

Ultra Scale-down Tools to Accelerate Process Development

Guijun Ma and Yuhong Zhou Department of Biochemical Engineering University College London

Outline

Significance of ultra scale-down (USD) technology Ultra Scale-down device for crossflow filtration process Modelling system resistance Predict large scale flux and TMP relationship Conclusions

Outline

Significance of ultra scale-down (USD) technology Ultra Scale-down device for crossflow filtration process Modelling system resistance Predict large scale flux and TMP relationship Conclusions

The Challenge for Pharmaceuticals

- Medicines are becoming more complex
- Healthcare markets are becoming more segmented
- Governments are working to contain healthcare costs
- Greater emphasis on speed to market and improved bioprocesses

What Is Ultra Scale-down (USD)?

- The ability to research at a small scale and provide new insights into how a bioprocessing material is impacted by the process engineering environment
 - The ability to inform on how to scale up and provide material representative of full scale

Why Do It?

Test cell and product candidates for "manufacturability", early and at low cost

Address novel bioprocessing solutions, early and at low cost

Resolve large-scale manufacturing challenges, early and at low cost

Help meet regulatory challenges

Move with speed to

- 1.Specify operations and whole bioprocess
- 2.Identify regimes where changes in process stream properties may occur
- 3.Use ultra scale-down to mimic such regimes and test impact on process stream

Achievements in Ultra-scale Down Technology

- 1. Fermentation
- 2. Centrifugation
- 3. Dead-end filtration
- 4. Depth filtration
- 5. Chromatography
- 6. Cross-flow filtration

Outline

Significance of ultra scale-down (USD) technology Ultra Scale-down device for crossflow filtration process Modelling system resistance Predict large scale flux and TMP relationship Conclusions

Cross-flow Filtration

USD Device

UCL

Cross-flow filtration with USD UCL

Microfiltration with USD

USD Device

UC

Volume = 1.5-3 mlDiameter = 21 mmMembrane area = 3.64 cm^2

Dead-end Method

^AUCL

Shear Rate

RPM

Material & Method

L C C

Feed material

Fab expressed E coli; 450 L fermentation, harvested by a CSA-1 disc-stack centrifuge
Periplasmic extraction buffer of 100 mM tris-base and 10 mM disodium EDTA dissolved in deionized water, pH of 7.4, T of 40 °C used to lyse the cells, then heat at 60 °C for 3 hours
Cell concentration is 47 g DCW/L

Diafiltration buffer

•90 mM sodium chloride

Material & Method

UCL

Small pilot plant experiment

•a Proflux[®] M12 rig
•a 1,000 kDa polyethersulfone membrane, 0.1 m²
•BIOMAX cassette, turbulence screens (V-screen)

USD experiment

•USD device

•a 1,000 kDa polyethersulfone membrane, 3.46 cm²

Material & Method

^AUCL

Experimental method

•Constant flux operation for both USD and small pilot scale experiments

Process aim

Recover Fab from lysateEfficient flux and TMP

Large Scale Verification

UCL

 (\Box) Large scale experiment and (\circ) USD experiment

Fab'concentration in permeate \Box labscale; \circ USD. Fab' concentration in retentate (**•**) labscale; (**•**) USD. Fab' transmission (red line) and (Δ) experimental results.

Large Scale Verification

Observation

- Different system configuration of USD and large scale such as screened flow paths in large scale equipment
- System resistance includes the membrane resistance, the cassette resistance and the resistance of the tubing in the 3 measurement points of pressures
- $J = \frac{TMP}{\mu R}$, TMP=0 when J=0. However TMP is not equal

to zero at large scale.

Outline

Significance of ultra scale-down (USD) technology Ultra Scale-down device for crossflow filtration process Modelling system resistance Predict large scale flux and TMP relationship Conclusions

Modelling TMP

$$\mathsf{TMP} = \frac{P_i + P_o}{2} - P_p$$

$$\mathsf{TMP} = \Delta P_A - \frac{\Delta P_C}{2}$$

 $\Delta P_A = P_i - P_p$, Applied pressure drop

 $\Delta P_C = P_i - P_o$, Channel pressure drop

Modelling TMP When Flux is Zero

Water Lysate

 $\mathsf{TMP} = \mathbf{GQ}^m$

 $\mathsf{TMP} = \mathsf{G'Q}^m$

$$G = C_{Aw} - \frac{C_w}{2}$$

$$G' = C_{Aw} \frac{\mu_m}{\mu_w} - \frac{C_w}{2} (\frac{\mu_m}{\mu_w})^n$$

Modelling System Resistance

$$R_{s} = \frac{\text{TMP}}{\mu J} \qquad \text{When } G = 0$$
$$R_{s} = R_{A} - \frac{R_{C}}{2} \qquad \text{When } G \neq 0$$

Water test at large scale $\Delta P_A = C_A (Q - JA)^m + \mu R_A J$

$$\Delta P_{c} = C(Q - JA)^{m} + \mu R_{c}J$$

$$\mathsf{TMP} = \Delta P_{A} - \frac{\Delta P_{C}}{2} = G(Q - JA)^{m} + \mu R_{S}J$$

Modelling System Resistance

Water

Lysate

$$R_{S} = R_{A} - \frac{R_{C}}{2}$$
 $R_{A} = R_{P} + R_{M}$ R_{F} : membrane resistance R_{P} : permeate system resistance

$$\Delta P_A = C_A (Q - JA)^m + \mu R_A J \qquad \longrightarrow \qquad \Delta P_{Am} = C_A \frac{\mu_m}{\mu_w} (Q - JA)^m + (\mu_m R_F + \mu_P R_P) J$$

$$\Delta P_{C} = C(Q - JA)^{m} + \mu R_{C}J \qquad \qquad \Delta P_{Cm} = C_{w} \left(\frac{\mu_{m}}{\mu_{w}}\right)^{n} (Q - JA)^{m} + \mu_{P}R_{C}J$$

$$\mathsf{MP} = \Delta P_{A} - \frac{\Delta P_{C}}{2} = G(Q - JA)^{m} + \mu R_{S}J \longrightarrow \mathsf{TMP} = G'(Q - JA)^{m} + (\mu_{m}R_{F} + \mu_{P}(R_{S} - R_{M}))J$$

Outline

Significance of ultra scale-down (USD) technology Ultra Scale-down device for crossflow filtration process Modelling system resistance Predict large scale flux and TMP relationship Conclusions

Predict Large Scale Flux and TMP Relationship

- USD modelling
- Water test at large scale when flux is zero to estimate flow parameters
- Water test at large scale to estimate system
 resistance
- Establish the new model between TMP and flux
- Use the model to predict flux and TMP relationship

USD Modelling

L

Flux and TMP relationship determined with USD by using 90 mM NaCl solution at shear rates of 1,760 s-1 (\bullet), 2,320 s-1 (\Box), 2,920 s-1 (\blacktriangle), 3,570 s-1 (\Diamond), and 4,260 s-1 (\blacksquare). Solid line is the flux prediction by equation.

Water Test at Large Scale When Flux is Zero

The effect of inlet flow rate during water test on channel pressure drop (\blacklozenge), applied pressure drop (\blacktriangle), and TMP (\blacksquare).

Lysate Test at Large Scale When Flux is Zero

The effect of inlet flow rate on pressure drops for *E. coli* lysate test. The lysate test results were channel pressure drop (\Diamond), applied pressure drop (Δ), and TMP (\Box). The viscosity of lysate was 1.78 × 10⁻³ Pa.s.

Water Test at Large Scale Flux and TMP Relationship

The relationships between flux and pressure drops for water flux test at an inlet flow rate of 1.55 L.min⁻¹: channel pressure drop (\blacksquare), applied pressure drop (\blacklozenge), and TMP (\blacktriangle).

Validation of Water Flux and TMP Relationship

The relationships between flux and pressure drops for water flux test at an inlet flow rate of 1.30 L.min⁻¹ (A) and at an inlet flow rate of 1.06 L.min⁻¹ (B).

Predict large Scale Flux and TMP Relationship for Lysate

 $TMP = 0.049(Q - 1.67 \times 10^{-3}J)^{1.5} + \frac{Ln\left(1 - \frac{J}{\alpha}\right)}{-\beta J} + 1.23 \times 10^{-3}J$

The relationships between flux and pressure drops of critical flux determination for *E. coli* lysate at inlet flow rates of 1.55 L.min⁻¹ : channel pressure drop (\Box), applied pressure drop (\Diamond), and TMP (Δ). The viscosity of lysate was 1.78 × 10⁻³ Pa.s and the viscosity of permeate was 1.09×10⁻³ Pa.s.

Predict large Scale Flux and TMP Relationship for Lysate

Inlet flow rates of 1.30 L.min⁻¹

Inlet flow rates of 1.06 L.min⁻¹

Conclusions

- USD device operated via dead-end mode allows to predict the membrane resistance impacted by fouling
- Water test can be used to calibrate the initial TMP and system resistance
- The combination of USD experiments and water tests establishes the scaling rule
- The benefit of USD membrane device can be realised fully
- USD tool enables the acceleration of bioprocess development, early and at low cost