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 

Abstract—This paper investigates the selection of different 

combinations of features at different multistatic radar nodes, 

depending on scenario parameters, such as aspect angle to the 

target and signal-to-noise ratio, and radar parameters, such as 

dwell time, polarisation, and frequency band. Two sets of 

experimental data collected with the multistatic radar system 

NetRAD are analysed for two separate problems, namely the 

classification of unarmed vs potentially armed multiple 

personnel, and the personnel recognition of individuals based on 

walking gait. The results show that the overall classification 

accuracy can be significantly improved by taking into account 

feature diversity at each radar node depending on the 

environmental parameters and target behaviour, in comparison 

with the conventional approach of selecting the same features for 

all nodes.  

 
Index Terms—Multistatic radar, human micro-Doppler, 

feature extraction, feature selection, classification, radar 

signatures. 

I. INTRODUCTION 

HE micro-Doppler effect refers to the additional 

frequency components observed in addition to the main 

Doppler shift of moving targets, which are caused by rotating 

or vibrating parts such as the propeller of aircraft, wheels of 

vehicles, or the torso oscillation and swinging of limbs in the 

case of human targets [1]. Micro-Doppler has been 

investigated for a variety of applications including search and 

rescue, security, law enforcement and defence [2-4], but the 

extraction of suitable information and features from the micro-

Doppler signatures and the best methods to exploit these for 

classification, recognition, and identification are still current 

research fields [5]. 

Human micro-Doppler signatures collected by a monostatic 

radar have been investigated in several works in the literature 

over the past years. It has been shown how features extracted 

from the Short Time Fourier Transform (STFT) of these 

signatures can be used to classify human targets from animals 

and vehicles in a ground surveillance radar context [6,7], to 

discriminate between different activities performed by people 
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such as walking, running, crawling [8-13], and even to 

identify specific individuals performing the same activity by 

exploiting the characteristic walking gait and small movement 

patterns that each individual exhibits [14-16]. Time-frequency 

transforms [4] other than STFTs have been also proposed to 

characterise micro-Doppler signatures, such as the Gabor 

transform, Wigner-Ville transform, Cohen’s class time-

frequency distributions [17] or Empirical Mode 

Decomposition [18, 19], all of which have been shown to be 

effective in representing minute movements [18].  

It is well known that the micro-Doppler signature depends 

on the cosine of the angle between the trajectory of the target 

and the radar line-of-sight (aspect angle); hence, the 

classification performance can be compromised when this 

angle is close to 90° and the micro-Doppler signature is 

significantly attenuated [11]. When this angle has smaller 

values, up to approximately 30°, the micro-Doppler signature 

is reduced but is still usable for successful feature extraction 

and classification, as shown in [8]. In this context, bistatic and 

multistatic radar systems have been suggested as a suitable 

tool to mitigate the detrimental effect of less favourable aspect 

angles for micro-Doppler based classification, as different 

radar nodes could be deployed to have at least one node with a 

suitable view of the target of interest. Experimental research 

on multistatic/bistatic human micro-Doppler signatures is 

rather limited. The work in [20, 21] used simulated data based 

on the Boulic kinematic model to create a single spectrogram 

for feature extraction and classification by fusing individual 

spectrograms from different radar nodes. The same multistatic 

radar system used in this work was employed to collect 

experimental micro-Doppler signatures of people running and 

walking in different directions and to compare them with 

simulated results. Moreover, by analysing the correlation 

between different channels, the work demonstrated that 

multistatic signatures actually provided additional information 

than corresponding monostatic signatures, and suggested that 

techniques for automatic target recognition were expected to 

yield better results by exploiting this additional information 

[22]. The work in [23] proposed a bistatic radar system with 

two receivers to infer the oscillation trajectory of mechanical 

objects (e.g. a pendulum) and the facing direction of human 

subjects performing more complex movements such as 

swinging arms or picking up objects.  

Our previous work in [24-27] used a multistatic radar 

system to identify unarmed vs potentially armed personnel, 
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initially in the simplified case of walking on the spot and then 

for actual realistic walking. Empirical features derived from 

the spectrograms of the micro-Doppler signatures were 

investigated, such as bandwidth and period of the signature, 

and compared with features extracted from the Singular Value 

Decomposition (SVD) of the spectrogram. The effect of 

different aspect angles and different approaches of exploiting 

multistatic information was also investigated, achieving 

classification accuracy of approximately 90% or higher for the 

most favourable aspect angles and combinations of features. 

Physical features, i.e. features that are directly related to the 

kinematics of the movement analysed and extracted from the 

spectrograms (Doppler-time plots) were also used in [8-9, 13, 

28], in the context of monostatic radar. Other possible features 

have been proposed in [14, 28], using the Cadence Velocity 

Diagram (CVD) of the micro-Doppler signatures, or features 

based on speech processing techniques and transformations 

such as linear predictive coding (LPC), discrete cosine 

transform (DCT), and cepstral coefficients [11]. 

All these different features have been previously proposed 

to analyse human micro-Doppler signatures, and this leads to 

the question of how many features are needed to optimize the 

classification performance for a given problem, how to select 

them, and what the impact of parameters related to the 

scenario or the radar system in the feature selection process 

may be. The work in [11] has shown for instance the impact of 

parameters such as dwell time, aspect angle, signal-to-noise 

ratio (SNR), and pulse repetition frequency over a vast set of 

features for classification of different human activities, 

whereas our work in [15] has investigated other types of 

features based on centroid and SVD of the micro-Doppler 

signatures for personnel recognition and the impact of aspect 

angle and SNR for different classifiers. In [29] mutual 

information was used as a metric for computing an importance 

ranking of features, while in [13] it was shown that mutual-

information could be used to select different sets of physical 

features based upon dwell time, aspect angle, and SNR and 

improve classification performance for monostatic radar 

systems.  

This work takes a further step forward by exploring the 

additional degree of freedom provided by multistatic systems 

in the context of optimal exploitation of feature diversity, 

where different combinations of features can be selected at 

each radar node, depending on situational parameters - such as 

the dwell time, the signal-to-noise ratio, and the aspect angle - 

that may vary from node to node. Feature diversity adds a 

level of complexity to the feature selection problem, but is 

shown to provide improved classification performance by 

taking into account the specific operational situation at each 

radar node. Moreover, this work validates results not through 

simulations as in [11, 13, 29], but through the analysis of 

measured, experimental data. The analysis presented in the 

following sections will be based on data collected in two 

different field experiments. The former relates to the problem 

of classifying unarmed vs potentially armed personnel. In 

contrast to previous work [24-26], in these data there is no 

single target but two subjects who are simultaneously walking 

with similar speed and close in space, and one may (or not) be 

carrying a metallic pole representing a rifle. These data have 

been briefly analysed in [27], but without considering feature 

diversity and following the conventional approach of using the 

same features at each multistatic node. The latter experiment 

is related to the problem of personnel recognition based on 

individual walking gait, and analyses data from four different 

subjects. Twelve different features based on the centroid and 

the SVD of the micro-Doppler signatures are considered for 

each radar node, and selected with the aim of optimising the 

classification performance. A brute-force wrapper approach 

consisting of testing all the possible combinations at each node 

and selecting the best one is compared with a filter approach 

that ranks the possible features based on chosen metrics. The 

experimental results show that the overall classification 

performance can be significantly improved by exploiting this 

feature diversity at different radar nodes, compared with the 

conventional situation where all the nodes perform the same 

feature extraction and selection. 

The paper is organised as follows. Section 2 describes the 

radar system and the analysis of the data, focusing on the 

feature extraction and selection approach and on the four 

classifiers considered. Section 3 presents the experimental 

setups for the two sets of data analysed in this paper, and then 

discusses the results for the two problems of unarmed vs 

armed classification and for personnel recognition. Section 4 

concludes the paper and discusses possible future work.  

II. RADAR SYSTEM AND DATA ANALYSIS 

The multistatic radar system used to gather the data 

analysed for this paper is the coherent pulsed radar NetRAD, 

developed at University College London over the past twelve 

years [30]. NetRAD consists of three separate but identical 

nodes operating at 2.4 GHz with 45 MHz signal bandwidth. 

Other relevant RF parameters for these experiments include 

linear up-chirp modulation with 0.6 µs duration and pulse 

repetition frequency (PRF) equal to 5 kHz, which provides 

unambiguous sampling of the whole human micro-Doppler 

signature. The transmitted power of the radar was 

approximately +23 dBm. The antennas used had 

approximately 18° (horizontal) ×19° (vertical) beamwidths 

and 18 dBi gain. 

A. Feature extraction 

For both experiments the human target signature was 

extracted from the range-time radar data and processed using 

Short Time Fourier Transform (STFT) to obtain spectrograms. 

A 0.3 s Hamming window with 95% overlap was used to 

calculate the STFTs. The spectrograms were divided into 

blocks of different durations from 1 s to 5 s in 0.5 s steps to 

represent different radar dwell times for feature extraction and 

to investigate the effect of this parameter on the overall 

classification performance.  

Although many features have been proposed in the 

literature for human micro-Doppler [14, 28], in this work 

features that could be extracted automatically from the 

spectrograms are investigated, i.e. features that can be 
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evaluated without any pre-processing steps or the use of 

empirical thresholds, such as those employed in the extraction 

of physical features like bandwidth or periodicity [26]. The 

aim of this paper is not investigating all the possible choices of 

features, as it always possible to have different handcrafted 

features, but focusing on a subset of automatically extracted 

features and how choosing a different set at each multistatic 

radar node can provide an enhancement in performance. More 

specifically, features based on the centroid of the micro-

Doppler signature and on the bandwidth around this centroid 

have been shown to provide good classification results for 

recognition of individuals based on their walking gait [15]. In 

this case four features, namely the mean and standard 

deviation of both the Doppler centroid and bandwidth were 

used as input to the classifiers. These features have also been 

shown to be useful for classification in other domains [31], 

where it was shown how two features, namely the mean of the 

Doppler centroid and bandwidth, could be potentially used to 

discriminate between micro-drones hovering and flying while 

carrying different types of payloads. The Doppler centroid can 

be considered to be an estimate of the centre of gravity of the 

micro-Doppler signature, and the Doppler bandwidth 

calculates the energy extent of the micro-Doppler signature 

around the centroid, as described in [32], where these 

parameters were applied to characterise the signatures of wind 

turbines. Equations (1) and (2) show the calculation of these 

parameters, where F(i,j) represents the value of the 

spectrogram at the ith Doppler bin and jth time bin and f(i) is 

the value of the Doppler frequency at the ith bin.. 

 

𝑓𝑐(𝑗) =
∑ 𝑓(𝑖)𝐹(𝑖,𝑗)𝑖

∑ 𝐹(𝑖,𝑗)𝑖
                          (1) 

𝐵𝑐(𝑗) = √
∑ (𝑓(𝑖)−𝑓𝑐(𝑗))2𝐹(𝑖,𝑗)𝑖

∑ 𝐹(𝑖,𝑗)𝑖
                            (2) 

 
Four features based on the centroid of the micro-Doppler 

signatures are considered in this paper, namely: 

1. Mean of the Doppler bandwidth 

2. Mean of the Doppler centroid 

3. Standard deviation of the Doppler bandwidth 

4. Standard deviation of the Doppler centroid 

Additionally, features based on Singular Value 

Decomposition (SVD) of the spectrograms have also been 

used for target recognition based on micro-Doppler signatures. 

Assuming that each spectrogram is a Doppler-time matrix F 

with dimensions d×t, the SVD decomposition of this matrix 

will be as indicated in equation (3), where S is a d×t diagonal 

matrix with the singular values of F, and V and U (with 

dimensions t×t and d×d respectively) are the matrices 

containing the right and left singular vectors of F. The 

spectrograms are converted into logarithmic scale and 

normalised to their maximum value prior to applying the SVD 

decomposition 

𝑭 = 𝑼𝑺𝑽𝑇                       (3) 

The work in [33] has shown how the SVD decomposition of 

the spectrograms can help reduce the dimensionality of the 

feature space by mapping the most significant information on 

the singular vectors related to the largest singular values. In 

particular, it was highlighted how the first three left and right 

individual singular vectors provided information on the 

physical characteristics of small Unmanned Aerial Vehicles 

(UAVs), such as blade rotation periodicity, velocity, and 

overall micro-Doppler bandwidth. In a similar way, our 

previous results in [26] have used the standard deviation of the 

first right singular vector as a single feature to discriminate 

between unarmed and potentially armed personnel. A different 

approach was taken in [15], where it was assumed that the 

relevant information for classification was not concentrated in 

individual singular vectors, but spread across multiple vectors 

in the whole U and V matrices. In that case the sum of the 

element intensity of the U matrix appeared to be a suitable 

feature for personnel identification based on the individual 

walking gait represented in the spectrograms. Based on these 

previous works, eight additional features are considered in this 

work, namely 

5. Standard deviation of the first right singular vector 

6. Mean of the first right singular vector 

7. Standard deviation of the first left singular vector 

8. Mean of the first left singular vector 

9. Standard deviation of the diagonal of the U matrix  

10. Mean of the diagonal of the U matrix 

11. Sum of pixels of the matrix U 

12. Sum of pixels of the matrix V 

A total of 12 features were therefore considered, and their 

samples were extracted from each spectrogram or portion of 

spectrogram for a chosen dwell time. Among the many 

different types of features previously proposed, these features 

were selected from previous work by the authors as those 

providing good accuracy for similar classification problems. 

The aim of this work is investigating the effect of using 

different combinations of these features at each multistatic 

radar node (feature diversity), as a function of different 

parameters, such as the dwell time and the aspect angle, which 

may vary from node to node. The experimental results 

presented in the following sections show that the overall 

classification performance can be improved exploiting this 

feature diversity at each node, in comparison with the 

approach of using the same feature or set of features for all 

nodes. The number of considered features was limited to 

twelve to have a reasonable computational burden when 

testing all possible feature combinations at the three 

multistatic radar nodes. However, the methodology of feature 

diversity can be extended to an initial feature set of any size. 

B. Classifiers 

Four different classifiers were used to process the data 

presented in this paper, namely Naïve Bayes (NB), diagonal-

linear variant of discriminant analysis (DL), nearest-neighbor 

with 3 neighbors (KNN), and binary trees (BT). A detailed 

description of these classifiers can be found in [34, 35]. The 

NB classifier assumes that the feature samples of each class 

are Gaussian distributed and statistically independent, and that 

the mean µ and variance σ2 of these distributions can be 
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estimated from the training data, as shown in equation (4), 

where xi indicates the training samples for the ith class. Then 

the posterior probability of each sample under test belonging 

to each class is calculated, and the sample is assigned to the 

class showing the highest posterior probability [34]. 

𝜇𝑖 =
1

𝑁
∑ 𝑥𝑖,𝑛   𝑁

𝑛  𝜎𝑖
2 =

1

𝑁
∑ (𝑥𝑖,𝑛 − 𝜇𝑖) 2  𝑁

𝑛        (4) 

In a similar way, the DL classifier also assumes that the 

feature samples of each class can be modelled by a 

multivariate Gaussian distribution as in equation (5), and its 

mean µk and covariance matrix Σk can be estimated at the 

initial training phase of the classifier (the diagonal-linear 

variant will assume a single covariance matrix for all the 

classes and estimate only mean values for each class). The 

sample space is then partitioned into different regions where 

an expected classification cost C is calculated and minimized 

with respect to each predicted classification as in equation (6), 

where Ĥ is the classification posterior probability. 

𝑃(𝑥|𝑘) =
1

√2𝜋|𝛴𝑘|
𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇𝑘)𝑇𝛴𝑘

−1(𝑥 − 𝜇𝑘))   (5) 

𝑦̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑦=1,…,𝐾

∑ 𝐻̂(𝑘|𝑥)𝐶(𝑦|𝑘)𝐾
𝑘=1            (6) 

The KNN classifier calculates the Euclidean distance 

between the samples containing training data for the classifier 

and the test samples, as indicated in equation (7) where xs is 

the vector containing training samples of the ith class and xt is 

the vector containing samples under test. The 3 smallest 

distances are selected for each sample under test, and this is 

classified as belonging to the class that generated the highest 

number of these distances, in this case at least 2 out of 3. 

𝑑𝑖 = √∑|𝑥𝑖,𝑠 − 𝑥𝑡|
2
              (7) 

The BT classifier uses a decision tree for classification of 

samples under test using binary splits from the root node down 

to a leaf node, which assigns these samples to a certain class. 

At the training stage, the tree is built by considering all the 

possible binary splits on all the available feature samples and 

selecting the best split according to an optimization criterion. 

This procedure is then recursively repeated on the two child 

nodes, until the resulting child node is a ‘pure’ node, with 

samples belonging just to a single class. The optimization 

criterion used is the Gini’s Diversity Index (GDI), defined as 

in equation (8), where i denotes the ith class and n the node, 

and p(i) is the fraction of classes observation belonging to the 

ith class that reaches that node. Therefore, if a node is pure and 

contains only observations of one class, its GDI will be equal 

to 0, otherwise it is generally a positive number. 

𝐺𝐷𝐼𝑛 = 1 − ∑ 𝑝2(𝑖)𝑖                (8) 

All classifiers were trained using 25% of the available 

feature samples and tested on the remaining data. This was 

done for both the unarmed vs armed classification case and for 

the personnel recognition case. This small set of data for 

training was used to investigate the performance of the 

proposed approach when only a very limited amount of data is 

available for training and testing, which is often the case for 

experimental data, especially multistatic data given the 

practical challenges to operate the system and generate data. 

The classification error was calculated as the ratio of the 

overall number of misclassification events and the overall 

number of samples. This training and validation process was 

repeated 30 times selecting random samples for the training 

data in order to remove possible bias and generalise the 

performance assessment. The average classification error over 

these 30 repetitions was calculated and the results are shown 

in terms of accuracy, i.e. 100% minus the average error. The 

information available from multiple radar nodes was fused 

using a binary voting procedure. Each classifier is 

implemented separately with the data from each individual 

radar node, and the partial decisions are combined to reach the 

final decision with the majority, equal in this case to two 

nodes out of three. In case of non-binary decision, such as the 

personnel recognition problem with 4 subjects, the final 

decision is taken by the classifier with the highest confidence 

in case all three partial decisions from the three nodes are all 

different. 

III. EXPERIMENTAL SETUPS AND RESULTS 

A. Description of the two experimental setups 

The data presented in this paper refer to two different 

experiments performed in February 2016 and March 2016 

respectively, at the UCL sports ground in an open football 

field to the North of London. The geometry of the first 

experiment is shown in Fig. 1a. For this experiment the three 

NetRAD nodes were deployed in a linear baseline with 50 m 

separation between nodes, with node 1 acting as monostatic 

transceiver in the middle and node 2 and 3 as bistatic receivers 

on the sides. Vertical polarisation was used at all nodes in this 

experiment. The targets were two people walking together at 

approximately 70 m from the baseline and moving on five 

different trajectories, with five different aspect angles with 

respect to the baseline as indicated in Fig. 1a. Two classes of 

data were collected, the former with both people walking free 

handed (‘unarmed’ case), and the latter with one of the two 

people carrying a metallic pole representing a rifle (‘armed’ 

case). In different recordings a different person out of the two 

subjects carried the pole to obtain increased variability in the 

micro-Doppler signatures. The pole was of comparable size to 

that of a real rifle and held with both hands. Fig. 1b shows an 

example of a single person carrying the pole representing the 

rifle during the experiment. For this experiment the duration 

of each recording was 5 s to collect multiple repetitions of the 

average human walking gait. The total number of recordings 

was 180, assuming 3 nodes, 5 aspect angles, 2 classes (armed 

vs unarmed), and 6 repetitions per class. The two subjects 

were simultaneously moving on the same trajectory, closely in 

space, and the classification between the unarmed case and 

armed case is expected to be challenging, as both targets are in 

the same range bin (the range resolution is approximately 3.3 
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m with 45 MHz bandwidth) and overlapped in Doppler (both 

people walking with comparable speed in the same direction). 

For the second experiment the nodes were deployed as 

shown in Fig. 2, with node 1 (monostatic transceiver) and 

node 2 (bistatic receiver) co-located, and node 3 (bistatic 

receiver) separated by 50 m. In this case the chosen 

polarisation was vertical at all nodes, apart from node 2 that 

recorded horizontally polarised data so that the overall 

database consists of monostatic co-polarised and cross-

polarised data as well as bistatic co-polarised data. The 

subjects acting as targets were located further away from the 

baseline, at approximately 90 m. Four different people took 

part to this experiment and walked towards the baseline, with 

the aim of analysing their micro-Doppler signatures for 

personnel recognition. The key body parameters of these 

subjects were 1.87 m, male, average body type for person A, 

1.60 m, female, average body type for person B, 1.78 m, male, 

slim body type for person C, and 1.70 m, male, average body 

type for person D. The duration of each recording was 10 s for 

this experiment. The total number of recordings was 120, 

assuming 4 people, 3 nodes, and 10 repetitions for each 

subject.

 
Fig.1 Measurement setup for unarmed vs armed classification experiment (a), 

and example of person carrying the pole representing the rifle (b). 

 

 
Fig. 2 Measurement setup for personnel recognition experiment. 

B. Classification of unarmed vs armed personnel 

Fig. 3 shows two examples of spectrograms for the unarmed 

vs potentially armed classification problem, where two people 

are walking towards the radar simultaneously and closely in 

space, and one of them may be carrying the metallic pole 

representing a rifle. The data used to generate Fig. 3 refer to 

aspect angle 1 as shown in Fig. 1a, and were recorded at the 

monostatic transceiver node. The main component of the 

micro-Doppler signatures in both unarmed and armed cases is 

at approximately 30 Hz, corresponding to a walking speed of 

1.88 m/s, which is reasonable for adults walking at a steady 

pace. However, the signatures of the two people appear to be 

overlapped and indistinguishable from the spectrograms, and 

it should be noted that this was also the case in the range-time 

domain as the two subjects were closer to each other than the 

range resolution of the radar. 

 
Fig. 3 Spectrograms recorded at the monostatic node for two people walking 
together: both unarmed (a) and one armed and one unarmed (b). 

 

The features described in the previous section were 

extracted and processed by the four classifiers, with the aim of 

assessing the effect of exploiting different features at each 

multistatic radar node. Considering the 12 aforementioned 

features and assuming to use initially 1 feature per node, there 

are 1728 (123) combinations to test for each classifier 

following a wrapper approach, i.e. brute force approach of 

performing all possible tests and selecting the final best result. 

Fig. 4 shows examples of how the classification accuracy 

changes depending on the combinations of features used at 

each multistatic radar node, with the constraint of using a 

single feature per node. The results from the NB classifier 

were used in this case, and the red line denotes the average 

classification. Given a certain dwell time and aspect angle, it 

can be seen that the accuracy can change significantly, more 

than 20%, depending on the combination of features used at 

multiple radar nodes. This shows how the optimal selection of 

features has an extra level of complexity in multistatic 

systems, but can deliver improved performance if knowledge 

of the most suitable combination of features can be inferred or 

obtained for a certain scenario.  

Fig. 5 shows the best classification accuracy obtained for 

the different aspect angles, classifiers, and dwell times 

considered in this work. A first observation is that the 

performance is fairly uniform with different classifiers, and 

there are no very significant differences between the patterns 

in the four sub-figures. Aspect angles 1, 2, and 3 appear to 

provide higher classification accuracy compared with angle 4 

and 5. This was expected, as these last two trajectories were 

parallel to the baseline, hence the spread of the micro-Doppler 

signature was reduced impacting the feature extraction 

process. It is interesting to observe the effect of the dwell time, 

with in general an increase in accuracy with longer dwell 

times, but this is more relevant for the least favourable aspect 

angles, e.g. the accuracy shows a significant increase for 
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aspect angle 4 and dwell times longer than 2.5 s, but the 

pattern remains fairly flat as a function of dwell time for 

aspect angle 2 and 3 (favourable aspect angles). It is also 

interesting to notice that the best classification performance is 

obtained at angle 2 and angle 3, rather than at angle 1, which 

corresponds to walking straight towards the radar nodes at the 

baseline. This may be related to the additional information 

extracted from the signatures collected at different nodes when 

the individuals were walking towards node 2 or 3 (angle 2 and 

3 respectively), in comparison to the symmetric setup of angle 

1 with the transceiver node in the middle, but additional tests 

are necessary to fully understand and characterise this result. 

Table 1 summarises the accuracy obtained for the BT 

classifier as shown in Fig. 5d together with the features used at 

each node, i.e. for a given aspect angle and dwell time, each 

group of three numbers indicates which feature out of the list 

in the previous section was used at node 1, node 2, and node 3, 

respectively. These features were identified with the wrapper 

approach of testing all the possible combinations and selecting 

those yielding the best result. It is interesting to observe how 

the best selected feature changes for different aspect angles 

and dwell times. Some features seem to be very recurrent at 

certain aspect angles but not at others (e.g. feature 2 is almost 

always selected at node 1 for aspect angle 1 but not used 

almost at all for other aspect angles), and often – but not 

always – the best features are different for each multistatic 

radar node even in the same conditions of aspect angle and 

dwell time. In Fig. 6 the classification accuracy for three 

aspect angles as a function of dwell time is reported, with the 

aim of comparing the optimal accuracy obtained by the brute 

force wrapper approach of testing all possible combinations of 

single feature per node, with a possible sub-optimal approach 

of using the best feature at the monostatic node for all radar 

nodes (indicated as ‘mono features’ in Fig. 6). Results from 

the NB classifier were used for this figure. The degradation in 

classification performance between the two approaches can be 

seen for all considered aspect angles and dwell times, i.e. 

forcing all nodes to use the best feature at the monostatic node 

appears to provide significant reduction in overall accuracy. It 

is important to consider the added degree of freedom and 

inherent complexity in exploring this ‘feature diversity’ for 

classification using multistatic radar systems. 
 

 

 
TABLE 1 CLASSIFICATION ACCURACY VS DWELL TIME AND ASPECT ANGLE USING BT CLASSIFIER. THE SINGLE FEATURE USED AT EACH NODE IS ALSO INDICATED 

 

 

 
Fig. 4 Classification accuracy vs different combinations of single features 

used at each radar node: (a) angle 1 and dwell time 1 s, (b) angle 4 and dwell 

time 1 s, (c) angle 1 and dwell time 2.5 s, and (d) angle 4 and dwell time 2.5 s. 
 

 

 

 
Fig. 5 Classification accuracy vs dwell time using the best single feature at 
each radar node: (a) NB classifier, (b) DL classifier, (c) KNN classifier, and 

(d) BT classifier 

 
 

Classification accuracy 

[%] 
1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4s 4.5 s 5 s 

An 1 
Accuracy 83.8 86.2 87.8 86.0 91.9 91.7 88.9 89.2 91.7 

Features 2-8-5 2-11-5 2-2-11 2-2-10 2-9-12 2-10-2 10-9-2 2-1-2 2-11-10 

An 2 
Accuracy 91.0 93.8 93.1 93.9 95.8 94.2 93.9 94.2 95.3 

Features 1-8-2 1-2-2 1-2-2 1-12-2 9-1-2 1-2-2 9-1-2 9-1-2 1-4-2 

An 3 
Accuracy 91.4 90.9 89.4 92.2 96.7 98.9 97.2 99.2 98.9 

Features 1-3-11 1-11-11 1-2-2 4-11-11 7-2-2 8-2-2 8-3-2 1-1-8 1-11-1 

An 4 
Accuracy 74.2 76.6 83.1 77.9 92.2 91.1 87.5 90.8 85.8 

Features 4-3-3 10-7-12 5-11-2 10-7-2 8-12-3 7-8-2 7-12-2 2-12-2 13-3-3 

An 5 
Accuracy 82.3 82.6 89.2 84.3 88.3 85.6 88.6 93.9 88.9 

Features 3-11-2 3-11-2 3-11-2 12-7-2 3-4-4 4-2-3 10-3-2 11-1-3 11-12-2 
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Fig. 6 Classification accuracy comparison using best feature combination 

selected by wrapper approach vs using best combination for monostatic node 

at all radar nodes (indicated as ‘mono features’). NB classifier with single 

feature per radar node was used. 
 

The analysis has been extended to considering multiple 

features to be used at each node, which are added with a 

sequential forward selection (SFS) approach. Initially a 

wrapper brute-force test of 1728 combinations (i.e. testing all 

the possible combinations of 12 single features at 3 nodes) 

identified the best single feature at each node. Then a second 

feature at each node can be added from the pool of the 

remaining 11 features, leading eventually to use a pair of 

features at each node. This implies an additional testing of 

1331 combinations (113) for each classifier. In a similar way a 

third feature has been added for each radar node, testing 

additional 1000 (103) combinations per classifier. Fig. 7 

presents example of results for two representative aspect 

angles (angle 1 for favourable Doppler and angle 4 for less 

favourable Doppler) and four classifiers, highlighting the 

differences in performance when using a single feature, pairs 

of features, and three features at each node. It can be seen that 

similar trends are observed for the different classifiers 

considered, and that the effect of dwell time on the accuracy is 

more evident on aspect angle 4 than on angle 1, i.e. the 

improvement in accuracy with dwell times longer than 2.5 s is 

more significant at the less favourable aspect angle.  

There is great variability in the results when using or not 

multiple features, depending on the combinations of the other 

parameters considered here, i.e. aspect angle, dwell time, and 

type of classifier. In general, it appears that using pairs of 

features rather than a single feature at each node can improve 

the overall accuracy for this particular classification problem 

and the considered set of features, whereas increasing the 

number of features used at each node from two to three can in 

some cases lead to reduced accuracy. This effect of reaching a 

peak of accuracy with a certain number of features used as 

input to the classifiers and subsequent plateau or even 

reduction if more features are used was also observed in other 

works in the literature [11, 25]. Table 2 shows the actual three 

features used at each multistatic radar node for the BT 

classifier case and aspect angle 1 and 4, i.e. for two of the 

curves shown in Fig. 7d. These were the combinations 

provided the best classification accuracy as selected through 

the brute-force wrapper approach of testing the whole number 

of possible combinations. It is very interesting to observe that 

these combinations of features vary significantly across the 

parameters considered, such as aspect angle and dwell time 

(feature diversity). For example, given an aspect angle, e.g. 

angle 1, one can see that feature 2 is used pretty much 

consistently at node 1 for all dwell times, but never used at the 

bistatic node 2 and only sporadically at the bistatic node 3. 

There is also a significant variation in features used at the 

same nodes and aspect angles for different dwell times, as well 

as significant differences in the features used at the same node 

and same dwell time, but at different aspect angles. The 

histograms in Fig. 8 help visualise how different features are 

used at different nodes for a given aspect angle and classifier, 

across the considered values of dwell times. It is interesting to 

observe that some features are selected very often at one node 

but not at others (e.g. feature 2 used quite often at node 1 and 

3 but not at all at node 2), and that some features are not used 

at all or very rarely. These results show the importance of 

being aware and exploit different features at different 

multistatic radar nodes, depending on the different scenario 

parameters of the classification problem under test. 

 

 
Fig. 7 Classification accuracy vs dwell time using the best combination of 1 

feature, 2 features, and 3 features per radar node: (a) NB classifier, (b) DL 

classifier, (c) KNN classifier, and (d) BT classifier 

 

 
Fig. 8 Histograms of features used at each radar node for aspect angle 1, BT 
classifier, and different dwell times: (a) node 1, (b) node 2, and (c) node 3 

 

The brute-force wrapper approach is computationally very 

intensive and is tied to the type of classifier used in the tests to 

evaluate features, so several separability metrics to rank 

features independently and a priori with respect to classifiers 
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have been proposed in the literature, for instance the T-test 

and mutual information [11, 13, 36]. In this work two methods 

of ranking features have been implemented in MATLAB and 

used separately to rank the samples of the 12 features at the 

different radar nodes. The first method uses the T-test to 

compare the mean parameter of two independent groups of 

data samples, as indicated in equation (9), where xm and ym are 

the means of the groups of samples, sx and sy the standard 

deviations, and N and K are the sample sizes [37].  

𝑡 =
𝑥𝑚−𝑦𝑚

√
𝑠𝑥
𝑁

+
𝑠𝑦

𝐾

                           (9) 

The second method is based on the relative entropy of the 

distribution of groups of data samples, which can be related to 

the concept of mutual information between two random 

variables and to the Kullback-Leibler divergence [35]. The 

mutual information and the entropy of discrete random 

variables X and Y are reported in equations (10) and (11) for 

completeness, and the details of the mathematical derivation 

are available in [36, 38]. X and Y are the discrete random 

variables which can assume Nx (Ny) possible values xi (yi) with 

probability PX and PY, and PXY is the joint probability of the 

variables X and Y. 

𝐼(X, Y) = ∑ ∑ 𝑃𝑋𝑌 × 𝑙𝑜𝑔2
𝑃𝑋𝑌

𝑃𝑋𝑃𝑌

𝑁𝑦

𝑗
𝑁𝑥
𝑖               (10) 

𝐻(𝑋) = − ∑ 𝑃𝑋𝑙𝑜𝑔2𝑃𝑋
𝑁𝑥
𝑖               (11) 

Fig. 9 summarizes the classification accuracy for aspect 

angle 1 and 4 as a function of dwell time, with data generated 

by the BT classifier. The accuracy obtained using one single 

feature, pairs of features, and three features at each node is 

shown, comparing the cases when these features are chosen by 

the wrapper approach and the ranking approach based on the 

T-test and entropy criteria. Comparing Fig. 9a to 9c and Fig. 

9d to 9f for a given feature selection criterion, one can see that 

there is an increase in accuracy when adding more features per 

node, but this is limited in some cases, as already observed 

with respect to Fig. 7. It is interesting to notice that the 

performance is very similar in all cases when ranking features 

with either the T-test or the entropy criterion, but both provide 

a significant reduction in accuracy compared with the wrapper 

approach, up to 10-12% in case of the less favorable aspect 

angle. However, the advantage of filter approaches is that they 

do not depend on specific classifiers and their implementation. 

Table 3 shows the accuracy for aspect angle 4 when a single 

feature is used at each radar node (as in Fig. 9d), and reports 

the actual features selected by the wrapper and the two 

considered ranking approaches. The diversity of the features 

selected with different ranking approaches and wrapper can be 

seen. 

Fig. 10 shows additional results related to two different 

aspect angles, namely aspect angle 2 (more favorable for 

Doppler) and aspect angle 5 (less favorable), and two other 

classifiers, namely KNN and NB. A single feature is used at 

each radar node. Each sub-figure compares the resulting 

accuracy by selecting features with a different approach, i.e. 

the brute-force wrapper, the ranking with the T-test and with 

the entropy criterion, and the suboptimal approach of forcing 

all the nodes to use the best feature for the monostatic node as 

identified by the wrapper method. One can see that the 

reduction in accuracy can be significant with respect to the 

optimal wrapper method when using feature selection by 

ranking, and this is observed for these aspect angles and 

classifiers in Fig. 10 in addition to the data already observed in 

Fig. 9. It is interesting to observe that the suboptimal method 

of forcing all nodes to use the best feature at the monostatic 

node can provide in some cases better results than the ranking 

of features either via T-test or via entropy, but not at all the 

considered dwell times. In any case, the wrapper method 

provides the best classification accuracy as expected. 

C. Personnel recognition 

In this section the classification problem of identifying 

people from their walking gait is investigated. Fig. 11 shows 

examples of spectrograms for the four subjects walking 

towards the radar baseline, as recorded by the monostatic 

node. In all cases the average speed is between 1.2-2 m/s, 

corresponding to approximately 20-35 Hz main Doppler shift, 

which is a realistic value for people walking. Some differences 

can be empirically seen between these spectrograms, and the 

analysis in this section shows classification results based on 

the possible 12 features and 4 classifiers mentioned in the 

previous section. It is important to notice that node 2 and node 

1 were co-located, but operating at different polarizations 

(node 1 was receiving co-polar V polarization, and node 2 

cross-polar H polarization). Any difference in feature selection 

approach between these two nodes is therefore expected to be 

related to the polarization diversity rather than to spatial 

diversity and different locations of bistatic nodes, as in the 

previous section on unarmed vs armed classification. 

  

TABLE II CLASSIFICATION ACCURACY VS DWELL TIME USING BT CLASSIFIER AND THE BEST COMBINATIONS OF THREE FEATURES PER RADAR NODE

 

Classification accuracy 

[%] 
1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4s 4.5 s 5 s 

An 1 

Accuracy 87.1 89.4 88.3 88.2 96.4 95.3 90.0 93.6 96.4 

Features N1 2-11-1 2-9-3 2-7-4 2-4-12 2-7-9 2-3-12 10-1-4 2-3-8 2-3-11 

Features N2 8-1-7 11-1-5 2-8-6 2-11-7 9-10-3 10-4-5 9-12-3 1-4-6 11-12-8 

Features N3 5-2-11 5-11-6 11-2-3 10-11-6 12-5-7 2-10-9 2-10-1 2-6-8 10-6-5 

An 4 

Accuracy 75.5 78.0 82.2 77.8 94.2 95.3 91.4 92.8 89.7 

Features N1 4-6-5 10-3-6 5-10-2 10-3-2 8-2-7 7-12-6 7-8-9 2-9-5 12-2-8 

Features N2 3-2-5 7-5-2 11-4-5 7-8-12 12-8--11 8-5-12 12-8-5 12-5-1 3-6-7 

Features N3 3-10-11 12-3-9 2-3-1 2-1-4 3-11-2 2-3-6 2-11-7 2-8-11 3-8-2 
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TABLE III CLASSIFICATION ACCURACY VS DWELL TIME USING BT CLASSIFIER AND SINGLE FEATURE SELECTED AT EACH NODE USING WRAPPER AND RANKING 

APPROACHES. RESULTS RELATED TO ASPECT ANGLE 4 

Classification accuracy [%] 1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4s 4.5 s 5 s 

Optimal 

Accuracy 74.2 76.6 83.1 77.9 92.2 91.1 87.5 90.8 85.8 

N1 4 10 5 10 8 7 7 2 12 

N2 3 7 11 7 12 8 12 12 3 

N3 3 12 2 2 3 2 2 2 3 

T-test 

Accuracy 65.1 67.3 70.1 70.8 71.7 80.8 75.0 80.0 76.9 

N1 3 2 2 12 2 12 12 2 12 

N2 10 3 11 3 3 11 3 3 3 

N3 3 3 3 3 3 3 2 3 2 

Entropy 

Accuracy 63.8 68.6 66.0 67.2 77.2 83.1 65.6 75.8 78.3 

N1 2 2 5 12 2 12 12 12 12 

N2 2 2 11 3 3 11 6 6 4 

N3 10 10 3 3 2 2 2 2 2 

 

 
Fig. 9 Classification accuracy vs dwell time using BT classifier and different 

combinations of features per node, selected by wrapper and ranking 

approaches: (a) 1 feature angle 1, (b) 2 features angle 1, (c) 3 features angle 1, 
(d) 1 feature angle 4, (e) 2 features angle 4, and (f) 3 features angle 4. 

 

 
Fig. 10 Classification accuracy vs dwell time using a single feature at each 

radar node selected by wrapper and ranking approaches: (a) angle 2 NB 

classifier, (b) angle 5 NB classifier, (c) angle 2 KNN classifier, and (d) angle 
5 KNN classifier 

Fig. 12 summarizes the results in terms of accuracy as 

function of the dwell time for the four classifiers. Each sub-

figure refers to the case of using one single feature, 2 features, 

3 features, and 4 features at each radar node. These features 

have been selected using the brute-force wrapper approach, 

hence 1728 (123) combinations to test per classifier to select 

the first feature, then 1331 (113) combinations at the second 

step, 1000 (103) at the third step, and 729 (93) at the fourth 

step. One can see the increase in accuracy caused by using 

additional features from Fig. 12a to Fig. 12d, and how this 

improvement tends to be less and less significant or become 

an actual reduction when having more than 3 features per 

node. This can be seen with more clarity in Fig. 13, which 

shows in the same figure the results obtained by the BT 

classifier when a different number of features is used at each 

radar node. The accuracy pattern appears to be fairly 

consistent for different classifiers, with the NB and DL 

classifiers providing the best results. The plots in Fig. 12 show 

a clearer increasing trend of accuracy as function of the dwell 

time for the personnel recognition problem compared with 

similar figures in the previous section on unarmed vs armed 

personnel classification. These results show an overall 

classification accuracy above 90% for dwell time longer than 

approximately 4s and more than 2 features used as input to the 

classifiers, which is a significant result considering that the 

personnel recognition problem is in general more challenging 

than classification of activities. 

 
Fig. 11 Spectrograms recorded at the monostatic node for different people 

walking: person 1 (a), person 2 (b), person 3 (c), and person 4 (d) 
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TABLE IV CLASSIFICATION ACCURACY VS DWELL TIME USING DIFFERENT CLASSIFIERS AND THE BEST COMBINATIONS OF SINGLE FEATURE PER RADAR NODE 

Classification accuracy 

[%] 
1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4s 4.5 s 5 s 

NB 
Accuracy 74.6 77.7 78.2 78.5 80.5 80.0 79.2 81.7 82.9 

Features 4-2-10 4-2-10 3-2-4 3-2-4 3-2-4 3-2-4 12-2-3 3-2-4 3-2-4 

DL 
Accuracy 72.6 74.7 75.5 77.6 76.3 78.4 79.5 82.7 82.1 

Features 10-2-4 4-2-3 4-2-3 3-2-4 3-2-4 3-2-4 4-2-3 4-2-10 3-2-4 

KNN 
Accuracy 71.4 73.4 74.3 73.8 74.9 75.0 77.0 78.6 80.8 

Features 4-2-2 4-2-3 2-2-4 4-2-3 4-2-3 4-2-3 4-2-3 4-2-10- 6-9-2 

BT 
Accuracy 72.2 74.6 74.9 74.5 75.5 76.7 75.9 77.8 77.7 

Features 3-2-4 4-2-3- 4-2-3 3-2-4- 2-2-3 4-2-3 4-2-3 6-2-12 2-10-6 

 

 
Fig. 12 Classification accuracy vs dwell time using different classifiers and 

best combinations of features per radar node: (a) 1 feature, (b) 2 features, (c) 3 
features, and (d) 4 features 

 
Fig. 13 Classification accuracy vs dwell time and number of features at each 

radar node using BT classifier 

 

Table 4 shows the classification accuracy obtained by the 

different classifiers when a single feature is selected through 

the wrapper method and used at each radar node. The three 

numbers in the table indicate the features used at node 1, node 

2, and node 3 respectively. Fig. 14 represents on histograms 

the features selected at each radar node across the considered 

dwell times and classifiers. It can be seen that feature 2 

appears to be very significant for node 2, but less significant at 

node 1 and node 3, where features 3 and 4 appears to be more 

relevant. It is also interesting to observe that some features are 

not useful for this particular classification problem and are 

never selected at any node, for instance feature number 1 or 

number 5. It is interesting to observe that node 2 was actually 

operating in cross-polarisation (i.e. receiving H-polarised data) 

and co-located with node 1 as shown in Fig. 2, so the diversity 

in feature selection between these two nodes appears to be 

related to the difference in polarisation, as the aspect angle to 

the target is the same.   

 
Fig. 14 Histograms of features used at each radar node, with four classifiers 
and different dwell times: (a) node 1, (b) node 2, and (c) node 3 

D. Additional analysis 

This section presents additional analysis on the data related 

to the two classification scenarios described in this paper. The 

first test aims to investigate the effect of using a larger amount 

of the available data to train the chosen classifier, namely 70% 

of the available feature samples for training and the remaining 

for testing. A single feature for each node was identified using 

the wrapper approach and used for these examples. Fig. 15 

shows the results for the BT classifier. Fig. 15a refers to the 

scenario for armed/unarmed classification and presents the 

accuracy as a function of dwell time for each aspect angle, 

similarly to what shown in Fig. 5d for 25% training. The trend 

of increasing accuracy with longer dwell time can be seen for 

all aspect angles, and in general the achieved accuracy is 

significantly higher using more data to train the classifier, 

even at the most unfavourable aspect angles, angle 4 and 5. 

The fact that the accuracy reaches almost 100% for dwell time 

equal to or longer than 3s may be caused by a limited number 

of feature samples for testing, as only one feature sample per 

measurement can be obtained with these values of dwell time 

(i.e. each recording was only 5 s long). Fig. 15b compares the 

classification accuracy as a function of dwell time for the 

personnel recognition scenario. The BT classifier was used, 

trained with 25%, 50%, and 70% of the available feature 

samples. The trend of increasing accuracy with longer dwell 

time can be seen, as well as a significant improvement when 

the classifier was trained with more samples, which is up to 

between 5% and 10% when comparing 25% with 70% 

training.  

The second test aims to present the performance of a more 

sophisticated type of classifier, the Support Vector Machine 

(SVM), and compare the classification accuracy with the 

simpler classifiers considered in the previous analysis [34, 39]. 

Both versions of SVM with linear kernel and with Radial 

Basis Functions (RBF) have been tested for the scenario of 
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unarmed/armed classification, and the results are presented in 

Fig. 16a and Fig. 16b, respectively for linear and RBF kernels. 

The SVM classifiers were trained with 70% of the available 

data, so the results can be compared with those generated 

using the BT classifier in Fig. 15a. The trends in accuracy 

values as a function of dwell time appear similar for all 

classifiers, with lower values for shorter dwell times which 

then reach a plateau around 99% accuracy for dwell times 

longer than 3 s. Unfavourable aspect angles such as angle 4 

and 5 present lower values of accuracy for shorter dwell times, 

but the accuracy appears to be consistently above 90% for 

dwell time above 2s. It is interesting to observe that the SVM 

classifier with RBF kernel outperforms the SVM classifier 

with linear kernel across the considered aspect angles. Fig. 17 

summarises the performance of both SVM classifiers and the 

BT classifier for aspect angle 1. The better performance of the 

RBF kernel version over the linear version can be seen, as 

well as the very similar performance of the SVM classifier 

with RBF kernel compared with the BT classifier, at least for 

the specific classification problem considered in this paper. 

A further test consists of assessing the classifier 

performance for armed/unarmed classification by using data 

from different subjects for the training and the testing steps. 

This test was performed for the DL, BT, and SVM with RBF 

kernel classifiers, trained with data from the two subjects who 

took part to the experiment in February 2016 as described in 

section 3.1, but tested with data previously collected in July 

2015 where one of the subject was a different person. The 

deployment geometry of the radar nodes was the same as 

shown in Fig. 1a, but only a limited amount of data was 

collected with the subjects moving along aspect angle 1, i.e. 

walking straight towards the baseline. Three 5 s recordings 

were collected for the case where both subjects were unarmed, 

and three for the case where only one of the two subjects was 

armed, hence a total number of 18 recordings considering all 

the three radar nodes. Fig. 18 shows the classification results 

for the three considered classifiers. Compared with the 

situation where the classifiers were trained and tested with 

data from identical targets, as in Fig. 5, the classification 

accuracy for BT and DL classifiers is reduced depending on 

the dwell time, up to the worst case scenario of a reduction of 

about 15%. The degradation is particularly evident for the BT 

classifier with short dwell times, but less significant for the 

DL classifier for which the accuracy is above 75%. A 

reduction in accuracy was expected because of the testing data 

from a new subject unknown to the classifier and because of 

the limited amount of data available. However, the SVM 

classifier appears to yield high level of accuracy, above 90%, 

comparable to the situation where the classifiers were trained 

and tested with data from the same subjects, as in Fig. 17. This 

seems to be an advantage of using a more complicated but 

more powerful classifier such as SVM in comparison with the 

simpler classifiers considered previously. The ability of the 

proposed features and classifiers to generalise well their 

performance even in the presence of data from new subjects is 

a very significant aspect for practical deployment. It is 

believed that the overall performance can be improved by 

collecting a larger database of data for training, involving 

more combinations of human subjects to capture the diversity 

in terms of body parameters such as height and weight and the 

different walking styles. This will be considered in future 

work to expand the results presented here. 

Finally, the computational complexity of the classifiers 

tested in this section is investigated in terms of processing 

time. The armed/unarmed classification scenario was 

considered, with 70% of the feature samples used for training, 

1 s dwell time, and data related to aspect angle 1, as from Fig. 

1a. The best single feature at each node as identified by the 

wrapper approach was used. The classifiers were implemented 

on a standard desktop computer in MATLAB and tested in the 

same conditions. The results are summarised in table 5. The 

fastest classifiers appear to be the Binary Tree and the Nearest 

Neighbours, followed by the Diagonal-Linear and both SVM 

versions, and then by the Naïve Bayes. Overall, the 

differences in computational time do not appear to be very 

significant, but this may change if these algorithms were 

implemented on a different system with constrained 

computational resources. 

 
Figure 1 Classification accuracy vs dwell time using BT classifier trained with 

70% of available data: (a) unarmed/armed classification scenario, and (b) 
personnel recognition scenario 

 

Figure 2 Classification accuracy vs dwell time using SVM classifier trained 

with 70% of available data: (a) linear kernel, and (b) RBF kernel 

 

Figure 3 Classification accuracy vs dwell time for aspect angle 1 and 

classifiers trained with 70% of available data 
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Figure 4 Classification accuracy for DL and BT classifiers tested and trained 

with data from different subjects 

TABLE 1 COMPUTATIONAL EFFICIENCY FOR DIFFERENT CLASSIFIERS 

Processing Time [s] 

for each classifier 
NB DL KNN BT 

SVM 

linear 

SVM 

RBF 

0.783 0.715 0.643 0.639 0.724 0.712 

IV. CONCLUSIONS 

This paper has investigated the performance gains possible 

through the exploitation of feature diversity at each node in a 

multistatic radar network. Two sets of data collected in 

different experiments for two different classification problems 

were specifically analysed; namely, classification of unarmed 

vs potentially armed personnel when two subjects are present 

together in the micro-Doppler signature, and personnel 

recognition of four different subjects based on their walking 

gait. Twelve different features based on the SVD and the 

centroid of the signatures have been considered together with 

four classifiers. These were chosen out of the many possible 

features proposed in the literature, as they can be easily and 

automatically extracted from the micro-Doppler signatures. 

Feature selection approaches based on brute-force wrapper 

and on ranking the features with a chosen metric (filter) have 

been compared. The results show that the best classification 

accuracy can be achieved by selecting different features at 

each radar node, and there is a significant influence of 

parameters such as dwell time and aspect angle on what 

features are most suitable. It is also shown that the 

conventional approach of having all the nodes selecting the 

same features leads to a decrease in performance (for instance 

the performance of a multistatic system for armed/unarmed 

personnel classification was shown to improve by as much as 

15% in some cases by taking into account feature diversity at 

each node). This diversity in features providing the best 

classification accuracy was observed both in the first scenario 

for armed/unarmed classification and in the second scenario 

for personnel recognition. In the former case all the three radar 

nodes operated with the same vertical polarisation, so it would 

appear that this behaviour is related to the spatial deployment 

of each node, which sees the target with a different aspect 

angle. In the latter case, two nodes (Node 1 and 2) were co-

located but they received different polarisations, i.e. one 

vertical polarisation co-polarised with the transmitter, the 

other horizontal polarisation cross-polarised with the 

transmitter. In this case it would appear that the difference in 

features selection for processing the same data is related to the 

difference in co-polarised versus cross-polarised micro-

Doppler signatures. It is felt that additional work is needed for 

further understanding of the effect of aspect angle and 

polarisation on the selection of optimal features, in order to 

see whether the trends highlighted in these data are confirmed. 

Moreover, it is shown that while some features are never 

selected, others are consistently chosen.  This choice varies 

depending upon classification problem and scenario, thus 

motivating the need for feature sets to be chosen dynamically.  

Multistatic nodes can potentially operate with different radar 

parameters, such as dwell time, polarisation, or even 

frequency band. By adapting node behaviour on not just 

receive but also transmit, it is anticipated that future 

technological development of cognitive radar systems will 

provide nodes able to change their feature extraction and 

selection scheme based on the environment conditions and 

target behaviour. For example, the classifier implemented 

within each radar node could have some form of base of 

knowledge (i.e. a sort of memory) with details on the most 

suitable set of features to extract and select, based on the 

information about the target aspect angle provided by the 

detection and tracking processes, either internally performed 

by the node itself or given to the node as external information. 

This base of knowledge can be generated during the training 

phase of the classifier, using both experimental data or data 

from suitable kinematic models of targets [40], and can be 

updated during the lifetime of the radar node while processing 

more and more target data progressively.  

Future work aims at collecting additional data for the two 

classification problems analysed here, in order to verify the 

trends observed in the feature selection as a function of the 

various parameters, and to investigate in more details the 

effect of polarisation diversity. Additional features based on 

different processing of the signatures can be also considered, 

together with discarding those features that appeared to be less 

suitable from the analysis in this paper. Data from different 

subjects with different body parameters and walking style will 

also be collected to investigate how the proposed classification 

approach can be generalised and become more robust when 

dealing with data from new subjects. 
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