop gain factor controls how aggressive
is the update step, by only allowing a fraction of the chosen atoms
to be used.

Multiple improvements of cLEAN have been suggested. In the mul-
tiscale version (Cornwell 2008), the sparsity model is augmented
through a multiscale decomposition. An adaptive scale variant was
proposed by Bhatnagar & Cornwell (2004) and can be seen as MP
with overcomplete dictionaries since it models the image as a su-
perposition of atoms over a redundant dictionary. Another class of
solvers, the maximum entropy method (Ables 1974; Gull & Daniell
1978; Cornwell & Evans 1985), solves a regularized global op-
timization problem through a general entropy prior. In practice,
however, cLEAN and its variants have been preferred even though
they are slow and require empirically chosen configuration param-
eters. Furthermore, these methods also lack the scalability required
for working with huge, SKA-like data.

! Assuming pre-calibrated data in the presence of DDEs, the line of G asso-
ciated with frequency u, is explicitly given by the convolution of the discrete
Fourier transform of D(I, u), centred on u, with the associated gridding ker-
nel. This maintains the sparse structure of G, since the DDEs are generally
modelled with compact support in the Fourier domain. A non-sparse G dras-
tically increases the computational requirements for the implementation of
the measurement operator. However, it is generally transparent to the algo-
rithms since they do not rely on the sparsity structure explicitly. This is the
case for all the algorithmic structures discussed herein.
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2.2 Compressed sensing in RI

Imaging algorithms based on convex optimization and using
sparsity-aware models have also been proposed, especially under
the theoretical framework of compressed sensing (CS), reporting
superior reconstruction quality with respect to CLEAN and its mul-
tiscale versions. CS proposes both the optimization of the acqui-
sition framework, going beyond the traditional Nyquist sampling
paradigm, and the use of non-linear iterative algorithms for signal
reconstruction, regularizing the ill-posed inverse problem through
a low dimensional signal model (Candes 2006; Donoho 2006). The
key premise in CS is that the underlying signal has a sparse rep-
resentation, x = Wa with @ € CP containing only a few non-zero
elements (Fornasier & Rauhut 2011), in a dictionary W € CV*P,
e.g. a collection of wavelet bases or, more generally, an overcom-
plete frame.

The first study of CS applied to RI was done by Wiaux et al.
(2009a), who demonstrated the versatility of convex optimization
methods and their superiority relative to standard interferometric
imaging techniques. A CS approach was developed by Wiaux, Puy
& Vandergheynst (2010) to recover the signal induced by cosmic
strings in the cosmic microwave background. McEwen & Wiaux
(2011) generalized the CS imaging techniques to wide field-of-
view observations. Non-coplanar effects and the optimization of
the acquisition process, were studied by Wiaux et al. (2009b) and
Wolz et al. (2013). All the aforementioned works solve a synthesis-
based problem defined by

min ||«||; subjectto |y — ®PWal|, <e, %)
o

where € is a bound on the ¢, norm of the noise n. Synthesis-based
problems recover the image representation « with the final im-
age obtained from the synthesis relation x = Wa. Here, the best
model for the sparsity, the non-convex ¢, norm, is replaced with
its closest convex relaxation, the £; norm, to allow the use of effi-
cient convex optimization solvers. Re-weighting schemes are gen-
erally employed to approximate the £, norm from its ¢, relaxation
(Candes, Wakin & Boyd 2008; Daubechies et al. 2010). Imaging
approaches based on unconstrained versions of (5) have also been
studied (Wenger et al. 2010; Li et al. 2011; Hardy 2013; Garsden
etal. 2015). For example, Garsden et al. (2015) applied a synthesis-
based reconstruction method to LOFAR data.

As opposed to synthesis-based problems, analysis-based ap-
proaches recover the signal itself, solving

min [Wix|; subjectto ||y — x|, <e. (6)
X

The SARA algorithm, based on the analysis approach and an aver-
age sparsity model, was introduced by Carrillo et al. (2012). Carrillo
et al. (2014) proposed a scalable algorithm, based on SDMM, to
solve (6). For such large-scale problems, the use of sparsity opera-
tors W that allow for a fast implementation is fundamental. Hybrid
analysis-by-synthesis greedy approaches have also been proposed
by Dabbech et al. (2015).

To provide an analogy between cLEAN and the FB iterations em-
ployed herein, we can consider one of the most basic approaches,
the unconstrained version of the minimization problem (6), namely
min, |[Wix|, + Blly — x|} with 8 a free parameter. To solve
it, modern approaches using FB iterations perform a gradient step
together with a soft-thresholding operation in the given basis W7
(Combettes & Pesquet 2007b). This FB iterative structure is concep-
tually extremely close to the major-minor cycle structure of CLEAN.
At a given iteration, the forward (gradient) step consists in doing a
step in the opposite direction to the gradient of the £, norm of the
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residual. It is essentially equivalent to a major cycle of cLEaN. The
backward (soft-thresholding) step consists in decreasing the abso-
lute values of all the coefficients of Wix that are above a certain
threshold by the threshold value, and setting to zero those below
the threshold. This step is very similar to the minor cycle of CLEAN,
with the soft-threshold value being an analogous to the loop gain
factor. The soft-thresholding intuitively works by removing small
and insignificant coefficients, globally, on all signal locations simul-
taneously, while CLEAN iteratively builds up the signal by picking
up parts of the most important coefficients, a local procedure, un-
til the residuals become negligible. Thus, CLEAN can be intuitively
understood as a very specific version of the FB algorithm. As will
be discussed in Section 4, from the perspective of CLEAN, the al-
gorithms presented herein can be viewed as being composed of
complex cLEAN-like FB steps performed in parallel in multiple data,
prior and image spaces.

3 CONVEX OPTIMIZATION

Optimization techniques play a central role in solving the large-
scale inverse problem (2) from RI. Some of the main methods from
convex optimization (Bauschke & Combettes 2011) are presented
in what follows.

Proximal splitting techniques are very attractive due to their flex-
ibility and ability to produce scalable algorithmic structures. Exam-
ples of proximal splitting algorithms include the Douglas—Rachford
method (Combettes & Pesquet 2007a; Bot & Hendrich 2013), the
projected gradient approach (Calamai & Moré 1987), the iterative
thresholding algorithm (Daubechies, Defrise & De Mol 2004; Beck
& Teboulle 2009), the ADMM (Boyd et al. 2011) or the SDMM
(Setzer, Steidl & Teuber 2010). All proximal splitting methods solve
optimization problems like

mzingl(z)—l—...—i—g,,(z), @)

with g;, i € {1, ..., n}, proper, lower semicontinuous, convex
functions. No assumptions are required about the smoothness, each
non-differentiable function being incorporated into the minimiza-
tion through its proximity operator (C1). Constrained problems are
reformulated to fit (7) through the use of the indicator function (C2)
of the convex set C defined by the constraints. As a general frame-
work, proximal splitting methods minimize (7) iteratively by han-
dling each function g;, possibly non-smooth, through its proximity
operator. A good review of the main proximal splitting algorithms
and some of their applications to signal and image processing is
presented by Combettes & Pesquet (2011).

PD methods (Komodakis & Pesquet 2015) introduce another
framework over the proximal splitting approaches and are able to
achieve full splitting. All the operators involved, not only the gradi-
ent or proximity operators, but also the linear operators, can be used
separately. Due to this, no inversion of operators is required, which
gives important computational advantages when compared to other
splitting schemes (Combettes & Pesquet 2012). The methods solve
optimization tasks of the form

mzin g1(2) + &2(Lz), (®

with g, and g, proper, lower semicontinuous convex functions and
L a linear operator. They are easily extended to problems, similar
to (7), involving multiple functions. The minimization (8), usually
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referred to as the primal problem, accepts a dual problem (Bauschke
& Combettes 2011),

min g (~L'v) + g3 (v), ©)

where L' is the adjoint of the linear operator L and g5 is the
Legendre—Fenchel conjugate function of g,, defined in (C3). Under
our assumptions for g; and g, and, if a solution to (8) exists, efficient
algorithms for solving together the primal and dual problems can
be devised (Combettes & Pesquet 2012; Condat 2013; Vii 2013).
Such PD approaches are able to produce highly scalable algorithms
that are well suited for solving inverse problems similar to (2). They
are flexible and offer a broad class of methods ranging from dis-
tributed computing to randomized or block coordinate approaches
(Combettes & Pesquet 2015; Pesquet & Repetti 2015).

Augmented Lagrangian (AL) methods (Bertsekas 1982) have
been traditionally used for solving constrained optimization prob-
lems through an equivalent unconstrained minimization. In our
context, the methods can be applied for finding the solution to a
constrained optimization task equivalent to (8),

min g,(z) + g(r), subjecttor =Lz, (10)
z,r

by the introduction of the slack variable r. The solution is found by
searching for a saddle point of the augmented Lagrange function
associated with (10),

. st 1 )
max min g;(z) + g(r) + — (Lz—r) + —lkz —r|5. (11
N z,r M Z;L

The vector s and parameter u, correspond to the Lagrange multi-
pliers. No explicit assumption is required on the smoothness of the
functions g; and g,. Several algorithms working in this framework
have been proposed. The ADMM (Boyd et al. 2011; Yang & Zhang
2011) is directly applicable to the minimization (10). A generaliza-
tion of the method, solving (7), is the SDMM (Setzer et al. 2010).
It finds the solution to an extended augmented Lagrangian, defined
for multiple functions g;. Both methods can also be characterized
from the PD perspective (Boyd et al. 2011; Komodakis & Pesquet
2015). Algorithmically, they split the minimization step by alter-
nating between the minimization over each of the primal variables,
z and r, followed by a maximization with respect to the multipliers
s, performed via a gradient ascent.

4 LARGE-SCALE OPTIMIZATION

The next-generation telescopes will be able to produce a huge
amount of visibility data. To this regard, there is much interest
in the development of fast and well performing reconstruction al-
gorithms (McEwen & Wiaux 2011; Carrillo et al. 2014). Highly
scalable algorithms, distributed or parallelized, are just now begin-
ning to gather traction (Carrillo et al. 2014; Ferrari et al. 2014).
Given their flexibility and parallelization capabilities, the PD and
AL algorithmic frameworks are prime candidates for solving the
inverse problems from RI.

4.1 Convex optimization algorithms for RI

Under the CS paradigm, we can redefine the inverse problem as the
estimation of the image x € R given the measurements y € C*
under the constraint that the image is sparse in an overcomplete
dictionary W. Since the solution of interests is an intensity image, we
also require x to be real and positive. The analysis formulation (6)
is more tractable since it generally produces a simpler optimization

MNRAS 462, 4314-4335 (2016)
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problem when overcomplete dictionaries are used (Elad, Milanfar &
Rubinstein 2007). Additionally, the constrained formulation offers
an easy way of defining the minimization given accurate noise
estimates.

Thus, we state the reconstruction task as the convex minimization
problem (Carrillo et al. 2013, 2014)

min f(x) + [(Wix) + h(dx) 12)

with the functions involved including all the aforementioned con-
straints,

F=1- 1

=1, C=RY, (13)
h(z) =15(z), B={ze€C": |z -yl <¢€}.

The function f introduces the reality and positivity requirement for
the recovered solution, / represents the sparsity prior in the given
dictionary W and 4 is the term that ensures data fidelity constraining
the residual to be situated in an ¢, ball defined by the noise level €.

We set the operator W € CV*™" to be a collection of ny, sparsity
inducing bases (Carrillo et al. 2014). The SARA wavelet bases
(Carrillo et al. 2012) are a good candidate but problem (12) is not
restricted to them. A re-weighted £; approach (Candes et al. 2008)
may also be used by implicitly imposing weights on the operator W
but it is not specifically dealt with herein since it does not change
the algorithmic structure. This would serve to approximate the £,
pseudo-norm, ||WTx||o, by iteratively re-solving the same problem
as in (12) with refined weights based on the inverse of the solution
coefficients from the previous re-weighted problem.

An efficient parallel implementation can be achieved from (2) by
splitting of the data into multiple blocks

Y ®, G M,
y= s b= = FZ. (14)
Yy >, G"dM”d

Since G; € CMi*mNj js composed of compact support kernels, the
matrices M; € R"Ni*"N can be introduced to select only the parts
of the discrete Fourier plane involved in computations for block
J» masking everything else. The selected, n,N;, N; < N, frequency
points are directly linked to the continuous u—v coordinates associ-
ated with each of the visibility measurements from block y ;. Thus,
for a compact grouping of the visibilities in the u—v space, each
block only deals with a limited frequency interval. These frequency
ranges are not disjoint since a discrete frequency point is generally
used for multiple visibilities due to the interpolation kernels and
DDEs modelled through the operator G;. Since both have a com-
pact support in frequency domain, without any loss of generality,
we consider for each block j an overlap of n, such points.
We rewrite (2) for each data block as

y;=®;x +ny, (15)

with n; being the noise associated with the measurements y ;. Thus,
we can redefine the minimization problem (12) as

min £(x) + Y LW+ hy(®)x), (16)
i=1 j=1

where, similarly to (13), we have

Li=1"1h,
hj(z) =15,(z), Bj={z€C" :|z—yll <€} (17)

MNRAS 462, 4314-4335 (2016)

Here, ¢; represents the bound on the noise for each block. For the
sparsity priors, the £; norm is additively separable and the splitting
of the bases used,

v=(v ..V, ], (18)

with W; € CM*V fori € {l, ..., ny}, is immediate. The new for-
mulation involving the £, terms remains equivalent to the original
one. Note that there are no restrictions on the number of blocks W
is split into. However, a different splitting strategy may not allow
for the use of fast algorithms for the computation of the operator.

Hereafter, we focus on the block minimization problem defined
in (16) and we describe two main algorithmic structures for finding
the solution. The first class of methods uses a proximal ADMM
and details the preliminary work of Carrillo et al. (2015). The sec-
ond is based on the PD framework and introduces to RI, a new
algorithm able to achieve the full splitting previously mentioned.
These methods have a much lighter computational burden than the
SDMM solver previously proposed by Carrillo et al. (2014). They
are still able to achieve a similar level of parallelism, either through
an efficient implementation in the case of ADMM or, in the case
of PD, by making use of the inherent parallelizable structure of
the algorithm. The main bottleneck of SDMM, which the proposed
algorithms avoid, is the need to compute the solution of a linear
system of equations, at each iteration. Such operation can be pro-
hibitively slow for the large RI data sets and makes the method less
attractive. The structure of SDMM is presented in Appendix B, Al-
gorithm 3. For its complete description in the RI context, we direct
the reader to Carrillo et al. (2014), the following presentation being
focused on the ADMM and PD algorithms.

4.2 Dual FB-based ADMM

The ADMM is only applicable to the minimization of a sum of two
functions and does not exhibit any intrinsic parallelization structure.
However, by rewriting the minimization problem from (16) as

min f(x) + h(®x), (19)

an efficient parallel implementation may be achieved. We define the
two functions involved in as

F@ = fe)+> L(Wx), ~a®x)= hj(®x). (20)
i=1 j=1

Furthermore, since 7 is a sum of indicator functions ¢ B;(®;x), we
canredefineitas i(®x) = 15(®Px), withB = B; x B, x ... x B,,.

ADMM iteratively searches for the solution to an augmented
Lagrangian function similar to (11). The computations are per-
formed in a serial fashion and explicit parallelization may only be
introduced inside each of its three algorithmic steps. Thus, at each
iteration, ADMM alternates between the minimization

_ 1
mxinuf(x)—i-illdlx—ks—rllg 21

over the variable of interest x and the minimization involving the
slack variable r,

i, 1
min (eh(r) + 3 r — ®x —s|3. (22)

These are followed by a gradient ascent with a step o performed
for the Lagrange multiplier variable s. Given the definition of the
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Algorithm 1 Dual forward-backward ADMM.

1: given x©, r(,.o), s(jO), q(jo), K, 0,0

2: repeat forr=1,...

3: B = Fzxt—D

4: Vjel{l,...,nq}set

5: b =m;5p"

6: end

7 Vje{l,...,nq} distribute b</.'> and do in parallel
. (1 _ 0] (t=1)

8: r; _’PB,<G.,bj +5; )

. () _ J(=1) B0 _ 0
9: 5, =5 -‘rQ(G_,bj rj)
. ) _ f B0 n _ 0

10: q; _Gj<G_,bj +r; sj>

11: end and gather qg.t)

12: 70 = x=D _ pzTFt f: M_J;q;t)
j=1

13: x® = DuaLFB (i(’), K)

14: until convergence

15: function DuaLFB (z, IC)

16: given df.o) N

17: 70 =P (z)

18: repeatfork =1, ...

19: Vi € {1,...,np} do in parallel
20: df’ = |7 = Sawis <"dz('k71> + “’ifz(k_l)>
21: a" = w;a®
22: end
np
23: 0 =P (z -y ;:f."))
i=1
24: until convergence

25: return z%)

function %(r), the minimization involving r can be split into ny
independent sub-problems

_ 1
rrrlinuhj(rj)+§ Hr/ —¢jx—st§, jef{l, ..., ng}. (23)
]

This minimization amounts to computing the proximity operator of
wh; at ®;x +s;, which, given the definition of the function %;,
reduces to a projection operation. The method imposes that every
r; approaches ®;x while x converges towards the solution. The
convergence speed is governed by the Lagrange multiplier x4 and
by the ascent step o associated with the maximization over the
Lagrange multiplier variable s.

A proximal version of ADMM deals with the non-smooth func-
tions from (21) and (23) by approximating the solution via proximal
splitting. Algorithm 1 presents the details. In Fig. 1, we present a
diagram of the algorithm to provide further insight into its paral-
lelization and distribution capabilities. It can also be used to un-
derstand the algorithm from the cLEAN perspective, performing FB
cLEAN-like updates in multiple data, prior and image spaces. Data
fidelity is enforced through the slack variables ri.'), by minimizing
(23) and thus constraining the residual to belong to the £, balls B;.
This accepts a closed form solution and, for each ball j, represents
the projection,

D Ly -yl e

BTV il

P2 lz=yl / ! (24)
z lz—y;ll. <e€;
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sequential steps sequential steps

proximal step proximal step

o) - R g
() (1)
1 nq

gradient ah

SO D o)

—

FB step & a® o)

—_—

gradient ascent

s§t>:s§t_1>+ Q(' . )

DuaLFB — pZ]LFJr

sub-iterations s

Sparsity 1 Sparsity ni,
- v, @ - v,
- dgk) - dgzkb)
FB step FB step

forward step

Snu“E'\"'}

backward step

RN

& rB step\—» a . aly .. al)

forward step

Sn\\ﬂm“}

backward step

Pc

Figure 1. The diagram of the structure of ADMM, detailed in Algorithm 1,
showcasing the parallelism capabilities and overall computation flow. The
algorithm performs in parallel proximal and gradient updates (similarly to
the CLEAN performing major-minor cycle) for all data fidelity terms. Its
structure is sub-iterative and enforces sparsity and positivity through the
dual FB algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to cLEAN. Thus, the whole algorithm
can be seen as composed of interlaced cLEaN-like proximal splitting and FB
updates running in parallel in multiple data, prior, and image spaces.
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on to the feasible regions defined by it. Given the structure of the
function #, this is implemented in parallel with distributed computa-
tions and presented in Algorithm 1, step 8, together with the update
of the Lagrange variables s , in step 9. The variables b(') € Cro¥i
computed in steps 3-6, are requlred in the computations and need to
be transmitted to the different processing nodes. The nodes compute
the solution updates q(/-') € C™"i in step 10, after which they are
centralized and used to revise the previous solution estimate x~)
and to compute x). Thus, by carefully defining the minimization
problem, a high degree of parallelism is achieved. Note that this step
can easily incorporate all types of weighting of the data specific to
RIL

For our specific problem, the minimization over x from (21) does
not accept a closed form solution. We approximate it by using a FB
step. The forward step corresponds to a gradient step and the back-
ward step is an implicit sub-gradient-like step performed through
the proximity operator. Thus, in step 12, the solution is updated us-
ing the descent step p, in the direction of the gradient of the smooth
part. This is followed by the iterative dual FB (Combettes, Diing &
Vi 2011) updates necessary to approximate the proximity operator
to the non-smooth f. Algorithm 1, function DuALFB, details the
required sub-iterations. In steps 23 and 20, the method alternates
between projections on to the convex set C, which, component wise,
are defined as

(R M@ >0
(PC(Z))k{ 0 R <0 o @

and the application of the proximity operator to the sparsity prior
functions /;, which is the component wise soft-thresholding opera-
tor

z{lzi] — a}y 2] > 0
k

(Sa(z)> 2 2] vk, 26)
k 0 lzx] =0

with threshold «. The soft threshold resulting for the algorithm
is nppu. However, since w is a free parameter, we re-parametrize
the operation to use the soft threshold «||W||s, with ¥ as a new
scale-free parameter, independent of the operator W used. Here, we
denote by ||W||s the operator norm of the sparsifying transform. The
operator {-}, from (26) sets the negative values to 0. The parameter
n serves as an update step for the sub-problem. In step 20, we have
additionally used the Moreau decomposition (C4) to replace the
proximity operator of the conjugates /* with that of the functions /;,
with Z denoting the identity operator. The computations involving
each basis lliiT are to be performed in parallel, locally. Distributed
processing is problematic here due to the large size of the image
z® that would need to be transmitted.

4.3 PD algorithms with randomization

The main advantage that makes the PD algorithms attractive for
solving inverse problems is their flexibility and scalability. They are
able to deal with both differentiable and non-differentiable functions
and are applicable to a broad range of minimization tasks. The
inherent parallelization on the level of splitting the functions gives
a direct approach for solving (16). Another important aspect is
given by the use of randomization, allowing the update for a given
component function to be performed less often and thus lowering
the computational cost per iteration. Block coordinate computations
are also supported but are not explicitly used herein.

MNRAS 462, 4314-4335 (2016)

We define the minimization task to be solved using PD methods,
similarly to (16), as

min £(x) +y Zl (Wix)+ Z hi(®;x), 27

j=1

where y is an additional tuning parameter. Note that the minimiza-
tion problem does not change, regardless of the value y takes due
to the use of the indicator functions in f and k; which are invari-
ant to scaling. This fits under the framework introduced by Condat
(2013), Vil (2013) and Pesquet & Repetti (2015) and we devise a
PD algorithm towards finding the solution. The method iteratively
alternates between solving the primal problem (27) and the dual
problem,

ny,

mlnf lelu, Zd'ibj-vj
Jj=1

./

ny

+ - Zl(u)+2h(v,) (28)

essentially converging towards a Kuhn—Tucker point. This produces
the algorithmic structure of Algorithm 2 where additionally we have
used the Moreau decomposition (C4) to rewrite the proximal op-
erations and replace the function conjugates. A diagram of the
structure is presented in Fig. 2 further exemplifying the conceptual
analogy between the PD algorithm and cLeaN. The algorithm al-
lows the full split of the operations and performs all the updates
on the dual variables in parallel. The update of the primal vari-
able, the image of interest x*), requires the contribution of all dual
variables v\” and u(’) The algorithm uses the update steps 7, o;
and g; to iteratively revise the solution and allows for a relaxation
with the factor A. FB iterations, consisting of a gradient descent
step coupled with a proximal update, are used to update both the
primal and the dual variables. These FB updates can be seen as
cLEAN-like steps performed in the multiple signal spaces associ-
ated with the primal and the dual variables. In the deterministic
case, the active sets P and D are fixed such that all the dual vari-
ables are used. The randomization capabilities of the algorithm are
presented later on, given a probabilistic construction of the active
sets.

When applied in conjunction with the functions from (17), the
primal update from step 28 is performed through the projection
(25) on to the positive orthant defined by C. The dual variables are
updated in steps 10 and 19 using the proximity operators for /; and
I;, which become the projection on to an £ ball B; defined by (24)
and the component wise soft-thresholding operator (26). We use
the Moreau decomposition (C4) to replace the proximity operator
of the conjugate functions [;' and A% with that of the function /;
and h;, respectively. The identity operator is denoted by Z. Step 19
also contains a re-parametrization similar to the one performed for
ADMM. We replace the implicit algorithmic soft-threshold size
with k ||W||s by appropriately choosing the free parameter y . Th1s
ensures that we are left with the scale-free parameter « independent
to the operator W. Steps 11, 20 and 29 represent the relaxation of
the application of the updates. To make use of the parallelization,
the application of the operators G}L- and W; is also performed in
parallel, in steps 12 and 21. Note that the splitting of the operators
is presented in (14), more specifically ®; = G;M;FZ,vje{l,...,
nq}. These operations are given in steps 4-7.

The computation of the dual variables u ( associated with the
sparsity priors requires the current solution estlmate. This solution

)
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Algorithm 2 Randomized forward-backward PD.
. ot 0) =0 ,,0 (0 ~(0) =(0)
1: givenx©@ @y P T §
2: repeatforr=1,...
3: generate sets P C {l,...,np}and D C {1, ..., ng}

LK, T, 00, Gy A

4 B =Fzz
5: Vj €D set
. (1) 7.(1)
6: b, = M;b
7 end
8: run simultaneously
9: Vj € D distribute b(j') and do in parallel
10: f).(;) = I—PBj (v.(;_w—}-Gjb(;))
. (1) _ (=1 =@ (=1
11: v =, +A(v_/ v; )
. =0 _ at, ®
12: b =Gjv;
13: end and gather f;(/.')
14: Vje{l,...ng}\ D set
15: v =t h
j j
16: o) ="
17: end ‘
18: Vi € P do in parallel
19: i) = | T~ Sepwys <”§H) + "’jf(hD)
. @) _ =1 = (1=1)
20: w' =u'" 4+ i (u“) —u; )
21: 2" = wul”
22: end
23: Vi e{l,...np}\ P set
24: w) = ul
25: al) =a!""
26: end
27: end

ng np
28: #0=Pe[xt-D _f(ZtFTZngJ;T)(;)J,-ZmﬁE’))
j=1 i=1

200 xO=x0=D 45 (£ - x<’*”)

300 #W =280 —xY
31: until convergence

estimate is then revised with the updates itﬁ.” computed from the dual
variables. Both x*) and @ are of size N and their communication
might not be desirable in a loosely distributed system. In such case,
all computations involving u,(«” can be performed in parallel but
not in a distributed fashion. The dual variables v&”, associated with
the data fidelity functions, should be computed over a distributed
computing network. They only require the communication of the
updates b(j” € C™Vi and dual updates f)y) € C™Vi which remains
feasible.

The main challenge associated with the inverse problem defined
by (2) is linked with the dimensionality of the data. The large data
size is a limiting factor not only from the computational perspec-
tive but also from that of memory availability. A randomization of
the computations following the same PD framework (Pesquet &
Repetti 2015) is much more flexible at balancing memory and com-
putational requirements. By selectively deciding which data fidelity
and sparsity prior functions are active at each iterations, full control
over the memory requirements and computational cost per iteration
can be achieved. In Algorithm 2, this is controlled by changing the
sets P, containing the active sparsity prior dual variables, and D,
which governs the selection of the data fidelity dual variables. At
each iteration, each dual variable has a given probability of being
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Figure 2. The diagram of structure of PD, detailed in Algorithm 2, show-
casing the parallelism capabilities and overall computation flow. In contrast
with ADMM, the PD algorithm is able to perform all updates on the dual

variables v and u" using FB iterations and in parallel. The update of the

i J

primal variable x® is also an FB step. Viewed though the perspective of
the intuitive similarity between an FB iteration and cLEAN, this translates
to performing cLEAN-like iterations in parallel in multiple data, prior, and

image spaces.

selected, pp, for the sparsity prior, and pp; for the data fidelity, re-
spectively. These probabilities are independent of each other. Note
that the algorithm has inertia still performing the primal updates
using all dual variables even though some dual variables remain
unchanged.

5 IMPLEMENTATION DETAILS AND
COMPUTATIONAL COMPLEXITY

An efficient implementation of the ADMM and the PD algorithms
takes advantage of the data split and of the implicit parallelization
from the definition of the minimization problem. For presentation
simplicity, we consider the processing to be split between a central
meta-node, a single processing unit or possibly a collection of nodes,
centralizing the update on the desired solution x> and performing
the computations associated with the sparsity priors, and a number
of data fidelity nodes dealing with the constraints involving the balls
B;. The computation of the sparsity prior terms can be easily par-
allelized, however, the distribution of the data can be too costly. In
this case, a shared memory architecture might be more appropriate
than distributed processing. For the data nodes, the communication
cost is low and a distributed approach is feasible. We have assumed

MNRAS 462, 4314-4335 (2016)
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Table 1. Complexity of ADMM (top) and PD (bottom) algorithms for one iteration. Each node has its compu-
tational load listed. The ADMM algorithm iterates 7 7 times over steps 18-23. The serial nature of its structure
can be observed, the nodes not operating simultaneously. The PD methods alternate between updating the primal
and the dual variables. All dual variables are computed in parallel. The visibility data are assumed to be split into
compact blocks composed of an equal number of visibilities in the u—v space.

Algorithm 1 (ADMM)

Central node

nq data fidelity nodes

steps 3—-6 (@] (n(,N log n(,N> -
steps 8-10 - O(Z";Z"MN,- + M_/->
step 12 o(m,NlognnN) + O(m,N +ndnv> -
n X steps 19-23 (’)(2nbN> -
Algorithm 2 (PD) Central node ng data fidelity nodes
steps 4-7 O(noNlog n0N> -
steps 9-26 P, O(anzv) pp,O (2”;’:"MN,- + M_,~>
steps 28-30 O(nON log n0N> + O((nb + no)N + ndm) -

these two different strategies for dealing with the different terms in
the presentation of Algorithms 1 and 2.

Most of the operations to be performed are proportional with N
since the main variable of interest x*) is the image to be recovered.
The most demanding operation performed on x is the applica-
tion of the oversampled Fourier operators. When computed with a
fast Fourier algorithm (FFT; Cooley & Tukey 1965), the computa-
tional cost of the transforms F and F' applied to n,-oversampled
data scales as O (n,N logn,N). It should be noted that the FFT
implementation can be sped up by using multiple processing cores
or nodes. The wavelet operators W and W' are applied to the im-
age x as well. The Discrete Wavelet Transform (DWT) can be
performed with fast wavelet implementations using lifting schemes
or filter banks (Cohen, Daubechies & Vial 1993; Daubechies &
Sweldens 1998; Mallat 2008) and achieves a linear complexity of
O(N) for compactly supported wavelets. A distributed processing
of the operations involved in the application of each sparsity basis
W; may be used. However, this requires the communication of the
current solution estimate, which might not be feasible. We con-
sider that these computations are performed locally, on the central
meta-node.

For the data nodes, a manageable computational load and an effi-
cient communication can be achieved by both algorithms by adopt-
ing a balanced and compact split of the data; splitting the data into
blocks of similar size having a compact frequency range as proposed
in (14). An overlap of size n, between discrete frequency ranges
is necessary for an efficient interpolation (Fessler & Sutton 2003)
to the uniform frequency grid which allows fast Fourier computa-
tions or to include DDEs (Wolz et al. 2013). Besides this overlap,
each block only deals with a limited frequency range reducing the
communication performed. In such case, the matrices M ; mask out
the frequencies outside the range associated with the blocks y ;.
Furthermore, the use of compact support interpolation kernels and
DDEs with compact support in the Fourier domain makes G; sparse,
which lowers the computational load significantly. We consider it
has a generic sparsity percentage n.

Details on the levels of parallelization and the scaling to mul-
tiple nodes for both methods are presented below. As mentioned
earlier, the main computational difficulties arise from working with

MNRAS 462, 4314-4335 (2016)

large images and data sets, thus making important the way the
complexity of the algorithms scales with N and M. An overview of
the complexity requirements is presented in Table 1.

5.1 Alternating direction method of multipliers

The efficient implementation of ADMM for the problem defined by
(19) offloads the data fidelity computations to the data nodes. As can
be seen from Fig. 1 and Table 1, the basic structure of the algorithm
is serial and the processing is just accelerated by parallelising each
serial step.

The iterative updates follow the operations presented in Algo-
rithm 1. The central node computes an estimate ¥’ of the solution
and iteratively updates it to enforce sparsity and positivity. The
update from step 12 requires O (n,N logn,N) operations for the
computation of the oversampled FFT. Given a compact partitioning
of the matrix G, the sum involving the updates q(j') requires compu-
tations of the order O(n,N) + O(nqyn,). Note that it may be accel-
erated by using the data node network, however, since generally n,
is not large, the gain remains small. The computation of the Fourier
coefficients from step 3 also incurs a complexity O (n,N logn,N).

For the approximation of the proximal operator of the function £,
the algorithm essentially remains serial and requires a number 7 ; of
iterations. In this case, the complexity of each update performed for
the sparsity prior is dominated by the application of the operators
WV and \UT, which, given an efficient implementation of the DWT,
requires O(N) operations. The updates dl(-k) and ;lik) from step 20 and
21, may be computed in parallel. Given a serial processing, however,
this would need O(n, N) computations. Note that although in this
case the complexity scales linearly with NV, the scaling constants can
make the computations to be of the same level as the FFT.

The data fidelity nodes perform steps 8—10 in parallel using
the Fourier coefficients b(;) pre-computed in step 5. The compu-
tations are heavier due to the linear operator G;. As mentioned
earlier, the operator has a very sparse structure. This reduces the
computation cost for applying G; or G; to O(nyM;n,N;), where
noN; is the number of uniformly gridded, frequency points associ-
ated with each visibility block y ;. The remaining operations only
involve vectors of size M;. The overall resulting complexity per
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node is O(nsM;n,N;) + O(M;). Under the assumption that the
blocks contain an equal number of visibilities, this further reduces
to O( Z—;M noN;) + O(M;). The communication required between
the central and the data fidelity nodes is of order n,N;, the size of
frequency range of each data block.

5.2 PD algorithm

An implementation of the PD algorithms benefits from the full split
achieved by the methods which allows for the computation of all
the dual variables to be completed in parallel. The processing is
performed in two synchronous alternating serial steps to update the
primal and dual variables, respectively. Each step is however highly
parallelizable. The central node uses the current estimate of the
solution x“~" and distributes the oversampled Fourier transform
coefficients by) to the data fidelity nodes. The data fidelity and cen-
tral nodes compute simultaneously the dual variables and provide
the updates ‘5(;) and ﬁ,(-’) to be centralized and included in the next so-
lution estimate on the central node. Such a strategy requires at each
step the propagation of variables of size n,N;, between the central
and data fidelity nodes. As suggested in Algorithms 2, the computa-
tion of the sparsity prior dual variables is also highly parallelizable.
However, the communication of the current image estimate is re-
quired, limiting the possibility to distribute the data due to its large
size. We leave the computation to be performed by the central node,
without an explicit exploitation of the possible parallelism.

All dual variables can be computed simultaneously as can be seen
in Fig. 2. The data fidelity nodes need to apply the linear operators
G; as in steps 10 and 12. Similarly to ADMM, this incurs the heav-
iest computational burden. Given the very sparse structure of the
matrix G}, this accounts for a complexity of O(nsM;n,N,), with
n,N; being the previously mentioned number of, uniformly gridded,
frequency points for the visibilities y;. The remaining operations
only involve vectors of size M; and thus the overall resulting com-
plexity is O(2nsM;n,N;) + O(2M;). The wavelet decomposition
from steps 19 and 21 achieves a linear complexity of O(N) for
compactly supported wavelets. The other operations from steps 19
and 20 are of order O(N) resulting in a load for the sparsity prior
nodes that scales linearly with N.

In step 28 of Algorithm 2, the summing of the sparsity prior
updates requires O(n, N) operations. For the £, data fidelity terms,
given a compact partitioning in frequency for the matrix G, the
computation requires O(n,N) + O(nqn,) operations. The compu-
tational cost of the transforms F and F', steps 4 and 28, scales
as O (noN logn,N) since this requires the FFT computation of
the n,-oversampled image. The remaining operations, including
the projection, are O(N), giving the complexity of the primal up-
date step O (n,N logn,N) + O ((n, + no)N) + O(N) + O (ngny).
We kept the terms separate to give insight on how the algorithms
scales for different configurations. Similarly to ADMM, the sums
may be performed over the network in a distributed fashion, fur-
ther reducing the complexity and leaving the primal update step
dominated by the Fourier computations.

The randomized PD algorithm introduces an even more scalable
implementation. To achieve a low computational burden per data
node, the number of nodes has to be very large in order to reduce
the size of M; and N; for each block. The randomized algorithms
achieve greater flexibility by allowing some of the updates for the
sparsity prior or data fidelity dual variables, to be skipped at the cur-
rent iteration. Given a limited computing infrastructure, by carefully
choosing the probabilities, we can ensure that data fit into memory
and that all available nodes are processing parts of it. The aver-
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age computational burden per iteration is lowered proportionally
to the probability of selection, pp, and pp,. In practice, this also
produces an increase in the number of iterations needed to achieve
convergence, requiring a balanced choice for the probabilities.

5.3 Splitting the data

As reported earlier, the modality in which the data are split can have
a big impact in the scalability of the algorithms. Ideally, each data
node should process an identical number of visibilities for the com-
putation to be spread evenly. If the visibilities used by one node are,
however, spread over the whole u—v plane, their processing requires
all the discrete Fourier points. Due to this, a compact grouping in
frequency domain is also important since it determines the size of
the data to be communicated. Ideally, the splitting should be per-
formed taking into account the computing infrastructure and should
balance the communication and computation loads which are linked
to the size of N; and M;.

6 SIMULATIONS AND RESULTS

We study the performance of the algorithms developed herein for
different configuration parameters and compare the reconstruction
performance against CS-CLEAN (Schwab 1984) and MORESANE
(Dabbech et al. 2015). We denote the methods as follows: SDMM,
the method introduced by Carrillo et al. (2014); ADMM, the ap-
proach described in Algorithm 1; PD and PD-R, the algorithms
presented in Algorithm 2 without and with randomization, respec-
tively; MORESANE, the algorithm2 from Dabbech et al. (2015);
CS-CLEAN, the Cotton—Schwab cLEAN (Schwab 1984) algorithm.?
For both MORESANE and CS-CLEAN, we perform tests for three
types of weighting: natural weighting denoted by -N, uniform
weighting denoted by -U and Briggs weighting with the robust-
ness parameter set to 1 denoted by -B.

The reconstruction performance is assessed in terms of the signal-

to-noise ratio,
x°

SNR = 201log;, (7||x0— x|,

where x° is the original image and x” is the reconstructed estimate
of the original, averaged over 10 simulations performed for different
noise realizations. For the tests involving the comparison with CS-
CLEAN and MORESANE on the VLA and SKA coverages, we
do not perform this averaging. In the latter case, we also report the
dynamic range

_ JN|®|}
= > ma
@' (y — ®x)ll2 +!
obtained by all algorithms.

xxu (30)

6.1 Simulation setup

In the first part of the simulations, we evaluate the influence of the
different configuration parameters for PD, PD-R and ADMM. Here,
we also validate their performance against SDMM, a previously pro-
posed solver (Carrillo et al. 2014) for the same optimization task.
The test images, as shown in Fig. 3, represent a small 256 x 256

2 We have used the MORESANE implementation from ws-cLEAN (Offringa
et al. 2014), https://sourceforge.net/p/wsclean/wiki/Home/.

3 We have used the CS-CLEAN implementation of LWIMAGER from CASACORE,
https://github.com/casacore/.
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Figure 3. The test images, from left to right, top to bottom, a 256 x 256
image of the M31 galaxy, a 512 x 512 galaxy cluster image, a 477 x
1025 image of Cygnus A and a 1024 x 1024 image of the W28 supernova
remnant, all shown in log scale.

image of the H 1 region of the M31 galaxy, a 512 x 512 high-
dynamic range image of a galaxy cluster with faint extended emis-
sions, and a 477 x 1025 image of the Cygnus A radio galaxy,
respectively. The galaxy cluster image was produced using the FARA-
DAY tool (Murgia et al. 2004). We reconstruct them from simulated
visibility data. We use a u—v coverage generated randomly through
Gaussian sampling, with zero mean and variance of 0.25 of the
maximum frequency, creating a concentration of visibility data in
the centre of the plane, for low frequencies. We introduce holes in
the coverage with an inverse Gaussian profile, placing the missing
spectrum information predominantly in high frequency. This gen-
erates very generic profiles and allows us to study the algorithm
performance with a large number of different coverages. A typical
u—v coverage is presented in Fig. 4.

The second part of the simulations involves testing the algorithm
reconstruction using simulated VLA and SKA coverages* corre-
sponding to 5 and 9 h of observations, respectively. The coverages
are presented in Fig. 4. For the tests, we use an additional large
1024 x 1024 image, also presented in Fig. 3, representing the W28
supernova remnant.” We showcase the reconstruction quality and
speed of convergence for PD and ADMM without performing any

“The SKA and VLA u—v coverages are generated using the
casA and CASACORE software package: https://casa.nrao.edu/ and
https://github.com/casacore.

3 Image courtesy of NRAO/AUI and Brogan et al. (2006).
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re-weighting® and compare the results with those produced by CS-
CLEAN and MORESANE.

In both cases, we have normalized the frequencies to the interval
[—m, m]. The visibilities are corrupted by zero mean complex Gaus-
sian noise producing a signal-to-noise level of 20 dB. The bound ¢;,
for the ball B; defined by (17), can be therefore estimated based on
the noise variance (73 of the real and imaginary parts of the noise,
the residual norm being distributed according to a x? distribution
with 2MM; degrees of freedom. Thus, we impose that the square of the
global bound €2 is two standard deviations above the mean of the
x? distribution, € = M + ZW)O')%. The resulting block con-

straints must satisfy E?d:l 612- = €. When all blocks have the same

size, this results in e_/z. =Q2M; + \/%, /4Mj)a)%.

We work with pre-calibrated measurements. For simplicity, we
assume, without loss of generality, the absence of DDEs and a small
field of view, the measurement operator reducing to a Fourier matrix
sampled at the M frequencies that characterize the visibility points.
We have used an oversampled Fourier transform F with n, = 4 and
a matrix G that performs an interpolation of the frequency data,
linking the visibilities to the uniformly sampled frequency space.
The 8 x 8 interpolation kernels (Fessler & Sutton 2003) average
nearby uniformly distributed frequency values to estimate the value
at the frequencies associated with each visibility. A scaling is also
introduced in image space to pre-compensate for imperfections in
the interpolation. This allows for an efficient implementation of the
operator.

To detail the behaviour of the algorithms, we vary the number of
blocks nq used for the data fidelity term. Tests are performed for 4, 16
and 64 blocks. In each case, the blocks are generated such that they
have an equal number of visibility points, which cover a compact
region in the u—v space. An example of the grouping for the 16
blocks is overlaid on the randomly generated coverage from Fig. 4.
The figure also contains, marked with dashed lines, an example of
the discrete frequency points required to model the visibilities for
two of the blocks, under our previous assumptions, for the M31
image. The number of discrete frequency points required for each
block would only grow slightly in the presence of DDEs due to their,
possible larger, compact support. The overall structure from Fig. 4
would remain similar. For the SKA and VLA coverages, the data
are also split into blocks of equal size. The resulting block structure
is also presented in Fig. 4. As sparsity prior, we use the SARA
collection of wavelets (Carrillo et al. 2012), namely a concatenation
of a Dirac basis with the first eight Daubechies wavelets. We split
the collection of bases into 7, = 9 individual basis.

6.2 Choice of parameters

The ADMM, PD and PD-R algorithms converge given that (D1)
and (D3), respectively, are satisfied. To ensure this, we set for PD

=S = W and t = 0.49. The relaxation parameter is set
S S

to 1. For the ADMM algorithm, we set p = W andn = W The
ascent step is set ¢ = 0.9. The maximum number of sub-iterations
is set to n 7 = 100. We consider the convergence achieved, using a
criterion similar to (31), when the relative solution variation for z*’
is below 1073, The norms of the operators are computed a priori
using the power iterative method. They act as a normalization of the

6 Performing the re-weighting improves the reconstruction (Carrillo et al.
2012, 2014) but falls outside the scope of this study.
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Figure 4. (left) An example of randomly generated coverage with the number of visibilities M = 655 360. The visibilities are split into 16 equal size blocks,
marked with different colours, with compact u—v grouping. The dashed lines mark the parts of the discrete Fourier space involved in the computations associated
with the central bottom-right and the bottom-right blocks, respectively. In this case, the whole discrete frequency space is considered to have 512 x 512 points.
(centre) The SKA u—v coverage for 5 h of observation corresponding to M = 5791 800. (right) The VLA u—v coverage for 9 h of observations corresponding
to M = 1788480. The SKA and VLA data are split into 64 blocks containing an equal number of visibilities.

updates, enabling the algorithm to deal with different data or image
scales.

We leave the normalized soft-threshold values « as a configu-
ration parameter for both PD and ADMM. SDMM has a similar
parameter «. It influences the convergence speed which is of in-
terest since, given the scale of the problem, we want to minimize
the computational burden which is inherently linked to the number
of iterations performed. We aim at providing a general prescription
for this tuning parameter, similarly to the standard choices for the
loop gain factor used by cLEAN. Intuitively, this soft-thresholding
parameter can be seen as analogous to this factor, deciding how ag-
gressive we are in enforcing the sparsity requirements. The stopping
parameter 3, essentially linked to the accuracy of the solution given
a certain convergence speed, is also configurable. For simplicity,
we also set equal probabilities for PD-R, namely pp, = pp, Vi and
Pp; = PD,s Vj and we show how the different choices affect the
performance. We choose to randomize only over the data fidelity
terms since the SARA sparsity prior is light from the computational
perspective when compared to the data fidelity term, thus pp =1
for all tests performed. Different strategies for the choice of proba-
bilities, with values different for each block, are also possible. For
example, setting a higher probability for the blocks containing low-
frequency data will recover faster a coarse image. The details are
incorporated into the solution through the lower probability updates
of the high-frequency data. An overview of all the parameters used
for defining the optimization task and for configuring both ADMM
and PD algorithms is presented in Appendix A, Tables Al and A2,
respectively.

We ran MORESANE with five major loops and a major loop
gain 0.9. The loop gain inside MORESANE was set to 0.1. We
use the model image to compare against the other methods. CS-
CLEAN was run with two loop gain factors, /; = 0.1 and 0.001.
The results shown are the best of the two. We compare against the
model image convolved with a Gaussian kernel associated with the
main beam. We scale the resulting image to be closest to the true
model image in the least-square sense. Additionally, we also present
results with the main beam scaled by a factor b chosen such that
the best SNR is achieved. This introduces a large advantage for
CS-CLEAN when compared to the other algorithms. To avoid edge
artefacts, both MORESANE and CS-CLEAN were configured to

produce a padded double-sized image and only the centre was used
for comparison.

For PD, PD-R and ADMM, the stopping criterion for the al-
gorithms is composed of two criteria. We consider the constraints
satisfied when the global residual norm is in the vicinity of the
bound € of the global ¢, ball, namely below a threshold €. This
is equivalent to stopping if >7¢, ly; — ®,;x”[3 < &. We set
&2 = (M +3vV4M )af, namely three standard deviations above
the mean. The second criterion relates to the relative variation of
the solution, measured by

t -1
N A ah
lx @1l

The iterations stop when the ¢, ball constraints are satisfied and
when the relative change in the solution norm is small, § < §. The
data fidelity requirements are explicitly enforced, ensuring that we
are inside or very close to the feasible region. However, this does not
guarantee the minimization of the ¢, prior function. The algorithms
should run until the relative variation of the solution is small between
iterations. To better understand the behaviour of the algorithms, for
most simulations, we perform tests over a fixed number of iterations
without applying the stopping conditions above.

The stopping criterion for MORESANE and CS-CLEAN was set
to be three standard deviations above the noise mean. This level
was seldom reached by CS-CLEAN after the deconvolution, the
algorithm seeming to stop because of the accumulation of false
detections leading to the increase of the residual between iterations.

6.3 Results using random coverages

‘We begin by analysing the evolution of the SNR for the ADMM and
PD algorithms in comparison with that produced by the previously
proposed SDMM solver. Fig. 5 contains the SNR as a function of
number of iterations for the three algorithms for the reconstruc-
tion of the M31 image from M = 10N, 5N and 2N visibilities. The
two newly introduced algorithms have the same convergence rate
as SDMM but have a much lower computational burden per itera-
tion, especially the PD method. In these tests, all three method use
the parameter k = 1073, suggested also by Carrillo et al. (2014).

MNRAS 462, 4314-4335 (2016)

9T0¢Z ‘/T JequisnoN uo uopuo afs||0D A1seAlun e /BIo'seulnopioixoseluw//:dny wouy pepeojumoq


http://mnras.oxfordjournals.org/

4326  A. Onose et al.

30

25

—8—PD,M = 10N
— B8 — ADMM, M = 10N

20

SNR

— B — ADMM,
@ SDMM,
—5—PD,M = 2N
— B — ADMM, M =
[ SDMM, M = 2N

L 1 L
10’ 102 10°
number of iterations

Figure 5. The evolution of the SNR for PD, ADMM and SDMM as a func-
tion of the number of iterations for the M31 test image. The configuration
parameter, Kk = 1073, is the same for ADMM, PD and SDMM. The number
of visibilities M used is 10N, 5N and 2N. The input data are split into four
blocks.
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Figure 6. The reconstruction of the M31 image from M = 10N visibilities.
The input data are split into four blocks. (top) The evolution of the SNR for
PD and ADMM as a function of the number of iterations for different values
of the parameter «. (bottom) The value of § for both methods.

The reconstruction performance is comparable for the different test
cases, the PD and ADMM obtaining the same reconstruction qual-
ity. Adding more data improves the reconstruction SNR by 2-3 dB
because the noise is better averaged. However, note that the SNR
gain stagnates slightly when more visibility data are added mainly
because the holes in the frequency plane are still not covered. The
problem remains very ill-posed with similar coverage. In a realistic
situation, adding more data will also fill the coverage more and the
SNR improvement will be larger. Since all three algorithms explic-
itly solve the same minimization problem, they should have similar
behaviour for any other test case.

We continue by investigating the performance of the PD and
ADMM algorithms as a function of the parameter « in Figs 6-8
for the reconstruction of the M31, Cygnus A and galaxy cluster
test images, respectively. The parameter « serves as a normalized
threshold and essentially governs the convergence speed. The values
k = 1073 to k = 107> generally produce good and consistent
performance. This behaviour was also observed for similar tests,
with smaller M. Larger values for « reduce the convergence speed
since they emphasize greatly the sparsity prior information at the
expense of the data fidelity. The smaller values place less weight on
the sparsity prior and, after an initial fast convergence due to the data
fidelity term, typically require more iterations to minimize the ¢,

MNRAS 462, 4314-4335 (2016)

—8—PD,r=1
— 8 —ADMM, s =1
—%—PD,k=10"
— % — ADMM, k = 107!
— & PD.r=10"%
—© — ADMM, k = 10°°
PD,k=10""
—& — ADMM, 5 = 10
I I i
10 102 10°
number of iterations

102 ~- == =H- P

—5—PD.r=1 S ey = _&— X

10*+| —B8 —ADMM,x =1 = ~ = =

—%—PD,k=10" == —¥ T

— % — ADMM, x = 107! B -

—6—PD,k=10" 5

—© — ADMM, x =107 ~4

108 | —O—PD.k =107 ~O

- e — ADMM, k = 107°

1010 I I I

10! 102 10°
number of iterations

Figure 7. The reconstruction of the Cygnus A image from M = N visibili-
ties. The input data are split into four blocks. (top) The evolution of the SNR
for PD and ADMM as a function of the number of iterations for different
values of the parameter «. (bottom) The value of § for both methods.
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Figure 8. The reconstruction of the galaxy cluster image from M = 2N
visibilities. The input data are split into four blocks. (top) The evolution
of the SNR for PD and ADMM as a function of the number of iterations
for different values of the parameter «. (bottom) The value of § for both
methods.

prior. The average variation of the solution norm § is also reported
since the stopping criterion is based on it. It links the convergence
speed with the recovery performance. For the galaxy cluster, the
tests exhibits slower convergence speed when compared to the M31
and Cygnus A tests. The values ¥ = 1073 and 10~ produce similar
behaviour. It should be also noted that the variation of the solution
decreases smoothly until convergence and that ADMM shows a
larger variability.

The convergence speed of the randomized algorithm, PD-R, is
studied in Figs 9-11 for the M31, Cygnus A and galaxy cluster
test images, with three choices for the data splitting. As expected,
the convergence speed decreases when the probability of update
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Figure 9. The SNR for the reconstruction of the M31 image from M =
10N visibilities for the PD and PD-R algorithms with parameter k = 1073,
The algorithms split the input data into: (top) 4 blocks, (middle) 16 blocks,
(bottom) 64 blocks.
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Figure 10. The SNR for the reconstruction of the Cygnus A image from
M = N visibilities for the PD and PD-R algorithms with parameter k =
1073, The algorithms split the input data into: (top) 4 blocks, (middle) 16
blocks, (bottom) 64 blocks.
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Figure 11. The SNR for the reconstruction of the galaxy cluster image
from M = 2N visibilities for the PD and PD-R algorithms with parameter
« = 1073 The algorithms split the input data into: (top) 4 blocks, (middle)
16 blocks, (bottom) 64 blocks.

pp is lowered. The number of iterations required for convergence
increases greatly for probabilities below 0.25. Similar behaviour is
achieved for the reconstruction of the test images from a smaller
number of measurements. Again, the convergence speed for the
galaxy cluster test image is slower. There is also a very small de-
crease in the convergence speed for all tests when the data are split
into a larger number of blocks. This is due to the fact that, in order
to reach the same global ¢, the resulting bounds imposed per block
are more constraining and due to the fact that achieving a consensus
between a larger number of blocks is more difficult.

Generally, the convergence speed decreases gradually as the prob-
ability pp gets lower, PD-R remaining competitive and able to
achieve good complexity as can be seen in Fig. 12. Here, we ex-
emplify the performance in more detail when using the 64 blocks
with parameter ¥ = 1073, the stopping threshold § = 10~* and the
€, ball stopping threshold &% = (2M + 3+/4M)o?. Our tests show
that the total number of iterations performed is roughly inversely
proportional to the probability pp. Additionally, we provide a ba-
sic estimate of the overall global complexity given the data from
Table 1 and the number of iterations required. We only take into
account the computationally heaviest operations, the FFT and the
operations involving the data fidelity terms. The computations in-
volving the sparsity priors are performed in parallel with the data
fidelity computations and are much lighter. Since the analysis is
made up to a scaling factor, for better consistency, we normalized
the complexity of PD-R with respect to that of the PD.

The total complexity of PD-R remains similar to that of the non-
randomized PD which makes PD-R extremely attractive. Generally,
if the main computational bottleneck is due to the data term and not

MNRAS 462, 4314-4335 (2016)
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Figure 12. (top) The evolution of the SNR for PD-R for different probabil-
ities for the reconstruction of the M31 test image from M = 10N measure-
ments. The average number of iterations performed for x = 103,85 = 10~*
and €2 = (2M +3V4M ) af is marked by a vertical line. (bottom) The
total complexity of PD-R and the parts of its total complexity due to the FFT
and the data term computations, all normalized with respect to the average
total complexity of PD. The visibilities are split into 64 equal size blocks.

to the FFT computations, it is expected that the total complexity of
PD-R will remain comparable to that of the non-randomized PD.
This is of great importance since, for a very large number of visibil-
ities when the data does not fit in memory on the processing nodes,
PD-R may be the only feasible alternative. When a more accurate
stopping criterion is used, either with a smaller &; or relative vari-
ation of the solution 8, the randomized algorithms start to require
increasingly more iterations to converge and their relative complex-
ity grows. Randomization over the sparsity bases is also possible
but, due to the low computational burden of the priors we use, it
is not of interest herein. However, randomization over the prior
functions can become an important feature when computationally
heavier priors are used or when the images to be reconstructed are
very large.

6.4 Results with the VLA and SKA coverages

In Fig. 13, we present the SNR evolution as a function of the
number of iterations for the PD and ADMM algorithms for the
reconstruction of the Cygnus A and galaxy cluster images using
the VLA coverage, and of the W28 supernova remnant test image
using the SKA coverage. The visibilities are split into 64 equal size
blocks and the parameter k = 107>, We also overlay on the figures
the SNR achieved using CS-CLEAN and MORESANE with the
different types of weighting.

The dirty images produced using natural weighting for the same
tests are presented in Fig. 14. For all three test cases, we show-
case the reconstructed images, the reconstruction error images and
the dirty residual images in Figs 15-17. We present the naturally
weighted residual images for all methods even when they perform
the deconvolution using a different weighting. Since any other type
of weighting essentially biases the data and decreases the sensitivity
of the reconstruction, this is the more natural choice of visualizing
the remaining information in the residual image. Although both CS-
CLEAN and MORESANE generally achieve better reconstruction
for other weighting types, we present the naturally weighted dirty
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Figure 13. The SNR achieved by the algorithms studied for the reconstruc-
tion of (from top to bottom) the Cygnus A and the galaxy cluster images
using the VLA coverage, and of the W28 supernova remnant image using
the SKA coverage. For the PD and ADMM algorithms, we report the evo-
lution of the SNR as a function of the iteration number. They use x = 107>
and the data split into 64 equal-size blocks. The horizontal lines represent
the final SNR achieved using CS-CLEAN and MORESANE.

Figure 14. The log scale absolute value of the dirty images using natural
weighting corresponding to (top) the Cygnus A and (bottom, left) the galaxy
cluster test images, using the VLA coverage, and to (bottom, right) the W28
supernova remnant test image using the SKA coverage.
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Figure 15. (top four images) Log scale reconstructed images; (middle four images) log scale of the absolute value of the estimation errors; (bottom four
images) log scale of the absolute value of the naturally weighted residual images, for the 477 x 1025 Cygnus A test image using the VLA coverage. For
each group, the algorithms are: (top left) PD with the reconstruction SNR = 30.51 dB and the corresponding DR = 108 620; (top right) ADMM with the
reconstruction SNR = 30.52 dB and DR = 107 050; (bottom left) CS-CLEAN-N with /; = 0.001 and b = 0.53 with the reconstruction SNR = 19.95 dB and
DR = 10773; (bottom right) MORESANE-U with the reconstruction SNR = 25.82 dB and DR = 11 661. The images correspond to the best results obtained
by all algorithms as presented in Fig. 13.
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Figure 16. (left to right) The reconstructed images, absolute value of the estimation er and absolute value of the naturally weighted residual images, all
in log scale, for the 512 x 512 galaxy cluster test image using the VLA coverage. The algorithms are: (from top to bottom) PD having the reconstruction
SNR = 30.98 dB and the corresponding DR = 475 300; ADMM having the reconstruction SNR = 31.08 dB and DR 2070; CS-CLEAN-N with /, =0.001
and b = 0.32 having the reconstruction SNR = 18.03 dB and DR = 21 884; MORESANE-N having the reconstruction SNR = 24.96 dB and DR = 351 850.

The images correspond to the best results obtained by all algorithms as presented in Fig. 13.
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Figure 17. (left to right) The reconstructed images, absolute value of the estimation errors, and absolute value of the naturally weighted residual images,
all in log scale, for the 1024 x 1024 W28 test image using the SKA coverage. The algorithms are: (from top to bottom) PD having the reconstruction
SNR = 21.86 dB and the corresponding DR = 737 720; ADMM having the reconstruction SNR = 21.99 dB and DR = 735 620; CS-CLEAN-U with /; = 0.1
and b = 1.1 having the reconstruction SNR = 14.14 dB and DR = 515; MORESANE-B having the reconstruction SNR = 15.89 dB and DR = 10990. The
images correspond to the best results obtained by all algorithms as presented in Fig. 13. Note that the scale for the residual image of CS-CLEAN-U is in the
same range as the dirty image presented in Fig. 14, while for PD, ADMM and MORESANE, the scale of the residual image is below that.
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residual, since it represents an unbiased estimation of the remaining
structures.

For the reconstruction of the Cygnus A and galaxy cluster images,
the methods developed herein outperform MORESANE, using the
best performing type of weighting, by approximately 5 dB. Com-
paring against CS-CLEAN with the best weighting and beam size b,
the SNR is around 10 dB in favour of the reconstruction performed
by the PD and ADMM methods. Visually, both CS-CLEAN and
MORESANE fail to recover properly the jet present in the Cygnus
A image, while for PD and ADMM, it is clearly visible. It should
be noted that the residual images show also very little structure
for PD and ADMM while CS-CLEAN and MORESANE still al-
low for a more structured residual image. This is partially due to
the biasing of the data when the uniform and Briggs weighting is
performed. PD and ADMM also achieve a better reconstruction of
the galaxy cluster image. They are able to better estimate the three
bright sources in the centre of the image. They are, however, slower
to converge if compared to the recovery of the Cygnus A image.
MORESANE-N also performs well for this test image and is able
to produce a relatively smoother residual image in comparison to
the Cygnus A case. Note also that the performance of both CS-
CLEAN and MORESANE is inconsistent and varies greatly with
the weighting type.

The last test is performed for the reconstruction of the W28
supernova remnant image using the SKA coverage. In this case, the
coverage is dominated by the low-frequency points and lowers the
convergence speed of both PD and ADMM algorithms. Both PD and
ADMM achieve good SNR, again around 5 dB over that reached
by MORESANE. CS-CLEAN is 2 dB worse than MORESANE
and is only able to recover the brightest sources as can be seen in
Fig. 17. Again, both of our methods are able to recover more of
the faint regions surrounding the bright sources. The dirty residual
images show less structure for the methods developed herein since
they work directly with the naturally weighted visibilities. Note
that in Fig. 17, in order to achieve a better visualization, the scale
of the dirty residual images for CS-CLEAN is different than that of
the other methods. Also, the performance of both CS-CLEAN and
MORESANE is again very inconsistent and varies greatly with the
weighting type.

Both PD and ADMM methods show decreased convergence
speed for the recovery of the galaxy cluster and W28 supernova
remnant images. A future study should, possibly by using gener-
alized proximity operators (Pesquet & Repetti 2015), address the
acceleration of the convergence which is influenced by the relative
distribution of the visibilities in frequency. Coverages dominated by
low-frequency points, like the SKA one, generally produce slower
convergence speed. Furthermore, if a faster convergence is achieved,
a reweighing ¢, approach becomes more attractive and should in-
crease the reconstruction quality significantly.

7 CONCLUSIONS

We proposed two algorithmic frameworks based on ADMM and
PD approaches for solving the RI imaging problem. Both meth-
ods are highly parallelizable and allow for an efficient distributed
implementation which is fundamental in the context of the high
dimensionality problems associated with the future SKA radio tele-
scope. The structure of ADMM is sub-iterative, which, for much
heavier priors than the ones used herein, may become a bottleneck.
The PD algorithm achieves greater flexibility, in terms of memory
requirements and computational burden per iteration, by using full
splitting and randomized updates. Through the analogy between the
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CLEAN major-minor loop and an FB iteration, both methods can be
understood as being composed of sophisticated cLEAN-like iterations
running in parallel in multiple data, prior and image spaces.

The reconstruction quality for both ADMM and PD methods is
similar to that of SDMM. The computational burden is much lower.
Experimental results with realistic coverages show impressive per-
formance in terms of parallelization and distribution, suggesting
scalability to extremely large data sets. We give insight into the per-
formance as a function of the configuration parameters and provide
a parameter setup, with the normalized soft-thresholding values be-
tween 1073 and 107>, that produce consistently stable results for
a broad range of tests. The solution to the optimization problem
solved herein was shown to greatly outperform the standard meth-
ods in RI which further motivates the use of our methods. Our tests
also confirm the reconstruction quality in the high-dynamic range
regime.

Our MarLAB  code is available online on GitHub,
http://basp-group.github.io/pd-and-admm-for-ri/. In the near
future, we intend to provide an efficient implementation, using
the mMpI communication library, for a distributed computing
infrastructure. This will be included in the purRIFY c++ package,
which currently only implements a sequential version of SDMM.
The acceleration of the algorithms for coverages dominated by
low-frequency points will also be investigated, by leveraging a
generalized proximal operator. Additionally, recent results suggest
that the conditions for convergence for the randomized PD can be
relaxed, which would accelerate the convergence speed making
these methods to be even more competitive. We also envisage to
use the same type of framework to image in the presence of DDEs,
such as the w component, as well as to jointly solve the calibration
and image reconstruction problems.
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APPENDIX A: PARAMETER OVERVIEW

An overview of the parameters used to define the minimization
problems is presented in Table Al. The configuration parameters
for the algorithms are presented in Table A2.

Table Al. Overview of the parameters for defining the optimization
problem (12).

Optimization problem definition

v; the ny, wavelet bases in which the signal is considered
sparse; other priors can be incorporated as well by
redefining the functions /; and their associated
proximity operators

ny the number of data blocks generally linked to the
computing infrastructure

B; the ¢, balls imposing data fidelity; they are linked to the
modality in which the data are split into blocks y;

€; the size of the £ balls defining the data fidelity; they are
linked to the statistics of the noise; herein €; are set
based the x2 distribution associated with the noise

Table A2. The configuration parameters for the ADMM (top) and PD
(bottom) algorithms.

Algorithm 1 (ADMM)

k>0 configurable; influences the convergence speed
5<1073 configurable; stopping criteria; linked to the accuracy
&; of the desired solution
S_f <1073 configurable; sub-iteration stopping criteria; linked to
njy the accuracy of the desired solution
0=09 fixed; algorithm convergence parameters; need to

_ _1 ;
p= oI satisfy (D1)
n=g ‘UIH2 fixed; algorithm convergence parameter

S
Algorithm 2 (PD)
k>0 configurable; influences the convergence speed
§<1073 configurable; stopping criteria; linked to the accuracy of
€ the desired solution
pp; >0 configurable; randomization probabilities; linked to the
pp; >0 computing infrastructure
=049 fixed; algorithm convergence parameters; need to
1 .

=—— satisfy (D
S o satisfy (D3)

_ 1

w3

MNRAS 462, 4314-4335 (2016)

9T0Z ‘2T JequanoN uo uopuo afie|0D AseAlun e /BI0'S[euInopioxo selutu//:dny wWwolj pepeojumoq


http://mnras.oxfordjournals.org/

4334  A. Onose et al.

APPENDIX B: SDMM ALGORITHM

The structure of SDMM, solving the specific RI problem (16), is
presented for completeness in Algorithm 3.

Algorithm 3 SDMM.

. ot 0) =0) =(0) <(0) =(0) Z(0) ~(0)
1: given x P EL 888 K
2: repeatforr=1,...
3 B =Fzx D
4 Vje{l,..., nq}set
(1) 7(1)
5: b_/. =M;b
6: end
7 run simultaneously
8 Vje{l,...,nq} distribute b(;> and do in parallel
. =) ) | <=1
9: rj = ’PB/» Gl'bj +Sj
10: =50+ qpY - 7Y
. ~(/) T (=) _ 0
11: =G! ( LA )
12: end and gather qg.’)
13: vViell,..., np} do in parallel
_ _(—1
14: ) = Sups | Wx0D 45070
15: §0 =570 pwl -0 _F0
16: 3" =w; (if.” - 55”)
17: end
18: do
19: FO — Pe XD +§(t*1)
20: §(l):§(l*1)+x(l*1)7'd(1)
21: q(f) — 70 _ §(1)
22: end
23: end

240 #W=g" +

et a0 )
zF ZM nwuz Zq

S i=1

ny -1
250 X0 = . Z ofo; + —— S wwl+1] 0
H‘DIIS o II“’II

S =1

IIS

26: until convergence

APPENDIX C: CONVEX OPTIMIZATION
TOOLS

Definition 1. The proximity operator (Moreau 1965) applied to any
lower semicontinuous andproper convex function g is defined as

. 1
prox, (z) = argmin g(2) + 71z — Z[l3- (C1)
z
Definition 2. The indicator function (¢ of any set C is defined as
. 0 zeC
Vz) (@) & (62))
+oo z ¢C.

In convex optimization, it allows the use of an equivalent for-
mulation for constrained problems by replacing the explicit convex
constraints with the indicator function of the convex set C defined
by the constraints. Its use makes the minimization task easier to
tackle by general convex optimization solvers.

Definition 3. The Legendre—Fenchel conjugate function g* of a
function g is

(Vo) g"(v) £ supziv — g(2). (C3)
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Property 1. (Moreau decomposition) The Moreau decompo-
sition links the proximity operator of a lower semicontinuous and
proper convex function g to that of its Legendre—Fenchel conjugate
g" as

(Vz) z = prox,,(z) +apr0xa71g*((x’1z), 0<a<oo. 4

APPENDIX D: ALGORITHM CONVERGENCE

D1 Alternating direction method of multipliers

The convergence of Algorithm 1 is achieved through a careful choice
of the parameters p and o. The algorithm converges for any choice of
the Lagrange parameter u satisfying u > 0. This imposes the same
constraint on «. For the convergence of the dual FB sub-iterations,
the update parameter n should satisfy 0 < n < ﬁ

Assuming that the measurement operator @ is full column rank
and that convergence has been reached with the dual FB sub-
iterations, the convergence for the whole algorithm is achieved in
terms of both objective function f(x) + 2(®x) and iterates x*, r(/-t)

and, s;‘) (Boyd et al. 2011; Komodakis & Pesquet 2015). It requires
that

pl®+0 <2, (D1)

with || ®||s being the spectral norm of the measurement operator and
the parameters p and o being the update step used for the proximal
splitting and the gradient ascent step, respectively.

In practice, however, the RI imaging problem is very ill-
conditioned and the operator @ is typically not full rank. Under
these relaxed conditions, the convergence is guaranteed only with
respect to the objective function and the multipliers s(I without any
guarantees for the iterates x and r (Boyd et al. 201 ). A possible
way to improve this is to replace & with an augmented function 7,

i ( “’] x) — (®x) + 0(Tx), (D2)

where O represents the null function, zero for any x. Such a trick
(Pesquet et al. 2012) replaces the measurement operator ® with the
augmented operator representing the concatenation of both ® and
I'. The new resulting operator is full rank for a proper choice of the
matrix I'. In practice, Algorithm 1 produces reliable performance
and we did not employ such a trick herein.

D2 PD algorithm

The variables x®, v;’) and u,(-l), Vi, j, are guaranteed to converge

to the solution of the PD problem (27) and (28) for a proper set
of configuration parameters. The convergence, defined given two
general preconditioning matrices U and W, requires (Pesquet &
Repetti 2015, Lemma 4.3) that

IULW? 2 < 1, (D3)

with the linear operator L being a concatenation of all the used op-
erators, in our case a concatenation of both W' and ®. By choosing
diagonal preconditioning matrices, with the config parameters T,
o; =0 and ¢; = ¢, Vi, j, on the adequate diagonal locations, the
conditions from (D3) can be restated explicitly for Algorithm 2 as

)2 2
<to ||Vl +rsl®ls<1, (D4
S

sl 3]
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with the use of the triangle and Cauchy—Schwarz inequalities and
with the diagonal matrices | of a proper dimension. It should be
noted that this formulation does not limit the use to only two pa-
rameters o and ¢. However, having more independent update steps
scales poorly due to the increasing difference between the resulting
bound, computed similarly to (D4), and the requirements (D3). This
translates to having increasingly small values for the update steps,
the more independent parameters we employ, with the convergence
speed slowing down considerably in such situation. It is also re-

Scalable splitting algorithms for SKA 4335

quired that the relaxation parameter is chosen such that 0 < A < 1.
The additional parameter y > 0 imposes that k > 0 as well.

For the randomized setup, the same parameters satistying (D3)
suffice, granted that the probabilities of update pp, and pp, are
non-zero and the activated variables are drawn in an independent
and identical manner along the iterations.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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