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Abstract — The New IRAM KIDs Array (NIKA) is a 

pathfinder instrument devoted to millimetric astronomy. In 2009 

it was the first multiplexed KID camera on the sky; currently it is 

installed at the focal plane of the IRAM 30-meters telescope at 

Pico Veleta (Spain). We present preliminary data from the last 

observational run and the ongoing developments devoted to the 

next NIKA-2 kilopixels camera, to be commissioned in 2015. We 

also report on the latest laboratory measurements, and recent 

improvements in detector cosmetics and read-out electronics. 
Furthermore, we describe a new acquisition strategy allowing us 

to improve the photometric accuracy, and the related automatic 

tuning procedure. 

 
Index Terms — Auto-tuning, KID, Hilbert LEKID, mm-wave 

astronomy, Modulated read-out, NIKA, NIKA2, Sky dip. 

 

I. INTRODUCTION 

INETIC INDUCTANCE DETECTORS (KIDs) have 

recently drawn the attention of the low-temperature 

detectors community. Reduced fabrication complexity, high 

sensitivity, small time constants and most notably the intrinsic 

capability to frequency multiplexed readout open new 
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possibilities to applications that need very large array size 

and/or high speed read-out [1] . Lumped Element Kinetic 

Inductance Detectors (LEKIDs) [2] designed and fabricated in 

our collaboration have already shown good on-sky 

performance as demonstrated by recent NIKA observing runs.  

The NIKA camera has been developed in Grenoble to work 

at the focal plane of the IRAM (Institut de Radioastronomie 

Millimétrique) 30-m telescope at Pico Veleta. In its latest 

configuration, the instrument consists of a dual-band camera 

with band centered at 150 GHz and 240 GHz, equipped with 

respectively 132 and 224 pixels based on LEKIDs. The first 

four NIKA commissioning campaigns at IRAM 30-m 

telescope [3] [4] demonstrated performances comparable to 

state-of-the-art bolometer arrays, operating at the same 

wavelengths [5]. Since 2012, the NIKA camera the NIKA 

camera has been permanently installed at the IRAM 30-m 

telescope. 

 We report here on the latest improvements of the instrument 

adopted during the last two observational runs, carried out in 

October 2011 (3
rd

 run) and November 2012 (5
th

 run). We 

present the new HILBERT pattern for LEKID detectors, 

allowing us to increase the quantum efficiency of LEKIDs. 

We briefly describe our read-out electronics, focusing on the 

new modulated calibration method. We also describe the two 

main improvements in the acquisition strategy introduced in 

the last run: the absolute sky dip calibration and the real time 

auto-tuning. We conclude by presenting our results from the 

last observational run, including the sensitivity, the resolution 

and the cosmetics of the focal plane of the NIKA instrument. 

II. THE NIKA CAMERA 

The IRAM 30 meters telescope is located in a dry area at 

3000m a.s.l. on Pico Veleta, Spain. With a Nasmyth  field of 

view of 6.5 arcmin and its remarkable angular resolution, it is 

among the most powerful telescopes in the millimeter band. In 

order to completely exploit its potential, large arrays of 

thousands of detectors are needed. Full-sampling arrays with 

up to thousands of bolometers are reaching maturity, but 

further array scaling is limited by the multiplexing factor of 

the read-out electronics. For this reason it is worth developing 
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a camera based on an alternative technology that does not 

suffer from this limitation. Thanks to their intrinsic capability 

of frequency domain multiplexing, Kinetic Inductance 

Detectors provide a very effective solution. 

The NIKA camera is a dual-band KIDs camera custom 

designed for the IRAM 30-m Nasmyth-focus telescope. It 

consists of two arrays of KIDs, cooled down to about 70 mK 

with a 4He-3He dilution cryostat. The two arrays have their 

maximum of sensitivity at about 140 GHz and 240 GHz, with 

respective angular resolution (FWHM) of 18.5 arcsec and 12.5 

arcsec, the effective fields of view are about 2.1 and 1.7 

arcmin in diameter. For the first four runs, the number of 

detectors was the same, 132, for the two different bands. For 

the fifth run in November, 2012, the 240 GHz channel was 

increased to 224 pixels. 

III. HILBERT LEKIDS 

In the 3
rd

 observational run on October 2011 a new type of 

LEKID was adopted: the Hilbert LEKID. It consists in a 

lumped element KID in which the classical meander geometry 

has been replaced by a Hilbert-like fractal pattern of the 3
rd

 

order [6]. The Hilbert LEKID has an absorbing area uniformly 

filled by the pattern shown in fig. 1, that allows the detector to 

be sensitive to the two polarizations, with no preferential 

direction in absorption (see fig. 2). 

 Maintaining the same performances for each of the two 

polarizations, a factor 2 in quantum efficiency is readily 

achievable by using a dichroic instead of a wire grid polarizer 

to split the beam. 

IV. READ-OUT AND ACQUISITION STRATEGY 

From October 2011, we introduced a new relative 

photometric calibration that allowed us to improve its 

accuracy by a factor 3. To better understand how it works and 

what actually are the main improvements with respect to the 

old acquisition strategy, a quick overview of the read-out 

electronics system is given. 

In order to monitor the signal of kilo-pixels arrays, the 

NIKA readout electronics adopts the Frequency Domain 

Multiplexing approach typical of KIDs arrays [7]. Briefly, 

each electronic board generates the two frequency combs 

(each tone phase shifted by 90° between I and Q), which are 

then up-converted to the frequency band of our resonators by 

mixing them to a Local Oscillator (LO) signal. The resulting 

comb of tones is fed to a programmable attenuator for power 

adjustment. After passing through the cryostat and the low 

noise amplifier, the signal is down-converted back to the 

baseband. Then it is acquired using a fast ADC by comparing 

this signal to the reference one sent at the cryostat input (see 

fig. 3). Acquiring for each resonance the (I, Q) vector, we can 

read-out the signal both in amplitude and in phase. We decide 

to use phase instead of amplitude, because of its higher 

responsivity. We then monitor the on-resonance phases of 

each pixel. 

In order to convert the raw data to sky signal, we need to 

calibrate the change in power for a given change in phase. 

Because the shift in resonance frequency of the KIDs is 

proportional to its incident power load [8], we only need a 

relation that link the shift in resonance frequency ( f) and the 

shift in phase ( ) (relative photometric calibration). A 

calibration source on the sky then provides us with absolute 

photometric calibration. 

A. Relative photometric calibration: the modulated read-out 

We describe here the two different methods we have used 

along the campaign to calibrate the on-resonances shifts in 

phase. 

The old approach was to characterize the response of the 

 
Fig. 2. Comparison of the two polarization response for an Hilbert LEKID 

array. For each pixel of the array the response in resonance frequency shift 

are plotted 
 

 

 

Fig. 1.  On the left, standard LEKID design, sensitive only to one 

polarization. On the right, Hilbert LEKID design, sensitive to the two 
polarization. 

 

 

Fig. 3. A schematic overview of the NIKA setup for an electronic board. By 
using IQ mixers, the LO signal at GHz frequencies (2-6 GHz) is used to 

up/down convert the IQ comb at the input/output of the cryostat. The signal 

is adjusted in power, fed to the KID array and read after the amplifiers. 
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detectors before the observations. Thanks to a frequency 

sweep around the resonances, we fitted the center of the 

typical IQ resonance circles to recalculate the phase with 

respect to the fitted center (see fig. 4), so that the shift in phase 

is linear with the incident power [9]. This sort of off-line 

calibration suffers from changes in background conditions. 

Resonance circles rapidly change with the power load, shifting 

the optimal working point and lowering photometric accuracy, 

so that many sweeps are needed to recalibrate the resonances. 

To avoid these drawbacks, from the 3
rd

 run on, a new 

approach has been adopted. We modulate the LO carrier 

frequency, evaluating for each point not only (I,Q), but also 

(dI/df, dQ/df), see fig. 5. This provides us with a “reference 

gradient” that can be used to calibrate in frequency the shifts 

of the resonance. This can be done by calculating the vector 

( I, Q) between two successive observations, and projecting 

it on the reference gradient. The shift in frequency f  is given 

by 

 

LOf
dfdQdfdI

dfdQdfdIQI
f

2),,/(

),,/(),(
 (1) 

 

where fLO is the amplitude of the LO modulation (see fig. 5). 

The main advantage of the modulated read-out is that the 

reference gradient vector is automatically updated as the 

observing conditions change, obtaining a sort of real time 

calibration. This new calibration method leads to an 

improvement by a factor 3 in terms of relative photometric 

accuracy compared to the previous run [4].  

 

B. Absolute photometric calibration: the sky dip 

In order to estimate the incoming flux from an astrophysical 

source, another crucial point is to correct for the contribution 

of the atmosphere. We can estimate its opacity  starting from 

the KIDs resonances themselves. The idea is that as the 

atmospheric opacity increases, the resonance frequencies 

diminish due to the increasing background load on the 

detectors. In principle we are thus able to estimate   by 

calculating the mean value of all the resonance frequencies 

<f0i>. To calibrate the relation  = (<f0i>) we first used the 

resident tau-meter at the Pico Veleta observatory.  

A new approach, not requiring the tau-meter anymore, 

consists in a sky dip with the telescope, in order to trace the 

elevation vs. <f0i> curve and then evaluate  by its fit. This 

provides us with an integrated tau-meter and a powerful self-

consistent strategy to evaluate atmospheric opacity, that brings 

absolute photometric accuracy to around the 10%  (see fig. 6).  

V.  AUTO-TUNING 

In this paragraph we focus on the strategy to adjust the 

resonance frequencies during the observations. As already 

said, the observing conditions often change rapidly. These 

changes modify the optimal working point, so that a sweep in 

frequency is required at the end of each observation, to tune 

 

Fig. 4. KID calibration (old approach). On the left, I–Q frequency sweep 
across a resonance. The complex phase is calculated by fitting each 

resonance to a circle (shown); the phase angle is then determined with 

respect to the center of the resonance circle as indicated by the ×. The 
minimum transmission is marked with a small circle. On the right, frequency 

shift vs. complex phase. The × on the curve indicates the maximum 

frequency shift when Mars transits the pixel 

 

 
Fig. 5. Modulated read-out. On the left, a classical sweep in frequency 

around a resonance (red circle) in the IQ plane, f0 is the resonance frequency. 

The two points in frequency f0 + f and f0 – f are indicated by the × on IQ 
circle. On the right, IQ circle (blue) changing with an incoming power. The 

gradient vector (black) is tangent to the resonance circle in the working 

point. It is used to obtain the shift in frequency simply projecting the vector 

( I, Q) between two successive observations (blue vector) on this gradient. 

 
Fig. 6. Absolute photometric calibration. Here is plotted the measured flux 

from Uranus, given in resonance frequency shift units, for the two channels 

of the NIKA camera. The sky dip method shows a dispersion of about 10% 
between measurements from different observations. 
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again the frequencies. This wastes a lot of time at the expense 

of scientific measures. Our auto-tuning procedure is an 

algorithm that quantifies the shift in frequency due to 

background fluctuations, without the need for a frequency 

sweep. 

The auto-tuning uses the angle  between the vectors (I, Q) 

and (dI/df, dQ/df) to characterize the resonance (see fig. 7). 

The tuning curve  vs. f is obtained by the initial frequency 

sweep. First of all, we rescale the  angle so that  on the 

resonance. Suppose now that after some time we find . 

This means that the resonance shape has changed and its 

optimal frequency has shifted. We are actually on another  

vs. f tuning curve, the one corresponding to the present 

background conditions (see fig. 8). The auto-tuning algorithm 

evaluates the shift in frequency as we still were on the last 

tuning curve and re-tune applying this correction. The method 

works properly (converges) if the changes in background are 

not so strong, in such a way that we remain in the linear region 

of the tuning curve. We can iterate the process as many times 

as we want. A single iteration of the auto-tuning process only 

takes a few seconds, so that we are able to complete a full 

tuning cycle in a dozen of seconds, saving a lot of 

observational time. 

VI. LAST RESULTS 

During the scientific run on November 2012, the 140 GHz 

channel was used with 127 (on 132) detectors with mean 

effective sensitivity of 15 mJy s
1/2

 per beam, while 91 

detectors with mean effective sensitivity of 81 mJy s
1/2

 per 

beam were used for the 240 GHz channel. The latter 

sensitivity was due to a malfunction in a cold amplifier during 

the campaign. Using only the 8 central detectors of this array, 

the expected mean effective sensitivity of 32 mJy s
1/2

 per 

beam is recovered. The fig. 9 shows the geometry of the two 

arrays. 

VII. CONCLUSION 

The NIKA camera has demonstrated the capability of 

multiplexed LEKIDs arrays to take significant data from 

astrophysical sources. The sensitivities achieved by the NIKA 

camera are comparable to performances of the state-of-art of 

bolometers. They demonstrated the potential on the next 

generation NIKA-2 kilo-pixels camera. NIKA-2 will have 

1000 detectors at 140 GHz and 2x2000 detectors at 240 GHz, 

providing in that band also measurement of the linear 

polarization. The NIKA-2 instrument, to be commissioned in 

2015, will provide a next generation mm-wave facility for 

astronomical and cosmological observations with remarkable 

sensitivity, mapping speed and angular resolution. 

I 
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Fig. 7. Definition of the  angle  as the angle the vectors  (I, Q) and  (dI/df, 

dQ/df) in the IQ plane. 
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Fig. 8. Real time auto-tuning. All the plots show: on the y-axis the angle  

between the vectors (I, Q) and (dI/df, dQ/df), rescaled to 0 on the resonance; 

on the x-axis the shift in frequency f with respect to the initial frequency f0. 
(Top) At the end of the initial sweep, we are in the working point indicated 

by a blue ×, that is at f0, moving on the blue tuning curve. As the 

observational conditions change (but the frequency we use to feed the 
resonance)  the working point shifts to the red ×, because the tuning curve 

has changed to the red one shown on the bottom plot. As the exact form of 

the red tuning curve is unknown, (Middle) we calculate the shift in frequency 

that would be needed to reset the f if we still were on the blue tuning curve. 

(Bottom) Applying this correction to f0 we are actually moving on the new 

tuning curve (the red one). At the end we are on the working point indicated 
by the black × and then we have approached the new resonance frequency f0 

new. We can finally use these last wo points (black and red ×) to evaluate the 

slope of the new tuning curve and iterate the process. 

 f 

f
0 new
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Fig.  9. Optical properties of the two NIKA LEKIDs arrays at 240 GHz (top) 
and 140 GHZ (bottom). On the left is shown the image of the focal planes. 

Each point represents the position of one of the functioning pixel. On the 

right, the histogram of the Full Width Half Maximum value for the beams of 
the detectors, that determines the angular resolution of the instrument. 

 


