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ABSTRACT 

The growth of cities increases urban surface areas 

and anthropogenic heat generation, causing an Urban 

Heat Island (UHI) effect. In the UK, UHI effects may 

cause positive (winter) and negative (summer) health, 

comfort and energy consumption consequences. With 

the increasing focus on climate change-related heat 

exposure and consequent increased mortality risk, 

there is a need to better investigate the UHI during 

hot seasons. This paper reviews the current literature 

regarding UHI characterisation using monitoring, 

modelling, and remote sensing approaches, their 

limitations, and applications in building simulation 

and population heat exposure models. Ongoing and 

future research is briefly introduced in which 

downscaling techniques are proposed that provide 

higher temporal and spatial information to assess and 

locate heat-associated health risk in London. 

INTRODUCTION 

An increase in urbanisation is leading to greater 

population densities, reductions in greenspace, and 

an increase in anthropogenic heat sources in cities 

worldwide. The Urban Heat Island (UHI), a 

phenomenon where the temperature in urban areas is 

elevated compared to surrounding rural areas, is one 

of the consequences of increased urbanisation 

(Grimmond et al., 2016), with the temperature 

increase an indicator of UHI intensity. While the UHI 

may be beneficial in reducing winter mortality risks 

due to cold (Voogt, 2000) and winter energy use for 

heating (Mavrogianni et al., 2009), it may exacerbate 

exposure to high temperatures during periods of hot 

weather, thereby increasing the risk of heat-related 

mortality (Tomlinson et al., 2011; Taylor et al., 

2015). 

The interaction between the UHI and buildings is 

complex, with the contribution of buildings to the 

UHI dependent on their energy interaction with the 

urban environment, which is in turn driven by 

building construction characteristics, and occupant 

behaviour. Buildings may contribute to the UHI 

during their operation, emitting heat from air 

conditioning systems and central heating systems, 

depending on the energy efficiency of the building 

envelope; conversely, UHI temperatures may 

increase building heat exposure. Therefore, the 

indoor overheating risk will be dependent on outdoor 

temperatures, which may vary at a local or 

neighbourhood scale across an urban area. 

UHIs may be evaluated using urban meteorological 

networks, modelling tools, or remotely-sensed 

imagery, all of which have advantages and 

disadvantages. This paper reviews the relevant 

literature about monitored, modelled and remotely-

sensed weather data used as inputs into building 

simulation and heat exposure modelling, and 

describes how downscaling may improve spatial 

resolution. Ongoing and future research is introduced 

that aims to bridge the gap between what climate 

models and remote sensing provide and what 

building simulation models require, through 

monitoring, modelling and downscaling techniques. 

The methodology proposed may be applied to other 

cities that do not have appropriate sources of weather 

measurements. This work will supply city planners, 

urban engineers and architects with satisfactory 

temperature coverage of London to assess and locate 

heat-associated health risk in London. These data 

would also be of use to epidemiologists and public 

health officials aiming to understand and reduce heat-

related mortality through the mitigation of heat 

exposure due to the UHI and building performance. 

UHI, Heat, and Health 

Exposure to even modest heat has been shown to lead 

to an increased mortality risk in temperate climates 

(Armstrong et al., 2011; Hajat et al., 2010). In the 

UK, there is no official definition of a heat wave, but 

it may be described using the definition of the World 

Meteorological Organization as a period "when the 

daily maximum temperature of more than five 

consecutive days exceeds the average maximum 

temperature by 5 °C, the normal period being 1961-

1990" (Met Office, 2016). Extreme temperature 

events have been labelled as the most dangerous 

hazard for human health in Europe (EEA, 2010), and 

hot weather can be intensified by the UHI. In the UK, 

two recent extreme temperature events in 2003 and 

2006 (GLA, 2006; Zhang et al., 2014) have been 

extensively reported in the literature. The 2003 

European heat wave led to around 600 excess deaths 

in London and the UHI intensity reached up to 6–9 

ºC (GLA, 2006). Extreme temperature events are 

predicted to become more frequent in the UK and 



along with it the risk of heat-related mortality 

(Jenkins et al., 2014).  

Most British dwellings are free running during the 

summer, and their relative overheating performance 

is determined by a number of factors, including 

building fabric and geometry characteristics, 

orientation, local weather, and occupant behaviour. 

As the UK population spends the majority of their 

time indoors, the possibility to estimate indoor heat 

exposures inside individual urban dwellings, placed 

within a high-resolution UHI map would enable the 

understanding of intra-urban variations in the risk to 

human health.  

Exposure to heat can be particularly dangerous to 

vulnerable segments of the population, such as 

people with limited mobility (elderly, babies and 

individuals with chemical and alcohol dependence), 

chronic or severe disease (obesity, respiratory 

diseases and cardiovascular conditions) and homeless 

people (Department of Health, 2015). While the UHI 

phenomenon is present year-round, it is during the 

summer that the increased temperature may 

exacerbate heat-related mortality. The UHI effects 

are estimated to lead to significant excess mortality 

during hot periods, including heat-related illnesses 

(Department of Health, 2015). For example, a recent 

paper by Heaviside et al. (2016) suggested that the 

UHI was responsible for 50% of the excess heat-

related deaths in the West Midlands during the 2003 

heat wave (Heaviside et al, 2016). 

The role of housing on temperature exposure has 

been investigated in a number of studies, showing 

that overheating risk can vary across different UK 

dwelling types. These include building simulation 

studies which highlight, for example, bungalows and 

top-floor flats as being among the most at-risk of 

overheating (Mavrogianni et al., 2012; Taylor et al., 

2015). Building on an improved understanding of the 

role of housing on heat exposure, a number of recent 

studies have sought to combine UHI estimates with 

simulated or assumed building overheating risks to 

estimate indoor temperature exposures and heat-

related mortality risks. Approaches have included, 

for example: 1) using a combination of monitored 

and modelled temperature data to create weather files 

for building simulation (Oikonomou et al., 2012), 2) 

using regional climate model-derived weather files at 

5 km
2
 resolution to use with building simulation 

(Kershaw et al., 2010; Lee and Levermore, 2012), 3) 

using 1 km
2
 modelled UHI temperatures as a post-

hoc adjustment for simulated indoor temperatures 

(Taylor et al., 2015), or 4) overlaying remote-sensed 

UHI imagery with a principle components analysis of 

heat vulnerability that includes housing type as a 

factor (Wolf and McGregor, 2013). There is, 

therefore, an increasing research interest in 

combining three layers (UHI distribution, housing 

stock and vulnerable individuals) to estimate the 

spatial variation of heat risk and evaluate the relative 

importance of housing and UHI on heat exposure. It 

is likely, however, that there are important 

temperature variations that occur at smaller spatial 

extents due to local microclimatic processes 

(Kolokotroni and Giridharan, 2008). 

OBSERVED WEATHER DATA 

Field Measurements  

Urban temperature data may be available from 

networks of meteorological stations (Zakšek and 

Oštir, 2012; Huth et al., 2015; Jiang et al., 2015). 

These stations have advantages, in that they provide 

direct meteorological data, such as measured air 

temperature, at regular time intervals. These field 

measurements are frequently used to quantify the 

UHI intensity (Marzari and Haghighat, 2010). Due to 

the elevated cost of installation and maintenance of 

the measurement equipment, the density of fixed 

stations inside the city is typically inadequate to 

characterise the local spatial variation in UHI 

intensities, limiting the ability of many studies to 

properly investigate neighbourhood temperatures 

using measured data. The use of weather data from 

meteorological stations for building simulation is 

most suitable when the building is located close to 

the monitoring site. Measured data also can be 

appropriate for validation of modelled UHI 

temperatures (Mirzaei and Haghighat, 2010). 

Additionally, the variability of air temperature in 

cities may be acquired by performing transects across 

urban areas using, for example, sensors installed on 

cars (Nichol et al., 2009).  

There are a number of examples of monitored 

temperature data used in building simulation for 

indoor overheating analysis. For example, Virk et al. 

(2015a) evaluated building overheating in London 

using EnergyPlus and monitored weather data from 

the Chartered Institute of Building Services 

Engineers (CIBSE) in the form of Design Summer 

Years (DSY) for three baseline years (1976, 1989 

and 2003). Three locations were considered: urban 

(London Weather Centre), semi-urban (London 

Heathrow and rural (London Gatwick). 

The HiTemp project in Birmingham sought to 

increase spatial coverage of monitoring stations using 

a dense meteorological network of more than 150 

Wi-Fi sensors, located in each Middle Level Super 

Output Area (MSOA), and 100 Wi-Fi sensors on 

lampposts, in the commercial area of the city. These 

sensors measured air temperature, precipitation, 

relative humidity, wind speed and direction, pressure 

and solar radiation, with the aim of analysing climate 

impacts on household electricity consumption and 

assess the heat health risk across the city (HiTemp, 

2016). In London, the London Site-Specific Air 

Temperature Model (LSSAT) provides hourly air 

temperature estimates for 77 fixed temperature 

stations across London, which may be interpolated to 

a radial grid with 52 location points (Kolokotroni et 

al., 2009). These data were developed as part of the 



LUCID (the development of a Local Urban Climate 

model and its application to the Intelligent Design of 

cities) project. Weather data from LSSAT was used 

by Oikonomou et al. (2012) from the centre and edge 

of London to examine the relative role of building 

characteristics and UHI on overheating risk using 

EnergyPlus.  

Remote sensing 

Remote sensing is the science of obtaining 

information about an object without physical contact 

using sensors that register the interaction between the 

radiation (emitted, reflected and absorbed) and the 

target (Schneider dos Santos et al., 2015). Infrared 

sensors on-board satellites or aircraft can generate 

thermal images of land surface temperatures during 

the day and night, thereby enabling the mapping and 

monitoring thermal urban characteristics. 

Additionally, sensors may capture data that enable 

land use classification, which can be used to 

supplement thermal imagery. Sensors may capture 

data at different resolutions (spatial, temporal and 

radiometric) and accuracy levels. While remote-

sensed thermal imagery is of land surface 

temperature (LST), it may be used to grid surface 

energy fluxes and get an estimation of air 

temperature (Zakšek and Oštir, 2012; Jiang et al., 

2015).  

There are many satellites capable of providing LST 

measurements as well as wide geographical 

coverage. Geostationary satellites provide a 

geosynchronous orbit over Earth. These satellite 

types are valuable for climate monitoring (such as 

cloud cover and wind) since they provide a constant 

view of the same surface area. Geostationary 

satellites, such as Spinning Enhanced Visible Infra-

Red Imager (SEVIRI), on board Meteosat Second 

Generation (MSG); and the Geostationary 

Operational Environmental Satellite (GOES) (Kustas 

et al., 2003; Jiang et al., 2015), are used in UHI and 

heat wave analysis, because they have high 

frequency of observation (every 15 min), although 

with poor spatial resolution (around 4 km).  

Polar-orbiting satellites are closer to the earth’s 

surface than geostationary satellites and have an 

orbiting period of around 1.5 hours. The spatial 

resolution and revisit time varies depending on the 

swath width of the satellite (Bechtel et al., 2013). 

Two daily images are offered by wide swath sensors, 

such as the MODerate resolution Imaging 

Spectroradiometer (MODIS), on board the Terra and 

Aqua satellites and the Advanced Very High 

Resolution Radiometer (AVHRR), on board National 

Oceanic and Atmospheric Administration (NOAA). 

Sensors with low swath have lower overpass 

frequency, such as the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer 

(ASTER) and Landsat sensors.  

Table 1 shows satellites that provide LST data for 

urban thermal analysis. Each data source presents a 

trade-off between resolution and revisit frequency. It 

is, therefore, not possible to obtain LST data at high 

temporal and spatial resolutions via a single satellite 

(Atkinson, 2013). Additionally, overpass must 

coincide with cloud-free conditions to gather clear 

imagery. 
 

Table 1 

Technical characteristics of different satellite sensor 

for UHI and heat wave studies. 

 (VNIR: Visible and Near Infrared; TIR: Thermal 

Infrared). 

 

SENSOR/ 

SATELLITE 

SPATIAL 

RESOLUTION TEMPORAL 

RESOLUTION VNIR 

Bands 

TIR 

Bands 

TM/ 

Landsat 5 

30 m 120 m 16 days 

ETM+/ 

Landsat 7 

30 m 60 m 16 days 

OLI & TIRS/ 

Landsat 8 

30 m 100 m 16 days 

ASTER/ 

Terra 

15 m 90 m 16 days 

MODIS/ Aqua 

| Terra 

250 m 1000 m 1-2/days 

AVHRR/ 

NOAA 

1000 m 1000 m 2/days 

SEVIRI/ MSG  1000 m 3000 m 5-15 min 

GOES imager/ 

GOES 

- 5000 m 15 min 

 

Remote sensing equipment on board aircraft may 

also capture UHI data. The spatial and temporal 

resolution can be controlled, but surveys are 

expensive and flights are typically made to order. 

Data from NASA’s Advanced Thermal and Land 

Applications Sensor (ATLAS) instrument, on board 

the NASA Stennis Lear Jet, have been extensively 

used for UHI analysis in the USA (Gluch et al., 2006; 

Dominguez et al., 2011). ATLAS has 15 bands 

covering the visible, near-InfraRed (IR), mid-IR and 

thermal-IR wavelengths, with spatial resolution of up 

to two meters per pixel, but multispectral/thermal 

data are usually used at 10 m (Gluch et al., 2006). 

There are a number of examples of remote-sensed 

UHI data being used alongside dwelling overheating 

risk estimates in heat risk assessments. For London, 

Wolf and McGregor (2013) combined remote-sensed 

UHI imagery with a principle components analysis of 

heat vulnerability to estimate the spatial variation in 

heat vulnerability. In Birmingham, Tomlinson et al. 

(2011) used an UHI derived from MODIS imagery to 

predict spatial heat risk. However, due to the limited 

spatial or temporal resolution, remotely-sensed UHI 



data has not been used to generate weather files for 

direct use in building simulation. 

MODELLED WEATHER DATA 

Weather modelling is a useful tool to estimate the 

distribution of UHI temperatures since it can address 

past, present and future scenarios, helping 

researchers to better understand processes on 

different scales. These models can generate grids of 

meteorological data at varying resolutions. 

Global and Regional Climate Models 

Global Climate Models (GCM) are used for climate 

predictions and run weather data at low spatial 

resolution (100-250 km) with high temporal 

resolution (e.g. hourly). Due to the low spatial 

resolution, they are not adequate to supply 

temperature information at local scale (Wilby and 

Wigley, 1997; Huth et al., 2015) and therefore 

Regional Climate models (RCM) are widely used for 

more local temperature estimates. RCMs are capable 

to run climate variables at better resolution (25-50 

km).  

Mesoscale models are climate models able to be run 

at more local levels using inputs of land use and 

weather conditions to estimate urban temperatures at 

1 km² or less. Land use and city characteristics may 

be informed by an urban surface scheme, which 

offers an appropriate two-dimensional representation 

of the building types and the energy fluxes from the 

urban surfaces. Two examples of the climate models 

with the combination of urban canopy schemes are: 

Weather Research Forecasting (WRF) model and the 

UK Met Office’s Unified model (MetUM). 

WRF, a regional meteorological model, was used by 

Heaviside et al. (2015), for example, in Birmingham 

and the West Midlands Metropolitan region to model 

the UHI impact on air temperature to assess the heat-

related health risk at 1 km
2
 resolution, during the 

2003 heat wave. The model used weather data in 

combination with an urban canyon scheme and a 

detailed land use data to generate results, with 

observations from four weather stations used to 

validate the model.  

The MetUM model is a tool that combines Numerical 

Weather Prediction (NWP) and climate models, to 

improve the understanding of the urban areas effect 

for weather forecasting and regional climate 

modelling. The MetUM model has been used with 

the Met Office–Reading Urban Surface Exchange 

Scheme (MORUSES) to estimate UHI temperature 

data at 1 km² for London (Porson et al., 2010). These 

combined models, referred to as the London Unified 

Model (LondUM), were used to generate UHI 

estimates for the LUCID project (Porson et al., 2010; 

Bohnenstengel et al., 2011). Taylor et al. (2015) used 

the 1 km
2
 air temperature outputs from this project, 

in conjunction with modelled individual-building 

indoor temperatures, as modifiers of heat exposure 

and subsequent mortality across London. 

Microclimate Models 

In contrast with mesoscale models, microscale 

models are not generally applied to an entire city, but 

instead at neighbourhood scales due to high 

computational cost, since the energy flux interactions 

and canyon configurations are more detailed. At the 

same time, such models simplify atmospheric 

interactions, since they do not include atmospheric 

vertical mixing or Coriolis effects (Mirzaei and 

Haghighat, 2010). The spatial resolution of these 

models is usually 1-50 m² and they can offer two and 

three-dimensional representations of the buildings. 

Microclimate models are a useful tool to estimate 

heat effects at a scale of up to few hundreds of 

meters, since the local weather can change 

considerably from the original weather forecasting, 

due to the energy flux interactions of urban surfaces. 

The Atmospheric Dispersion Modelling System 

Temperature and Humidity (ADMS T&H) is one 

such tool that assesses the spatial variation of 

temperature over the urban system at high spatial 

resolution (1-50 m²). This tool was used by Virk et 

al. (2015a) to investigate the impact of retrofitted 

green and cool roofs on the variation of air 

temperature near to the building. These outdoor 

temperatures were used to estimate internal 

temperatures using dynamic building thermal 

simulation (EnergyPlus). 

Another such tool is ENVI-met, designed to simulate 

detailed surface-plant-air interactions within an urban 

environment. The spatial resolution is from 0.5 to 

10m and it offers three-dimensional representations 

of the buildings. O’Malley et al. (2014) developed 

successful scenarios of UHI mitigation strategies 

using ENVI-met modelling for West Kensington and 

North Fulham, London.  

Computational Fluid Dynamics (CFD) models 

provide simulation of thermal conditions and airflow 

inside and above the urban canopy (Somarathne et 

al., 2005). CFD is capable of providing detailed 

three-dimensional information on temperature, wind 

velocity and other fluid properties in local urban 

environments. CFD is, therefore, considered to be 

better than Urban Surface Schemes, which are based 

on the relationship of the energy exchanges between 

buildings and ambient air within urban canopy 

(Mirzaei and Haghighat, 2010). Nonetheless, CFD 

requires high computational power and a complex 

input dataset, making it inappropriate for modelling a 

large area. Somarathne et al. (2005) used a dynamic 

thermal modelling (DTM) procedure within CFD, to 

simulate indoor-outdoor temperature exchange in a 

typical UK office, based on CIBSE template for well-

insulated airtight building.  

DOWNSCALING TECHNIQUES 

Downscaling is a generic term that refers to methods 

for increasing the temporal and spatial resolution of 



GCM, RCM and satellite images through auxiliary 

data with higher resolution (Zakšek and Oštir, 2012).  

Downscaling techniques, when applied to climate 

models, rely on a combination of large-scale climatic 

models (such as GCM outputs combined with RCM 

data), local climate (climate station information) and 

local conditions (topography and land use properties) 

to provide higher spatial and temporal resolution 

(Wilby and Wigley, 1997).  Downscaling methods 

can be broadly divided into Dynamical Downscaling 

(DDS) and Statistical Downscaling (SDS). These 

methods are extensively used to estimate important 

climate variables, including temperature and 

precipitation (Wilby and Wigley, 1997; Huth et al., 

2015). 

DDS may be used to downscale GCM outputs to a 

RCM to characterise the new climate variables 

patterns at a resolution of 25-50 km² (Wilby and 

Fowler, 2010). DDS produces consistent 

representation of RCM interactions without the need 

for historical data, however it requires high 

computational power and has limited scale reduction. 

This method was used by Lee and Levermore (2012) 

to produce weather files representative of climate 

change scenarios from a GMC to RCM (HadRM3) 

on 25 km² grid. In combination with a weather 

generator data, 25 km² were downscaled further to 5 

km² grid of hourly and daily air temperature. The 

outputs were used to model overheating risk using 

EnergyPlus in a typical Manchester dwelling. For 

Chicago, USA, Conry et al. (2015) applied a 

combination of DDS with a GCM (Community 

Atmosphere Model), RCM (WRF) and Microscale 

(ENVI-met) models to create microscale outputs that 

were combined with a building energy model to 

estimate energy demand. The PROMETHEUS 

project (The use of probabilistic Climate Change 

Data to Future-proof Design Decisions in the 

Building Sector) produced weather files in the 

EnergyPlus weather format to be compatible with 

common building simulation software, based on the 

latest UKCP09 projections (PROMETHEUS, 2016). 

This involved temporally downscaling (from monthly 

to hourly values) the Met Office’s RCM data 

(HadRM3) (Kershaw et al., 2010) 

SDS involves enhancing GCM resolution using local 

variables through validated empirical relationships. 

SDS has been widely applied to UHI studies since 

the tools are easy to implement and do not require the 

computational power of DDS. However, it requires 

historical observational data to establish the 

relationship between global and local-scale 

processes. These downscaled RCM models output 

may not be the most appropriate input data for local 

scale analyses, since the output grids do not provide 

sufficient resolution to evaluate the UHI’s 

contribution to the risk of indoor overheating at the 

individual-building level. This method was used, 

under different statistical techniques, by Poggio and 

Gimona, et al. (2015) to provide the best estimation 

for the climate model (HadRM3) data in relation to 

climate variables.  

Remote sensing images may also be spatially 

downscaled to provide finer spatial resolutions, 

however with the limitation of providing LST rather 

than air temperature. Several studies have 

downscaled satellite data to better understand the 

spatial and temporal variation of temperatures at 

local scales (e.g. Jiang et al., 2015). SDS may be 

used to downscale remotely-sensed LST data by 

relying on the relationship between LST and 

auxiliary data. Satellite sensors provide better spatial 

resolution in the visible and near-infrared regions 

compared to the thermal region. Those two regions 

can provide auxiliary datasets, such as vegetation 

cover, albedo and land use; these data can help in the 

disaggregation process since LST is influenced by 

the surface characteristics. The most frequently SDS 

technique uses the negative correlation between the 

LST and Normalized Difference Vegetation Index 

(NDVI) to acquire better LST resolution (Kustas et 

al., 2003). There are number of examples of 

downscaling applications grounded in remote sensing 

data. For example: Zakšek and Oštir (2012) applied 

multiple regression in SEVIRI images, based on 

Principal Component Analysis (PCA) to disaggregate 

LST from 5 km to 250 m; Jiang et al. (2015) used 

SDS on remote-sensed data as the first step of their 

methodology to create a risk map to monitor the heat 

hazard across Los Angeles city (USA), at 1 km 

resolution with higher repeat cycle (every 15 min); 

and Dominguez et al. (2011) applied High Resolution 

Urban Thermal Sharpener (HUTS) to ASTER TIR 

image (90 m), using VNIR image (10 m) as auxiliary 

data from NASA’s ATLAS airborne to enhance the 

spatial resolution of ASTER thermal image. 

ONGOING AND FUTURE RESEARCH 

There are several possibilities for using remote 

sensing as a substitute for, or to supplement, existing 

measured and monitored urban climate data. Remote 

sensing tools do not require a complex input dataset 

or high computational power; they offer historical 

data and do not rely on city weather station coverage; 

and there are data available for cities worldwide. 

Although air temperature cannot be acquired directly 

using remote sensing, LST data are useful as a 

surrogate for air temperature (Jiang et al., 2015). 

Remote sensing data is limited by the trade-off 

between high temporal (hourly) or high spatial (less 

than 1 km²) resolutions via a single satellite 

(Atkinson, 2013). However, with the addition of 

downscaling techniques, remote-sensed data can 

estimate land surface temperatures at an individual-

building scale (Dominguez et al., 2011). 

In addition, remotely sensed data can be used to 

generate urban surface and terrain input data to 

weather and building simulation models, since land 

use parameters (albedo, thermal admittance and 

surface resistance to evaporation parameter) and 



building height are not provided from meteorological 

networks. These data were used by Virk et al. 

(2015b) to generate inputs into their microclimate 

ADMS T&H.   

Current research at UCL is investigating the risk of 

overheating in dwellings and the subsequent risk of 

mortality to building occupants (Taylor et al., 2015) 

using 1 km
2
 air temperature grids in combination 

with building thermal simulation models. Ongoing 

research is building upon this work by investigating 

variations within these 1km
2
 air temperature grids to 

further refine local estimates of UHI heat exposure. 

The research hypothesis is that temperature 

variations within existing grids may be significant, 

and that a better spatial resolution grid of air 

temperature is required to estimate accurate predict 

indoor temperatures, and consequently population 

mortality risk. The objective of this research is to 

bridge the gap between the current scale limitation of 

temperature and the appropriate spatial resolution 

required from researchers focused on the assessment 

of heat-associated health risk.  

Initially, analyses are focused on existing LST, 

modelled and monitored air temperature data for 

London (Figure 1). A 1km
2
 grid of modelled air 

temperature, developed using the LondUM model as 

part of the LUCID project, provided temperature data 

from May to August, 2006. This low-resolution data 

is contrasted with higher-resolution measured and 

remotely-sensed data to see how the air temperature 

and LST vary inside of each modelled grid square. 

Monitored air temperature data, obtained in August 

2008 using car transects that recorded air temperature 

every second, provided high-resolution temperature 

data within the 1km reference grid squares along the 

car route (north/south and west/east). In addition, 

LST was obtained from ASTER for a date within the 

modelled period (July 28
th

, 2006) and overlaid on the 

same grid squares. All data was adjusted to the same 

geographical reference to be able to apply spatial 

analysis. By calculating the standard deviation values 

from all air temperature or LST data contained inside 

each selected grid cell, it will be possible to explore 

the air temperature and LST variability across 

London. The results will help to determine whether 

there is a requirement to develop urban temperature 

models at spatial resolutions higher than 1km².  

If the results indicate high variability within the 1km 

grid squares, further research will use downscaling 

techniques to provide higher spatial resolution of air 

temperature, supported by remote sensing data. The 

result will provide a temperature data at an 

appropriate scale to improve our understanding of the 

contribution of London’s UHI on indoor overheating. 

The final results of this project will be compared with 

the outputs of more complex high resolution UHI 

models in order to provide an inter-model validation, 

evaluating the trade-offs of the models and testing 

the reliability of the proposed method.  

Additionally, this project will develop a downscaling 

guide as one of its outputs, explaining which 

technique is more appropriate to obtain the desired 

results at a local scale. Future work will apply 

downscaling techniques to other UK cities, providing 

improved information on urban temperature 

variations and a higher resolution grid of outdoor 

temperature. This will, in-turn, help to enhance the 

understanding of intra-urban variations in the risk to 

human health.  
 

 

Figure 1 Initial steps of the research structure. 
 

SUMMARY 

This paper reviews the data sources commonly used 

to better understand and substantiate UHI impacts in 

urban settings and estimate site-specific 

temperatures. We have addressed the various 

strengths and limitations of different approaches, and 

introduced ongoing and future research that seeks to 

improve on existing UHI data resolution used in 

existing building overheating and health impact 

models.  
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