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Abstract: 

 

This paper presents a multiscale model forthe drying shrinkage deformation of cement-based 

material by incorporating itscorresponding multiscale computer-generated structure at different 

scales in a three-dimensional lattice model.Assuming effects of capillary tension and disjoining 

pressure are the reason for the drying deformation, the water desorption in capillary pores within 

100%-to-85% relative humidity (RH) range and that in gel pores within 85%-to-50% RH range are 

investigated.By considering the contribution of capillary water, gel water as well as interlayer water 

at microscopic and nanoscopic scales, the drying behaviors of calcium-silicate-hydrate gels, cement 

paste and mortar are studied by gradually upscaling. Experimental results for the drying shrinkage of 

cement paste and mortar are utilized to validate the proposed model. Finally, the determination and 

passing-through of parameters associated with the multiscale model are discussed. 

 

Keywords: Drying shrinkage, water desorption, multiscale model, lattice analysis, capillary pressure 

 

1. Introduction 

 

Drying shrinkage deformation can be a major cause of the deterioration of concrete structures and has 

been intensively investigated by experiments [1-11] and by simulations [2, 9, 13-17]. In the range of 

relative humidity (RH) that a typical concrete structure will experience,the drying forces of shrinkage 

are generally considered as capillary tension and disjoining pressure [11, 15, 18-21]. The 
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macroscopically observed drying shrinkage deformation of concrete, in principle, is determined by 

the water existing in calcium-silicate-hydrate (C-S-H) and in the capillary pores of cement paste. For 

the purpose of exploring the drying nature of cement-based materials, knowledge of the water 

desorption processes in the nanostructure of C-S-H and in the microstructure of cement paste, of the 

deformation of C-S-H, of the deformation of cement paste is needed. 

 

In simulation, for a microstructure-based approach, it is a conflict between computing the drying 

deformation of big size materials (i.e., concrete, on the order of magnitude millimeter to meters) and 

incorporating the stimulus source at very small size (i.e., water pressure change in the pores on the 

order of magnitude nanometers) in. In order to solve this problem, multiscale models are proposed. 

Multiscale models aim to establish a relation between macroscopically observable phenomena and 

their finer-scale origin [22]. Based on the structure of materials in question at a respective 

observation scale, the physical/chemical/mechanical/hygro processes within the materials can be 

considered [23-28] and their effect on the macroscopic material performance can be obtained by 

means of appropriate upscaling schemes [22, 29-34]. Combining continuum micromechanics with 

cement hydration models, Pichler C. et al. [22] have proposed a multiscale model to predict the 

autogenous-shrinkage deformation of cement-based materials. Combining three-dimensional lattice 

fracture model with material models of C-S-H and cement paste, Liu L. et al. [16] have developed a 

two-scale model to predict the drying shrinkage of cement paste for high humidity case. Nevertheless, 

rare modeling work is reported based on a systematic approach including water desorption processes 

in the nanoscopic and microscopic pores, the response of C-S-H gels and cement paste to the water 
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desorption at different scales, and the consequent drying shrinkage deformation of cement-based 

composites. The goal of this paper is to investigate the above issues systematically.  

 

This paper presents a multiscale microstructure-based model topredict the drying shrinkage 

deformation of cement-based materials. The combined application of a multiscale material modeland 

a three-dimensional (3D) lattice model makes it possible to study the drying behaviors of C-S-H gels, 

cement paste and mortar by gradually upscalingand by incorporating the contribution of capillary 

water, gel water as well as interlayer water. Assuming effects of capillary tension and disjoining 

pressure are the main reason for the drying deformation of cement-based materials, the water 

desorption in capillary pores within 100%-to-85% RH range and that in gel pores within 

85%-to-50% RH range are investigated.Experimental results for the drying shrinkage of cement 

paste are utilized to validate the proposed model. The determination and passing-through of 

parameters associated with the multiscale model are finally discussed. 

 

2. Capillary pressure and disjoining pressure 

 

In general agreement, changes in capillary pressure, disjoining pressure and the surface tension of 

solid particles are assumed as mechanisms governing drying shrinkage. Whether a particular 

mechanism is active is dependent on the internal relative humidity (RH) within the material. 

(a) At high humidity (100%-to-85% RH), moisture loss occurs in capillary pores and gel pores 

remain full of water [11, 35]. Effects of capillary pressure and disjoining pressure are active [15, 20]. 
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(b) At mid humidity (85%-to-45% RH), moisture loss occurs in gel pores and only a small amount of 

liquid water exists in capillary pores [16, 35]. Effects of capillary pressure and disjoining pressure 

are still active [11, 15, 20]. 

(c) At low humidity (below about 40%~45% RH), capillary menisci are not stable and the effect of 

capillary pressure is not present [20]. Effects of disjoining pressure and surface tension of solid 

particles are active [15, 18, 20].  

 

Recently, Jennings H.M. et al. argued that the effect of surface tension of solid particles may below 

20%~25% RH [11, 17]. Normally, the capillary pressure mechanism and the disjoining pressure 

mechanism are assumed to be predominant because the internal RH of a typical concrete structure 

will experience intermediate to high humidity [20]. Figure 1 illustrates the geometrical presentation 

of disjoining pressure zone and capillary pressure zone in a liquid bridge between two spherical 

substrates. 

 

According to Kelvin equation, the relation between capillary pressure pcapand relative humidity is 

given by[19], 

cap atm L R

L

ln
RT

p p p h
V

                                             (1) 

wherepLis pressure in pore fluid, MPa; patm is the atmospheric pressure, MPa; LV is the molar volume 

of water,cm
3
/mol; R is the universal gas constant,J/(mol•K); Tis temperature, K; hRis the value of 

relative humidity.According to Laplace equation, the relation between capillary pressure pcap and the 

water-vapor menisci can be written as [19], 
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cap LV LVp                                                        (2) 

where γLV is the surface tension of the liquid/vapor interface, J/m
2
; κLV is the curvature of the 

liquid/vapor interface, µm
-1

. Based on a spherical meniscus, combing equation (1) and equation (2), 

Kelvin-Laplace equation can be obtained, described as [19], 

LV

L R

2

( / ) ln
ur

RT V h


                                                  (3) 

where rΔurepresents the smallest pore access radius of the pore volume currently invaded by air, that 

is, pore radius threshold for drying at a specific hR and T.At 293.15K, we have R=8.314J/(mol•K), 

LV =18.032cm
3
/mol and γLV=0.072 J/m

2
[36]. At 50% RH, the radius rΔu equals to 1.5 nm and at 85% 

RH, the radius rΔu equals to 6 nm.   

 

The disjoining pressure is active in areas of hindered adsorption, i.e. where the distances between the 

solid surfaces are smaller than two times the thickness of the free adsorbed water layer [18], see 

figure 1.It is not possible to quantify the absolute disjoining pressure. However, the change in 

disjoining pressure can be quantified using the Kelvin-Laplace equation since the change in stress of 

the absorbed water must be the same as the change in stress for the evaporable water [20]. Therefore, 

at above 45% RH, the Kelvin-Laplace equation accounts for both the shrinkage stress associated with 

the surface tension and the disjoining pressure mechanisms [20]. Jennings H.M. et al. indicatedthe 

same point but modify the active range of Kelvin-Laplace equation into 25%-100% RH[11]. Take the 

atmospheric pressure patmequals to zero as reference, the stimulus stress for drying can be considered 

as a negative pressure of liquid water pL, which can be obtained according to Kelvin equation. 
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Figure 1: Geometrical illustration of capillary adhesion and disjoining pressure zones. 

 

3. Multiscale structure model for cement-based materials 

 

Cement-based material manifestsitself heterogenous at different scales [22, 29-30,32]. According to 

the problems dealt with, the smallest scale to be considered can be different. With regard to the 

drying issue, in a normal RH range, moisture loss may occur in gel pores and capillary pores, while 

the water in non-empty pores determinates the drying deformation. Table1 summaries the pore empty 

processes and the contribution water to the drying deformation of cement-based materials at different 

RH. Therefore, the cement-based material need be refined to a scale where the smallest characteristic 

phase, i.e., interlayer water, can be incorporated in. For the purpose of drying processes simulation 

and shrinkage deformation analysis, figure 2 illustrates how we categorize the multiscale 

microstructures of cement-based material. The C-S-H is analyzed at two levels. At level 0, globule 

level (10
-10

~10
-8

 m), the drying deformation attributed to interlayer water can be taken into account. 
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At level 1, C-S-H gels level (10
-9

~10
-7

 m), the empty process of gel pores can be characterized and 

the drying contribution of gel water can be quantified. Similarly, at level 2, cement paste (10
-6

~10
-4

 

m) level, the empty process of capillary pores can be characterized and the drying contribution of 

capillary water can be quantified. By incorporating the drying deformation of  cement paste 

predicted at cement paste level in the simulation about mortar or concrete at level 3, , the drying 

deformation of mortar or concrete (10
-5

~10
-1

 m) can be obtained. 

 

Table 1: A summary of pore empty processes [11] and contribution water to the drying deformation. 

Relative humidity 

(RH, %) 

Water desorption process Contribution water to the drying 

deformation 

100-to-85 Capillary pores empty by a pore 

blocking mechanism.  

Capillary water 

LD-gel water 

HD-gel water 

interlayer water 

85-to-50 LD-gel pores empty by pore 

blocking. 

LD-gel water  

HD-gel water 

interlayer water 

50-to-25 HD-gel pores continue to empty by 

pore blocking. 

HD-gel water  

interlayer water 
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Figure 2: Multiscale structure of cement-based materials [11, 16]. 
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3.1 Calcium-silicate-hydrate at nanoscopic scale 

3.1.1 Concept models of C-S-H 

 

A number of concept models for describing the structure of C-S-H have been proposed, including 

layered models, crystal-like models, colloidal models, fractal models and so on [37]. Two types of 

C-S-H with different densities in terms of high density C-S-H (HD C-S-H or HD gel) and low 

density C-S-H (LD C-S-H or LD gel) are acknowledged, and theirgel porositiesare approved to be 

0.26for HD gel and 0.36for LD gel [30,38-39]. At the scale between 1 and 100 nm, evidence 

suggests that C-S-H behaves like a colloidal precipitate [40-41]. Jennings H.M. and his co-workers 

have proposed a granular model assuming that the HD and LD gels are formulated by colloids 

flocculation [35, 39, 42].  

 

3.1.2 Particle packing model of C-S-H gels 

 

Continuing to the colloidal concept model and experimental evidence, particle packing models of 

HD and LD gelshavebeen established to investigate its various properties [16, 43-44].According to 

the particle packing model of HD C-S-H, a regular assembly of globulesof 5 nm in diameter is 

performed and the packing fraction of globules 0.74 is guaranteed. Both hexagonal close packing 

(HCP) and face-centered cubic packing (FCC) can provide a packing density of 0.74. The former is 

employed in this study.  
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According to the particle packing model of LD gel, a random hexagonal closepacking(RHCP) 

arrangement is performed as the following procedures: First, a number of globulesof 5 nm in 

diameter are randomly created by Monte-Carlo algorithm in a 3D space, called „nucleation globules‟. 

Second, new globules with the same size randomly grow from the „nucleation globules‟ following a 

HCP arrangement until the packing fraction of globules is 0.64. See illustrations in figure 2. With a 

length of 100 nm, 12489 and 10469 globules are respectively generated for HD and LD C-S-H, given 

in figure 3. 

 

 

Figure 3: 3D images of nanostructures of HD-gel (left) and LD-gel (right). 

 

3.1.3The structure of globules 

 

The concept of “globule” was proposed in the granular model for describing the structure of two 

types of C-S-H gels [40]. It can also be called C-S-H particles and represent the solid part of C-S-H 

gels excluding gel pores [42]. There are mainly two assumptions about the structure of the C-S-H 
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particle, layer-like or granular-like. According to the granular model, a globule is a basic cluster 

composed of hexagonal close packing blocks those are the basic unit [40].The water between these 

basic blocks can be assumed as interlayer water. Irrespective of the type of C-S-H gels, a 

nanoporosity of 0.18 of a globule filled by structural water is manifested [30]. According to the 

layer-like theory, the nanoscale C-S-H particle is composed of calcium silicate sheets with OH
-
 and 

interlayer space with physically bound water (i.e., interlayer water)[11, 42].The interlayer water is 

associated with disjoining pressure and removal of water from the interlayer spaces causes partial 

collapse of the globule[11].  

 

In this study, the globule is assumed to be composed of C-S-H solid and interlayer water. The 

interlayer water phase is randomly distributed in the C-S-H solid with a volume fraction of 0.18. The 

contribution of interlayer water to the drying deformation of globules will be discussed in section 5.  

 

3.1.4Characteristics of gel pores 

 

Jennings H.M. divided gel pores into three categories: (1) the interlayer gel pore (IGP) with size ≤ 1 

nm; (2) the small gel pore (SGP) between 1~3 nm; (3) the large gel pore (LGP) between 3~12 nm 

[35], and further clarified gel pores are those in the range of 2~8 nm [11].By virtual of the particle 

packing models for C-S-H gels, the gel pore size distributions can be obtained. For HD gel, attributed 

to the regular arrangement of globules, the SGP less than 3 nm across is predominant, and no LGP is 
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found, see figure 4. This is in agreement with the division of 50% RH as mentioned in table 1, below 

which HD gel pores start to get empty. 

 

For LD gel, both SGP and LGP exists, see the gel pore size distribution curves in figure 5. 

Calculations are performed on five LD gelstructures with side length of 100 nm, 150 nm, 200 nm, 

300 nm and 400 nm and designated as GS100, GS150, GS200, GS300 and GS400. The gel pore size 

distribution becomes reproduciblewhen the side length of structures is no smaller than 150 nm. 

Hereafter, the nanostructure of LD gel with side length of 150 nm is utilized.In addition, it is found 

that the SGP porosity is about 0.17, while the LGP porosity is about 0.09 in LD gel. The majority 

pores are between 2~5 nm. It indicates that an obvious gas-liquid phase change will occur in LD gel 

below 65% RH (corresponding to the 5 nm width pore), and that gel pores in LD gel continue to get 

empty below 50% RH where HD gel pores  are supposed to get empty. 

 

 

Figure 4:Pore structure (left) and poresize distribution (right) of HD-gel. 
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Figure 5:Simulated gel pore size distribution of LD C-S-Hwith various side lengths. 

 

3.1.5Gas-liquid phase changes in LD C-S-H 

 

According to equation (3), at 85% RH, pores with size larger than 12 nm get empty, whileat 50% RH, 

pores with size larger than 3 nm can get empty. After digitalize the structure of LD-gel into a 

voxel-represented structure with a high resolution, the water desorption process in LD-gel pores can 

be configured, see figure 6. Attributed to the small scale of HD-gel pores, as shown in figure 4, 

HD-gel pores remain full of water at 50% RH above.  
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Figure 6: Changes of gas-liquid phase in LD-gel as RH decreases (yellow: air; blue: water) (Displayed 

at a resolution of 0.5 nm/voxel). 

 

3.2 Cement paste at microscopic scale 

3.2.1 Microstructure model of cement paste 

 

Both experimental techniques such as X-ray micro-tomography (micro-CT) [34, 45-46] and 

focused-ion beam nanotomography (FIB-nt) [47-49] and computer models, i.e., HYMOSTRUC3D 

[50-51], CEMHYD3D [52], μic [53], etc., can provide the 3D microstructure of cement paste. In this 

study, the HYMOSTRUC3D model is utilized to obtain the microstructure of cement paste at 

microscopic scale,and for comparison, a cement paste with the same material parameters from 

micro-CT scan with a resolution of 0.5 µm/voxel provided by UIUC is utilized. 

 

According to HYMOSTRUC3D, cement particles are modeled as digitized spheres randomly 

distributed in a 3D body with a periodic boundary condition. The hydrating cement grains are 

Dell
高亮
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simulated as growing spheres. The hydration products, in terms of inner and outer hydration product, 

are formed around the grain. It is assumed that the inner hydration product is constituted of high 

density C-S-H, and the outer hydration product is mainly constituted of low density C-S-H and 

calcium hydroxide (CH). Material parameters for cement paste with water-to-cement ratio (w/c) 0.5 

are listed in table 2. For cement paste of water-to-cement ratio (w/c) 0.5 after hydrating 28 days, 

according to the HYMOSTRUC3D model, degree of hydration is 0.75. 3D images of cement paste 

obtained by micro-CT and by the HYMOSTRUC3D modelare illustrated in figure 7.Volume 

fractions of hydration products of cement paste by HYMOSTRUC3D and by micro-CT are listed in 

table 3. The content of hydration products by HYMOSTRUC3D is generally in consistent with that 

by micro-CT. Due to some technical limitations, the HD-gel and LD-gel can not be particularly 

distinguished from hydration products in the microstructure of cement paste by micro-CT.  

 

Table 2: Material parameters utilized in the HYMOSTRUC3D model for cement paste. 

Cement type Portland CEM I 42.5N 

Mineralogical composition of cement  64% C3S, 13% C2S, 8% C3A, 9% C4AF by 

mass 

Fineness (Blaine surface area value) of cement 420 m
2
/kg 

Minimum diameter of cement particle 1 µm 

Maximum diameter of cement particle 37 µm 

Size interval of cement particles 1 µm 

Water-to-cement ratio 0.5 
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Table 3: Volume fractions of hydration products of cement paste by HYMOSTRUC3D and by 

micro-CT(Computed at a resolution of 0.25 µm/voxel for HYMOSTRUC3D and 0.5 µm/voxel for 

micro-CT). 

 Unhydrated 

cement 

Inner product Outer product Capillary pore 

By HYMOSTRUC3D 0.095 0.289 0.412 0.204 

By micro-CT 0.102 0.711 0.187 

 

 

Figure 7: 3D images of microstructures of cement paste (CEMI 42.5R, w/c 0.5, 28 days). 

Left:cement paste by Micro-CT; Right:cement paste by HYMOSTRUC3D. 
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3.2.2 Characteristics of capillary pores 

 

Mindess S. and Young J.F. defined capillary pores as pores with diameter ranging from 10 nm to 0.5 

µm [54]. Jennings H.M. pointed out that the difference between capillary pores and gel pores was 

that capillary pores can get empty while gel pores won‟t when above about 85%RH [35]. 

Adoptingthe latter division, the division size between gel pores and capillary pores is about 12 nm 

according to Kelvin-Laplace equation. Recently, Jennings H.M. defined that capillary pores are those 

poreswith width between about 8 nm and 10 µm and responsible for the drying behavior above 85% 

RH [11]. In this study, capillary pores we concerned are those pores in the microstructure of cement 

paste at microscopic scale and can get empty above 85% RH. 

 

Figure 8 shows the capillary pore size distribution in cement paste when the side length of cement 

pasteis 75µm, 100µm, 150µm and 200µm, and designated as PS75, PS100, PS150 and PS200, 

respectively.The total capillary porosity in cement paste with side length of 75 µm is obviously lower 

than others, and the pore size distribution curves are highly consistent when the side length of cement 

paste is no smaller than 100 µm. Therefore, cement paste with side length of 100 µm is utilized in the 

following simulations. 

 

Incorporating the pore size distributions of gel pores in HD and LDgels analyzed in section 3.1 in 

that of capillary pores shown in figure 8, the pore size distribution curve of cement paste covering 

gel pores and capillary pores can be quantified by simulation, see figure 9. For comparison, a curve 
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by mercury intrusion porosimetry (MIP) from literature [51] is plotted. There is obvious discrepancy 

between the simulated curve and the MIP test one. Within capillary pores range, the cumulative pore 

volume by simulation is larger than that by MIP test. While within gel pores range, the cumulative 

pore volume by simulation is lower. This discrepancy may attributed to (i) some basic assumptions 

of HYMOSTRUC3D model, i.e., spherical cement particles and the minimum size of cement particle; 

(ii) test limitations of MIP, i.e., the “ink-bottle” effect and the microstructural change during sample 

preparation. More discussions about the reasons for pore size distribution discrepancy of cement 

paste between HYMOSTRUC3D simulation and MIP technique can be found in literature [24, 51]. 

Although the simulation about pore size distribution doesn‟t show highly consistent with 

experimental result, reliable predictions in mechanical and diffusion properties were obtained in 

previous studies [24-25, 33]. Therefore, it is necessary to compare the predicted drying shrinkage of 

cement paste by simulation with that by experiment, this will be discussed in section 5.2. 
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Figure 8: Simulated capillary pore size distribution of cement paste from HYMOSTRUC3D. 

 

 

Figure 9: Pore size distribution curves of cement paste (CEMI 42.5R, w/c 0.5, 28 days) by simulation 

and MIP test [51]. 
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3.2.3Gas-liquid phase changes in cement paste 

 

Within the range 100%-to-85% RH, apparent gas-liquid phase transition takes place in capillary 

pores.Based on Kelvin-Laplace equation and the microstructure model of cement paste, Liu L. et al. 

configured the gas-liquid phase in capillary pores [16], and demonstrated that only a small amount of 

liquid water exists in capillary pores below 85% RH,see figure 10. 

 

 

Figure 10: Gas-liquid phase in the pore structure of cement pasteunder different RH (yellow: air, 

blue: water. Capillary pores larger than 10 nm are illustrated). [16] 

 

3.3Concrete/mortar at mesoscopic scale 

 

At mesoscopic scale, concrete/mortar is usually considered as composites of paste matrix, aggregate 

and interfacial transition zone (ITZ). For simplicity, a spherical particle packing model is usually 
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utilized to generate the mesostructure of mortar/concrete, where spherical particlesrepresent 

sands/aggregates. Assume the sand particles satisfy with Fuller‟s distribution, the mortar 

mesostructures with different sample sizes (5 mm, 6 mm, 8 mm and 10 mm) are generated using the 

spherical particle packing model, where the sand volume fraction (Vagg) is 0.46, the maximum and 

minimum diameter of sand (Dmax andDmin) are 2.0 mm and 0.2 mm, and the size interval of sand 0.2 

mm. The sand size distribution curves with different sample sizes of mortar designated as MS5, MS6, 

MS8 and MS10 are given in figure 10. It is found that the sand size distribution curves achieve 

highly consistent when the side length of mortar is no smaller than 6 mm. An image of the 

mesostructure of mortar with side length of 6 mm is illustrated in figure 12. In the following 

simulations, mortar with side length of 6 mm is utilized. 

 

 

Figure 11: Sand size distributions of mortar (Vagg=0.46; Dmax=2.0 mm; Dmin=0.2 mm). 
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Figure 12: Mesostructure of mortar (Dark: paste matrix; white: sand. Vagg=0.46; Dmax=2.0 mm; 

Dmin=0.2 mm). 

 

4. Modeling strategy and three-dimensional lattice analyses 

 

After the multiscale material model has been developed and the water desorption progresses in 

capillary and gel pores are clarified, the next step is to compute the drying deformation of 

cement-based materials by applying responsible loads at the respective scale. 

 

4.1Modeling strategy for drying deformation 

 

Based on the multiscale material model described above, the modeling strategy is: (1) At C-S-H 

globule level, to quantify the drying deformation of C-S-H globules attributed to interlayer water. (2) 

At C-S-H gel level, to characterize the water desorption processes in gel pores and to investigate its 
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effects on the deformation of C-S-H gels, where the drying deformation of C-S-H globules obtained 

from the finer scale is utilized. (3) At cement paste level, to characterize the water desorption in 

capillary pores and to computer the drying shrinkage deformation of cement paste where the 

deformations of C-S-H gels obtained at C-S-H gel level areutilized. (4) At mortar level, from the 

mesostructure of mortar, to compute the drying shrinkage deformation of mortar where the 

deformation of paste matrix obtained at cement paste level is utilized. At each respective scale, the 

drying deformation of cement-based materials is computed by three-dimensional (3D) lattice model. 

 

Lattice model can be utilized to analyze the deformation and fracturing process of a material in 

question introduced by external loading [33, 55-56] or internal physical and chemical actions [23, 

26-27]. The modelling procedures of lattice model can be generally described as generation of lattice 

network, imposition of internal or external loads, and computation of stress and strain distribution. 

The deformation and fracture of the material can be analyzed from the computed stress and strain 

distribution. 

 

4.2 Generating 3D lattice network 

 

The lattice network construction can be quadrangular, triangular, and irregular geometries [33, 

56-57]. Lattice network construction by a quadrangular approach is employed in this study and 

illustrated in figure 13.The sketch at left side is shown in 2D, and the mesh method also works for 

3D case. A network of cells is required first, and a sub-cell is defined within each cell.The side 



25 

 

length ratio of sub-cell to cell is defined as randomness. The cell is distinguished as solid phase and 

non-solid phase. For solid phase cells, a lattice node is randomly generated within its sub-cell and is 

responsible for carrying loads. For non-phase cells, for example, gel pore phase in C-S-H gels at 

nanoscopic scale and capillary pore phase in cement paste at microscopic scale, within which no 

lattice node is generated. In this case, the network of cells is the voxel-represented structure at 

different scales. Then, the lattice nodes in the neighboring cells are connected by lattice beam 

elements. The lattice network system is eventually formed by connection of lattice elements, and is 

able to carry loads.Based on the materials we concerned at different scales, the network of lattice 

elements at each respective scale can be constructed. The specification of lattice networks is given in 

table 4.  

 

The local mechanical properties (Young's modulus Ei-j, shear modulus Gi-jand tensile strength fi-j) 

assigned to each element are determined by those of its connecting cells.  

n, n,

2

1 1i j

i j

E

E E

 



                                                  (4) 

n, n,

2

1 1i j

i j

G

G G

 



                                                  (5) 

n, n,min( , )i j i jf f f                                                  (6) 

where Ei-j, Gi-j and fi-j represent the Young‟s modulus, shear modulus and tensile strength of element 

connecting node iand node j. The tensile strength of element is useful in lattice fracture model and 
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can be neglected in calculations for volume deformation without fracturing. Table 5 lists the 

mechanical parametersof solid phases in cement-based materials at different scales. 

 

 

Figure 13: Lattice network construction by a quadrangular approach (reproduced after [33]). 

Table 4 Specification of lattice networks 

Material scale Composition phases Mesh size Specimen size 

Globule level C-S-H solid and interlayer 

water 

0.1 nm 5 nm × 5 nm × 5 nm 

C-S-H gel 

level 

Globule and gel pore 1 nm 100 nm × 100 nm × 100 nm (HDgel) 

150 nm × 150 nm × 150 nm (LDgel) 

Cement paste 

level 

Cement, inner product, outer 

product and capillary pore 

1 µm 100 µm × 100 µm × 100 µm 

(HYMOSTRUC3D structure) 

Cement, hydration  product, 

capillary pore 

0.5 µm 50 µm × 50 µm × 50 µm (micro-CT 

structure) 

Mortar level Paste, aggregate and ITZ  0.04 mm 6 mm × 6 mm × 6 mm 
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Table 5 Mechanical parametersof solid phases in cement-based materials at different scales. 

Material 

scale 

Solid phase Young‟s 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Poisson‟s 

Ratio 

References 

Globule level C-S-H solid 130 52.0 0.25 Inverse 

deduction 

C-S-H gels 

level 

Globule 81.5 32.6 0.25 Inverse 

deduction 

Cement paste 

level 

Unhydrated cement 135 51.9 0.3 [30, 33] 

Inner product 29.4 11.9 0.24 

Outer product 21.7 8.9 0.24 

Mortar level Sand 62.5 25.8 0.21 [30] 

Paste matrix 11.8 4.8 0.24 Computed at 

paste level 

ITZ 10.0 4.0 0.25 Calculated by 

Eq.(4)&(5) 

For convenience, we recall the relation between the bulk modulus K, the shear modulus G, the 

Young's modulus E and the Poisson's Ratio v [30]: 

9

3

G
E

G K




3 2

6 2

G K
v

G K





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4.2.1 Lattice networks of C-S-H globule and gels 

 

At C-S-H globule level, the contribution phase for carrying loads is considered as C-S-H solid. At 

C-S-H gel scale, the contribution phase is assumed as globule. The Young‟s moduli and shear moduli 

of C-S-H solid and globule are computed by inverse deduction from those of HD and LD gels.  

 

4.2.2 Lattice network of cement paste 

 

At cement paste scale, for the microstructure from HYMOSTRUC3D, the solid phases are 

considered as cement, inner product and outer product whose mechanical properties are adopted 

from literature [30, 33]. For the microstructure obtained by micro-CT, the solid phases are cement 

and hydration product. The mechanical property of hydration product is adopted to be the weighted 

average of HD and LD gels. 

 

4.2.3 Lattice network of mortar 

 

At mortar level, the mechanical parameters input are related to sand, paste matrix and ITZ. The 

mechanical parameters of sand are adopted from literature [30], while those of paste matrix are 

computed though a uniaxial tension test on the microstructure of cement paste by 3D lattice analysis. 

The Young‟s and shear moduli of ITZ are calculated by averaging the corresponding parameters of 
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sand and paste matrix according to equation (4) and (5). The ITZ thickness equals to the length of a 

single lattice element. 

 

From the corresponding structures of cement-based materials at different scales described in chapter 

3, combining the mechanical parameters of materials concerned at each scale, the lattice networks of 

cement-based materials at the respective scale have been constructed. 

 

4.3 Imposing internal loads 

 

As RH decreases, the capillary pressure and disjoining pressure give rises. According to Kelvin 

equation (equation (1)), changes of capillary pressure and disjoining pressure can be 

calculated.Assuming the atmospheric pressure patm equals to 0, thenegative liquid pressure pL can be 

obtained. It is the determining factor for the drying deformation of cement-based materials through 

interlayer water, gel water and capillary water. The problem to be solved in this part is how to impose 

theliquid pressure on the lattice network of cement-based materials at the respective scale. Figure 14 

illustratesthe solution.  

 

4.3.1 Loads on C-S-H globule 

 

The action of interlayer water, assumed to be randomly distributed in C-S-H solids, is imposed by 

applying the negative liquid pressure pL on the solid walls contacting with interlayer water, as 
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illustrated in figure 14.The force applied on a C-S-H solid cell, fnod, isan integration of liquid 

pressure pL on its associated surfaces ALwhich is in contact with the contribution water, 

L

nod L L

A

p A f                                                   (7) 

 

4.3.2Loads on C-S-H gels 

 

Similarly, the action of gel water can be imposed on the lattice networks of HD and LD gels 

respectively. Since gel pores can get empty within 85%-to-50% RH range, air phase in LDgel is 

assumed to be no contribution to the drying deformation. The drying deformation of globules 

computed at the last scale is incorporated through applying equivalent stress σGon the globule cells, 

G G G=E                                                           (8) 

whereEG represents the Young‟s modulus of globule, εG represents the linear strain of globule, which 

is computed at the globule level. Equivalent stress σG is defined as the stress applied on the surfaces 

of one globule cell which will cause the same amount shrinkage of globule cell as interlayer water 

does at the globule level. By multiplying equivalent stress σG by the area of globule cellAG, 

equivalent loads representing the drying deformation of globules can be obtained and further are 

applied on the lattice networks of HD and LD gels. 

 

4.3.3Loads on cement paste 

 



31 

 

At cement paste scale, the factors responsible for the drying deformation of cement paste are 

capillary water, shrinkages of HD and LD gels.The negative liquid pressure in capillary pores is 

active at high RH (≥85% RH), while does not work when the capillary pores get empty below about 

85% RH. Similar to the approach considering the contribution of gel water, using equation (7), action 

of liquid pressure pL is applied on the pore walls those are in contact with capillary water. With 

regard to inner and outer products, equivalent stress σcsh is introduced, and defined as the stress 

applied on the surfaces of one inner or outer product cell, which will cause the same amount 

shrinkage of HDgel or of LDgel as gel water does. The force applied on a solid cell in general can be 

written asthe resultant force of local liquid pressure action (an integration of liquid pressure pL on its 

associated surfaces AL where in contact with capillary water) and local shrinkage action of C-S-H 

gels,  

L

nod csh csh L L

A

A p A  f                                         (9) 

For inner product cell, the effective load comes from the equivalent stress on HD gel. For outer 

product cell, in addition to the equivalent stress on LD gel, the contribution of capillary water can not 

be neglected at high RH. For cement cell, no effective load is applied. See the illustration in figure 

14. 

 

4.3.4Loads on mortar/concrete 

 

At mortar or concrete level, the only factor attributed to its drying shrinkage is the drying 

deformation of paste matrix. For paste matrix cell, equivalent stress σpis incorporated and equals to,  
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p p p=Eσ ε                                                      (10) 

where Ep represents the Young‟s modulus of paste matrix phase, εprepresents the linear strain of  

cement paste, which is computed at cement paste level.Similar to the approach applying equivalent 

load on globule cells at C-S-H gel level and applying equivalent load on C-S-H gel cell at cement 

paste level, equivalent load representing the drying deformation of paste matrix can be obtained by 

multiplying equivalent stress σp by the area of paste matrix cell Ap and further are applied on the 

lattice networks of mortar or concrete. 
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Figure 14: Illustration of imposition of internal loads for the multiscale material at each scale. 

 

4.4Computation of stress and strain distribution 
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Set free boundary condition, the internal stress and strain distribution within each lattice element can 

be obtained at each specific scale after a kernel computation [33]. From the movements of cells on 

boundaries, the deformation of the sample can be obtained.  

 

5. Results and discussion 

5.1 Drying deformations of C-S-H globule and gels 

 

For C-S-H globule at level 0 and HD gel at level 1, their linear drying deformations are directly 

proportional to the liquid pressure pL, see figure 15. Slopes of 5.2 and 26.0 are observed respectively 

for globule and HD gel. As to LD gel, the slope is steep when pL ranges from -12MPa to -58MPa 

(91%-to-65% RH) and gets gentle after -58MPa until -72 MPa (65%-to-59% RH). A deformation 

decrease of LD gel is observed when pL= -96 MPa (50% RH). Different from C-S-H globule and HD 

gel remaining full of water, gel pores in LD C-S-H get empty within 85%-to-50% RH range. Due to 

the increase of empty gel pores and the decrease of gel water, the dependence of the drying 

deformation of LD gel on the liquid pressuregets moderate. In addition, figure 15 shows a distinct 

difference between the upper and the lower values at the same pL for LD gel. It indicates the 

statistical fluctuation of LD gel nanostructures generated previously. The effect of statistical 

fluctuation will be discussed in section 5.4. 
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Figure 15: Dependence of linear drying deformation of C-S-H globule and C-S-H gels on liquid 

pressure pL. 

 

5.2 Drying deformation and moisture loss of cement paste 
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Predictions of the drying deformation of cement paste with w/c 0.5 after hydrating 28 days are given 

in figure 16. For comparison, experimental results for ordinary Portland cement pastes with 0.5w/c 

are also plotted.Specification about these paste specimensby experiments are summarized in table 6. 

In the authors‟ experiment, specimens were cast in sealed 25 mm diameter plastic vials and shaped 

into cylinders. After mixing 24 hours, they were demolded and immersed in saturated lime water at 

about 20 ºC. Before drying, the cylindrical hardened paste was cut into thin discs of 0.8 mm thick 

and 25 mm in diameter. The paste discs were dried in a desiccator where RH is constant. Their linear 

drying shrinkage was determined in reference to the saturated status before drying. By using the thin 

disc specimens, the ultimate shrinkage can be achieved in 6 hours after put into the desiccator. 

Comparing to the experiments by other researchers[1-2], the testing time is reduced drastically and 

the hydration effect during the drying period can be prevented. In addition, the tested shrinkage can 

be assumed as the real free shrinkage of specimens where the internal relative humidity of specimens 

equals to the environmental relative humidity andthe humidity gradients can be neglected. 

 

As plotted in figure 16, both simulations on the micro-CT structure and on the HYMOSTRUC3D 

structure show the same trend as experiments do, i.e., an increase of drying shrinkage deformation 

with the decreasing RH. For the micro-CT structure, at each RH condition, 8 simulations were 

carried out on samples of 50 µm × 50 µm × 50 µm which were cut from a bigger structure of 100 µm 

× 100µm × 100 µm. The averaged, upper and lower data were plotted in the curve. Simulations on 

the micro-CT structure are consistent with the experimental results, but show a large scatter among 

simulations, especially at low RH. Simulations on the HYMOSTRUC3D structure are slightly lower 
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than others. This might attributed to the coarser pore structure by simulation, as plotted in figure 9, 

which led to a larger moisture loss, shown in figure 17.Because of computational limitations, the 

minimum diameter of cement particles in the HYMOSTRUC3D model is assumed to be 1 µm, while 

real cements have a certain number of particles with sizes smaller than 1 µm. Additionally, 

HYMOSTRUC3D models hydration as the expansion of concentric shell around the original cement 

particles, and does not include precipitation of products such as calcium hydroxide within the pore 

spaces between particles [23-24]. It should be noted thatthe proposed model in this study can be used 

combining with an updated version of HYMOSTRUC3D,and can be extend to get the related results 

by using other hydration models such as uic andCEMHYD3D. 

 

 

Figure 16: Drying deformation of cement paste (w/c=0.25, 28 days) by simulation and by 

experiments [1-2]. 
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Figure 17: Weight loss of water in cement paste as RH decreases. 

Table 6 Specification of cement paste samples (w/c 0.5) tested for drying. 

Specimen shape 

and size 

Test direction 

for shrinkage 

Curing 

condition 

Ages prior 

to testing 

Time to ultimate 

shrinkage 

References 

Prisms of 4*8*32 

mm  

Length Lime-saturated 

water at 23 ºC 

28 days 14 days [1] 

Prisms of 

20*20*160 mm  

Length Lime-saturated 

water at 20 ºC 

5 months 2 months [2] 

Discs of 0.8 mm 

thick and 25 mm 

in diameter 

Diameter Lime-saturated 

water at 20 ºC 

28 days 6 hours The authors 
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5.3Drying deformation of mortar 

 

Predictions of the drying deformation of mortar (Vagg=0.46; Dmax=2.0 mm; Dmin=0.2 mm) are given 

in figure 18. Predictions are generally in agreement with experiments with the same sand volume 

fraction, the same w/c and the same hydration age.  

 

 

Figure 18: Drying deformation of mortar (Vagg=0.46; Dmax=2.0 mm; Dmin=0.2 mm) by simulation and 

by experiment [1]. 

 

5.4Discussion about parameter determination and passing-through 
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Three sources of error: statistical fluctuation, finite size effect and digital resolution [58], may be 

built in the multiscale digital model which is an approximation of reality. Statistical fluctuation errors 

come about simplybecause the structure under consideration is random, i.e., the nanostructure of 

LD-gel, the microstructure of cement paste, the mesostructureof mortar, etc., and can only represent 

apiece of the material. The effect of statistical fluctuation on the drying deformations of LD-gel at 

nanoscale level and of cement paste at microscale is obvious, as mentioned in figure 15 and figure 16, 

while is not significant for mortar, see figure 18.In this study, in order to minimize the effect of 

statistical fluctuation, simulations on a number of structures of material under consideration, i.e., 

duplicate simulations on 5 LD-gel structures, on 8 cement paste microstructures by micro-CT and on 

3 cement paste microstructures by HYMOSTRUC3D,were carried out and the average, lower and 

upper values were plotted in figure 15 and figure 16. 

 

Finite size error comes about if thepiece of the material is not big enough to be „„typical‟‟ of 

arepresentative size sample,that is, not as largeas the real material [58]. Arepresentative volume 

element (RVE)is used inthe composite material field to minimize the effect of the finite size. There 

are various definitions about RVE, see review in [59]. From an experimentalist point of view, it may 

be argued that the RVE is defined when the scatter in experiments drops to a minimum value [57]. In 

this case, from the point of view of simulation, the RVE can be considered to be achieved when an 

increase in its size does not lead to considerable differencesin the investigated properties.The 

determination of RVE may be related to (i) the maximum size of characteristic phase i.e., the size of 

the largest particle; and (ii) the modeling methods to obtain the investigated property. It is suggested 
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that the specimen size should be roughly 2~3 times larger than the largest particle[34, 60-61]. In this 

study, this criterion was satisfied with at each scale.In addition, in determining the size of RVEat 

nanoscale for LD-gel and at microscale for cement paste by HYMOSTRUC3D model, as mentioned 

in section 3.1 and 3.2, the size distribution of characteristic pores (i.e., gel pores and capillary pores) 

is concerned.And finally, a sample size of 150 nm with the largest globule of 5 nm for LD-gel, and a 

sample size of 100 µm with the largest cement of 37µm for cement paste were determined. In 

determining the size of mortar RVE, the sand size distributions with different sample sizes ranging 

from 5 mm to 10 mm were discussed, and a sample size of 6 mm was determined, which is three 

times of the size of the largest sand.  

 

Digital resolution could be an import source of error for digital models where the phases of the 

material are identified by pixels in 2D case and by voxels in 3D case.For finite element or finite 

difference computations, the “right” resolution is as fine as possible [58].However, huge 

computational cost would be spent if we over pursuit the small resolution. The obvious solution for 

finite element discretization is to utilize a compatible mesh. It is suggested that the mesh size should 

be smaller than the smallest particle. In our case,in addition to the size of the smallest particle, the 

size of water desorption pores at different scales should be concerned. As listed in table 7, the mesh 

size is smaller than the size of the smallest particle and the size of water desorption pores for most 

cases, except for cement paste. Below 85% RH, it can be acceptable to use the mesh size of 1 µm, 

which is larger than the size of water desorption pores, because only a small amount of liquid water 

exists in capillary pores which can be neglected.At above 85% RH, capillary pores larger than 12 nm 
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should be captured where water desorption occurs. It is almost impossible for digital models. This 

problem is solved via constructing a distributed network of pore voxels by a multi-step digitalization 

algorithm [16].Voxels of mixed phase composed of outer product and capillary pore are introduced to 

incorporate the capillary pores ranging from 12nm to 1µm. 

 

Table 7Summary of parameters associated with determining mesh size at different scales. 

 Mesh size  Size of the 

smallest particle 

Size of water desorption 

pores 

Corresponding 

RH (%) 

Mortar 0.04 mm 0.2 mm   

Cement paste 1 µm  1 µm ≥ 12 nm (8 nm ~ 10 

µm)
*
 

100-to-85 

LD-gel  1 nm 5 nm 3~12 nm   (2~8nm)
*
 85-to-50 

HD-gel 1 nm 5 nm 1~3 nm 50-to-25 

C-S-H globule 0.1 nm 2.2 nm ≤ 2 nm
*
 25-to-0 

* The size division of water desorption pores at each corresponding RH range were updated in 

literature [11]. 

 

In multiscale modeling, another important problem is the passing-through of parameters during 

upscaling (nano-to-macro transition) or downscaling (macro-to-nano transition). In this study, a 

RVE-based parameter-passing scheme was employed to determine the mechanical parameters of 

solid phases in cement-based materials at different scales, listed in table 5. At cement paste level, the 
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mechanical parameters of unhydrated cement, inner and outer products were determined by 

nano-indentation test [30,33]. From the cement paste level, downscaling was performed until to the 

globule level and upscaling was performed until to the mortar level, to obtain the corresponding 

parameters of solid phases under concern.Based on the mechanical parameters of inner and outer 

products, by performing a uniaxial tension test on the nanostructures of HD and LD gels using 3D 

lattice model, the corresponding parameters of globule at C-S-H gels level were determined by 

inverse deduction.Continue downscaling in a similar way,, the mechanical parameters of C-S-H solid 

can also be determinedby inverse deduction. If we perform a uniaxial tension test on the 

microstructure of cement paste via 3D lattice model, the mechanical parameters of paste matrix in 

mortar can be obtained.  

 

6. Conclusion 

 

This paper has proposed a multiscale microstructure-based model to investigate the drying behavior 

of cement-based materials.By combining the multiscale computer-generated structure of 

cement-based materials with 3D lattice analyses, the drying shrinkage deformations of C-S-H gels, 

cement paste and mortar are respectively investigated via gradually upscaling.Based on the 

multiscale structure of cement-based materials, the water desorption process in capillary pores of 

cement paste corresponding to 100%-to-85% RH range, and that in gel pores of LD-gel 

corresponding to 85%-to-50% RH range, are incorporated in the model. Predictions about the drying 

deformation of cement-based materials at each respective scale (i.e., C-S-H globule, HD and LD gels, 
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cement paste and mortar) are presented.Experimental data for the shrinkage of mortar and cement 

pastes from literatureand from this study are utilized to validate the proposed model.Finally, three 

sources of error:statistical fluctuation, finite size effect and digital resolution regarding to the 

determination of the material structure at different scales as well as thepassing-through of mechanical 

parameters are discussed.  
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Table 1: A summary of pore empty processes [11] and contribution water to the drying deformation. 

Relative humidity 

(RH, %) 

Water desorption process Contribution water to the drying 

deformation 

100-to-85 Capillary pores empty by a pore 

blocking mechanism.  

Capillary water 

LD-gel water 

HD-gel water 

interlayer water 

85-to-50 LD-gel pores empty by pore 

blocking. 

LD-gel water  

HD-gel water 

interlayer water 

50-to-25 HD-gel pores continue to empty by 

pore blocking. 

HD-gel water  

interlayer water 
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Table 2Material parameters utilized in the HYMOSTRUC3D model for cement paste. 

Cement type Portland CEM I 42.5N 

Mineralogical composition of cement  64% C3S, 13% C2S, 8% C3A, 9% C4AF by 

mass 

Fineness (Blaine surface area value) of 

cement 

420 m
2
/kg 

Minimum diameter of cement particle 1 µm 

Maximum diameter of cement particle 50 µm 

Size interval of cement particles 1 µm 

Water-to-cement ratio 0.5 

 

Table 3 Volume fractions of hydration products of cement paste by HYMOSTRUC3D and by 

micro-CT (Computed at a resolution of 0.25 µm/voxel for HYMOSTRUC3D and 0.5 µm/voxel for 

micro-CT). 

 Unhydrated 

cement 

Inner product Outer product Capillary pore 

By HYMOSTRUC3D 0.095 0.289 0.412 0.204 

By micro-CT 0.102 0.711 0.187 

 

 

 

 



Table 4 Specification of lattice networks 

Material scale Composition phases Mesh size Specimen size 

Globule level C-S-H solid and interlayer 

water 

0.1 nm 5 nm × 5 nm × 5 nm 

C-S-H gel 

level 

Globule and gel pore 1 nm 100 nm × 100 nm × 100 nm (HD gel) 

150 nm × 150 nm × 150 nm (LDgel) 

Cement paste 

level 

Cement, inner product, outer 

product and capillary pore 

1 µm 100 µm × 100 µm × 100 µm 

(HYMOSTRUC3D structure) 

Cement, hydration  product, 

capillary pore 

0.5 µm 50 µm × 50 µm × 50 µm (micro-CT 

structure) 

Mortar level Paste, aggregate and ITZ  0.04 mm 6 mm × 6 mm × 6 mm 

 

 

 

 

 

 

 

 

 

 

 



Table 5 Mechanical parameters of solid phases in cement-based materials at different scales. 

Material 

scale 

Solid phase Young’s 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Poisson’s 

Ratio 

References 

Globule level C-S-H solid 130 52.0 0.25 Inverse 

deduction 

C-S-H gels 

level 

Globule 81.5 32.6 0.25 Inverse 

deduction 

Cement paste 

level 

Unhydrated cement 135 51.9 0.3 [30, 33] 

Inner product 29.4 11.9 0.24 

Outer product 21.7 8.9 0.24 

Mortar level Sand 62.5 25.8 0.21 [30] 

Paste matrix 11.8 4.8 0.24  Computed at 

paste level 

ITZ 10.0 4.0 0.25 Calculated by 

Eq.(4)&(5) 

For convenience, we recall the relation between the bulk modulus K, the shear modulus G, the 

Young's modulus E and the Poisson's Ratio v [30]: 

9

3

G
E

G K




3 2

6 2
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
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Table 6 Specification of cement paste samples (w/c 0.5) tested for drying. 

Specimen shape 

and size 

Test direction for 

shrinkage 

Curing 

condition 

Ages prior 

to testing 

Time to 

ultimate 

shrinkage 

References 

Prisms of 4*8*32 

mm  

Length Lime-saturated 

water at 23 ºC 

28 days 14 days [1] 

Prisms of 

20*20*160 mm  

Length Lime-saturated 

water at 20 ºC 

5 months 2 months [2] 

Discs of 0.8 mm 

thick and 25 mm 

in diameter 

Diameter Lime-saturated 

water at 20 ºC 

28 days 6 hours The authors 

 

 

 

 

 

 

 

 

 

 

 



Table 7Summary of parameters associated with determining mesh size at different scales. 

 Mesh size  Size of the 

smallest particle 

Size of water desorption 

pores 

Corresponding 

RH (%) 

Mortar 0.04 mm 0.2 mm   

Cement paste 1 µm  1 µm ≥ 12 nm (8 nm ~ 10 

µm)
*
 

100-to-85 

LD-gel  1 nm 5 nm 3~12 nm   (2~8nm)
*
 85-to-50 

HD-gel 1 nm 5 nm 1~3 nm 50-to-25 

C-S-H globule 0.1 nm 2.2 nm ≤ 2 nm
*
 25-to-0 

* The size division of water desorption pores at each corresponding RH range were updated in 

literature [11]. 

 



 

 

 

 

Figure 1: Geometrical illustration of capillary adhesion and disjoining pressure zones. 

 

 

 

 

 

 

 

Air-water meniscus 

Capillary pressure zone Disjoining pressure zone 

Substrate 

rΔu 

Figure(s)



Level 3: 

Mortar or 

concrete 

 

Level 2: 

Cement paste 

 Hydrating of cement particles 

 

Level 1: 

C-S-H 

        HD C-S-H          LD C-S-H 

  

Level 0:  

Globule 

 

Figure 2: Multiscale structure of cement-based materials [11, 16]. 
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Figure 3: Simulated nanostructures of HD-gel (left) and LD-gel (right). 

 

    

Figure 4: Pore structure (left) and pore size distribution (right) of HD-gel.  
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Figure 5: Simulated gel pore size distribution of LD C-S-H with various side lengths. 
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Figure 6: Changes of gas-liquid phase in LD-gel as RH decreases (yellow: air; blue: water) 

(Displayed at a resolution of 0.5 nm/voxel).  
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Figure 7: Microstructures of cement paste (CEMI 42.5R, w/c 0.5, 28 days). Left: cement paste by 

Micro-CT; Right: cement paste by HYMOSTRUC3D.  
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Figure 8: Simulated capillary pore size distribution of cement paste (CEMI 42.5R, w/c 0.5, 28 days) 

from HYMOSTRUC3D. 

 

 

 



 

Figure 9: Pore size distribution curves of cement paste (CEMI 42.5R, w/c 0.5, 28 days) by simulation 

and MIP test [51]. 

 

 

Figure 10: Gas-liquid phase in the pore structure of cement paste under different RH (yellow: air, 

blue: water. Capillary pores larger than 10 nm are illustrated). [16] 
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Figure 11: Mesostructure of mortar (Dark: paste matrix; white: sand. Vagg=0.46; Dmax=2.0 mm; 

Dmin=0.2 mm). 

 

 

Figure 12: Sand size distributions of mortar (Vagg=0.46; Dmax=2.0 mm; Dmin=0.2 mm). 
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Figure 13: Lattice network construction by a quadrangular approach (reproduced after [33]). 
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At globule level: contribution of interlayer water.  

 

 

At C-S-H gels level: contribution of gel water and globules whose deformation were computed at 

globule level. 
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At cement paste level: contribution of capillary water and inner and outer products. Deformations of 

inner and outer products were obtained at C-S-H gels level. 

 

 

At concrete/mortar level: contribution of paste matrix whose deformation was computed at cement 

paste level. 

 

Figure 14: Illustration of imposition of internal loads for the multiscale material at each scale. 
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Figure 15: Dependence of linear drying deformation of C-S-H globule and C-S-H gels on liquid 

pressure pL. 
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Figure 16: Drying deformation of cement paste (w/c=0.25, 28 days) by simulation and by 

experiments [1-2]. 

 

 

 

 

 



 

 

Figure 17: Weight loss of water in cement paste as RH decreases. 
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Figure 18: Drying deformation of mortar (Vagg=0.46; Dmax=2.0 mm; Dmin=0.2 mm) by simulation and 

by experiment [1]. 
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