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1. Introduction.

In this paper I model the purchase behavior of automobiles by US households as an (5, s)
rule. I estimate an extremely flexible specification of such a rule using a large microeconomic data
set and study some of the aggregate implications of this type of inertial behavior. The paper is
one of the first attempts at estimating directly the parameters of an (S, s) rule using micro data.t
Because of this, some of the methodological issues concerning the specification and the estimation
of (S, s) rules are relevant for many potential applications. Furthermore, the paper is the first to
discuss and quantify the aggregate implications of an (S, s) rule estimated on micro data.

The emphasis of the paper is not on brand choice, but rather on the determination of the
optimal stock of automobiles at each point in time. 2 The modelling strategy I pursue allows for
the presence of transaction costs which introduce important non-convexities into the optimization
problem faced by the agent. In such a situation a full and consistent characterization of individual
behavior is possible only under very special circumstances and very restrictive assumptions. To
describe actual data, however, a more flexible empirical strategy is necessary.

One possibility is to estimate a reduced form equation. While this approach is useful as a
tool to summarize and describe the data, it is unable to provide an answer to a large a number
of important questions. Alternatively, one can think in terms of an equilibrium model which is
relevant in the absence of transaction costs and model individual behavior as an (S, s) rule defined
in terms of deviations from such an equilibrium model. In what follows, I define the (S,s) rule
in terms of the ratio of the value of the stock of automobiles to non durable consumption. The
first order condition for the ’intratemporal’ allocation of resources between these two commodities
is implicit in this strategy. The use of non durable consumption (a variable which is likely to
be adjusted without transaction costs) as the denominator of the ratio implicitely controls for
differences in permanent income.

(S, s) rules, originally introduced in the study of inventories (see Arrow et al. (1951), Scarf
(1959)), have been proved to be optimal for consumer durables only under special circumstances.
However, the stochastic specification [ use is flexible enough that could conceivably encompass a
large class of models.?

The parameters of the model are estimated using a large microeconomic data set, the Con-

sumer Expenditure Survey (CEX), which contains information both on stocks and expenditure

1 The only other study trying something similar is that by Lam (1991). Both the specification
and the data used here are, however, richer.

2 See Goldberg (1994) for an empirical model of brand choice.

3 There are, however, some limitations. In particular, implicit in my approach is the assumption
that utility depends on the value of the stock of cars owned by a household regardless of the number
of cars that compose that stock. In other words, a household is assumed to derive the same utility
from two $ 12,000 cars than from one $ 24,000 car.



on cars as well as non-durable consumption. The wealth of information in the data allows me to
specify and estimate of a very rich and complex model. In particular, I allow for observed and
unobserved heterogeneity both in target levels and band width. Specifying the (S, s) rule in terms
of the ratio of durable stocks to non-durable consumption, I also implicitely control for differences
in permanent income. I consider explicitly the possibility of corner solutions for the desired stock.
Finally, the structure I propose can be easily generalized to explore the implications of different

parametric assumptions about the distributions of the errors in the system.

Having estimated the parameters of the (S,s) rule, the aim of the second part of the paper
1s to establish the consequences of inertial behavior for aggregate durable expenditure. Some
of the results discussed in this section are negative ones. I show that is extremely difficult to
characterize the time series properties of aggregate expenditure from the estimated Ss rules. There
are two main reasons for these difficulties. First, to derive aggregate expenditure it is necessary to
characterize the processes that move the value of the state variable when no action is undertaken.
The model is silent about the nature of these processes. Second, the characterization of the target
level implies the presence of traditional aggregation problems regardless of the presence of inertial
behavior. Furthermore, there is no reason to believe that the non-linearities in the target level do
not interact with the determinants of the band width. It is therefore not possible to establish the
effect of inertial behavior without considering explicitely the aggregation issues in the target level.

The estimation results show that these effects are indeed important.

Not all the results in the Section on aggregation are negative, however. From the estimated
parameters I am able to compare aggregate expenditures of systems without transaction costs,
with quadratic costs of adjustment and with (S, s) microeconomic rules. While I am not able to
characterize completely the aggregate time series properties of any of these systems, I can map
the effect that different aggregate shocks have on aggregate expenditure in the three systems.
Furthermore, I consider the degree of persistence at the aggregate level induced by individual

inertial behavior.

Recently, Caballero and Engel (1992,1994), have proposed a fairly general model of lumpy
microeconomic behavior they label as the Generalized (S,s) approach. The basic idea is to have
the probability of adjusting a control variable to be a function of the difference between the current
level of the variable and the ’desired’ level in the absence of transaction or adjustment costs.
Caballero and Engel (1992) show that a variety of models, including models with quadratic costs
of adjustment and simple (S, s) rules are encompassed by their framework by specifying functional
form assumption on the hazard function. My parametrization of (S,s) rules is observationally
equivalent, for all practical purposes, to their general hazard function. A specific functional form
assumption on their hazard function corresponds to an assumption on the distribution of the

residuals in my specification.



The rest of the paper is organized as follows: In section 2, I sketch the theoretical framework
used in the paper. In Section 3, I derive the likelihood function and discuss some specification
and identification issues. Section 4 describes the main features of the data used in the paper
and presents some reduced form evidence. In Section 5, I report the main empirical results and
discuss the model’s ‘goodness of fit’. In section 6, I analyze the aggregation of the estimated (S, s)
rules and discuss their implications for aggregate automobile expenditure. Section 7 concludes the

paper.

2. The Theoretical Framework

2.1 Review of the literature

The analysis of (S, s) rules for modeling consumption behavior has recently received consid-
erable attention. While the optimality of (S,s) rules can only be proved under fairly restrictive
circumstances, they constitute an intuitively appealing way of modelling behavior in the presence
of transaction costs of various nature. By choosing a flexible specification for the rule it is should
be possible to represent accurately a wide variety of behaviors.

Few theoretical results show the optimality of (S,s) rules. Grossman and Laroque (1991)
derive the conditions under which an (S,s) rule is optimal for a consumption and investment
problem. Some of their results are extended by Eberly (1991) and Beaulieu (1993). More recently,
Eberly (1994) has derived some closed form solutions for durable consumption in the presence of
transaction costs while Caballero and Engel (1994) construct a model of investment where an (S, s)
rule is optimal.

The major problem with the theoretical results available in the literature is that it is only
possible to show optimality of (S, s) rules under extremely stringent conditions. In particular, a
necessary condition to derive the results mentioned above, is that it the optimization problem faced
by an individual consumer can be reduced to a problem with a single state variable. Unfortunately,
as pointed out by Bar-llan and Blinder (1991), even simple generalizations of these models, are
extremely difficult to analyze, because one looses the possibility of having a unique state variable.
For instance, the introduction of labor income in Grossman and Laroque’s model has this effect.
In what follows, I assume a particular kind of (.S, s) behavior without proving its optimality.

To fit the data, simple (S, s) rules have to be modified to allow for individual (unobserved)
heterogeneity. In a series of recent papers Caballero and Engel (1992, 1993, 1994) have proposed
a model in which the probability an individual adjusts his-her capital stock is increasing in the
absolute value of the difference between the actual and desired stock. This model encompasses
a simple (S,s) rule (in which the hazard is a step function) and quadratic cost of adjustment

model in which the hazard is a constant. The parametrization of the (S, s) rules I propose below
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is observationally equivalent to the hazard model of Caballero and Engel.

Microeconomic behavior based on (S, s) rules raises a number of interesting aggregation issues.
The characterization of aggregate dynamics is not a trivial problem and cannot be summarized by
a linear model. Some of the papers that analyzed this problem are those by Caplin (1985), Bertola
and Caballero (1990), Caballero and Engel (1991, 1994), Caballero (1993), Beaulieu (1993).

With stringent functional form assumptions it is sometime possible to identify the parameters
of the (S, s) rule from the time series behavior of aggregate data. This is the approach taken in
various studies including Caballero (1991), Bar-Ilan and Blinder (1991), Bertola and Caballero
(1990) and Caballero and Engel (1994).

Very few papers addressed the problem of characterizing (S, s) rules directly from microeco-
nomic data. This is partly due to the lack of data sets containing reliable informations on durable
stocks (or more generally, on stocks) and partly to the objective difficulty of the problem. The
only attempt at direct estimation of the parameters of an (S, s) rule is by Lam (1991), who uses a
panel of observations from the Survey of Consumer Finances from 1966 to 1969. Some other papers
(Eberly, 1991, Beaulieau, 1993) exploit the properties of the ergodic cross sectional distribution,
derived under the assumption of no aggregate shocks, to infer indirectly the parameters of the
(S, s) rule from the observed empirical distribution. The problem, of course, is that this entails
assuming that in a given year the observed distributions actually coincides with the ergodic dis-
tribution: an extremely unpleasent assumption. More recently, Caballero, Engel and Haltiwanger
(1994) have considered data on firm level employment data to characterize the hazard functions of

a generalized (S, s) rule.

2.2 The specification of an (S,s) rules

If changing the stock of durables involves a non convex cost it is nuv easy, in general, to derive
a first order condition for the stock (or the expenditure) that could be exploited for empirical
analyses. Assuming that (S,s) rules are a good characterization of behavior in the presence of
adjustment costs can be a useful first step. However, obtaining a specification suitable for empirical
work implies solving two problems. First, one has to specify the variable in terms of which one
expresses the (S, s) rule. Second, to be able to fit microeconomic data, one has to specify the (S, s)
rule so to allow observed and unobserved individual heterogeneity both in the desired level of the
state variable and in the width of the (S,s) band. It is also necessary to take into account the
possibility of corner solutions for the desired stock. The choice of a flexible stochastic specification
is crucial.

To choose the variable to specify the (S, s) rule, it is useful to think of the optimal allocation
of expenditure on durables and non-durables in the absence of transaction costs. In this case, one
can derive an intratemporal first order condition which relates the marginal utilities of durables

and non durable consumption to their (user) costs. If cne expresses the (S, s) rule ia terms of the
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ratio of durable stock and non durable consumption, one can think of the desired level of such a
variable as determined by the first order condition of the allocation problem between durables and
non durables and interpret the (S, s) rule in terms of deviations from such a first order condition.*

The advantage of having information on non durable consumption is that such a variable is
likely to adjust quickly to changes in the economic environment and therefore reflect the effect of
expectations about future income more directly than other variables affected by adjustment costs
or than income itself. Regardless of the presence of adjustment costs in durables, it is possible to
derive an intertemporal first order condition for non durable consumption, as long as one conditions
on the optimal stock of durables. ° Expressing the (S, s) rule in terms of the ratio to non durable
consumption therefore allows to focus on the behavioral inertia induced by the adjustment costs in
durables. The plausibility of the assumption that non durable consumption i1s bounded away from
zero constitutes an additional reason to express the (.S, s) rule in terms of the ratio of durables and
non durable consumption.

In what follows I consider a particular durable commodity: automobiles. Conditionally on
the optimal automobile stock being strictly positive, one can define the state variable governed by
the (S,s) rule as Z, = % I assume that the stock of automobiles will be adjusted to its optimal
level only when the deviation of Z, from it exceeds a certain limit. Both the optimal level and the
band around it can be rmade dependent on a number of observable and unobservable individual
characteristics and other variables. In addition the band does not need be symmetric around the
optimal level. For instance, the optimal level will presumably depend on the relative prices of
durables and non durables, seasonal dummies and various demographic factors, while the size of
the band will be related, among other things, to the size of the transaction cost and to factors
affecting the opportunity cost of deviating from the optimal level of durables.

These ideas can be formalized in the following way. Let Z? be the target level of Z,, Z* and
Z! the upper and lower bound of the Ss band. The consumer will not adjust the stock of existing
cars as long as Z, is in between Z! and Z*, and will bring it to Z? when Z; hits one of the two
bounds. This means that the consumer will upgrade (downgrade) his/her stock when Z, hits the
lower (upper) bound. The target level Z¢ does not necessarily coincides with the optimal level
without transaction costs. The consumer might take into account the nature of the transaction
costs and the factors that affect future actual and desired stocks when choosing Z<. If, for instance,
the actual stock is expected to depreciate it is likely that Z¢ is higher than the optimal level in the

absence of transaction costs. Given that I do not characterize with much precision the ’optimal’

* In a recent paper Beaulieu (1993) specifies an (.S, s) rule for automobiles in terms of the ratio
to non durable consumption and, in a simple model, shows the optimality of such a rule.

5 If the within period utility functions were separable between durables and non durables
we would not need to condition on the stock of durables to derive the intertemporal first order
condition for non durables.



level of Z without transaction costs, I will not make this distinction explicit in what follows.

The equations that characterize Z!, Z and Z; are the following:

(2) Z} = Zt‘i A ezp(ﬁ”rw:‘ + uf)

(3) Z} = Z¢ — exp(f wd + u?)

where W< and W?® are vectors of observable variables relevant for the target and band equations,
and u® and u® are gaussian .esiduals wich zero mean and constant variance -covariance matrix
(with u¢ being truncated). The truncation for u is necessary to ensure that the desired stock of
automobiles is non negative.

Notice that the band is not necessarily symmetric even though I assume that the random
component which affects the lower and upper bound is the same. While this latter assumption is
necessary to keep the likelihood function manegeable, I do not believe it is a very strong one. Also
notice that the specification in equations (1) to (3) implies that the desired level is between the
lower and upper bound of the (S, s) band with probability one.

There are several ways in which one can tackle the issue of corner solutions for the target
Z*. 1 use a standard Tobit framework, which assumes that equation (1) describes a latent variable
Z* and that the desired stock Z* equals Z* if the right hand side of (1) is positive and equals
zero otherwise. I have also tried the equivalent of a generalized Tobit model, in which the latent
variable Z* is not necessarily determined by the same variables as Z¢. The results did not change
substantially, while the computational burden increases substantially because of the increased
number of parameters.

It is also possible to use a log-normal rather than a truncated normal specification for the
residuals of the target equation, or, for the band equation, a truncated normal rather than a log-
normal. The specifications I tried did not affect the thrust of the results in a substantial way.® It is
obvious, however, that the assumption about the distribution of the residuals imposes a substantial
amount of structure on the problem. The study of more flexible functional forms such as the factor

models recently discussed by Mroz and Guilkey (1992) is left for future research.

¢ See Craig (1972) for a discussion of selection models with positive observable dependent

variable.



In the derivation of the likelihood function below, I assume that the residuals are i.i.d. across
individuals and over time. With panel data, such an assumption would be conflict with the presence
household fixed effects. In the present application, however, each household is observed only once.

The households in the sample are naturally divided into two groups: those who engage into a
transaction during the observation period and those who do not. The latter are then divided into
two groups: those with at least one car and those with no cars. The former can be divided into
4 groups: those who start the observation period with at least one car and up-grade, those who
start with no cars and buy at least one, those who down-grade to a positive stock, and those who

down-grade to zero.

For households not engaging in a transaction neither the target, nor the band are observable.
The difference between the value of Z at the beginning and at the end of the sample period,
however, gives a lower bound for the value of the band. ” For households engaging in a transaction
the target level is observed. The observability of the band, on the other hand, is questionable and
i~ discussed in the next section. The value of the upgrading (or downgrading), hows ‘er, gives at
least an upper bound on the width of the (S, s) band. The likelihood function for all these groups
is derived in detail in the next section.

The characterization of the (S, s) policy for automobile purchases sketched above is extremely
flexible because it allows observable variables to influence both the band and the target level.
In addition, I also allow for unobserved heterogeneity by the random terms in (2) and (3). The
model can easily encompass the generalized (S,s) rules proposed for firms’ fixed investment by
Caballero and Engel (1994). It is clear that one can think of equation (2) and (3) as an individual
drawing an adjustment cost, corresponding to which there is a band width. From an estimation
perspective, without a specific assumption about the distribution that generates u’, the present
model is therefore observationally equivalent to Caballero and Engel’s. If the determinants of
the band width vary over time for the same individual (which is irrelevant for estimation in the
present context because I do not have a panel but a time series of cross sections), even the aggregate

dynamic behavior of the two models is observationally equivalent (see Section 6).

While the model is very flexible, it is not vacuous. A number of diagnostic tests and goodness
of fit measures can be devised. First of all, having estimated the parameters of the model, it is
possible to check that they make sense within the framework outlined above: one would expect,
for instance, that the relative price of non durables or family characteristics such as the number of
earners, to have a positive effect on the desired level of Z;, while one would expect variables related
to the size of transaction costs to have a positive effect on the size of the band. Furthermore,

it is possible to compute the predicted probabilities of adjustment and compare them with the

" Z varies over the sample period even when the household does not engage in any transaction

because of depreciation.



frequencies observed in the sample.

3. Identification and derivation of the likelihood function.

In this section I derive the likelihood function for the model given by equations (1) to (3).
Each household in the sample is observed only for one period. For households who do not engage
in any transaction, however, I have observations on the value of the stock of automobiles at the
beginning and at the end of the period. For those who buy/and or sell one or more cars I know
the value of the stock of cars just before and after the transaction. ®* We can therefore divide the
observations in the 6 groups described in the previous section.

To evaluate the likelihood function it i1s necessary to make an assumption about the nature
of the process that changes the variable Z in the absence of an action from the household. If one
thinks cf time and changes in Z within the observation period as being continuous, one can assume
that the level observed bLefore a transaction is equal to either the lower or the upper level bound
of the Ss band depending on whether the transaction is an up-grade or a down-grade. Under
this interpretation, households adjust their stock of cars as soon as the variable Z crosses the
boundaries of the (S, s) band. Because Z¢ is observable for households engaging in a transaction,
under this assumption the width of the (S, s) band is also observable.

On the other hand, if one assumes that time and/or changes in Z are discrete, the observation
of the value of Z before a transaction gives either a lower bound for Z( for an up-grade) or an
upper bound for Z* (for a downgrade). In this case, therefore, the width of the (S, s) band is never
observable. The amount by which the household upgrades (or downgrades) its stock of automobiles
constitutes only an upper bound for the band width.

From this last consideration it follows that the model with unobservable bands 1s identified
only if one observes changes in the actual Z; even for the households that do not engage in
a transaction. Because the households engaging in a transaction provide an upper bound, the
observations which do not transact must provide a lower bound on the width of the band itself. It
is therefore essential to observe changes in the value of Z (maybe because of depreciation) even for
the ‘inactive’ households. This was the reason for dropping from the sample the households which
were observed only once.

While the assumption of unobservable bands is probably more plausible, there are at least
two reasons to consider the alternative as well. First, assuming the observability of the band gives
one a considerable amount of information and therefore the possibility of obtaining much more

recise estimates of the model’s parameters. More importantly, one can interpret the residual
p p p Y, p

8 If a household engages in more than one transaction during the observatlon period it is assumed
that all the transactions occurr simultaneously.



u® as made of two components, one reflecting unobserved heterogeneity in band widths and the

other reflecting the depreciation process. Under this interpretation, the parameters of equations
(2) and (3) cannot strictly be interpreted as determining the size of the (S,s) band as they are
influenced by the depreciation process. On the other hand, to determine aggregate expenditure
we need to know the amount purchased by each individual so that we are indeed interested in the
combination of band width and depreciation. In what follows, 1 present results obtained using

both assumptions.

(i) Households who up-grade their stock of cars

For these households we observe the target level. It is therefore possible to derive an expression
for the residuals in equation (5). u® can also be determined if we assume that the stock observed
before the purchase equals Z'. Alternatively, Z consitutes a lower bound for Z'. The likelihood
function in the first case is given by f(u¢,u’), where f is the joint density of u? and u”. In the

second case, the likelihood function is given by:

. l()y(Z:L—Zg)—Ol,w: ’ ; .
s [ ot | ut)dul

[e0]

(i) Households who down-grade their stock of cars
The likelihood function for this group is equivalent to that of group (i), with the only difference

that we observe (or determine a lower bound) for Z* rather than Z*.

(11i) Households with at least one car that do not execute transactions.
For these households we will have to evaluate the probability of the following event :
Ztl < Ztrntn. < Ztrn(l;c < Ztu

where Z™" and Z™“® are the lower and the highest value of Z observed over the sample period.

This probability can be written as:

Pr{Z! <z < Ze® < Z'Y = Pr{Z! < Z"™" < Z*** < Z¥ | ZF > 0} Pr{Z} > 0}

+Pr{Zl < ZM" < Zm* < 2y | 20 = 0yPr{Z! =0} =

Pr{zt - ¢ wersl < gmin o gmes < g4y U weel | 20 S 0} Pr{Z¢ > 0}+
Pr{-" werul < gmin o gmos o 0wernl | 74 — 0} pr{Z¢ = 0}
Notice that for the first probability to be different from zero u} has to be such that:
gmaz _ o wivul o gmin 0" wital
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'

This implies that u! > log(Z** — Z"") — log(e”” ' + e”""“':) . Therefore the likelihood

function is given by:

%) u‘)ll'uh} N 20
/ / f(u'i ; uh)du.i f(u")du" __/ / f(ub,u‘i)duddu"
H tafu?) - e Z""”~U"'u=,

1

where f(u? | u”) is the density function of u* conditional on u" {which is normal) and f(u") is

the marginal density of u” (which is again normal). v, v, and H are given by the following

expressions.
o i ;
1/)1 (ub) — Ztnun — CU Wy, Uy ﬁlwu
i woh , ook
¢ (ub) _ Zim.u,z _ el} wy+ru, __ glwd if Zim.tlr . eﬁ wituy s O1
2 - '
Al : mar _ 0% wldul
3'w if Z, e t e <0,
mazx min ()“Iu» Ol’m: : mar min .
g = log(Z" — Z;™") — log(e’ ™ + " ™:) if Zes — Z™" > 0,
—00 lf Zimuz — Ztmin.

(1v) Households with no cars at the beginning of the period and at least one at the end
For these observations we observe the target value at the end of the period, but we do not

observe the lower bound. The likelihood function is given by :
) [ f(ut | i)
lug(Z“i)—U“’ w;‘

(v) Households with at least one car at the beginning and no cars at the end of the period.
If we assume that the upper bound is observed, the likelihood function is given by the following

expression:

~,"I’u/(£
7 () / F(u | ub)du

Under the alternative assumption we have:

—[i’w:" lr)glzg)—()“’ur,
b d b d
/ / f(u], vy )du, du;
- oo — oo

(vi) Households with no cars throughout the sample period.
For these observations, either the desired stock is zero, or it is positive, but the lower bound of

the (S, s) band is below zero. Therefore the likelihood function is given by the following probability:

PT{Zt(i _ e(}i’u1¢+u:’ S 0 S Zt‘i + eUu’1U,+1L:‘}Pr{Zzi ~> O}+
Pr{__e(ll,:(u,%—u: S 0 S A‘_eﬂ"’u:%-u:‘}Pr{Zd — O} -
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PT{th _ eg‘ W+, <0< th + eUu,u"+":}PT{Z‘i < O} + PT{Zd — O} —

s pwiiu’) —a'wy
/ / flut| u")dut f(u")du"” +/ flut)dut

2 (')
The computation of the likelihood function is numerically intense. A number of issues, con-
cerning in particular the evaluation of the multidimensional integral, have to be tackled. The
integrals in the likelihood function were computed using Gaussian quadrature formulae. Details

on the numerical methods used are given in Appendix 2.

4. Data

In this section I briefly describe the data sources and illustrate the main features of the data

used in the estimation of the (S, s) rules described in Section 2.
{.1 Data sources

The data used in this paper come mainly from the Consumer Expenditure Survey {CEX). Since
1980, the CEX, which is designed to measure expenditure shares to be used in the computation of
consumer price indexes, has been run as a rotating panel. The size of the panel is around 7,000
households and each household is interviewed for four consecutive quarters. The CEX survey is
the only US micro data set which contains complete and detailed information on consumption.
Since 1984, the CEX contains a substantial amount of information on the stock of automobiles
owned by each households. Information is available on the model, make and year of each vehicle
owned by the household in each of the four interviews. This information enables one to estimate
the value of the stock of cars owned by the household at each point in time.

The value of the stock of cars over the period of observation (one year) along with information
on the purchases of automobiles and non durable consumption can be used to measure the variable
Z described in section 2 at the beginning and at the end of the observation period. Prices of used
and new cars are obtained, for the period from 1984 to 1989 and at a monthly frequency, from the
Kelley Blue Books.

For those households who do not modify actively their stock of cars, the Z variable changes
between the beginning and the end of the observation period because of depreciation (appreciation).
For those households who engage in a transaction we can measure the value of the stock of cars

just before and after the transaction.®

® The information on the automobiles is far from complete, so that it is necessary to approximate
the value of the stock in several ways. Again, the details are provided in Appendix 1. It should
be stressed that the relevant concept here is economic as well as physical depreciation. The use of
used car prices is consistent with this idea.
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The length of the observation period varies between one quarter and one year because some
households miss one or more of the four interview.!® I decided to exclude the households observed
for only one quarter. The main reason for this choice is that for the model with unobservable
bands to be identified we need to observe two different values for the state variable Z for the
households which do not transact. Furthermore, the households observed for only one period
present a number of other problems. For instance, many households, when changing the value of
their car stock, simultaneous:y buy a new car and sell or trade in an old one. In the sample, 44%
of the households who buy a car sell a car in the same quarter. However, the car sale might be
reported or occurr, for various reasons, in a subsequent quarter.

Not surprisingly the households completing only one interview are systematically different, in
terms of observables, from the other households. For instance, the former are younger, poorer,
more likely to be headed by a black.!' Furthermore, when I relate the change in the ratio of
cars to non durable consumption either at the beginning or at the end of the period (the variable
AZ), to the number of interviews completed, [ find that households completing a single interview
have significantly lower AZ’s, even after controlling for a number of observable variables. These
differences are therefore likely to introduce a bias in the estimates of the parameters of the model.

I selected households whose reference person was aged between 21 and 75 and resided in urban
areas and for whom the value of their automobile stock could be estimated. Other minor selection

criteria are described in Appendix 1.
4.2 Data description.

In table 1, I report mean and standard deviation of a the variables used in the estimation
below or otherwise relevant. Income and non durable consumption are deflated by a consumer
price index for non durable consumption, while the stock of cars is deflated by a price index for
new and used automobiles (base 1982-1984).

The only items in the table worth a mention are those directly related to car ownership. 87%
of the households own at least one automobile and the average number of automobiles is 2.02. The
average value of the stock of cars conditional on ownership is almos $ 6,600. The ratio of cars value

to non durable consumption is about 0.56.

10 The non durable consumption figure for the households with missing interviews is adjusted

taking into account how many and which months are missed. This adjustment is meant to allow
for seasonality in consumption. Details are provided in Appendix 1.

11 These differences are consistent with those reported by Nelson (1994) who discusses attrition
in the CEX. Some households, however, have only one quarter of databecause of the nature of
the survey. Households who were at their 5th interview at the beginning of 1984 would not have
information on cars in the early interviews that occurred in 1983. Furthermore, because the sample
was discountinued in 1986, the same situation occurs for households interviewed at the beginning
of that year.
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The main concern of the paper is modelling automobile purchases. In Table 2, I report
the percentage of households who engage in a transaction during the period over which they are
observed. The table also distinguishes the households who actively change the value of their stock
of cars depending on the type of transaction. The categories reported match the six groups listed
in Section 3 while characterizing the likelihood function.

The figures in Table 2 can be used to have an idea of the frequency with which a car is replaced.
For the whole sample, of the households with at least one car, 35% perform 4 transaction during
the observation period. On average, these households are observed for 2.5 quarters and hold 2.24
cars. If one neglects the correlation between length of observation period, number of cars owned
and propensity to change cars, these figures imply that the average holding period of a car 1s 16
quarters.

As a first attempt at describing the purchase of automobiles, 1 estimate two simple probit
equations for the purchase (or sale) of a car. I define a variable d” to be one if the household
upgrades its stock of cars during the observation period and zero otherwise. An analogous variable
d" is defined for those who downgrade. These variables are then related to a number of controls and
to the value of the stock of cars at the beginning of the period divided by non durables consumption
by means of a simple probit regression. The controls include a quadratic in age, the number of
children of age 3 to 15, the number of children of age 0-2, the number of females and males over
16, education, regional and year dummies and the number of earners. The results are reported in
table 3.

The interpretation of most coefficient is not straightforward. However, for the present discus-
sion, it is interesting to note that both coefficients on the 'beginning of period’ Z are consistent
with the model outlined in section 2. A high value of the ratio of the stock of cars to non durable
consumption makes household less likely to upgrade and more likely to downgrade its stock of cars.

For the aggregation issues discussed in section 6 the cross sectional distribution of the Z
variable and its evolution is important. In Figure 1 I graph the cross sectional density of the Z
variable (conditional on a positive initial Z) which presents a pronounced skewness. Similar figures

can be obtained if one plots the cross sectional densities in different years.

5. Estimating the (S,s) Model

The estimation of the model described in Section 2 is not easy. The maximization of the

likelihood function in Section 3 is numerically intensive and therefore there are limits to the amount

12

of specification search that can be performed. However, the results obtained under the two

assumptions about the observability of the band, reported in Table 4 and 5, are reasonably precise.

12 All results were obtained as the solution of the maximization problems starting from at least
two different sets of initial values.
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The results obtained using a log-normal specification for the target value and a separate equation

for the selection process were not substantially different.
5.1 The spectfication of target values and band width.

The estimates reported in Tables 4 and 5 for the two models refer to the same specification,
so that they are directly comparable. Even though slightly more parsimonious specifications are
available, [ prefer to report the most general specification I have estimated which contains the same
variables for the two models. The advantage of such a choice is to make the two models strictly
comparable.

In addition to the age of the household head and its square, target equation includes several
variables that describe the composition of the family, the labor supply behavior of the household
members and the socio-economic status of the household. In particular, the variables describing
family composition include the number of male and female adults, the number of male and female
children between age 2 and 15 and the number of infants, while those related to labor supply
include the number of annual hours worked by the head and the spouse, as well as two dummies
for the number of earners (the reference group are households with two or more earners). The last
group of variables that complete the description of the household are dummies for the educational
attalnment, race and gender of the household head and the region of residence.!3

In addition to the variables just mentioned, I also include the log of two relative prices: the
ratios of a price index of non-durable consumption to a measure of the rental cost of cars and to
a price index of motor fuels. The price index for motor fuels is taken from the BLS detailed CPI
tape. The price for non durables is constructed as a Stone price index from CPI detailed indexes,
published at monthly frequencies at the regional level by the BLS. Weights are constructed using
average expenditure shares; the averages are taken over households within education and regional
groups. Therefore, relative prices exhibit not only time but also cross sectional variability. Most of
the actual variability, however, is observed over time. The rental cost of cars is constructed taking
into account the change in the price of cars, depreciation and an interest rate. 4

The variables that determine the width of the (S, s) band are essentialy the same as those that
enter the target equation with one exception. The relative price variables are subsituted by year
dummies. There are two related reasons for such a subsitution. First, there is no obvious reason
why the relative price of durables and non durables should affect transaction costs and therefore
the band width. Second, because most of the variability in relative prices is time series variability,

it becomes very difficult to obtain precise estimates of these parameters once time dummies are

13 The reference group is formed of households headed by a college graduate black female residing
in the West.

'4 The Appendix 1 gives further details about the construction of the price indexes and, in
particular, of the rental cost of cars.
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introduced in the band width. The latter are important to capture any time variation in transaction
costs and therefore band width. While this procedure is not fully satisfactory, especially if one
wants to use the model for predictions, there is no obvious variable that could capture changes in

transaction costs.

5.2 Results for the model with observable bands

The estimates of the coefficients of the target equation for the model with observable bands are
reported in the top part of Table 4, while those of the two bands are in the bottom part together
with the estimated variance covariance matrix and the value of the loglikelihood function.

Starting with the target equation we notice that, as expected, both the coefficients on age
and those on the demographic variables are strongly significant, indicating the presence of strong
life cycle effects as well as the importance of family composition for the desired ratio of cars to
non-durable consumptioin. The estimated polynomial in age peaks at age 37.

The labor supply variables are marginally significant, probably indicating non separability
between consumption and leisure in the utility function. The desired ratio of automobiles to non
durable consumption increases in the number of hours worked by the head and (more strongly) by
the spouse. °

It is interesting to notice that the desired ratio of cars to non-durable consumption is lower
for households with a lower permanent income, such as those headed by high school dropouts,
females and blacks.!® This evidence is consistent with the hypothesis that cars are a luxury with
an elasticity to income greater than unity.

The coefficient on the relative price of fuel is significant and with the expected positive sign. A
positive sign indicates that an increase in the price of non durables relative to the price of gasoline
increases the desired ratio of automobiles to non durable consumption. The coefficient on the other
relative price, on the other hand, is not significantly different from zero (and takes a negative point
estimate).

Even though the same variables determine the two bands, they are allowed to have a different
effect. The hypothesis that the coefficients of the upper and lower band are equal is overwhelming
rejected indicating the presence of strong asymmetries.

There are significant life-cycle and family composition effects on band width. For both bands
the age polynomial is convex and has a minimum at age 27 for the lower bound and at age 35 for
the upper bound.

The dummies on the number of earners are strongly significant, while the effect of hours of

15 The coefficients on the number of earners and in particular that on the zero-earners dummy,

should be interpreted with care as the number of hours of head and spouse cannot be kept constant
when considering the difference between households with zero, one or two and more earners.
16 The coefficient on black heads is not significantly different from zero.
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work 1s not estimated precisely. Households headed by college graduates have relatively larger
bands, maybe indicating higher transaction costs for these groups. If transaction costs are related
to search, individuals with higher earnings should face higher search costs. It is also possible that
wealthier individuals purchase cars that depreciate more quickly.

Overall, the signs of these coefficients are consistent with the signs of the probit model reported
in Table 3. The most striking feature, however, is the width of the band, and in particular of its
upper part. The average width of the lower band evaluated at »" = 0 is 1.0 (median = 0.73.
st.dev.== 0.85). The average width of the upper band is 1.28 (median = 1.08, st.dev.= 0.74).

The large size of the band can be a consequence of the observability assumption. As mentioned
above, if the depreciation process and time are discrete, one can interpret the estimated bands as
an upper bound to the actual one. The size of the estimated band depends both on the size of the
actual band and on the process for depreciation. A comparison of the band size estimated under
the two assumptions can give an idea of the quantitative importance of the depreciation process.

The correlation coefficient between u” and u is estimated quite precisely at 0.8. This implies
that households with relatively high target values also face higher transaction costs. This result is

of some relevance for the aggregation excercise discussed in Section 6.
5.8 Results for the model with unobservable bands.

The results reported in Table 5 were obtained relaxing the assumption that the lower (upper)
bands are observable for those households who up-grade (downgrade) their stock of cars. As
discussed above, I assume that the observed upgrade (downgrade) gives us only an upper bound
on the size of the band.

The specification reported in the Table is the same as that in Table 4. The sign and significance
of coefficients are substantially similar to those estimated for the other model. There are however
some differences in magnitude. For instance, the coefficients in Table 5 imply that the minimum
of the effect of age on the width of the bands occurs around age 21 for the lower band and 39 for
the upper one. The only coefficient that change sign is that on the relative price of non durables
and cars (measured as the rental cost) which takes now the expected positive sign but is still
insignificant. In addition, the labor supply variables (including the dummy for no earners) are now
strongly significant. Both the non-black and the male dummy are insignificant.

The pattern of coefficients of the band equations is substantially similar in the two models,
even though those in Table 5 (model with unobservable badns) are more precisely estimated. The
main difference between the tables 4 and 5 lies in size of the band: the model estimated under the
assumption of unobservable bands implies, for most observations, a much narrower lower band.

The median lower band measures now 0.38 (compared to 0.73 of the previous model). ' The

7 Given to the presence of a large upper tail the average value for the lower band is actually
higher, at 2.3 (st.dev. = 6.9),in the model with unobservable bands.
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median value of the upper band is 1.21 (mean = 1.69, st.dev. 1.43). The median level of the sum
of the two bands is 1.77 (mean 3.98, st.dev.= 7.52).
The correlation coefficient between the two residuals is now lower at 0.53. Once again the

hypothesis of symmetric bands is rejected at any reasonable significance level.

5.4 Goodness of fit.

To establish to what extent the estimated models fit the data, for all the households in the
sample, I compute, for the (observed) initial stock, the probabilities of various kinds of adjustment.
I then compare the sample averages of these probabilities to sample frequencies.

The probabilities of adjustment can be easily derived from the structure of the model as
specified in equations (1) to (3). In particular, given a positive initial stock Z,-, the probability of

an upward adjustment, prior to the realization of u® and u¢, is given bv the following expression:

(4a, / / . fud tu)dutf(u)du’ = AT H(2Z,-)
- 00 Zt_—i—n w1+ut*ﬁ’w;‘

while the probability of a downward adjustment to a positive stock is given by:

’
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The probability of upgrading from a zero stock and the probability of downgrading to zero

are given by:
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In Table 6, I report the mean of these probabilities computed on the basis of the estimates of
the four specifications reported above, as well as the probability of a zero desired stock. In the last
column, I report the corresponding frequencies in the sample. Comparing the average estimated
probabilities with the actual provides a loose specification test of the estimated model. '®

The model with observable bands tends to under-predict substantially the probability of an

upward adjustment. The model with unobservable band, on the other hand, slightly overpredicts

'8 The mean could also be computed for various groups, selected for instance, on the basis of the

initial z. These computations did not yield large differences in goodness of fit among subgroups.
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the probability of upgrading (both from zero and from a positive stock). Both models slightly
underpredict the probability of a downward adjustment, while both considerably overpredict the
probability of @ downward adjustment to zero.

Overall the model with unobservable bands seems to preform considerably better than the
one with observable ones. The systematic underprediction of upward adjustment in the latter is

due to the large size of the lower band.

6. Aggregation of the estimated (S,s) rules.

6.1 Generalities

If microeconomic consumption behavior is based on (S, s) rules, the implied aggregate dynam-
ics can be extremely rich and complex.'® The specific properties of the aggregate system obviously
depend on the details of the (S, s) system. Caballero and Engel (1994) analyze the properties in-
duced by their porportional hazard model, whici ey label ‘generalized (S, s) system’, on the time
series behavior of aggregate investment. The (S,s) system proposed in section 2 can encompass,
with a flexible enough parametrization of its stochastic components, the generalized (S, s) system
of Caballero and Engel, even in terms of the implied aggregate dynamics.

In any model with inertial behavior caused by adjustment cost, aggregate dynamics depends
on the distribution of individual differences between actual and desired controls. The nature of
the microeconomic behavior in turns affects the evolution of this density distribution. In the
system of Caballero and Engel (1994) each firm draws a cost of adjustment (with the draws being
independent over time and across agents) and on the basis of this cost decides whether to adjust
or not its capital stock. Indc d, given the adjustment cost, each firm behaves according to a simple
(S,s) rule. Caballero and Eugel characterize this sort of behavior in terms of an hazard function:
conditional on the difference between actual and desired stock each firm has a certain probability
of adjusting, which depends on the density function from which adjustment costs are drawn.

From these considerations should be immediately clear how the model sketched in section
2 is, with appropriate assumptions about the nature of the residuals u® and u“, observationally
equivalent even in terms of the implied aggregate dynamics, to the ’generalized (S, s) model’ of
Caballero and Engel. If the u”’s are 1.1.d. over time and across individuals, given the actual and
desired stock (and the observable components of the band), one can think of each household as
having an ex-ante probability of adjusting which depends on the distribution function generating

the shocks. For any hazard function, one can derive the properties of the density that generates it.

19 Caballero and Engel (1991) have studied the convergence properties of (S,s) economies,

while Caballero (1992) uses the same model to explain the slow adjustment of aggregate durable
expenditure.
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The model presented in Section 2 is indeed able to generate aggregate behavior richer than
a simple hazard model because it incorporates a variety of factors ignored in the latter. ?° The
availability of micro data makes possible the estimation and study of a much more complex model
which embeds a substantial amount of individual heterogeneity. The aggregation issues that arise
within this approach are not necessarily linked to inertial behavior, but are nonetheless important,
as it is well known from demand analysis.?!

First, the target level for Z is systematically different across individuals. This aspect can
be important if the sample is cornposed of individuals with different levels of income: if cars are
'luxuries’ and non-durable consumption a 'necessity’, the desired level of their ratio will depend, for
any given level of relative prices, on the household (permanent) income. In the presence of binding
liquidity constraints, even the level of current income is likely to be important. Furthermore, the
desired level of Z is likely to depend on a number of factors such as family composition, labor force
participation, occupation and so on which therefore constitute an additional source of heterogeneity.
All these effects are likely to be important in that aggregate demand will depend in a crucial way
on composition effects. Some of these factors are fixed or move at very low frequencies (family
composition, to a certain extent permanent income), others, such as current income or employment
status, are likely to exhibit important movements even at high frequencies with a varying degree
of synchronization,

Second, as discussed above, the size of the band can be systematically different across indi-
viduals and over time. This source of heterogeneity is likely to be important for the properties of
aggregate dynamics.

Finally, it is likely that the determinants of the target level and band width heterogeneity are
correlated, both through common observable determinants and through the stochastic (unbobserv-
able) components u” and u”. Indeed, the results in Section 5 indicate the presence of a substantial
amount of correlation between the two residuals. This correlation is important because it implies
that households with high target stock to non durable ratios are less likely to adjust, for any given

level of Z, because they are likely to have a wider (S,s) band.??

6.2 Target and actual values

To establish the dynamic properties of aggregate automobile expenditure it is necessary to

characterize the evolution of the desired stock of cars to non-durable ratio in the population and

20 Caballero and Engel are forced to keep the model extremely simple because of the necessity

of estimating it with aggregate time series data.

21 Attanasio and Weber (1993) discuss the importance of various aggregation issues, and non
linearities in particular, for estimating and testing Euler equations for non durable consumption.
See Stoker (1993) for a survey on aggregation.

22 This correlation prevents a number of simplifications typically used in the aggregation of (5, s)
rules.
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that of the cross sectional distribution of the difference between actual and desired stock. Given
equation (1) to (3), the former is conceptually straightforward: the evolution of Z¢ depends on the
evolution of the variables on the right-hand-side of the equation. These may include macroeconomic
variables, such as the relative price of non-durable consumption and automobiles, and individual
specific variable, such as various determinants of the marginal rate of substitution between cars
and non-durable consumption.

To characterize the evolution of the cross sectional distribution of the ratio Z, however, some
additional elements not included in the model are necessary. In particular, it is necessary to specify

the process which governs the evolution of Z when the stock of cars is not actively changed.

By definition, if a household does not change its stock of cars, Z changes because of changes
in non durable consumption and because of depreciation. In theory, the evolution of non durable
consumption can be described by an Euler equation which holds, in the absence of binding liquidity

constraints, regardless of the presence of transaction costs for durable consumption.

In the literature, it is typically assumed that the stock of durables depreciates at a constant
rate §. In reality this assumption is easily falsified. As indirect evidence of this, one can point at
the relative price of new and used cars which exhibits wide fluctuations.?®> More direct evidence
can be obtained by a cursory look at the rate of depreciation of cars of different vintages and
different makes over time. It is not unusual for used cars to appreciate in some years. These move-
ments in the rate of depreciation can introduce an additional source of heterogeneity and therefore
aggregation biases insofar as different groups of the population hold cars whose depreciation rates

is systematically different and these differences vary over time. 2*

In the sample I use, households who do not modify the composition of their stock of cars
experience changes in their value due to economic depreciation. If a household is observed over a
period of one year, the availab'e estimate of the value of its cars will pick up these changes (see
Appendix 1 for details).

In theory, therefore, it would be possible to use our sample to estimate the time series process
which characterizes depreciation. With a large enough sample it would also be possible to control
for the implications that different compositions of the car stock have for depreciation. Unfortu-
nately, the time dimension of the sample is too small for a reliable characterization of the time
properties of depreciation and the cross sectional dimension is not sufficient.v large to control for

the many dimensions of stock composition. Furthermore, it is beyond the scope of this paper to

23 Obviously these fluctuations depend not only on differences over time in the rate of deprecia-
tion, but also on the composition of the stock of old cars which in turns depends on the dynamics
of car replacement.

24 1t is well known, for instance, that during the 1980s, japanese cars depreciated much more
slowly than domestic cars. It is also well known that japanese cars are much more widely held in
the West than, say, in the Midwest.



characterize fully the changes in non durable consumption by estimating an Euler equation.
In what follows, I circumvent the necessity of specifying or estimating the process for depre-
ciation or for non-durable consumption by focussing on the difference between systems with and

without transaction costs.

6.8 The evolution of the cross sectional density and aggregation

Given the cross sectional distribution of the variable Z at the end of period t — 1, f(Z,t — 1),
it is possible to derive its cross sectional density at time t. To do so, 1t is necessary to specify the
timing of the shocks that affect the system. I assume that any given household at the end of period
t — 1, decides non durable consumption for period ¢t. At the same time the depreciation process
takes place giving rise to Z,- . After that the shocks determining the target value and the position
of the band occurr. The household then decides whether to adjust or not. If it adjusts, the ratio
Z is set at Z?, otherwise Z, = Z,- .*°

Given the expressions for the adjustment probabilities in equations (4), an initial cross sectional
distribution and a process for depreciation, it 1s possible to derive the evolution of the cross sectional
distribution. Suppose that the inital distribution has mass f(0,t — 1) at zero and is given by a
known density f*(Z,t — 1) for Z > 0. If the 'depreciation’ process is given by:

(5) log(Z,-) =log(Zi- ) — &

and the density of the target Z{ is indicated with f;, the two components of the cross sectional
density of Z at t are given by:

f(0,¢) = f(O,t - 1)(1 - A*") + /OO flze’ t — 1)A™"(2)dz
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Equation (6) and a process for the ’depreciation’ §, will characterize the evolution of the cross
sectional distribution of Z. Average Z can be obtained, conditional on a depreciation process and
the distribution of Z at time ¢ — 1 integrating Zf(Z,t). The unconditional average can then be

obtained integrating out & and Z,_;. It is not hard to allow for heterogeneity in §,.

25 The mechanism outlined here is consistent with the model with unobservable bands or with
the interpretation of the residual u” as a combination of heterogeneity in band width and stochastic
depreciation.
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From equation (6), it is clear that the presence of transaction costs has two effects. On the one
hand, it introduces an element of sluggishness, given by the households who do not change their
stocks and is represented by the second element in the equation. On the other hand, an important
element of non linearity is introduced by the first element of equation (6). The dynamics of Z* is
filtered into the dynamics of the actual Z through a time varying function which depends on the
lagged cross sectional distribution of the actual Z.

In a model without transaction costs and inertial behavior, the variance of u” is equal to zero
and both @' and 6 are equal to zero. It is easily seen from equations (4) and (5) that, under these
circumstances, A*7(Z) + A™*(Z) + AY(Z) = 1, 1.e. households adjust their stock of cars to the
desired level (downward or upward) in each period. The evolution of the aggregate stock mirrors
the evolution of the desired stock, while aggregate expenditure reflects its changes. Unfortunately,
in our model individual desired stocks are heterogeneous and expressed in terms of ratios to non
durable consumption. Therefore, even in the absence of transaction costs and inertial behavior,
one would be faced by standard aggregation problems which arise because of the non-linearities
involved in the model.

The net change in the aggregate stock of cars is given by the change induced by depreciation
plus the net adjustment of the households who do adjust. The average expenditure on cars 1s
obtained aggregating the changes of those households that adjust upwards. Consider a generic
household which enters tirme t with Z,- = Z,_,e~ " .2 After the realization of u® and u® the
household decides whether to adjust or not. If it does adjust, the change in Z will be given by
73—~ Z,- . Therefore, the size of adjustment depends (given Z,-)) on u“, while the decision to adjust
depends on both u? and u". The expected expenditure for a generic household will be given by
the size of the adjustment times the ez-ante probability of adjusting. To obtain average expected
expenditure (relative to non durable consumption), one can sum the expected expenditure of all

the households. The expression for aggregate expenditure is therefore given by:

(7) Y oh(Zi, w6 w)
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26 For notational simplicity [ am assuming that the depreciation 1s common across households.
One can assume that depreciation is made of two components one that is realized immediately and

is common across periods and one that is idyosincratic and is included in u”.
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In the absence of transaction costs, the expenditure on cars (relative to consumption) is given

by:

(8) Z [/ C(Bwt et - 20 e ) f(u!t Z ) dut
PR

Notice that in equations (7) and (8), 8w" and Z,- always appear as Z, = Z,- — 8w’ If
one is knows or can estimate the joint cross sectional distribution of Z, and Bl'wi‘ = z,, one can

evaluate average aggregate expenditure for the two models using the following expressions. *’
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From equation (7) and (8) one can see that, as far as the changes in Z are concerned, the main
differences between a system with and one without lumpy adjustment are two: first, the presence
of the function g which represents the probability of upward adjustment and, second, the evolution
of the cross sectional distribution of Z. Without adjustment costs, ¢ is equal to unity. The cross
sectional density function f(Zt_l) obvioulsy evolves differently from j:(Z~t_1) which, for every t,
coincides with the cross sectional distribution of u®.

Equation (7) is also useful to chatacterize the difference between the (S,s) model and a
model with partial adjustment derived from quadratic costs. Aggregate adjustment in the latter is
characterized by equation (7) with g independent of the initial Z,- and constant across households
and over time. The difference in the impact effect of a change in the desired stock depends on
the variability of the g’s. The dynamics induced by the (S, s) model is then richer because of the
dependence of ¢ on Z,- .

6.4 Evaluating the tmportance of inertial behavior.

The considerations above and the expressions in equations (7) and (8) make it clear that the
implications of the estimated model for the time series properties of aggregate expenditure on
automobiles depend on several elements about which the evidence presented in Section 5 is silent.

First, one needs to characterize the evolution of the desired stock Z¢ as well as of the cross sectional

27 In equations (7’) and (8’),I allow for the possibility of Z,_; to be correlated with u, as the
latter represents idiosyncratic taste shocks. This does not affect the estimation in Section (5)
because each household is observed only once.
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distribution of the variables that determine the width of the (S, s) band, w®. Second, one has to be
specific about the nature of the ‘depreciation’ process and its relationship to Z¢. Finally, one has
to specify the dynamic properties of the residuals u{ and u?.2® All this cannot be done without a
number of very strong simplifying assumptions whose effect is difficult to evaluate.

The scope of this section is to quantify the effect that inertial behavior, as characterized by
the system estimated in Section 5, has on aggregate automobile expenditure. Given the difficulties
just outlined, instead of presenting a full characterization of the dynamic properties of the model
estimated in Section 5, I analyze the main determinants of the dynamic behavior of the (S,s)

system and then focus on the differences between systems with and without transaction costs.

As discussed above, an important determinant of the evolution of f(Z) are the probabilities of
adjusting upward and downward whose means are reported in Table 6 and discussed in Section 5.4.
To show the relationship between the probability of adjusting and the level of the ratio Z at the
beginning of the period, I plot in Figure 2 the smoothed medians of the the individual probabilities
of upgrading and downgrading against the beginning of period value of Z. Not surprisingly, the
figure documents the existence of a negative ralationship between the probability of upgrading and
Z and a positive one between the probability of downgrading and the initial stock to non durables
ratio.??

From equation (7), it is clear that the quantity g(u®, Z,- ) plays an important role in deter-
mining the difference between the (S, s) model estimated in Section 5 and systems both without
transaction costs and with partial adjustment. Using the estimates of the parameters of both
models, I evaluate g at u* = 0 and at the observed Z,- for each observation in the sample. The
computations are performed under the assumption that the distribution of u® conditional on Z,_,

' The mean and median of g are below 0.25 for the model

and u? depends only on the latter.*
with observable bands and just below 0.45 for the model with unobservable bands. Furthermore,
both mean and median decline considerably, as expected, as a function of Z,- . Finally there is a
substantial amount of variability in the ¢'s, even after controlling for the desired stock.?!

To evaluate some of the dynamic properties of the system I simulate a special version of the
model estimated in Section 5. This is done to study the autocorrelation properties of aggregate

changes in Z and the impulse response function to an unexpected change in Z. Along with the

28 The availability of a true panel would solve some of these problems, but would also make the
estimation problem much more complicated.

2% Both curves in Figure 2 are computed using the model with unobservable bands. Analogous
pictures are obtained using the alternative model. Figure 2 makes clear the relationship between
the model estimated here and the model based on the hazard function proposed by Caballero and
Engel (1994).

30 Notice that g is not defined for those observations for which Z,- is greater than 8'wd + ud.

31 Notice that averaging the function g for different u®, one obtains the probability of upgrading
for an initial value of Z,-, which is plotted in Figure 2.
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(S,s) model I simulate a model without transaction costs and one with partial adjustment. The

main focus is on the relative performances of the three models.

I consider an economy populated by agents with characteristics identical to the households
present in my 1987 sample. | assume that the systematic part of the target and of the bands
equations are fixed for these households through time. The shocks u? and u® are assumed to
be i.i.d. over time and across consumers and to have the variance covariance matrix estimated
in Section 5. The system is started with the observed cross sectional distribution in 1987 and is
simulated under the assumption that when a household does not engage in a transaction Z changes
according to equation (5) with &, distributed as a normal random variable with a mean of 0.15 and
a standard deviation of 0.05. The (S, s) model evolves according to equations (1) to (3), with the
parameters estimates reported in Section 5. For the models without adjustment costs and with
partial adjustment [ assume that the desired level is identical to that of the (S, s) model. In the

model with quadratic costs the coefficient of partial adjustment is set to 0.5.

Each model is run for 50 periods and each of these paths is replicated 300 times. In the first
experiment I use each of the simulated paths of aggregate changes in Z to evaluate the autocor-
relation function of the system. The only thing that is moving the system in these simulations is
the depreciation process and the stochastic shocks u* and u”. To evaluate the autocorrelation, I

disregard the first 7 observations to minimize the effect of the initial (observed) distribution.

The experiment is then repeated by introducing an unexpected change in the desired level of
Z which is the same for all households in the economy. The simulations are used to compute the
impulse response function of aggregate changes in Z. I consider both permanent shocks and shocks

that are undone after one period.

It should be stressed that these exercises have four major limitations. First, I neglect the cross
sectional correlation between the initial stock Z,_, and the desired level Z¢. Second, I assume
that the distribution of the desired ratio Z¢ is the same with and without transaction costs.
Third, in the study of the dynamic properties of the system I do not consider any dynamic effects
on the stochastic components of the system. Fourth, I do not consider the effects of systematic
changes in the size of the band which would have no effects on the model without transaction
costs and with partial adjustment but potentially large effects in the model with (S,s) rules. The
only justifications for these unpleasent assumptions is the inability of performing the exercises
below without them and/or our ignorance of some crucial parameters of the problem, such as the
autocarrelation structure of the error terms. While this procedure is not fully satisfactory, I believe

it is useful to quantify the importance of the inertial behavior induced by the estimated (S, s) rule.

The autocorrelation function of the 3 models is reported in Table 7. The figures are the mean
of the autocorrelations computed for each simulation. The autocorrelogram of the changes in Z

for the model without transaction costs resembles, as expected, that of an MA(1) with a negative
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unit root: the first order autocorrelation is close to -0.5 and the higher order ones are close to
zero. Both the (S,s) and the partial adjustment models present substantial deviations from the
frictionless case. The first order autocorrelation is substantially higher than -0.5 and higher order
correlations are slightly different from zero. The (S, s) model also exhibit some differences relative

to the model with partial adjustment.

In Table 8a and 8b, I report the first 5 values of the impulse response function to a shock of 0.1
to the desired Z in the three models. The shock is permanent in Table 8a and transitory in Table
8b. The table reports the difference between changes in Z after and in the period preceding the
shock. As expected, in the model without transaction costs the aggregate change is approximately
equal to the shock on impact. The aggregate change in Z in the periods after the first is higher than
in the previous equilibrium because of the larger ’replacement’ expenditure implied by a higher

equilibrium stock.

The impact effect in the two models with transaction costs i1s obviously lower than in the
frictionless model.?? The shock, however, has an effect for 3 periods. The dynamics of the effect
is slightly different in the two models in that it is higher on impact in the (S,s) model and lower
afterwards. The difference between the impact effect in the (S,s) and the frictionless models
declines when I increase the size of the shock. The reason for this is that by increasing the size of
the shock in the (S, s) model, one increases both the amount of the change of the households that
do adjust and the proportion of the households who adjust.

Figure 3 summarizes the dynamics of a change in Z¢ in the 3 models. The Figure plots the
aggregate change in Z in the 3 models over time. To stress the dynamics the three aggregate series
are normalized. The slower adjustment of the two models with transaction costs as well as the

differences between these two are evident in the picture.

Table 8b illustrates that the differences between the two (S, s) and partial adjustment models
are even more pronounced when one considers temporary changes in Z%. In the frictionless case, in
period 1 the initial change is almost completely undone. The asymmetry built in the (S, s) model
makes the difference with respect to the frictionless case stronger than in the quadratic cost of

adjustment one.

Before concluding this section, it is worth stressing that the differences in dynamic behavior
between models with partial adjustment and the (S, s) model are not fully captured by the exercises
proposed here in which no much happens to band width and to the cross sectional distribution of
the Z. The best evidence in this respect is the amount of variability in the estimated g(.)’s and

their strong dependence on the initial Z.

32 The impact effect in the model with partial adjustment is (obviously) half that of the model

with full adjustment.
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7. Conclusions

The main goals of this paper were two. First, I wanted to characterize empirically an (S, s)
rule for automobile expenditure using microeconomic data. Second, I studied how aggregate ex-
penditure is affected by the presence of inertial behavior.

Rather than deriving the parameters of the (S,s) rule from aggregate time series data (using
strong identifying assumptions) or from the features of the cross- sectional density (assuming that
coincides with the ergodic distribution which would prevail in the absence of aggregate shocks), I
specify a rich stochastic model which allows for observed and unobserved heterogeneity both in the
target level and in band width. The model is then estimated using a micro data set and maximum
likelihood techniques. While very specific functional form assumptions are made in the estimation
process, the procedure used here is easily extended to allow for more flexible semi-parametric
techniques.

Even with a data set as rich as the one I use, the estimation of the (S,s) model is not trivial
and implies the solution of a number of conceptual problems. The main issue that has to be
solved is whether the value of the stock observed before a transaction is on the boundary of the
(S,s) band or is outside the band. While the latter assumption is probably more plausible, the
former allows a more precise estimation and, as discussed in Section 5, might be more useful for
the characterization of aggregate expenditure. I present results obtained under both assumptions.

In general, both models yield sensible results, in that the coefficients on most variables have
the expected sign and the predicted probabilities of adjustment match reasonably well the observed
frequencies. The most striking feature, however, is the large size of the (S, s) band. A large band
implies that inertial behavior is pretty pervasive and therefore is likely to be important in the
determination of aggregate expenditure.

The part of the paper that tackles aggregation issues is partly negative, in that, even after
having estimated the parameters of the (S,s) model, I show that it is very difficult to characterize
the dynamic properties of aggregate expenditure. This negative result is explained mainly by two
facts. First, even in the absence of inertial behavior, the study of durable consumption is affected
by traditional aggregation problems which prevent the use of a representative agent framework.
Second, to characterize the evolution of aggregate expenditure is necessary to characterize the
process which moves the state variable in the absence of active actions on the part of the household.
While some of the elements that determine this behavior can be studied within an equilibrium
framework, the model presented in this paper is silent about them.

In the last part of the paper, I circumvent these problems by focussing on the differences,

implied by the estimated parameters, between models with and without inertial behavior.
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Appendix 1. Data

Most of the data used in this paper come from the Consumer Expenditure Survey. The mea-
sure of non durable consumption is constructed according to the following procedure. First, non
durable consumption is defined as total consumption minus expenditure on durable commodities,
health, education and housing. For those observations that complete four interviews, annual con-
sumption is defined as the sum of the twelve monthly figures they report. The observations with
complete interviews are then used to estimate a seasonality model for non durable consumption.
The coefficient on the monthly dummies estimated from this model are then used to correct the
total consumption figure for those households who do not complete four interviews. Basically,
rather than multiplying the total observed consumption by 12/n (where n is the number of months
for which we have data), the procedure adopted keeps into account which months each household
misses.

The price indexes for non durable consumption and automobiles are computed as a Stone
price indexes of the various components (new and used cars for the latter) using group expenditure
means as weights. The original price indexes are taken from the BLS detailed CPI tape and are
monthly, regional prices. The cells are defined by the interactions of cohort, education, regional and
time dummies. Therefore, the price indexes present both time series and cross sectional variation.
The latter is partly across education groups (and it is caused by difference in expenditure shares)
and partly regional.

The family variables used in the analysis come from the family income and charateristic file
and refer to the last interview completed by each household.

The estimation of the value of the stock of cars was by far the most difficult task of the data
construction process. First of all, I collected data on used cars on a large number of models and
makes from the Kelley Blue Books for used cars and the Kelley blue Books for Older Cars. The
price of each model was taken from the July issue of each year from 1984 to 1988. I used the retail
price and averaged among the prices for the various options.*

These prices were then matched with the information on the cars to estimate a value of the
stock available to each household at the beginning and at the end of the observation period. In some
cases [ had to average over prices of different 'vintages’ because the CEX, for older automobiles,
gives only an interval for the vear in which the car was built. Because the price information was
sampled only once a year the value of the stock of cars varies without changing the composition of
the stock only for those households who complete the four interview. In this sense the use of the
variable measuring the length of the observation period in the band equation is important.

For some households the information on its cars was too vague to allow a reliable estimate of
the value of one or more cars. All households with incomplete information on the value of the car
stock were dropped from the sample. I also dropped from the sample all households headed by
somebody younger than 21 or older than 75, those residing in rural areas, those living in student
accomodation and those with incomplete or missing information on consumption.

The rental cost of cars rc¢ is construced using the following expression:

L(L+7)—(1-8)x*

1+r
where p* is the BLS price index on new cars, x* its rate of change, r a measure of the real interest
rate (computed as the municipal bond rate minus the actual rate of inflation in the CPI), and §

rc=p

! In theory one could collect monthly price information and prices for several options on which

information exists in the CEX vehicle file exist. Limitation of resources prevented this level of
detail.
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is a household specific depreciation rate. This last quantity is obtained by first estimating an age
specific depreciation profile using the Blue Book price data from 1984 to 1988 (without allowing
for vintage or model effects) and then assigning to each household a rate of depreciation based on
the age of the cars owned.

Appendix 2. Numerical methods used in the maximization of the likelihood func-
tion

The likelihood function derived in section (3) was maximized using a sequential quadratic
programming algorithm in which the search direction is the solution to a quadratic programming
problem. The gradient of the likelihood function was computed numerically. The algorithm is
implemented by NAG subroutine EO4UCF and allows the consideration of linear, non-linear and
inequality constraints on the parameters.

The likelihood function involves the evaluation of a large number of multiple integrals that
have to be computed numerically. Notice that all the integrals in the likelihood function can
be written so that the interior integrals are the distribution function of a univariate or bivariate
gaussian function for which standard Fortran functions exist in most numerical libraries. The last
integral is then obtained usii.g either Gauss-Legendre or Gauss-Hermite quadrature formulae.

Some attention was devoted to the number of points used in the integration formulae: I
increased the number of points until the likelihood function did not change to the seventh significant
figure. I also checked, for different parameter values, the value obtained by the quadrature formulae
with those obtained computing the integrals with an adaptive method with an absolute error of
1075, In the end, I use 20 points of integration. One evaluation of the likelihood function with 20
points of integration takes about 10 CPU seconds for the reduced sample on a Sun Sparc-10 Mod.
51. As a comparison, using the adaptive method of integration, it would take more than 10 times
as much.

Given that I typically estimate 50 to 70 parameters, and that derivatives are computed nu-
merically, each iteration takes from 500 to 700 seconds. It typically takes about 100 iterations to
achieve convergence.

Standard errors are computed by using the outer product of the score evaluated at the con-
vergence point.
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Age

Beg. of period K
Beg. of period K
(K > 0)

Beg. of period Z

Beg. of period Z
(Z > 0)

Non dur. consum.

Income
No. of cars

No. of
children 0-2
No. of
children 3-15
No. of males
older than 16
No. of females
older than 16
No of earners

% with at least
one car

% of high sch.
dropouts

% of high sch.
graduates

% of college
graduates

% blacks
% female heads

Number of obs.

Table 1

Descriptive Statistics

Mean St. dev.
44 .4 15
5719 5760
6832 5124
0.561 0.520
0.656 0.505
11560 7237
22658 21227
2.10 1.72
0.09 0.30
0.61 1.00
0.97 0.68
1.05 0.63
2.44 0.87
87.8

20.90

54.16

24.94

12.6

31.6

21628



Table 2

Composition of the sample by transaction types

Frequency Percentage
Households who 466 2.15
downgrade to zero
Households who 2002 9.26
downgrade
Households who 11789 54.51
do not transact
Households who 4020 18.59
up-grade
Households who 718 3.32
up-grade from zero
Households with 2633 12.17

no cars

Total 21628 100.00



Table 3

Probit models for upgrading and downgrading

Upgrade Downgrade
age -0.002 0.010

(10.006 ) (0.006)
age® -0.000 0.000

( 0.000 ) (0.000)
males 0.153 0.185
over 16 (0.021) (0.022)
females 0.101 0.096
over 16 (0.020) (0.022)
children -0.005 0.038
3-15 (0.011) (0.012)
children 0.023 0.048
0-2 (0.034) (0.038)
high sch. 0.111 0.125
dropouts (0.034) (0.038)
high sch. 0.128 0.129
graduates (0.026 ) (0.029)
female -0.168 0.030
head { 0.028 ) (0.031)
black -0.251 0.090
head (0.035) (0.038)
car bought -1.808 0.319
in the last (0.037) (0.047)

year



Table 3 (ctd.)

Upgrade Downgrade
no earners -0.588 -0.350
(0.060) (0.066)
1 earner -0.250 -0.217
(0.045) (0.049)
2 earners -0.073 -0.097
(0.039) ( 0.042)
northeast -0.070 -0.142
(0.031) (0.036)
midwest 0.108 0.016
(0.029) (0.032)
south 0.052 -0.042
(0.029) (0.032)
beginning -0.747 0.485
of period Z (0.028) (0.022)
log likelihhod -9218.7 -7167.5

Note: Asymptotic standard errors tn parentheses. The ezplanatory variables include also year
dummaies and a constant.



Table 4

Estimates of Ss Rule
Observable bands

Target equation

Coeff. St. Err. Coeff. St. Err.
const. 1.274 0.285 spouse hours 0.130 0.066
age -0.019 0.008 No earner 0.078 0.078
age squared 0.00025 0.0001 1 earner -0.043 0.051
Males > 16 -0.071 0.029 high sc. drop.  -0.0886 0.051
Females > 16 -0.023 0.029 high sc. grad 0.004 0.039
children 3-15 -0.066 0.018 male head 0.108 0.045
children 0-2 -0.063 0.054 non-black head 0.053 0.051
rental pr. cars  -0.231 0.142 north east -0.032 0.018
rel.price fuel 0.350 0.087 mid west 0.086 0.017
head hours 0.085 0.058 south 0.072 0.017

Lower band equation Upper Band equation

Coeff. St. Err. Coeff. St. Err.
age -0.028 0.023 age -0.070 0.021
age squared 0.0004 0.0003 age squared 0.001 0.000
Males > 16 -0.383 0.077 Males > 16 -0.375 0.074
Females > 16 -0.203 0.076 Females > 16 -0.197 0.074
children 3-15 -0.084 0.046 children 3-15 -0.203 0.045
children 0-2 -0.091 0.144 children 0-2 -0.067 0.132
head hours 0.078 0.159 head hour 0.239 0.147
spouse hours 0.253 0.176 spouse hours 0.128 0.160
1O earners 1.020 0.203 no earners 0.641 0.197
one earner 0.143 0.137 one earner 0.439 0.125
high sc. drop. -0.152 0.137 high sc. drop.  -0.144 0.125
high sc. grad. -0.069 0.106 high sc. grad. -0.189 0.096
male head 0.017 0.121 male head -0.026 0.112
non black head -0.306 0.142 non black head -0.123 0.129
constant 0.810 0.522 constant 1.953 0.481
a4 0.908 0.008 ay 2.351 0.011
Pd.b 0.802 0.004 log likelihood -24317.57

Note: the equations for the band also include time dummaies, which are not reported to save space.



Table 5

Estimates of Ss Rule
Unobservable bands

Target equation

Coeft. St. Err. Coeft. St. Err.
const. 0.702 0.261 spouse hours 0.112 0.042
age -0.021 0.005 No earner 0.143 0.051
age squared 0.0003 0.0001 1 earner 0.004 0.032
Males > 16 -0.062 0.018 high sc. drop. -0.065 0.032
Females > 16 -0.045 0.019 high sc. grad 0.024 0.025
children 3-15 -0.084 0.011 male head 0.017 0.028
children 0-2 -0.075 0.036 non black head -0.024 0.031
rental pr. cars  0.154 0.156 north east -0.041 0.020
rel.price fuel 0.329 0.064 mid west 0.112 0.019
head hours 0.082 0.037 south 0.115 0.019

Lower band equation Upper Band equation

Coeft. St. Err. Coeft. St. Err.
age -0.031 0.020 age -0.056 0.018
age squared 0.001 0.000 age squared 0.001 0.000
Males > 16 -0.890 0.077 Males > 16 -0.787 0.062
Females > 16 -0.698 0.075 Females > 16 -0.390 0.060
children 3-15 -0.236 0.047 children 3-15 -0.191 0.035
children 0-2 -0.258 0.152 children 0-2 -0.116 0.105
head hours -0.132 0.147 head hour 0.343 0.118
spouse hours 0.288 0.176 spouse hours 0.586 6.129
no earners 1.913 0.180 no earmners 0.346 0.186
one earner 0.608 0.131 one earner 0.929 0.100
high sc. drop. -0.091 0.124 high sc. drop. -0.487 0.103
high sc. grad. -0.092 0.099 high sc. grad. -0.454 0.076
male head -0.464 0.109 male head 0.116 0.091
non black head -1.174 0.117 non black head -0.128 0.109
constant 1.731 constant 2.001 0.404
od 0.701 0.007 oy 2.574 0.013
Pd.b 0.530 0.004 log likelithood -20021.03

Note: the equations for the band also include time dummies, which are not reported to save space.



Table 6

Mean estimated adjustment probabilities

Observ. bands Unobservable bands
from 4 from 5

(1) 0.133 0.234

(2) 0.174 0.239

(3) 0.082 0.100

(4) 0.155 0.109

Prob. of zero  0.188 0.159

Note: (1) upgrading (conditional on Z,- > 0).
(2) upgrading (conditional on Z,- =0).
(8) downgrading to positive (conditional on Z,- > 0).

(4) downgrading to zero (conditional on Z,- > 0).

Sample

Frequencies

0.220

0.213

0.110

0.025

0.156
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Table 7

Autocorrelations of aggregate changes in Z

Ss rule

-0.3299
-0.1063
-0.0245
-0.0134

Ss rule

-0.3415
-0.0999
-0.0193
-0.0167

model with observable bands

(coefficients from table 4 )

without frictions

-0.4937
0.0019
-0.0059
0.0039

model with unobservable bands
(coefficients from table 5)

without frictions

-0.4947
0.0027
-0.0054
0.0032

quadratic costs of adj.

-0.2721
-0.1135
-0.0553
-0.0192

quadratic costs of adj.

-0.2735
-0.1129
-0.0545
-0.0196



Table 8a

Aggregate impulse response functions in different models

Permanent shock of 0.1 to desidered stock

model with observable bands
(coefficients from table 4 )

Ss rule without frictions quadratic costs of adj.
lag
0 0.0611 0.0994 0.0499
1 0.0274 0.0125 0.0280
2 0.0171 0.0129 0.0188
3 0.0148 0.0145 0.0156
4 0.0124 0.0118 0.0129

model with unobservable bands
(coefficients from table 5 )

Ss rule without frictions quadratic costs of adj.
lag
0 0.0600 0.0995 0.0499
1 0.0254 0.0128 0.0281
2 0.0164 0.0131 0.0188
3 0.0149 0.0142 0.0154
4 0.0118 0.0123 0.0130



Table 8b

Aggregate impulse response functions in different models

Transitory shock of 0.1 to desidered stock

model with observable bands

(coefficients from table 4 )

Ss ruie without frictions quadratic costs of adj.
lag
0 0.0611 0.1013 0.0502
1 -0.0319 -0.0853 -0.0214
2 -0.0093 0.0016 -0.0088
3 -0.0021 0.0007 -0.0038
4 -0.0012 0.0004 -0.0018

model with unobservable bands
(coefficients from table 5 )

Ss rule without frictions quadratic costs of adj.
lag
0 0.0601 0.1008 0.0501
1 -0.0325 -0.0854 -0.0214
2 -0.0075 0.0010 -0.0090
3 -0.C,23 0.0007 -0.0038
4 -0.Lul3 0.0001 -0.0019
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