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Abstract
A considerable amount of disease is transmitted from animals to humans andmany of these

zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola

have demonstrated, however, zoonotic diseases are serious threats to global public health

and are not just problems confined to remote regions. There are two fundamental, and poorly

studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens

from animals to humans, and ‘stuttering transmission’, i.e.when limited human-to-human

infections occur, leading to self-limiting chains of transmission. We developed a transparent,

theoretical framework, based on a generalization of Poisson processes with memory of past

human infections, that unifies these stages. Once we have quantified pathogen dynamics in

the reservoir, with some knowledge of the mechanism of contact, the approach provides a

tool to estimate the likelihood of spillover events. Comparisons with independent agent-

based models demonstrates the ability of the framework to correctly estimate the relative

contributions of human-to-human vs animal transmission. As an illustrative example, we

applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in

West Africa, for which data on human outbreaks were available. The approach developed

here is general and applicable to a range of zoonoses. This kind of methodology is of crucial

importance for the scientific, medical and public health communities working at the interface

between animal and human diseases to assess the risk associated with the disease and to

plan intervention and appropriate control measures. The Lassa case study revealed impor-

tant knowledge gaps, and opportunities, arising from limited knowledge of the temporal pat-

terns in reporting, abundance of and infection prevalence in, the host reservoir.
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Author Summary

Many dangerous diseases emerge via spillover from animals, with limited human-to-
human infection (stuttering-transmission) often being the first stage of human disease
spread. Understanding the conditions (biological, environmental and socio-economic fac-
tors) that regulate spillover and disease spread is key to its mitigation. Here we are inter-
ested in questions such as: If we have quantified pathogen dynamics in the reservoir, with
some knowledge of the mechanism of contact, can we estimate the likelihood of spillover
events? Can we tease apart how much the disease is transmitted by animals and how much
by humans? We developed a unified mathematical framework, based on Poisson processes
with memory of past events, to understand the dynamics of spillover and stuttering-trans-
mission. This framework, which can be applied across the disease transmission spectrum,
allows the teasing apart of the disease burden attributed to animal-human and human-
human transmission. Using this model, we can infer human disease risk based on knowl-
edge of infection patterns in the animal reservoir host and the contact mechanisms
required for transmission to humans.

Introduction
An important class of pathogens are those transmitted from animals to humans (zoonosis).
The dangers associated with zoonotic pathogens are twofold. Firstly, the pathogen can adapt to
the new human host and acquire the ability to transmit sustainably from human-to-human
without the need for continued seeding from the animal reservoir. The pathogens involved
occasionally transmit rapidly amongst its immunologically naïve new host causing devastating
health impacts as demonstrated by the global SARS outbreak, the swine influenza pandemic
and the recent Ebola epidemic, which probably originated from one zoonotic spillover event.
Perhaps, however, HIV-1 is the most spectacular case of a recent zoonotic emergence, originat-
ing from an endemic infection of chimpanzees in Central Africa. Zoonotic infections are the
origin of the majority of established human pathogens [1] of which influenza, measles, small-
pox and diphtheria are examples [2]. Secondly, zoonotic pathogens can spill over from animal
reservoirs continually and cause a heavy burden of disease. Human rabies from domestic dogs
is an important and preventable example.

The origins of major human infectious diseases can be conceptualised as a continuous transi-
tion across different epidemiologic stages [3]. The first stage is when a pathogen exclusively
infects animals (‘reservoir dynamics’). The second is when the pathogen occasionally jumps to
the dead-end-host human population (‘spillover’). This is followed by a third stage, when
human-to-human transmission becomes possible but leads only to self-limiting chains of trans-
mission (‘stuttering transmission’). The final stage is when a pathogen gains the ability to trans-
mit effectively between humans and no longer requires zoonotic transmission [3]. An additional
scenario is when the pathogen infects both animals and humans in a sustainable manner.

Measuring and predicting cross-species transmission is extremely difficult. This is because
spillovers are often, but not always (as the situation for Lassa Fever demonstrates), rare events
driven by the complex interactions of multiple causes, including ecological factors (e.g. pres-
ence of hosts with differing degrees of susceptibility and periodicity in their abundance), epide-
miological and genetic factors (e.g. a broad set of pathogen life histories and periodicity of
infection prevalence), and anthropogenic activities (e.g. land-use and behavioural changes
affecting direct and indirect interactions with reservoir hosts) [4]. Particularly challenging are
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zoonoses with stuttering transmission, as separating the contribution of animal-to-human
from human-to-human transmission is extremely difficult.

Not surprisingly, theoretical [5–7] and experimental studies able to disentangle the many
complex aspects of transmission at the animal-human interface are scarce [3, 8]. An increasing
body of research recognises the need for a new paradigm integrating biological, social and envi-
ronmental sciences with mathematical modelling to explain the mechanisms and impacts of
zoonotic emergence [9, 10].

Understanding zoonotic spillover and stuttering transmission are, therefore, two very impor-
tant public health challenges. The scientific, public health and medical communities working at
the interface of animal and human pathogens are challenged with many questions, such as: i) if
we know the pathogen abundance and prevalence in the reservoir and have some knowledge of
the mechanism of contact, can we estimate the likelihood of the next spillover event? ii) is there
a signature in the patterns of disease occurrence that enables us to distinguish the spillover (ani-
mal-to-human) burden from the stuttering chain (human-to-human) burden? iii) how is zoo-
notic risk driven by specific social, economic, environmental and biological factors?

Mathematical modelling has been used before to estimate the relative contributions of zoo-
notic spillover and human-to-human transmission, [11]. This approach was based on rarely
available information of nosocomial and extra-nosocomial outbreaks that were known to be
instances of pure human-to-human chains. More general methods are needed. Here, we devel-
oped a unified mathematical framework for spillover and stuttering chain processes. These are
conceptually similar mechanisms; they are both arrival processes. The key difference is that
zoonotic spillovers are assumed to arise from random and independent contacts with the reser-
voir with no influence of past infections (assuming no depletion of susceptibles, i.e. the pool of
people who can be infected by contact with the reservoir or humans). In contrast, a stuttering
chain, which arises from human-to-human transmission, is affected by the number of past
human infections as each infected person can also trigger a chain of new cases. Zoonotic spill-
overs are also affected by past events when depletion of susceptibles, through death or develop-
ment of sterilising immunity, is important.

Mathematically, zoonotic spillovers are described by Poisson processes (Cox processes if
stochasticity in the rate of infection becomes important) or by self-correcting (i.e. decreasing
rate of infection) processes if depletion of susceptibles occurs, while stuttering chains are
described by a combination of self-exciting (i.e. increasing rate of infection), due to previous
human infections, and self-correcting due to depletion of susceptibles, processes (see Table S1
in S2 Text). We tested different models by comparing their predictions with the corresponding
outputs from independently-simulated epidemics generated by an agent based model (ABM).
As an illustrative example, we also applied the final model to Lassa Fever (LF), a zoonotic, viral
haemorrhagic disease common in West Africa, for which data from Kenema Government Hos-
pital (KGH) in Sierra Leone [12] are available. LF represents an important model for this kind
of study (Fig 1). The disease reservoir isMastomys natalensis [13], one of the most common
African rodents, but an important proportion of the burden of disease is ascribable to human-
to-human transmission; this is supported by the arguments presented in [11] and by a recent
case of secondary transmission of locally acquired Lassa fever in Cologne, Germany [14]. This
case study was particularly instructive, revealing important challenges in current knowledge of
LF, thus informing the direction of future research.

Materials and Methods
The proposed method is general but for illustrative purposes the presentation is based on the
LF system exemplified in Fig 1. For the LF case study, we used data abstracted from patient
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medical records and LF diagnostic tests for 1002 suspected LF cases who presented to the KGH
Lassa Ward from 27th of April 2010 to the 31st of January 2012 [11, 12]. For the list of symbols
see also Supporting Information, S1 Text.

The distribution of spillover events
The phenomenology of spillover events ought to be linked with disease dynamics in the reser-
voir and the mechanism of contact between species. We assume that LF is caused by indepen-
dent random ‘contacts’ (mediated by contaminated food, fomites etc.) between humans and
rodents. Thus the probability P that k events occur during a time τ (e.g. number of admissions
to hospital in one week) can be described by a stochastic Poisson process:

PðkÞ ¼ exp �ltðltÞk
k!

ð1Þ

where λ is a parameter (rate) representing the expected number of zoonotic spillovers per time
unit. The parameter λ is expected to depend on other drivers [15]. In the simplest scenario the
human population is uniformly subjected to random and independent contacts with the reser-
voir. Only a fraction of these contacts, equal to the infection prevalence of the reservoir, are a

Fig 1. Schematic of the transmission cycle of Lassa virus inMastomys natalensis and in humans.

doi:10.1371/journal.pntd.0004957.g001
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potential source of infection. Accordingly, we assume:

l ¼ NHPrRðNRÞwRZRðNRÞ ð2Þ

where NH is the human population size, i.e. the total number of people in a suitable areaA,
e.g. a village; PrR(NR) is the prevalence of infected rodents; χR is a parameter combining two
complex mechanisms: the ability of the reservoir to excrete a suitable dosage of the virus and
the human response to it. We refer to this parameter as infection-response efficiency, and we
formally define it as the product of the probability that the virus is excreted from the reservoir
and the probability that humans acquire infection when challenged with the virus. ηR(NR) is
a measure of exposure, given by the product ZRðNRÞ ¼ xðNRÞA where ξ(NR) is the probability
of a contact (direct or mediated) between a singlemember of the human population and the
population of NR rodents per time unit and area unit. Both the pathogen prevalence, PrR, and
the exposure, ηR, are expected to be functions of rodent abundance, NR, although a clear evi-
dence of correlation between LASV prevalence andM. nataliensis abundance is lacking. The
areaA essentially depends on the dispersal range of the rodents and, in the presence of
human-to-human transmission, on the mobility of people. Here we assumed that the areaA
used is suitable for considering the system closed (no change in the population apart from
the disease induced mortality) and for assuming uniform mixing, i.e. each person is equally
in contact with each other and with the rodent population. As in the current model the size
A of the system is fixed, we consider the overall parameter ηR(NR). Here and throughout, we
refer to the quantities NH, PrR(NR), χR, ηR(NR) (and also χN and ηR(NH) defined below) as
constituent factors.

The assumption that the system is closed can be relaxed. The simplest approach would be
capturing the phenomenology of births, deaths and migrations by allowing a time-dependent
functional form for the human population size NH = NH(t). Alternatively, changes in the
human population size can arise from implementing an appropriate population dynamics
model for NH. The approach can be further extended to incorporate explicitly-spatial effects by
building an interconnected meta-population model based on homogeneous regions and allow-
ing immigration/emigration of individuals.

Quantities such as the rodent population size, NR, and infection prevalence, Pr, are often
seasonal therefore the rate λ ought to be explicitly time-dependent resulting in a non-homoge-
neous Poisson process. Most importantly, all the terms in Eq (2), i.e. rodent population, NR,
infection prevalence, Pr, human population size, NH, and the infection-response efficiency, χR,
are in general, stochastic. Thus the parameter λ in Eq (1) should be replaced with a random
variable leading to the so-called doubly stochastic or Cox process. When the rate λ is a gamma-
distributed variable, the Cox process is described by a negative binomial distribution (S3 Text).
After some algebra based on well-known properties of the negative binomial distribution, we
can present further relationships between some parameters of the negative binomial distribu-
tion (including mean μ and variance σ2 that uniquely determine the distribution) and the mean
μλ and variance s2

l of the associated gamma-distribution for the rate λ (i.e. μ = μλ,
s2 ¼ s2

l þ ml, see Table S1 in S3 Text).
As is known, when s2

l approaches zero, then the negative binomial approaches a standard
Poisson distribution. The properties shown in Table S1 in S3 Text, however, have important
implications for quantifying the risk of spillovers. To estimate the probability of a spillover, it is
sufficient to know the value of the parameters μ and σ2. These, in turn, can be estimated from
the mean and variance, μλ and s2

l, in the rate λ, which, ultimately depend on the constituent
factors.
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Inferring the parameters μλ and s2
l from the drivers of transmission

Based on the hypothesis posed in Eq (2), we show how to infer the mean and variances μλ and s2
l

directly from knowledge of the human population size, NH, the abundance of rodents,NR, and
also the infection-response efficiency, χR. Since we expect thatNR, NH and χR are independent
random variables, the mean value of the rate λ is given by the product ml ¼ mNH

mZR
PrR mwR

,

where mNH
and mwR

are the mean values associated with the size of the human population,NH,

and the infection-response efficiency, χR; mZR
PrR is the mean value of the random variable arising

from the product ηR(NR)PrR(NR), i.e. the exposure to the infected reservoir only (while ηR(NR) is
the ‘exposure to the reservoir’, irrespective of this being infected or not). Similarly, the variance
s2
l can be estimated as

s2
l � ZRðNRÞPrRðNRÞwR½ �2s2

NH
þ NHwR

@sðNRÞPrRðNRÞ
@NR

� �2

s2
NR

þ NHZRðNRÞPrRðNRÞ½ �2s2
wR

ð3Þ

where we used the usual approximation:

s2
f �

@f
@X

����
����2s2

X þ
@f
@Y

����
����2s2

Y þ 2
@f
@X

@f
@Y

covXY : ð4Þ

for a function of two random variables X and Y whereNR,NH and χR are independent. Of course,
if s2

NH
� s2

NR
� s2

wR
� 0 then the spillover process is well approximated by a standard Poisson

process.
In some situations the explicit dependency of the quantity ηR(NR)PrR(NR) on the abundance

of the reservoir is known or can be crudely estimated. Then, the mean and variance μλ and s2
l

can be evaluated directly from the NR as shown for a range of relevant situations in Table S1 in
S4 Text (see also Davis et al. [15]).

Depletion of susceptibles
The model above was derived with the assumption that the number of susceptibles is constant.
In a small population, however, the depletion of susceptibles is expected to be an important effect
that can result in a self-constraining epidemic. Following model Eq (1), we replaced the (fixed)
size of the human populationNH with the (variable) number of susceptibles, SH. Thus, the proba-
bility of observing k cases at any time tj during the interval [(j − 1)τ, jτ] (with tj 2 [(j − 1)τ, jτ]) is
the piecewise function defined on discrete intervals:

~Pðk; tjÞ ¼ exp�~l j�1tð~l j�1tÞk
k!

with rate

~l j ¼ SHðtjÞZRðNRÞPrRðNRÞwR
ð5Þ

where the time-dependent terms at time tj are estimated at the end of the previous interval [(j
− 1)τ, jτ]. Underlying this choice is the assumption that the time step τ is comparable to the tran-
sition time from the susceptible to non-susceptible category, and λj can be considered constant
during this time interval. To estimate SH(tj), we considered the case of an initially susceptible
population. For simplicity we assumed no external immigration and that the size of the human
population at the initial time is SH(0) = NH. As soon as spillover events start, part of the human
population becomes infected; some with resulting life-time immunity and others die. As we
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consider a closed human population, the number of susceptibles is:

SHðtjÞ ¼
NH � CHðtjÞ if NH > CHðtjÞ
0 otherwise

(
ð6Þ

where CH(jτ) represents the cumulative number of people who had been infected at any past
time during the interval [0, jτ], irrespective of if they recovered or died. This corresponds to:

CHðtjÞ ¼ CHðtj�1Þ þ E½~Pðk; tjÞ� ð7Þ

where E½~Pðk; tjÞ� is the expected number of spillover events during the time-interval [(j − 1)τ, jτ],

as E½~Pðk; tjÞ� ¼ ~l j�1t, thus we have

CHðtjÞ ¼ CHðtj�1Þ þ SHðtj�1ÞZRðNRÞPrRðNRÞwRt ð8Þ

The probability ~Pðk; tjÞ at time tj in Eq (5) can be iteratively calculated by replacing the sus-

ceptible and cumulative infected, SH and CH, with their explicit expressions given in Eqs (6)
and (8) estimated at the previous time tj−1. Of course, if the depletion of susceptibles is negligi-
ble then S(tj)� NH and the model collapses to a standard Poisson process or Cox-process if we
allow for stochasticity in the rate. Eq (5) is a particular case of a class of models known Hawkes
point processes (see [16] and references therein). We refer to these processes as ‘zoonotic spill-
over with depletion of susceptibles’ (in mathematical parlance ‘Self-Correcting Poisson’).

Inclusion of human-to-human transmission: from spillover to stuttering
transmission
Hawkes point processes introduced above suggest a natural extension of the current model to
include human-to-human transmission. In this context each infection event at time tj, repre-
sented by IH(tj), has a certain probability of generating new events. Accordingly, the probability
of observing k cases at any time tj 2 [(j − 1)τ, jτ] is the piecewise function:

P̂ðk; tjÞ ¼ exp�l̂ j�1tðl̂ j�1tÞk
k!

l̂ j ¼ SHðtjÞZRðNRÞPrRðNRÞwR
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zoonosis

þ

SHðtjÞZHðNHÞPrHðNH ; tjÞwH
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{human�to�human

PrHðNH; tjÞ ¼ IHðtjÞ
SHðtjÞ þ IHðtjÞ þ RHðtjÞ

ð9Þ

where ηH(NH) is the probability that a single person is in contact with any other member of the
human population per time unit; χH is the human analogue of the reservoir infection-response
efficiency, i.e. the product of the probability that the virus is excreted from a person and the
probability that a person acquires infection when exposed to the virus; PrH(NH) is the infection
prevalence in the human population, which is the proportion of infected members IH(tj) in
relation to the total size of the current population, i.e. for an SIR-type of model SH(tj) + IH(tj) +
RH(tj) where RH(tj) is the number of recovered individuals. SH(tj) is given by Eq (6) with

CHðtjÞ ¼ CHðtj�1Þ þ E½P̂ðk; tjÞ� ð10Þ

where E½P̂ðk; tjÞ� is the expected number of spillover events during the time-interval [(j − 1)τ,
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jτ], as E½P̂ðk; tiÞ� ¼ l̂ i�1t, thus we have

CHðtjÞ ¼ CHðtj�1Þ þ IzoonH þ Ih�h
H

IzoonH ¼ ½NH � CHðtj�1Þ�ZRðNRÞPrRðNRÞwRt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zoonosis

þ

Ih�h
H ¼ ½NH � CHðtj�1Þ�ZHðNHÞ

IHðtj�1Þ
SHðtj�1Þ þ IHðtj�1Þ þ RHðtj�1Þ

wHt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{human�to�human

until NH � CHðtj�1Þ

ð11Þ

Czoon
H ðtjÞ ¼

P
jI
zoon
H ðtjÞ represents the cumulative number of infections up to time tj due to zoo-

notic spillover and Ch�h
H ðtjÞ ¼

P
jI
h�h
H ðtjÞ represents the cumulative number of infections up to

time tj arising from human-to-human transmission. The model requires the further condition:

IHðtjÞ ¼ CHðtjÞ �
X

i

½RHðtjÞ þ DHðtjÞ�

RHðtjÞ ¼ RH ½tj�1� þ grIH½tj�1�t
DHðtjÞ ¼ DH ½tj�1� þ gdIH ½tj�1�t

ð12Þ

where DH(tj) is the disease induced mortality, γr and γd are the recovery and mortality rates
respectively.

The model Eqs (9)–12 can be interpreted as an immigration-birth process [16] where the

immigrants, i.e. zoonotic spillovers, arrive according to a Poisson process with rate l̂ðtjÞ. Each
immigrant produces ‘offspring’, which by analogy is really new infections from human-to-
human transmission leading to a stuttering chain, according to a rate which is dependent on
past events. The model is a mixture of a self-exciting process (new cases generate subsequent
cases (offspring)) and a self-correcting process (due to depletion of susceptibles). We refer to
this type of processes as ‘zoonotic spillover with human-to-human transmission’ (in mathe-

matical terms ‘Poisson with Feedback’). We also considered the case when the rate l̂ðtjÞ is
drawn from a gamma-distribution, i.e. ‘zoonotic spillover with human-to-human transmission
when random effect in the rate are important’ (mathematically ‘Poisson-Gamma Mixture with
Feedback’, Table S1 in S2 Text).

The probability P̂ðk; tjÞ at time tj in Eq (9) can be iteratively calculated by replacing the sus-

ceptible and infected, SH and IH, with their explicit expressions given in Eqs (6), (10)–12 esti-
mated at the previous time tj−1. The contribution of human-to-human transmission at any
time tj, Q(tj), can be readily calculated by comparing the cumulative number of infections due
to zoonotic transmission terms to those due to human-to-human transmission in Eq (11), for
example by studying the quantity:

QðtjÞ ¼
Ch�h

H ðtjÞ
CHðtjÞ

ð13Þ

To simplify the notation, we use the symbols z = PrR(NR)χR ηR and κ = χH ηH for the overall
unknown parameters, and refer to these as ‘zoonotic exposure’ (which incorporates the host
infection prevalence) and ‘effective human exposure’ respectively. We also define the forces of
infection from animal or human source as ΛR = NHumans PrR(NR)χR ηR and ΛH = NHumans

PrH(NH)χH ηH respectively.
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Variation in the population size NH was also considered by discussing how the analytical
solutions for the cumulative number of infections scales with the population size and by ana-
lysing predictions for NH = 1000 and NH = 2000 (S7 and S10 Texts, for the value of the parame-
ters used in the numerics see Table 1 and Table S1 in S6 Text).

ABM to compare predictions of model with independent simulations
We considered a set of NH agents. Each agent being in one of four possible categories: suscepti-
ble, infected, recovered or dead. At any time step, susceptible agents can transit to the infected
category, while infected agents can either recover or die. This is essentially a Bernoulli trial, e.g.
a random process with exactly two possible outcomes. The transition from the susceptible to
the infected status is therefore mimicked by simulating, at any time tj, a number of Bernoulli
trials (SH(tj) or NH if we assume no depletion of susceptibles) with probability given by the
appropriate rate divided by the number of trials. For instance, if we considered spillover and

human-to-human transmission with depletion of susceptibles, the probability is l̂ðtjÞt=SHðtjÞ.
This choice ensures that, at any time tj, if the number SH(tj) is large, then the corresponding set

of Bernoulli trials are well approximated by a Poisson process with rate l̂ðtjÞt. Similarly,

Table 1. Value of the parameters used in the numerics. See List of Symbols and Glossary in the Supporting Information, S1 Text, for further details.

Parameter Value Notes

NH (Human Population Size) 1000 Unless stated otherwise

NH 2000 Fig S1 in S10 Text

γr (Recovery rate) 0.03 Calculated as γr = Precov/Tillness, where Tillness = 14 days is based on typical period of
illness and Precov = 0.46 is the proportion of patients from KGH who recover. The
situation γr = 0. was also considered for illustrative purposes.

γd (Disease induced mortality rate) 0.04 Calculated as γd = Pdeath/Tillness, where Pdeath = 0.54 is the proportion of patients from
KGH who died. The situation γd = 0. was also considered for illustrative purposes

κ (Effective human exposure) 0.02 As imposed in all the ABM unless stated otherwise

κ 0.01 As imposed in the ABM in Fig 4

κ median = 0.008338
mean = 0.008364
SD = 0.0006919

Estimated from MCMC, Fig 4

κ median = 0.07395
mean = 0.07383
SD = 0.001549

Estimated from MCMC, Fig 5a

κ median = 0.01868
mean = 0.01863
SD = 0.000947

Estimated from MCMC, Fig 5b

ζ (Zoonotic exposure) 0.05 As imposed in all the ABM

ζ median = 3.527e−05
mean = 3.651e−05
SD = 8.122e−06

Estimated from MCMC, Fig 5a

ζ slope before 15/03/11 median = 2.245e−06
mean = 2.249e−06
SD = 1.776e−07

Estimated from MCMC, Fig 5b

ζ slope after 15/03/11 median = 1.477e−06
mean = 1.476e−06
SD = 2.626e−07

Estimated from MCMC, Fig 5b

r (Parameter describing Gamma /
Negative-Binomial distributions)

0.035 Eq (S2) in S3 Text, Fig 2

θ (Parameter describing Gamma /
Negative-Binomial distributions)

1/7 Eq (S2) in S3 Text, Fig 2

doi:10.1371/journal.pntd.0004957.t001
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infected agents die or recover by simulating IH(tj) statistically independent Bernoulli trials with
probabilities γdτ/IH(tj) and γrτ/IH(tj) respectively.

Results
The importance of mathematical modelling to elucidate the complexity of infectious disease
dynamics and to indicate new approaches to prevention and control is widely accepted (see e.g.
[17]). The task is not free of challenges, especially for emerging diseases [18]. This is further
complicated by abiotic factors such as land use change [4] and social difference demonstrating
how risks are not generalisable [19]. Here, we start proposing some measures for the risk of
zoonotic spillover and their link with drivers of transmission. Then we present predictions for
the model compared with predictions from an independent ABM. Finally we apply the model
to LF data, illustrating important challenges and knowledge gaps.

Suitable measures for the risk of spillover events and their dependence
on the drivers of transmission
The mean time between two spillover events and the probability of observing k spillovers dur-
ing a certain time τ are suitable measures for the risk of cross-species transmission that natu-
rally arise from the present mathematical framework. Based on the findings above, the risk of a
spillover event can be represented by a discrete probability distribution, which can be generally
described by a negative binomial distribution. This is fully identified by the mean and variance,
empirically inferred or calculated from the mean and variance associated with the rate of infec-
tion λ as displayed in Table S1 in S3 text.

In some situations, we know how the exposure to the reservoir and its infection prevalence
depend on the abundance of the reservoir NR. For example, it is reasonable to expect the expo-
sure ηR(NR) is proportional to the reservoir abundance NR. The dependence of the infection
prevalence on NR can also be inferred for many regimes at the endemic equilibrium, e.g. fre-
quency and density dependent Susceptible Infected Removed (SIR), Susceptible Exposed
Infected Removed (SEIR), etc. models (see Table S1 in S4 Text). For these cases, calculation of
the mean and variance μλ and s2

l is straightforward. In Table S1 in S4 Text, we consider four
illustrative scenarios. In many situations the mean risk of spillover increases with the size of
the human population NH. The associated variance, however, increases with the square of NH.
The dependency on the reservoir abundance NR is in general more complicated. For instance,
in scenario 1 the variance in the risk of spillover, s2

l, increases with the square of the NR. In con-
trast, in scenario 2 the variance s2

l is not affected by the abundance NR, while in scenario 4 it
reaches an asymptotic value for large NR.

Zoonotic spillovers with constant number of susceptibles
For pure zoonotic spillovers, there is no human-to-human transmission, therefore the rate of
infection is not affected by the number of humans already infected. In some cases, variation in
the number of susceptibles can be ignored, for example when the impact of immunity and/or
mortality is negligible compared to the total population. In this case, every spillover event is
independent of previous spillover events. Furthermore, the rate of infection is itself a stochastic
quantity as random differences are expected from village to village and from time to time. If
these stochastic differences are small, then the rate of infection can be well approximated by its
mean value and the distribution of zoonotic spillover described by the well-known Poisson dis-
tribution. These stochastic fluctuations, however, can be important; in this case the distribution
of zoonotic spillovers is better described by the so-called negative binomial distribution (Eq
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(S2) in S3 Text, which arises from simple Poisson processes after incorporating stochasticity in
the rate of infection given that the distribution of the rates can be well approximated by a
gamma-distribution). In this case, the variance of the number of zoonotic spillover events is
always larger that their mean value, which is over-dispersion.

Accordingly, we ran the ABM to generate zoonotic infections by simulating NH random
experiments (Bernoulli trials) with transition probability proportional to the force of infection
from an animal source (i.e. ΛRτ/NH, see Table S1 in S5 Text). Fig 2 shows the cumulative num-
ber of zoonotic infections generated by the ABM compared with the corresponding theoretical
model (expressed by Eq (1) or Eq (S2) in S3 Text, when random effects in the rate of infection
become important). As expected, the profile for the cumulative number of occurrences aver-
aged over the multiple stochastic realisations is linearly increasing with time with the slope
given by the mean rate of infection. When the rate of infection is also stochastic, e.g. because
the outbreaks occurred in different regions with different eco-epidemiological and socio-eco-
nomic factors, larger deviations from the average profile are observed. This is the typical situa-
tion when the available data are aggregated at the national level without distinguishing the
specific local factors.

Zoonotic spillover with depletion of susceptibles
In many situations, the contribution of net immigration, births and deaths (other than infec-
tion-induced) to the human population size is negligible, at least for short time-scales. Still,
once a spillover occurs, the infected individual might either recover or die, but will never transit
back to the susceptible category. Thus we considered the situation when the total number of
individuals is fixed, but the number of susceptibles is decreasing due to the accumulation of
spillover events resulting in immunity and/or mortality. As the number of infected increase,
the pool of susceptibles decreases reducing the rate of new infections; in other words the pro-
cess is ‘self-correcting’ (Eqs (5)–(8) or their generalization when random effects in the rate of
infection become important).

Accordingly, we ran the ABM to generate zoonotic infections by simulating a number of
Bernoulli trials, with number of trials being equal to the time-varying number of susceptibles,
and transition probability proportional to the force of infection from animal an source (i.e.
ΛRτ/SH, see Table S1 in S5 Text. Note the force of infection is time-dependent as the number of
susceptibles is changing). Fig 3a shows the cumulative number of zoonotic infections generated
by the ABM compared with the theoretical model (Eq (5), see also the analytical solution in S7
Text, for the particular case when the mortality and recovery rates are zero).

As expected, a key effect of incorporating depletion of susceptibles in the model is that the
average cumulative number of occurrences always results in a concave (i.e. downward) func-
tion, provided that there is no birth/immigration of new susceptibles and no temporal variation
of the exposure. This is because the rate at which spillover events occur decreases with time
and the average size of the jumps in the sample path becomes smaller and smaller. Over time,
the profile asymptotically approaches the size of the human population NH (here set to NH =
1000 unless stated otherwise). This is more pronounced for high values of the zoonotic force of
infection ΛR.

Human-to-human transmission and stuttering chain
The ability of a pathogen to transmit between people enables the generation of chains of infec-
tion. Fig 3b shows the cumulative number of infections due to only the human-to-human
route of transmission. The infections are generated by the ABM by simulating NH Bernoulli
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Fig 2. Comparison with ABM I. (a) Cumulative number of zoonotic infections generated by the ABM (10 independent runs, grey points) for the case
when the rate of infection is not affected by the number of humans already infected (no human-to-human transmission) or by depletion of susceptibles
(’Simple Poisson’model). According to model (1) the mean cumulative number of zoonotic infections grows linearly with λ (green line). (b) Quantile-
Quantile plot of the distribution of infections, generated by the ABM compared with the theoretical Poisson distribution. (c) As in panel a, but the rate of
infection is also subjected to random variation (‘Poisson-Gamma-Mixture’model); the green line represents the mean cumulative number of zoonotic
infections as in panel a. (d) Quantile-Quantile plot of the distribution of infections generated by the ABM compared with the theoretical negative binomial
distribution.

doi:10.1371/journal.pntd.0004957.g002
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Fig 3. Comparison with ABM II. (a) Cumulative number of infections generated by the ABM (10
independent runs, grey points) for zoonotic spillover with depletion of susceptbibles model (‘Self-Correcting
Poisson’); its analytical solution (green line), is given by Eq (S3) in S7 Text. (b) Cumulative number of
infections arising from human-to-human transmission generated by the ABM (10 independent runs, grey
points) and no depletion of susceptibles (‘Poisson with Feedback’model). In the special case of no mortality
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trials with transition probability proportional to the force of infection from human source (i.e.
ΛHτ/NH Table S1 in S5 Text).

The predictions are compared with the theoretical model (Eq (9)) with the conditions of no
zoonotic spillover and no mortality or recovery. A human infection triggers new infections
that, in turn, generate other new infections. In other words the process is ‘self-exciting’ and the
cumulative number of infections increases exponentially with rate equal to the effective human
exposure (κ, Eq (S10) in S7 Text). The presence of zoonotic spillover events leads to a qualita-
tively similar behaviour, resulting in convex (i.e. upward) average profiles for the cumulative
number of infections with no upper bound (S8 Text). This because the rate of infection
increases as the number of infections increase.

In general, both effects, self-correction due to depletion of susceptibles and self-excitation due
to the impact of past infections on new chains of human-to-human transmission, are expected
to play a role. The combined effects lead to an average profile for the cumulative number of
occurrences that is initially convex until the depletion of susceptibles dominates the dynamics.
This can be seen in Fig 3c which shows the cumulative number of infections for the combined
‘zoonotic and human-to-human’model. The infections were generated by the ABM by simulat-
ing Bernoulli trials (with the number of trials equal to the time-varying number of susceptibles),
with transition probability proportional to the force of infection from either animal or human
source (i.e.ΛRτ/SH or byΛHτ/SH, Table S1 in S5 Text). The predictions are compared with the
corresponding theoretical model (Eq (9)). As expected, the cumulative number of infections
increases as an S-shape function asymptotically approaching the human population sizeNH

(exactly as a logistic function if there is no mortality or recovery, Eq (S10), in S7 Text).

Estimating the relative contributions of zoonotic spillover and human-to-
human transmission
Knowing the zoonotic exposure and effective human exposure, we can estimate the relative
contributions of zoonotic spillover and human-to-human transmission, (more precisely, by
substituting the values of the two exposures z and κ in Eq (13)). In general these exposures are
not known, but can be estimated via common statistical techniques, such as Markov Chain
Monte Carlo (MCMC). To validate the methodology, we ran the ABM for the combined zoo-
notic and human-to-human model as described in the above section and counted the number
of infections arising from zoonotic transmission and those from human-to-human transmis-
sion. All the ABM-simulated infections (with no distinction of the route of transmission) were
used as input into MCMC estimation [20, 21] of the zoonotic exposure rate and effective
human exposure rate, which are otherwise unknown (i.e. the parameters z and κ). The
MCMC-inferred parameters were used to calculate the cumulative number of infections due to
zoonotic spillover and those due to human-to-human transmission (i.e. Czoon

H and Ch�h
H , accord-

ing to Eq (10)) and compared with the corresponding cumulative number of infections gener-
ated from the ABM (Fig 4). There is a small discrepancy between the MCMC-inferred
parameters and the ones imposed in the ABM (the medians of the two estimated parameters
were respectively 0.055 and 0.008 vs 0.05 and 0.01). This is expected as the ABM simulates Ber-
noulli trials rather than Poisson processes and the discrepancy decreases with the number of

and no recovery, its analytical solution (green line), is an exponential function (Eq (S10) in S7 Text). (c)
Cumulative number of infections generated by the ABM (10 independent runs, grey points) for zoonotic
spillover with human-to-human transmission and depletion of susceptibles (‘Poisson with Feedback’model).
The dashed blue line represents the mean cumulative number of infections; the special case of no mortality
and no recovery is represented by the green line (Eq (S10) in S7 Text).

doi:10.1371/journal.pntd.0004957.g003
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simulated trials. The prediction improved for larger number of trials (S9 Text). Of course full
agreement is expected when the number of trials approaches infinity. For the range of simula-
tions considered here, the relative contributions of zoonotic spillover and human-to-human
transmission are not affected by the human population size NH (Fig S1 in S10 Text).

Lesson learned from the application to Lassa Fever
It is instructive to show some challenges encountered from the application to LF. The key prob-
lem is the lack of information on the temporal dependency of the zoonotic exposure (i.e. the
parameter z). We therefore considered two simple scenarios. Firstly we assumed a constant
zoonotic exposure. Secondly, we allowed its variation in a piecewise linear (triangular) fashion
(Fig 5) with the highest peak in March, corresponding to the hottest month in Sierra Leone.
This choice is, perhaps, the simplest way to capture variation in the drivers of transmission
such as temperature that might affect the abundance and prevalence of the rodents or human
mobility. For simplicity we considered only two changes in the slope of this function during
the time of the study; this is sufficient for the illustrative purposes of this exercise.

Fig 5 shows the cumulative number of occurrences for the the combined zoonotic and
human-to-human model (see Fig S1 in S11 Text, for the corresponding model with a stochastic
rate of infection) for constant and piecewise linear variation of the zoonotic exposure. In both
situations, the unknown parameters were optimized with the KGH data using an MCMC
approach in R [20, 21].

A qualitative inspection shows that both predictions are compatible with the empirical data.
The one with constant parameters, however, requires an exceptionally large contribution of

Fig 4. Estimating the relative contributions of zoonotic spillover and human-to-human transmission. Comparison with ABM III.(a) Cumulative
number of infections for zoonotic spillover with human-to-human transmission and depletion of susceptibles (‘Poisson with Feedback’model) generated
by the ABM (10 independent runs). The green and red points represent cumulative infections arising from zoonotic and human-to-human transmission
respectively. The continuous blue and black line represent the analytical solutions and the isolated contributions of zoonotic,Czoon

H , and human-to-human
transmission,Ch�h

H , recalculated with parameters (median values of ζ and κ, right panel) estimated from the MCMC. (b) Traceplot of the time series and
histogram of the two parameters: ζ (median 0.008338, mean 0.008364, SE 0.0006919, bandwidth 0.0001162) and κ (median 0.055118, mean 0.055134,
SE 0.0033703, bandwidth 0.0005541) number of iterations 10000, burning time 1000, thinning interval 1. The small discrepancy between the parameters
and the ones imposed in the ABM (respectively 0.05 and 0.01) is expected as the ABM simulates Bernoulli trials rather than Poisson processes. Full
agreement is expected when the number of trials approaches infinity.

doi:10.1371/journal.pntd.0004957.g004
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human-to-human transmission (� 90%) [11]. For the second scenario, agreement with the
data requires a positive increase of zoonotic exposure z followed by a decrease after March
2011 resulting in approximately 22% of cases due to human-to-human transmission. This
value, however, is no longer invariant by the human population size; further testing with differ-
ent values of NH resulted in different proportions of human-to-human contribution.

A rigorous selection of the two models based on information criteria is problematic. In the
current Bayesian context, the Watanabe-Akaike Information Criterion (WAIC) [22, 23] or the
Deviance Information Criterion (DIC) [23, 24] appear as ideal tools, at least at first glance.
Their suitability, however, is questioned in our specific situation. First, the time series of the
number of Lassa cases violates the assumption of independence, which is an essential con-
straint for WAIC [23]. Lack of independence in the data appears to be a limitation for DIC too
[23]. Furthermore, DIC is not appropriate for model selection with mixture models [23],
which is the case here as the model comprise multiple populations, i.e. the set of individuals
infected via a zoonotic route and those via human-to-human transmission at each time step.
In addition, one of the parameters (the zoonotic exposure z) is time-dependent in one of the
models (Fig 5). We are not aware of a rigorous, systematic assessment of the different informa-
tion criteria in the presence of time-dependent parameters. Finally, an ideal information crite-
rion should select the truemodel, when this is in the model set, and the closest one otherwise.
This task does not appear to be always achieved by the many information criteria available in
the literature. Here, we presented two exemplar models, but in the truemodel, the functional
shape of the zoonotic exposure might be different from being constant or piecewise linear, also
the effective human exposure might not be constant. For all these reasons, we think that it is
more prudent to postpone any conclusion until more accurate data on exposure rates, rodent

Fig 5. Application to LF. (a) Predicted cumulative number of zoonotic and human-to-human infections (governed by ‘Poisson with Feedback’model, Eq
(12)) for constant zoonotic exposure and (b) As in (a), but exposure to zoonotic LASV is governed by an piecewise linear trend in exposure to zoonotic
LASV (i.e. the piecewise zoonotic exposure ζ is linearly increasing up to March 2011 followed by a decrease up to January 2012). The parameters are
optimized with the data from KGH (red line) by employing MCMC (number of iterations 50000, burning time 1000, thinning interval 1). The grey dots
represent 100 independent stochastic realisations; 5 five random examples of which are visualized in blue lines. The black line represents the cumulative
number of occurrences averaged over the 100 multiple stochastic realisations.

doi:10.1371/journal.pntd.0004957.g005

A Framework for Zoonotic Spillover and Spread

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004957 September 2, 2016 16 / 24



infection prevalence and reporting bias become available. Nevertheless, for indicative purposes
we present the BIC scores for the two models (BIC = 30973.96 and BIC = 1228.164 respec-
tively). Thus, given the above caveats, the model allowing a temporal variation in zoonotic
exposure performs better that the one with constant exposure. This further suggests the impor-
tance of solid research in measuring and quantifying exposure.

Temporal variations in rodent abundance and LF virus prevalence were also introduced
into the model according to the seasonal patterns observed in West Africa forM. natalensis
captured inside houses and in the proximity of cultivation [25]. Using these data, the model
predictions are not able to capture the initial convex shape in the cumulative number of spill-
overs (S12 Text).

Discussion
Based on a systematic review of the literature, Lloyd-Smith et al. [3] pointed out that models
incorporating spillover and stuttering transmission are rare. The authors found that only 2% of
studies of directly-transmitted zoonoses included a mechanistic model of spillover transmis-
sion, while stuttering transmission was modelled only in approximately 4% of all studies. Here
we developed a unified theoretical framework with the aim of filling this gap. Both zoonotic
spillover and stuttering chains can be governed by arrival processes and modelled as general-
ized Poisson processes, with zoonotic spillover being a particular case of the general model
when the probability of human-to-human transmission is null. Although the initial motivation
of our work focused on spillovers and stuttering chains (basic reproductive number R0 < 1),
there is no theoretical or practical impediment to use the model beyond the sub-critical regime
(R0 > 1). Indeed the effective reproductive number for Lassa fever data is larger than one [11]
(for the effective reproductive number for the simulation generated by the ABM see S13 Text).
The theoretical unification of these processes is not a mere question of mathematical elegance,
it is critically important for a meaningful comparison of the different stages of disease
propagation.

Disentangling the contribution of animal-to-human from human-to-human transmission
is of crucial importance to inform appropriate control measures. The shape of the cumulative
number of occurrences can provide indications of the modes of transmission. A concave, satu-
rating profile is an expected outcome due to depletion of susceptibles. In contrast, a convex
region in the profile of cumulative number of occurrences suggests that human-to-human
transmission plays an important role. Alternative explanations are possible. A convex shape in
the cumulative number of occurrences might arise from temporal variations in the model
parameters (e.g. probability of contact between humans and rodents, infection prevalence in
rodents, infection-response efficiency) and/or in the human population size.

A fundamental gap in our current knowledge is the mechanisms governing the transition
from spillover to stuttering chain to sustained transmission. Stuttering and established human-
to-human transmission require the pathogen to have the ability to transmit from human-to-
human resulting in a non-zero value for the parameter χH (the product of the probability that
the virus is excreted from a person and the probability that a person acquires infection when
exposed to the virus). Non-biological factors, however, may be involved in the shift from one
stage to another. For example, in a sparse population with limited exposure to the reservoir,
the disease can rapidly die out due to depletion of susceptibles and/or because the average time
between two contacts is longer than the infectious period (stuttering chain scenario). If the size
of the human population and/or the frequency of contacts increase, however, then uninter-
rupted chains of transmission are possible. Thus, the disease switches from a stuttering to a sus-
tained chain of transmission. In the current framework, the conditions leading to this
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transition can be inferred and quantified by imposing no exposure to the reservoir and study-
ing under which conditions in the parameter values the average solution of Eq (9) results in a
fading or in an established non-zero time-series of events.

This work was inspired and guided by the One Health vision: a holistic approach that recog-
nises the inter-connections among human health, animal health and the environment. Accord-
ingly, the model was designed so that a wide range of environmental, biological, ecological,
social, economic and political drivers could be readily incorporated. This was done by explicitly
expressing the rate of transmission as a function of the constituent factors: the size of the
human population, the prevalence of infection in the reservoir host, the probability per time
unit of reservoir host-to-human and human-to-human contact, and/or the infection-response
efficiency in the human when challenged with the pathogen. For example, complex social, eco-
nomic and political drivers (e.g. demographic pressure, human mobility, etc.) could be trans-
lated and quantified in terms of their impact on the typical size of the human population
exposed to the disease, i.e. the factorNH. Economic and behavioural drivers (e.g. the practice of
burning fields after harvesting, drivingM. natalensis towards villages, young boys catching
rodents as a ludic activity, seasonal crowding of miners in dwellings) could, once these factors
are researched, be expressed in terms of their effects on exposure to disease i.e. the factor ηR(NR)
and ηR(NH). Ultimately, complex biological, physical, environmental and social factors can be
expressed as factors that can be either measured or quantified via independent models and fed
into the current, modular approach or integrated in a Bayesian hierarchical framework.

Being able to infer the likelihood of zoonotic spillover from basic information about the res-
ervoir host and the exposed human population would help to address public health needs and
also be of interest to the medical and scientific communities. Our approach addresses this by
partitioning the rate of transmission into the product of the constituent factors: the effective
human population size at risk, pathogen prevalence in, and human exposure to, the reservoir,
and infection-response efficiency. Knowledge of these factors could be gathered, at least in
principle, from data collection or other models. For example, despite practical challenges,
novel tools for direct or indirect estimation of wildlife abundance/diversity are continuously
being developed, e.g. remote sensing [26] and public engagement [27]. Also, understanding
infection dynamics in reservoir hosts is key to understanding spillover dynamics. Despite logis-
tical and financial challenges, there is an increasing body of research on infection dynamics in
wildlife (e.g. hantavirus and rodents [28], viral pathogens in African lions [29], viruses in Afri-
can bats [30], rabies in bats [31]). Quantifying the contact rate of people with the reservoir host
and/or other humans is difficult and depends on the mode of transmission, but effective rates
of exposure could be estimated from serological data. Of course these factors present a degree
of stochasticity, explaining the over-dispersion in many ecological data and indicating that
spillover events are governed by Cox processes rather than a simple Poisson process. The prob-
ability mass function of spillover events is well described by a negative binomial distribution,
suggesting that the rate of transmission is, at least approximately, gamma-distributed (although
alternative mechanisms might lead to a negative binomial, S14 Text). Under this assumption,
the simple knowledge of mean and variance in the rate of transmission or in the constituent
factors are sufficient to completely determine the probability of observing a certain number of
spillover events in a particular time-window. Further simplifications are possible when rates of
zoonotic exposure and pathogen prevalence in the reservoir host can be explicitly linked to
host abundance, as shown for a range of relevant situations discussed in Table S1 in S4 Text.
Summary statistics can be readily calculated as the mean rate of spillover events, the mean time
between two spillover events and the associated variances. Further theoretical and empirical
work in this broad area is essential to enable evidence based reduction of zoonotic disease
burden.
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Limitations of this study and opportunities for future research
Application to LF is an interesting example of un-identifiability [32], at least when the analysis
was based on a visual inspection alone. Both assumptions (constant and piecewise linear trend
in the zoonotic exposure) appear to be equally compatible with the empirical data and the
effects of human-to-human transmission can be confounded with those due to temporal varia-
tions in the parameters. Nevertheless, the model based on a piecewise linear trend in the zoo-
notic exposure is the one selected by BIC, although we cannot rule out other models, such as
temporally varying zoonotic exposure in a non-linear fashion. Such uncertainty is expected to
be removed as soon as more accurate data on actual exposure rates, rodent infection preva-
lence, spatial distribution of human population size, and further information of reporting bias,
become available. For instance, collecting longitudinal human and rodent serological data, at
the same location, was the initial objective of the current consortium. However, it was unfortu-
nately hampered by the recent Ebola outbreak. The accuracy of the spatial distribution of
human population size is expected to increase and research in health-seeking behaviour is cur-
rently conducted in African settings to understand, among other questions, reporting bias.
Measuring exposure is in general challenging, although some progress has been made (e.g. inci-
dence of arthropod bites in England [33] can be used as proxy for exposure for a range of vec-
tor-borne diseases [33]). In general, we believe that inferring exposure requires the combined
effort from different types of research, e.g. serological surveys, possibly compared with ana-
logue infections from the same reservoir; studies on human behaviour and interaction with the
reservoir; mechanistic models to mimic the exposure process. A parallel, interesting avenue of
future research would be exploring how the functional form of the zoonotic and effective
human exposure affect inference results. It is worth noticing that the proposed framework
requires only a general knowledge of the functional form of these quantities (e.g. if the temporal
profile of the zoonotic exposure is constant, periodic, linear) and not detailed measurements.

In a recent work Andersen et al. [34] generated a genomic catalogue of almost 200 LASV
sequences from clinical and rodent reservoir samples. Sustained human-to-human transmission
would cause a ladder-like genetic structure of the phylogenetic tree which was not observed in
their study. Such structure, however, is not expected if most human-to-human transmissions
are caused by super-spreaders as recently shown [11]. Understanding super-spreading events is
perhaps one of the most compelling scientific challenges in the field of epidemiology. These
include molecular techniques to detect them (e.g. sequencing the virus in persons known to be
infected by a super spreader, quantifying possible differences in the viral load between super-
spreaders and non super-spreaders), social science exercises to elucidate behaviour and contact
patterns, biological and medical investigation to uncover the physiology of super-spreaders, and
mathematical modelling to disentangle the complex interactions of these different factors.

When zoonotic exposure is time-dependent, the predictions are sensitive to the assumed
size of the human population. This problem relates to difficult and long-standing questions of
spatial scale, and how to enumerate the population at risk in models. In the current framework,
the natural spatial scale is the typical spatial range ofM. natalensis, and the human population
size living in the region. Currently we have no detailed information on the location of patients.
This is, however, changing as KGH has started to record more accurate information on the
address of patients (rather than simply “Kenema” as done in most cases available to us). This
information would allow a more realistic meta-population model based on small patches, cor-
responding to the range of activity ofM. natalensis, where the human population size is
known, the mass action assumption is expected to be more correct, and depletion of suscepti-
bles more relevant. The meta-population model could be improved by allowing immigration/
emigration of individuals.
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Temporal variations in rodent abundance and LF virus prevalence were introduced in the
model according to the seasonal patterns observed in West Africa [25]. The patterns of season-
ality in exposure alone, however, cannot explain the particular shape of the cumulative number
of cases in KGH data. Furthermore, preliminary social science and rodent ecology data col-
lected by our consortium suggest increased dry season (December to April) exposure linked to
intensive cultivation of wetlands for horticulture (see also [4]). The generality of our frame-
work allows the incorporation of a variety of sources of temporal variation.

The impact of stochastic fluctuations on the risk of spillover within the eco-epidemiological
systems was not fully studied here. Our work could be further extended to address specific
questions like: i) are occasional, large, random bursts in reservoir host infection more likely to
spillover into the human population than smaller, but highly correlated, fluctuations? ii) How
do model predictions depend on the particular epidemiological model (e.g. SI, SEIR, inclusion
of reservoir host carrying capacity)? Environmental stochasticity and external periodic drivers
(e.g. seasonality in the reservoir host population or rainfall) can certainly resonate with the nat-
ural frequencies of the eco-system [35] with large effects on transmission dynamics in both res-
ervoir host and the spillover populations. This non-trivial interaction between internal noise
and external periodic drivers might explain why evidence of the trophic cascade hypothesis
(e.g. large amounts of precipitation lead to increased resources, followed by increased rodent
abundance and then to increased risk of epizootics and human cases) is so elusive [36].

For simplicity and to demonstrate a proof of concept, our predictions are based on the
assumption of uniform mixing and, in most cases, a closed human population; i.e. each case
from KGH is potentially in contact with each other case and with the rodent population, and
no birth or immigration of individuals was allowed. Although this is generally a reasonable
assumption when dealing with village communities, as there is high human mobility in Sierra
Leone [37, 38], the model ought to be extended to include spatial variability, e.g. via a meta-
population approach and/or linked on spatial environmental and habitat variables [39]. This is
an important area where participatory modelling and ethnographic research [37, 40] is much
needed to gather information on actual patterns of mobility and social networking, and hence
potential contact patterns.

The impact of birth, death and mobility of individual is an an other important topic. Per-
haps the simplest scenario is when there is a small immigration of infected into the community
(so that the total number of individuals can be approximated as a constant). If this process is
governed by a Poisson mechanism, then it is mathematically equivalent to spillover events.
This will result in a mere replacement of the zoonotic spillover rate with an ‘effective’ one
which incorporate both zoonotic spillover and immigration, with no qualitative change in the
findings above. Other scenarios raise more intriguing questions. For example how would the
shape of the cumulative number of cases and the proportion of human-to-human transmission
change in the presence of a periodic immigration of batches of individual? How is this affected
by the size of the batches and the number of infected in each batch? Is there a critical threshold
in the flux of infected individuals and the typical time between two arrivals that can lead to per-
sistence of the disease, even in a reservoir-free area? How is the spatial distribution of the dis-
ease affected by the particular patterns of human mobility? (e.g. by studying traces of bank
notes it has been shown that trajectories in human mobility are described by Lèvy walks, see
[41] and also [42–44]). These are crucial questions to be addressed in future research.

Measuring the ‘true’ incidence of disease, and therefore morbidity and mortality rates, is a
common problem in epidemiology. This includes under-ascertainment arising when not all
cases seek healthcare, under-reporting due to failure in the surveillance system, and reporting
bias caused in the way the research was conducted [45]. Addressing this important issue is
beyond the scope of the current work. We only highlight that in a situation when the zoonotic
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exposure and the probability of reporting are constant, then reporting bias can have a limited
impact on inferring the proportion of human-to-human transmission as we have shown that
this is not sensitive to the size of the population NH. Otherwise, marked Poisson processes [46],
might be the natural extension of this framework to investigate the effect of reporting bias.

Of course, if KGH, and health authorities in general, could reduce reporting bias it would be
highly beneficial to studies such as this. Such improvements include improving methods and
increasing funding for contact tracing and rapid diagnostic test development. This is another
area where social and ethnographic research is needed to elucidate people’s patterns of report-
ing and health seeking behaviour for LF, and the social, cultural and economic factors that
affect this, so enabling a more accurate assessment of extent and sources of bias.

In conclusion, we developed a conceptually simple, rigorous and transparent framework
unifying the fundamental mechanisms of zoonosis with the crucial advantage that, in general,
the approach does not require intense numerical computations.
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