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ABSTRACT 

The single most frequent chromosomal translocation associated with 

childhood Acute Lymphoblastic Leukaemia is the t(12;21) rearrangement, that 

creates a fusion gene between TEL (ETV6) and AML1 (RUNX1). Although TEL-

AML1+ patients have a very good prognosis, relapses occur in up to 20% of cases 

and many patients face long-term side effects of chemotherapy. Our laboratory has 

previously shown that TEL-AML1 regulates Signal Transducer and Activator of 

Transcription 3 (STAT3) activation, which is critical for survival of the leukaemic 

cells. In this study, inhibition of STAT3 in TEL-AML1+ cells results in decreased 

SMAD7 gene expression. SMAD7 is an antagonist of TGF-β signalling, functioning 

through a negative feedback mechanism, but is also known to function in other 

biological pathways. In order to investigate the role of SMAD7 in TEL-AML1+ 

leukaemia, lentiviral mediated SMAD7 knockdown was performed in human TEL-

AML1+ cell lines. SMAD7 silencing inhibited proliferation of TEL-AML1+ cell lines, 

eventually leading to growth arrest and apoptosis. Furthermore, our data showed that 

this effect is not mediated through TGF-β signalling, indicating that SMAD7 was 

functioning through an alternative pathway. We also observed growth arrest 

following SMAD7 knockdown in other ALL and AML subtypes. Furthermore, 

silencing of SMAD7 in TEL-AML1+ ALL cells transplanted into immunodeficient 

mice impaired disease progression in vivo, resulting in prolonged disease latency. To 

investigate the essential pathways regulated by SMAD7 in these leukaemic cells, we 

performed RNA-sequencing analysis on TEL-AML1+ cells following SMAD7 

knockdown. Global gene expression analysis revealed SMAD7 to be a regulator of 

cholesterol biosynthesis, a pathway critical for leukaemia cell survival. Our 
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experiments establish a novel transcriptional pathway operating specifically in 

t(21;21) ALL, but regulating downstream pathways essential for ALL in general. 

This study highlights new therapeutic opportunities for ALL.  
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CHAPTER I. INTRODUCTION 

1.1 Haematopoiesis  

 
Haematopoiesis is the formation and development of blood cells. Blood is 

one of the most regenerative tissues, with approximately one trillion cells generated 

daily in human adult bone marrow. It is a well-studied process in mouse using 

functional repopulation assays, providing insight for the human model of 

haematopoiesis (Doulatov et al., 2012). Establishment of the haematopoietic system 

begins in the early stages in the embryo in vertebrates, functioning throughout 

embryonic and adult life. The first haematopoietic cells are produced in the 

embryonic yolk sac, a process known as primitive haematopoiesis (Orkin, 2000). 

This is followed by progression to the allantois and placenta. Following this, the 

production of blood cells enters an intra-embryonic site known as the aorta-gonad-

mesonephros (AGM) before migrating to the foetal liver, which is the major site of 

blood cell expansion. The haematopoietic process in the embryo is known as 

definitive haematopoiesis (Orkin, 2000). Shortly after, the blood cells migrate to the 

spleen and then at the time of birth, they seed the bone marrow, which becomes the 

main site of haematopoiesis activity after birth. Interestingly, transient populations of 

blood cells have been observed in the early stages of embryo. Primitive erythrocytes, 

macrophages and megakaryocytes are found to be present in the extraembryonic sac 

but disappear as the embryo develops further (Chen et al., 2011).  

 

 The haematopoietic process occurs in a hierarchical manner with 

haematopoietic stem cells (HSCs) at the apex, exhibiting two main characteristics: 
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the capacity to self-renew and to differentiate into various haematopoietic progenitor 

cells (HPCs). These HPCs become increasingly restricted in their lineage potential, 

generating lineage specific precursors that eventually differentiate into mature blood 

cell types (Till and McCulloch, 1980). Different lineage markers identify the 

populations of cells generated. Although there are many similarities in the 

haematopoietic system between mice and humans, cells from the two species express 

different markers. Murine HSCs express the markers Sca1 and the signalling 

lymphocyte activation molecule family member 1 (SLAM1/CD150), whilst human 

HSCs do not express them (Larochelle et al., 2011).  In mouse, HSCs are present in a 

small fraction of Lin-Sca1+c-Kithi (LSK) bone marrow cells. Within the LSK fraction, 

long-term self-renewing HSC (LT-HSC) reside in the CD34-CD38+ fraction, whereas 

short-term HSCs (ST-HSCs), which have short-term self-renewal capacity, are found 

in the CD34+CD38- compartment (Matsuoka et al., 2001) (Tajima et al., 2001).  

Human HSCs are found to be present in the CD34+CD38- fraction of cells and are 

found within the Lin-CD34+CD45RA-CD90+Rhodamine123lowCD49f+ population 

(Notta et al., 2011). However, recent studies have shown a population of CD34- cells 

expressing HSC-like features in the human bone marrow. Furthermore, this 

population of cells are shown to be present above CD34+ cells in the haematopoietic 

hierarchy, suggesting significantly greater similarity between mouse and human 

haematopoiesis than previously appreciated (Anjos-Afonso et al., 2013).  

 

 In the classical model of haematopoiesis, ST-HSCs in the LSK population, 

expressing fms-related tyrosine kinase 3 (Flt3), give rise to multipotent progenitors 

(MPPs) that have lost self-renewal capability (Fig. 1). These MPPs in turn 

differentiate into common lymphoid progenitors (CLPs) and common myeloid 

progenitors (CMPs). The CLPs are lymphoid cell lineage restricted progenitors, 
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whilst the CMPs are myeloid cell restricted progenitors. The CLPs generate natural 

killer (NK) cells, B cell progenitors (Pro-B) and T-cell progenitors (Pro-T) which in 

turn give rise to the three main lymphoid cell types: T cells, B cells and NK cells. 

CLPs express low levels of c-Kit but express high levels of interleukin-7 receptor α-

chain (IL-7Rα) and Flt3. The CMPs generate megakaryocyte-erythrocyte restricted 

progenitors (MEPs) and granulocyte-macrophage-restricted progenitors (GMPs) 

which in turn give rise to the mature myeloid lineage cells: erythrocytes, 

megakaryocytes, granulocytes and monocytes (Bhandoola and Sambandam, 2006). 

The CMPs, unlike CLPs, do not express IL-7Rα but do express c-Kit, therefore 

residing in the Lin-Sca1-c-Kit+ population. To further distinguish the myeloid 

progenitors, the Fcγ receptorII/III (FcγRII/III) and CD34 are used. MEPs have the 

phenotype FcγRII/IIIloCD34- whilst GMPs are FcγRII/IIIhiCD34- (Akashi et al., 

2000).  
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Classical model 

LT-HSC 

ST-HSC 

CMP 

MEP GMP Pro B Pro T 

CLP 

B lymphocytes T lymphocytes 
Mature myeloid lineages 

Long-term haematopoietic stem cells (LT-HSCs) have the potential to self-renew and give rise to short 

term haematopoietic stem cells (ST-HSCs) that have limited self-renewal capacity. The ST-HSCs then 

differentiate into common myeloid progenitors (CMPs) or common lymphoid progenitors (CLPs). 

CLPs give rise to NK cells, B cell progenitors (Pro-B) and T-cell progenitors (Pro-T), which then give 

rise to mature B lymphocytes and T lymphocytes, the mature lymphoid lineage cell types. The CMPs 

give rise to megakaryocyte-erythrocyte restricted progenitors (MEPs) and granulocyte-macrophage 

restricted progenitors (GMPs), which give rise to mature myeloid lineage cell types. Adapted from 

(Iwasaki and Akashi, 2007)      

 

Figure 1 - Classical model of haematopoiesis  
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However, beside the classical model, two other models have been proposed 

for haematopoietic development. The second model, known as the alternative model, 

does not support a strict division into CLPs and CMPs, as it identifies a population of 

cells with combined lympho-myeloid differentiation potential but unable to 

differentiate into erythroid and megakaryocyte lineages (Adolfsson et al., 2005) (Fig. 

2A).  Using Flt3 as a marker, it was proposed that this LSK Flt3+ population of cells 

had the potential to differentiate into granulocytes, macrophages, B cell and T cell 

lineages. This population of cells was labelled as lymphoid-primed multipotent 

progenitors (LMPP), since although this population preferentially differentiates into 

lymphoid progenitors it was capable of differentiating into GMPs. The alternative 

model, therefore, has an asymmetric hierarchy where the ST-HSC can generate 

MEPs and LMPPPs, and excludes the existence of CMPs (Adolfsson et al., 2005).  

 

 A third model known as the composite model, combines the alternative and 

classical models of haematopoiesis (Fig. 2B). The composite model takes into 

account the existence of CMPs in the LinSca1-Kit+IL-7Rα-FcγRII/IIIoCD34+ 

compartment, suggesting that ST-HSCs give rise to CMPs and LMPPs. Both CMPs 

and LMPPs have the potential to produce granulocyte-macrophage lineage cells, 

whilst CMPs can also give rise to megakaryocyte-erythrocyte lineage cells and 

LMPPs to B- and T-cell lineages (Adolfsson et al., 2005; Iwasaki and Akashi, 2007).  
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However, a recent study has challenged the stepwise manner of lineage 

commitment in haematopoietic development. This work proposes that while HSCs 

retain self-renewal capacity and multipotency, they can directly generate myeloid-

Pro T Pro B 

LT-HSC 

ST-HSC 

MEP LMPP 

GMP CLP 

A) Alternative model 

Pro T Pro B 

LT-HSC 

ST-HSC 

CMP LMPP 

GMP CLP 

B) Composite model 

MEP 

Figure 2 - Alternative and Composite models of haematopoiesis.  

The alternative and composite models of haematopoiesis show an asymmetric lineage restriction in 

haematopoietic cells. The alternative model (A) shows a less lineage-restricted haematopoiesis 

development by introducing a lymphoid-primed multipotent progenitor (LMPP) population. The 

composite model (B) shows the co-existence of the common myeloid progenitor (CMP) and LMPP 

populations, both capable of generating GMPs. Adapted from (Iwasaki and Akashi, 2007)   
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restricted progenitors with long-term repopulating ability and differentiation 

potential. This model suggests HSCs preferentially produce particular myeloid 

progenitors, such as common myeloid repopulation progenitors (CMRPs), 

megakaryocyte-erythroid repopulating progenitors (MERPs) and megakaryocyte 

repopulating progenitors (MkRPs), but not lymphoid-restricted progenitors 

(Yamamoto et al., 2013). Lymphoid priming was only observed in MPPs and LMPPs 

as previously noted. Furthermore, gene expression patterns between HSCs and 

megakaryocyte lineage cells have previously been shown to be similar, compatible 

with the current findings that MkRPs, MERPs and CMRPs are close to HSCs in the 

haematopoietic hierarchy. Therefore, it is possible that the most primitive HSCs can 

directly give rise to cells restricted to the myeloid lineage compartment, upstream of 

the MPP stage (Yamamoto et al., 2013).   

 

1.2 Molecular control of haematopoiesis  
 

Regulation of HSCs is achieved by internal and external regulatory factors, 

which are fundamental in controlling the different stages of haematopoiesis, 

including stem cell maintenance, lineage commitment and differentiation. 

Transcription factors that regulate gene expression are important in maintaining the 

self-renewal capacity and cell survival of HSCs and determining cell fate in the 

haematopoietic system. Haematopoietic transcription factors include MLL, TEL 

(ETV6), AML1 (RUNX1), c-MYC, PU.1, SCL and LMO2 (Orkin and Zon, 2002). 

Some important transcription factors were originally identified through studying 

their roles in haematological malignancies, using loss-of-function or overexpression 

studies in mice. Studies in knock-out mice have shown crucial roles of several 
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transcription factors in early haematopoietic commitment steps and lineage outcomes 

(Sive and Gottgens, 2014). For example, mixed lineage leukaemia (MLL) was 

identified as a critical transcription factor when Mll-deficient mice were generated by 

homologous recombination in embryonic stem cells. This resulted in an embryonic 

lethal phenotype (Yagi et al., 1998). Furthermore the HPCs isolated from the yolk 

sac and foetal liver from these mice showed impaired clonogenic capacity in vitro 

(Hess et al., 1997; Yagi et al., 1998). Although Mll loss affected early 

haematopoiesis, it did not affect later stages of differentiation. It was also shown to 

be important in self-renewal and promoting proliferation in progenitors. Two Mll 

conditional knock out models also showed its importance in stem cell self-renewal 

and promotion of proliferation of progenitors, although important differences were 

noted in the severity of the haematopoietic phenotype between these models (Jude et 

al., 2007; McMahon et al., 2007).  

 

Knockout studies have shown the importance of Homeobox A9 (Hoxa9) in 

self-renewal of cells, as Hoxa9-/- mice were unable to reconstitute the haematopoietic 

system of transplanted recipient mice (Lawrence et al., 2005). This is also the case 

for growth factor independence (Gli1) ablated mice, most likely due to the role of 

GLI1 as a repressor of p53 activity, which is essential for the quiescent status of 

HSCs (Liu et al., 2009; Zeng et al., 2004). Other effector molecules in the cell cycle 

such as p21 are also involved in maintaining HSCs in a quiescent state (Cheng et al., 

2000). The main pathways controlling regulation of self-renewal in HSCs are the 

wingless-type MMTV integrate site family (WNT) and the Janus kinase (JAK)-

signal transducer and activator of transcription (STAT) pathways. Exposure to WNT 

proteins leads to increased self-renewal activity in vitro and haematopoietic 

reconstitution ability in vivo (Reya and Clevers, 2005). To achieve a balance between 
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self-renewal and differentiation, c-myc avian myelocytomatosis viral oncogene 

homolog (c-MYC) has been shown to control the interactions between HSCs and 

their niche by regulating the expression of N-cadherin and integrins (Wilson et al., 

2004).  

 

PU.1 and GATA-1 are two transcription factors that have been shown to be 

important in lineage commitment. PU.1 expression in the erythroid-myeloid lineage 

results in monocytic differentiation while GATA-1 expression results in erythroid 

and megakaryocytic differentiation (Arinobu et al., 2007). Transcription factors have 

been shown to often inhibit each other, while co-expressed in multipotent cells, 

leading to one gaining dominance over the other and therefore, regulating the 

differentiation process. In this case, GATA-1 has been shown to inhibit PU.1 

expression and activity (Nerlov et al., 2000). A study using mathematical modelling 

has shown that the mutual inhibition and repression of opposing downstream targets 

of the two transcription factors leads to antagonistic interaction in lineage 

commitment (Wontakal et al., 2012).  

 

Many haematopoietic growth factors also play key roles in regulating HSCs. 

Stem cell factor (SCF) and its receptor, c-Kit, are expressed on HSCs and are 

involved in promoting survival of primitive progenitors. They also act with other 

growth factors such as IL-3 and IL-6 to induce proliferation of HSCs (Larsson and 

Karlsson, 2005). The colony stimulating factor (CSF) family are the main group of 

cytokines responsible for myeloid lineage commitment. The multi-CSF (IL-3) 

stimulates a broad range of haematopoietic cell colony types (Metcalf, 2010). One of 

the main cytokines responsible for lymphoid commitment in mice is IL-7. Il-7-/- mice 

exhibit severely impaired B and T lymphopoiesis, since the CLP compartment is 
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dramatically reduced in these mice (Peschon et al., 1994; Puel et al., 1998; Tsapogas 

et al., 2011). However, in contrast to mice, the dependence of IL-7 for human B cell 

development is controversial. While some studies show a role for IL-7 in Pro-B cell 

development, other studies consistently show that B cells can develop independent of 

IL-7 (Prieyl and LeBien, 1996).  Furthermore, cytokines have been shown to be able 

to redirect lineage specification in cells already committed to a particular lineage. 

For example, expression of the IL-2 receptor in CLPs can change their cell fate 

specification towards the myeloid lineage (Kondo et al., 2000).  

 

 The maintenance of HSCs is believed to be controlled by a balance between 

positive and negative factors. Although transcription factors and growth factors that 

positively regulate haematopoiesis have been well established, less is known about 

the negative regulators of haematopoiesis (Larsson and Karlsson, 2005). Tumour 

necrosis factor-α (TNF-α) has been shown to activate Fas, which inhibits self-

renewal of murine LT-HSCs, highlighting two important negative regulators of 

HSCs (Bryder et al., 2001). Furthermore, the immune modulators transforming 

growth factor-β (TGF-β) and interferon-γ (IFN-γ) have been associated with 

negative regulation of haematopoietic progenitors (Larsson and Karlsson, 2005).  

 

1.3 B-cell development 
 
 
 The process of B-lymphocyte development is best understood in mice. B-

lymphocytes are generated from HSCs in the foetal liver during mid to late foetal 

development and then the bone marrow following birth. B cell development in bone 

marrow is continuous throughout life. B cell development begins with lymphoid-

primed multipotent progenitors (LMPPs) that continue through the common 
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lymphoid progenitor stage (CLP) and are CD34+CD10+CD19- (Li et al., 1996; Nunez 

et al., 1996; Rumfelt et al., 2006).  Cell specification is initiated at this stage, with 

progenitors that have an increase in CD19 and a decrease in CD10 expression 

maturing into the pro-B stage (Gounari et al., 2002; Li et al., 1996). At the pro-B cell 

stage, immunoglobulin heavy chain rearrangements begin with rearrangement of the 

D and J segments followed by a second rearrangement joining an upstream V region 

to the DJ segment. Following this rearrangement, cells progress into the pre-B stage 

where they express an immunoglobulin μ chain with a surrogate light chain (LC) to 

form a pre-B-cell receptor (pre-BCR) (Melchers, 2015; Pieper et al., 2013). This 

stimulates pre-B cell proliferation. Finally, these cells undergo immunoglobulin light 

chain rearrangement to become surface BCR-expressing immature B cells. Immature 

B cells then develop into CD34-CD10-CD19+ mature B cells (Blom and Spits, 2006).  

 

 B cell development is a highly regulated process and requires hierarchical 

expression of a multitude of transcription factors. As the process of development 

progresses, gene expression associated with multipotency and stemness give way to 

expression of genes associated with B cell fate. The transcription factors IKAROS 

(IKZF1) (Yoshida et al., 2006), SPI1 (PU.1) (Arinobu et al., 2007) and E2A (Dias et 

al., 2008) are involved in the first stages of transition from HSCs into lymphoid 

progenitors and reduced myeloid lineage potential (Somasundaram et al., 2015). 

IKZF1 plays a fundamental role in lymphoid commitment and specification as Ikzf-/- 

mice are completely deficient in NK, B and T cells. Regarding B cells, they lack the 

pre-pro-B cell transitional population (Georgopoulos et al., 1994; Wang et al., 1996). 

The main function of IKZF1 is to reduce myeloid potential and induce expression of 

lymphoid specific genes. In addition to this transcription factor, studies have also 
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shown that loss of PU.1, E2A and MYB reduce the expression of Flt3 and other 

lymphoid lineage genes (Somasundaram et al., 2015).  

 

 Multipotent progenitors expressing high levels of PU.1 are primed towards 

myelolymphoid development. Absence of PU.1 results in disruption in the formation 

of granulocyte/monocyte progenitors, as well as lymphoid progenitors. Subsequent 

differentiation towards B-lymphoid cells is accompanied by the loss of myeloid 

potential, which involves the interplay between IKZF1 and PU.1 (Somasundaram et 

al., 2015). Although high expression of PU.1 can result in myeloid cell specification, 

intermediate expression stimulates B-lineage cells (DeKoter and Singh, 2000). The 

zinc-finger transcriptional repressor, GFI1, plays a crucial role in reducing the 

transcriptional activity of PU.1 and disrupting its autoregulatory loop driving PU.1 

expression. Its importance in B-lineage cell development has been shown in Gfi1-/- 

mice, where pre-pro-B and pro-B cell generation is impaired (Moroy and 

Khandanpour, 2011).  

 

 E2A is essential for promoting B-lineage specification and differentiation. It 

belongs to the E protein (class I) family of helix-loop-helix transcription factors 

(Dias et al., 2008) and its reduced function as a result of mono-allelic inactivation of 

the E2a gene results in a loss of pro-B cells (Zhuang et al., 1994). E2A is also known 

to regulate expression of the gene encoding the IL-7 receptor (IL-7R) (Dias et al., 

2008). This is necessary for complete commitment to the B cell lineage as deficiency 

in Il-7R or Il-7 itself leads to an early block in B cell development at the pro-B cell 

stage (Peschon et al., 1994) due to impaired Vh gene rearrangement, regulated by 

STAT proteins (Goetz et al., 2004). E2A also regulates the transcription factor, early 

B-cell Factor 1 (EBF1) essential for B-lineage commitment (Reynaud et al., 2008; 
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Smith et al., 2002), which in turn regulates Paired box 5 (PAX5). EBF1 can rescue 

the aberrant B lymphoid phenotype in Ikzf1-/- mice and E2a deficient cells. EBF1 is 

crucial in B cell development as Ebf1-/- mice show a block in differentiation at the 

pre-pro-B cell stage (Lin and Grosschedl, 1995). The main function of EBF1 is to 

induce PAX5 expression, which is initiated at the pro-B cell stage (Fuxa and 

Busslinger, 2007). It has a critical role in maintaining B lineage restriction as 

inactivation of Pax5 allowed generation of multiple haematopoietic cell types from 

cells that would normally be restricted to B lineage commitment (Barberis et al., 

1990; Nutt et al., 1999). Studies using Pax5 knockout mice have suggested that it has 

a different role in B cell development in the bone marrow in comparison to foetal 

liver (Nutt et al., 1997). Whilst Pax5-deficient cells proceeded to the progenitor cell 

stage with normal immunoglobulin gene rearrangement in the bone marrow, B 

lymphoid cells were undetectable in the foetal liver. This suggested a critical role for 

PAX5 during foetal haematopoiesis (Nutt et al., 1997). However, the bone marrow 

cells were not committed to the B lineage, as in vitro culture of these cells in the 

presence of specific lineage cytokines resulted in differentiation into a variety of 

haematopoietic cell types (Nutt et al., 1999).  

 

PAX5 is also known to target genes that encode important components of 

pre-BCR signalling in B cell development, therefore it has a fundamental role in 

signal transduction of pre-BCR and BCR, which result in differentiation into 

immature B cells that are ready to leave the bone marrow (Cobaleda et al., 2007). 

Following successful generation of immature B cells, some newly generated 

immature B cells expressing high-affinity autoreactive BCRs are eliminated, in order 

to positively select for B cells with functional surface BCR expression whilst 

maintaining immunological self-tolerance (Sandel and Monroe, 1999). Following 
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this, B cells enter the peripheral mature B cells pool, where they recognise foreign 

antigens. The response of the B cell to the foreign antigen drives B cell proliferation, 

hypermutation to generate a better fit for the antigen and longevity of the fully 

developed, foreign-antigen specific memory B cell (Melchers, 2015).   

 

 

 

 

 

1.4 Disruption of transcription factor genes   
 

 B-lymphocyte development is controlled by specific transcription factor 

networks, which ensure activation of B-lymphoid lineage cells and silencing of 

alternate cell fates. However, these same regulatory networks can undergo genetic 

alterations contributing to malignant transformation (Somasundaram et al., 2015). 

Mutations, deletions or translocation of many of the genes encoding transcription 

factors essential for B cell lineage commitment and development, such as IKZF1, 

E2A, EBF1, PAX5 and RUNX1 have been associated with leukaemia. Such mutations 
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B cell 

Mature B 
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Figure 3 - B-cell development 

The different stages of B-lymphopoiesis are indicated below the figure. The status of V(D)J 

recombination in the heavy and light immunoglobulin chains are indicated above the respective stages. 

The point of block in B cell development as a result of mice deficient in the transcription factors PU.1, 

E2A, EBF and PAX5 are also shown.   
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can cause a differentiation block at an early stage of development, which is a 

common feature of most leukaemias. For example, analysis of a large set of 

childhood leukaemias found frequent heterozygous deletions of EBF1 and PAX5. 

This may result in a partial block in B cell development, contributing to malignant 

transformation (Mullighan et al., 2007). Furthermore, a block in expression of the 

pre-BCR complex and bypassing pre-BCR checkpoints can cause leukaemic cells to 

evade normal clonal selection (Eswaran et al., 2015). Therefore, appropriate 

expression of genes during B-cell development and differentiation is crucial, and 

disruption of these mechanisms may lead to cellular transformation, contributing to 

leukaemogenesis.  

 

1.5 Acute Lymphoblastic Leukaemia  
 
  

The term ‘blast’ refers to the morphology of a subpopulation of progenitors 

that are the earliest, most immature cells committed to the myeloid or lymphoid 

lineages, before the appearance of the definitive characteristics of the cell 

(Encylopedia, 2016). Morphologically, blasts usually form around 5% of cells in a 

normal healthy bone marrow. When blasts represent more than 20% of the cells of a 

specific lineage, it is considered to be a pathological status known as leukaemia 

(Harris et al., 1999). Leukaemia is further divided into subgroups. The first division 

separates acute and chronic forms of leukaemia followed by a subdivision based on 

the type of blood progenitor cells affected. This results in either lymphoblastic or 

myeloid leukaemia (Harris et al., 1999).  

 

Acute lymphoblastic leukaemia (ALL) is the most commonly occurring 

paediatric cancer and accounts for 80% of all childhood leukaemia. ALL is a 
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heterogeneous disorder affecting both adults and children, with a peak prevalence in 

children of between the ages of 2 and 5 years (Pui et al., 2008). It is characterised by 

the malignant proliferation and clonal expansion of lymphoid progenitor cells 

arrested at an immature stage of differentiation in the T and B cell lineages. 

Although remarkable progress has been made in the treatment of ALL, with 5-year 

event free survival rate exceeding 90%, it still remains one of the main causes of 

cancer deaths in children (Pui et al., 2011). Furthermore, in developed countries the 

incidence of ALL has increased consistently by 1% a year over the past two decades 

(Linabery and Ross, 2008). The genetic events underlying the induction of ALL 

include aberrant expression of proto-oncogenes, chromosomal translocations and 

hyperdiploidy and hypodiploidy (Chen et al., 2010). These genetic alterations in 

blood progenitor cells committed to T or B cell differentiation promote leukaemic 

transformation by altering crucial cellular functions. For example, they maintain or 

enhance unlimited self-renewal capacity of these committed progenitors, subvert 

their normal proliferation controls, block differentiation at specific stages and 

promote resistance to apoptosis (Pui et al., 2004). A few cases (<5%) of ALL are 

associated with inherited, predisposing genetic syndromes, such as Down’s 

syndrome, Bloom’s syndrome and ataxia-telangiectasia. The majority of ALLs are 

represented by a pre-B cell phenotype, displaying cell surface marker expression 

associated with normal pre-B cells. The leukaemic cells are blocked at this particular 

stage of the differentiation process and accumulate in the body (Inaba et al., 2013).  

 

Chromosomal translocations affecting specific genes are a defining 

characteristic of acute lymphoblastic leukaemia, in particular. These translocations 

sometimes result in the erroneous joining of two chromosome breaks, generating a 

fusion gene whose function is dissimilar to its wild type counterpart. ALL associated 
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fusion genes mainly encode active kinases or altered transcription factors (Pui et al., 

2008). Many of these altered transcription factors control cell differentiation and 

frequently encode proteins at the apex of crucial transcriptional pathways. These 

oncogenic transcription factors are expressed aberrantly in leukaemic cells and can 

exist as one gene product or as a fusion protein combining two different transcription 

factors that play critical roles in normal haematopoiesis. Studies that examined gene-

expression patterns in different leukaemias demonstrate that specific chromosomal 

translocations define unique disease subtypes (Fig. 4) (Pui et al., 2008).  

 

1.6 ‘Delayed infection’ hypothesis  
 

 One model to explain the induction of frank leukaemia in ALL suggests that 

an abnormal immune response to common pathogens can result in malignant 

transformation. Based on this idea, two different possible hypotheses were suggested 

(Greaves, 2006b). One mechanism, the Kinlen ‘population mixing’ hypothesis, was 

generated when in the early 1980s clusters of childhood leukaemia were observed in 

specific areas of England and Scotland (Kinlen, 1988). The ‘population mixing’ 

hypothesis stated that increased incidence of childhood leukaemia might have 

infectious origins due to unusual population mixing that occurred when isolated 

communities in Seascale and Thurso accommodated a sudden influx of migrant 

professional workers. People in isolated places may escape exposure to common 

infections in the usual age groups, and therefore are relatively ‘non-immune’ to these 

infections. Therefore, it was suggested that some childhood leukaemia clusters were 

an unusual outcome of common infections in these non-immune individuals, 

following contact or ‘population mixing’ with newcomers who are carriers of 

infections (Greaves, 2006b; Kinlen, 1988). Kinlen made a parallel comparison 
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between the communities of Seascale and Thurso to a ‘rural’ new town of Glenrothes 

with no migrant influx, to note a threefold transient increase in the incidence rate of 

childhood leukaemia, as measured by mortality statistics (Kinlen, 1988). Although in 

Kinlen’s studies most patients had ALL, the data supporting this hypothesis could be 

interpreted to show that all childhood and infant leukaemia could share a common 

aetiology.  

  

 The second hypothesis was proposed in 1988 and is known as the ‘delayed 

infection’ hypothesis (Greaves, 1988). This model sought to explain the peak age 

prevalence of leukaemia between 2 and 5 years and at the time suggested a ‘two-hit’ 

model, which has now gathered substantial evidence. The ‘two-hit’ model proposed 

that the chromosomal translocation (first hit) was insufficient to induce overt 

leukaemia but rather acts as an initiating event resulting in pre-leukaemic cells that 

persist for years before onset of leukaemia, resulting from further acquisition of 

secondary genetic mutations (second hit). The ‘delayed infection’ hypothesis 

proposed that in affluent societies, many children have reduced exposure to common 

infectious agents during infancy. This predisposes the immune systems of such 

children to aberrant or atypical immune responses following ‘delayed’ infectious 

exposure to these common infections. These aberrant immune responses can provide 

a microenvironment that promotes secondary mutations, which then act as a trigger 

for progression of pre-leukaemic clones into overt leukaemia. Although there is 

substantial epidemiological evidence supporting this hypothesis, there is limited 

experimental data to support the reasons behind higher ALL incidence upon 

infection in young children (Greaves, 2006b).  
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1.7 t(12;21) ALL 
 

 The most frequent single chromosomal translocation associated with 

paediatric ALL is the t(12;21)(p13;q22) rearrangement (Fig. 4). This translocation 

results in the fusion of the ETS transcription variant 6 (ETV6), also known as 

translocation-Ets-leukaemia (TEL) gene, that maps on chromosome 12, and Runt-

related transcription factor 1 (RUNX1), also known as Acute myeloid leukaemia 1 

(AML1) gene, that maps on chromosome 21 (Romana et al., 1995). This gives rise to 

the ETV6-RUNX1 (TEL-AML1) fusion gene, which is exclusively associated with 

pre-B ALL, present in up to 25% of cases (Golub et al., 1995).  TEL and AML1 

genes both encode transcription factors that play important roles in haematopoiesis. 

Both genes have been shown to be essential in establishing haematopoiesis of all 

lineages in the bone marrow and constitutive loss of either gene results in embryonic 

lethality (Okuda et al., 1996; Wang et al., 1997; Wang et al., 1996). The TEL 

transcription factor is required for HSC survival in the adult and is an essential 

regulator of post-natal HSCs. HSCs require TEL in order to migrate to the bone 

marrow from the foetal liver and for subsequent survival within the bone marrow 

microenvironment (Hock et al., 2004; Wang et al., 1997; Wang et al., 1998). In 

contrast, although AML1 is required for haematopoiesis at the embryonic stage, 

unlike TEL, loss of AML1 in the adult does not result in complete loss of 

haematopoiesis. Studies using conditional knock out mice have shown that AML1 is 

required for maturation of megakaryocytes and differentiation of T and B cell 

lineages, but not for maintenance of HSCs during adult haematopoiesis (Ichikawa et 

al., 2004). Furthermore, germline variants and somatic mutations in both genes have 

been linked to predisposition to leukaemia (Osato et al., 1999; Topka et al., 2015; 
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Zhang et al., 2015). TEL and AML1 are also frequently disrupted by numerous 

different translocations in lymphoblastic and myeloid leukaemias.  

 

 The AML1 gene belongs to the Runt-related transcription factor (RUNX) 

family of genes, also known as core binding factor (CBF) genes. The highly 

conserved RUNT domain of AML1 mediates DNA binding and heterodimerisation 

with CBFβ (Roudaia et al., 2009). Although the protein alone is capable of 

regulating expression of various different genes, binding to the CBFβ subunit 

enhances the affinity of the RUNT domain to DNA by 7- to 10- fold. Furthermore, it 

can inhibit RUNX1 degradation mediated by the ubiquitin proteasome pathway. It 

has been shown that TEL-AML1 fusion relies on CBFβ for its activity in 

experimental models, by participating in the formation of protein complexes 

necessary for its function (Roudaia et al., 2009).  
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The TEL transcription factor comprises three important domains: The N-

terminal pointed domain (PD) required for mediating protein-protein interactions, 

including TEL oligomerisation; C-terminal DNA-binding domain; and a central 

repressor domain, which is mainly involved in recruitment of repression complexes. 

The resulting translocation between the TEL and AML1 genes creates a fusion 

transcript between the 5’ of the TEL region, excluding the region encoding the DNA-

Figure 4 - Cytogenetic and molecular genetic abnormalities in childhood ALL  

The frequencies of the different cytogenetic and molecular genetic abnormalities present in childhood 

ALL. The TEL-AML1 fusion gene represents the most frequent abnormality. Adapted from 

(Mullighan, 2012) 
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binding domain, to almost the entire coding region of AML1 (Poirel et al., 1997; 

Zelent et al., 2004) (Fig. 5).  

 

 

 

 

In patients the translocation is detected during B cell differentiation prior to 

the onset of immunoglobulin gene rearrangement, giving rise to leukaemic blasts that 

appear to be blocked at the pre-B cell stage (Panzer-Grumayer et al., 2005; Romana 

C) 

Figure 5 - Schematic representation of TEL, AML1 and the TEL-AML1 fusion protein  

The figure shows the functional domains present in (A) TEL, (B) AML1 and the (C) TEL-AML1 

fusion. TEL has three main domains: the Pointed Domain (PD) is necessary for oligomerisation and 

protein-protein interactions, the central repression domain (Repression) for binding with transcriptional 

repressors and the ETS DNA binding domain. AML1 has the RUNT DNA binding domain (RUNT), 

the mSin3A interaction domain (SID, bracket), the p300 HAT interacting domain (p300 ID) and the 

transcriptional activation domain (ACTIVATION). The carboxy-terminal VWRPY is a motif that 

binds Groucho-related co-repressors. The t(12;21) translocation results in the TEL-AML1 fusion with 

the arrow indicating the fusion points between TEL and AML1. The TEL-AML1 fusion has lost the 

TEL ETS domain. Adapted from (Zelent et al., 2004) 

 

A) 

B) 

C) 
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et al., 1995). The most immature TEL-AML1 population is in fact identified by the 

aberrant CD34+CD38–CD19+ phenotype, that has been associated with a very early 

stage of lineage commitment (Castor et al., 2005; Hong et al., 2008). The presence of 

the fusion gene, most likely occurring in utero, is largely detectable years before the 

clinical onset of the disease (Zelent et al., 2004). However, despite the prevalence of 

TEL-AML1 in childhood pre-B ALL it is unlikely that the presence of the fusion 

alone is sufficient for the resulting leukaemia. This is consistent with the variable and 

protracted latency in the onset of leukaemia in identical twins with concordant TEL-

AML1 ALL (Wiemels et al., 1999). Furthermore, analysis of TEL-AML1 frequency 

in unselected normal cord blood cells, showed that 1% of blood samples had 

detectable TEL-AML1 transcripts. This was 100 times more frequent than the 

incidence of disease (Mori et al., 2002). Furthermore, estimation of the frequency of 

TEL-AML1+ cells in these cord blood samples suggested that acquisition of the 

fusion was associated with clonal expansion of progenitor cells (Mori et al., 2002).  

In contrast, another model has shown that the presence of the fusion is as rare as the 

incidence of disease, suggesting that a high proportion of babies born with the TEL-

AML1 fusion go on to develop leukaemia (Lausten-Thomsen et al., 2011). Although 

the frequency of the fusion is still a matter of debate, whatever the frequency in the 

normal population, experimental models also indicate that TEL-AML1 alone is 

insufficient to induce overt leukaemia. Rather, in agreement with the ‘two-hit’ 

model, it is thought that TEL-AML1 acts as an initiating event resulting in the 

generation and expansion of pre-leukaemic cells that persist for years before onset of 

leukaemia, upon acquisition of secondary genetic mutations (Greaves, 1999; Greaves 

and Wiemels, 2003) (Fig. 6).  
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1.8 Experimental models of t(12;21) ALL 
 

 Modeling of TEL-AML1 ALL with in vitro and in vivo experiments has 

provided substantial insight into leukaemia induction. Andreasson et al. cloned the 

TEL-AML1 fusion gene into a retroviral vector and used it to transduce growth factor 

dependent murine haematopoietic cell lines. Although expression of the fusion 

transcript was observed, none of the cell lines expressing TEL-AML1 showed factor-

independent growth potential. Furthermore, to test the role of TEL-AML1 in vivo, 

transgenic mice were generated in which the expression of the fusion gene was 

directed to lymphoid cells under the control of a B cell-specific immunoglobulin 

 

TEL-AML1 

Figure 6 - 'Two-step' model for the pathogenesis of TEL-AML1 leukaemia  

The fusion gene, TEL-AML1, although insufficient to cause overt leukaemia, occurs in utero and acts 

as an initiating event. The TEL-AML1 pre-leukaemic cells generated are susceptible to further 

acquisition of mutations that trigger development of overt leukaemia. Adapted from (Greaves, 2006a) 
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heavy chain enhancer. Although TEL-AML1 expression was confirmed in the mice, 

none of the transgenic mice developed any malignant disorder or abnormality 

(Andreasson et al., 2001). In line with this finding, transduction of adult bone 

marrow cells with a retroviral vector expressing TEL-AML1, followed by 

transplantation into syngeneic mice resulted in a low incidence of leukaemia after a 

long latency. However, expression of TEL-AML1 in mice deficient for 

p16INK4ap19ARF resulted in a significantly high frequency of leukaemia induction. This 

provided the first evidence that co-operating secondary genetic aberrations may play 

a critical role in TEL-AML1 leukaemia (Bernardin et al., 2002).  

  

 As the fusion gene is thought to occur in utero, previous work in our 

laboratory examined the effect of TEL-AML1 expression on the function of foetal 

liver haematopoietic progenitor cells (HPC). In this model, TEL-AML1 enhanced the 

self-renewal capacity of B cell precursors in vitro, and hematopoietic reconstitution 

by transduced foetal liver HPC in vivo, with no block in B cell development 

(Morrow et al., 2004). Two additional studies used retroviral transduction, but in 

adult bone marrow derived HPC, to examine the effect of TEL-AML1 expression on 

haematopoiesis in vivo. Both studies noted TEL-AML1 caused a block in B cell 

development in vivo, resulting in a reduced number of TEL-AML1+ mature B cells 

(Tsuzuki et al., 2004) (Fischer et al., 2005). However, all three studies provided 

evidence that TEL-AML1 perturbs normal haematopoiesis. The differences between 

these models may be a result of the nature of HPC targeted or differences in levels of 

TEL-AML1 protein expressed by the retroviral constructs used in each study. In the 

case of the latter explanation, the possibility was recently tested using two different 

retroviral vectors expressing high and low levels of TEL-AML1 (Tsuzuki and Seto, 

2013). This showed that high levels of TEL-AML1 expression in mouse foetal liver 
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HPC or pro-B cells resulted in compromised B cell development in vitro. This was in 

contrast to low-level expression of TEL-AML1, which promoted B progenitor self-

renewal. However, this was not evident in low-level expression of TEL-AML1 in 

pro-B cells derived from adult bone marrow. Following transplantation, low level 

TEL-AML1 expression in foetal liver derived pro-B cells resulted in a B cell 

differentiation block, but this block was incomplete and mature TEL-AML1 B cells 

did eventually emerge (Tsuzuki and Seto, 2013).  

 

 Two other recent studies created knock-in mouse models where TEL-AML1 

expression was driven from the endogenous Tel promoter.  Although expression of 

the fusion gene alone did not cause disease in either study, both models showed that 

it predisposed to leukaemia and lymphoma under chemical mutagenesis or 

transposon-mediated mutagenesis (Schindler et al., 2009; van der Weyden et al., 

2011). Schindler et al, showed that induction of T-cell leukaemia following treatment 

with the N ethyl-N-nitrosourea (ENU) mutagen was faster and more penetrant in 

knock-in mice compared to controls. Van der Weyden and colleagues used a 

sleeping beauty transposase to obtain B-ALL in almost 20% of the mice (Schindler 

et al., 2009; van der Weyden et al., 2011). Similarly, expression of a TEL-AML1 

transgene in mice heterozygous for Cdkn2a was found to predispose to radiation-

induced B-cell malignancies (Li et al., 2013). In exploring how TEL-AML1 alters 

normal haematopoiesis, Schindler et al, noted that expression of TEL-AML1 in adult 

bone marrow resulted in increased numbers of quiescent HSCs and a loss of 

lymphoid committed progenitors. Furthermore, transplantation of TEL-AML1+ foetal 

liver cells into adult mice failed to reconstitute even the most immature B lineage 

compartment (Schindler et al., 2009). However, the fusion gene did not affect B cell 

differentiation in the embryo but induced a transient increase in self-renewal capacity 
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of foetal liver-derived TEL-AML1 B cell progenitor in vitro, consistent with the 

previous study from our laboratory (Morrow et al., 2004). This increase in B cell 

progenitors by TEL-AML1 may explain the increased frequency of TEL-AML1+ cells 

in normal cord blood, in which leukaemia was absent (Mori et al., 2002).    

 

 Furthermore, another study where human cord blood HPC were transduced 

with a lentiviral vector expressing TEL-AML1, generated the aberrant CD34+CD38-

CD19+ B lineage population associated with TEL-AML1 leukaemia (Castor et al., 

2005) in transplanted mice (Hong et al., 2008). Consistent with other murine models, 

TEL-AML1 expressing human HPCs did not induce leukaemia in transplanted mice, 

suggesting that this population of cells represent pre-leukaemic B lineage cells. 

Therefore, taking into account all the experimental models, evidence for TEL-AML1 

pathogenesis favours the ‘two-hit’ model where secondary genetic aberrations are 

necessary for the transformation of the TEL-AML1 pre-leukaemic cells to overt 

leukaemia.  

 

1.9 Co-operating secondary genetic lesions  
 

 A current lack of murine models that successfully recapitulate human TEL-

AML1 ALL could be due to the weak oncogenic activity of the fusion, stressing the 

importance to identify co-co-operating, secondary genetic alterations in TEL-AML1 

leukaemia. At diagnosis, most cases associated with the TEL-AML1 fusion have 

deletions of the normal untranslocated TEL allele (Stams et al., 2006). A recent study 

reported that in 143 TEL-AML1 patient samples analysed for additional genetic 

lesions, 62% showed complete deletion of the normal TEL allele. The frequent 

occurrence of TEL deletions in TEL-AML1 patients suggested a selective advantage 
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for cells with the secondary mutation. This could be attributed to loss of either the 

suppressor function of normal TEL (Fenrick et al., 2000) (Rompaey et al., 2000) or 

its ability to dimerise with TEL-AML1 and reduce its transforming activity (Lopez et 

al., 1999).  However, these deletions were sub-clonal to TEL-AML1 fusions 

(Romana et al., 1996), different between identical twins with concordant leukaemia 

(Maia et al., 2001) and distinct in late-relapse versus diagnostic samples (Ford et al., 

2001). This suggested that these secondary mutations were associated with 

leukaemic progression rather than leukaemic transformation.     

 

To identify co-operating secondary events in ALL in general, Mullighan et al. 

performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL 

cases using high-resolution, single-nucleotide polymorphism (SNP) arrays and 

genomic DNA sequencing (Mullighan et al., 2007). This study established that a 

high proportion of lesions such as deletions, point mutations and amplifications in 

ALL occurred in genes involved in B cell development and differentiation. PAX5 

was found to be the most frequently altered gene in ALL. Deletions of other genes 

encoding transcription factors directly involved in B lineage development and 

differentiation pathways, such as EBF1, IKZF1 (IKAROS), E2A and IKZF3, were 

also noted. In TEL-AML1+ ALL deletions were most frequent, occurring at a rate 

from 6 deletions per case. More interestingly, 28% of cases contained mono-allelic 

PAX5 deletions without mutations in the second allele. In an independent study, focal 

deletions in PAX5 were detected in 20% of TEL-AML1+ cases (Lilljebjorn et al., 

2010). The significance of the mutations in PAX5 was recently highlighted by a 

study where chemical and viral mutagenesis was performed on mice heterozygous 

for a loss-of-function PAX5 allele. This showed a higher incidence of pre-B ALL, 
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suggesting that loss of one PAX5 allele may co-operate with TEL-AML1 to induce 

leukaemia (Dang et al., 2015).  

 

Multiple studies have demonstrated that many of the deletions and 

translocations commonly found in lymphoid malignancies are a result of recognition 

of recombination signal sequences (RSS), close to the breakpoints of affected loci, 

by the RAG complex, which results in illegitimate recombination events 

(Marculescu et al., 2002; Mullighan et al., 2008a; Zhang and Swanson, 2008). The 

RAG recombinase is encoded by recombination activating genes 1 and 2 (RAG1 and 

RAG2) and is involved in V(D)J rearrangement during B and T cell development. 

Although RAG1 and RAG2 expression is tightly controlled, most pre-B ALL express 

both genes constitutively (Bories et al., 1991). Furthermore, high expression of 

RAG1 gene is associated with TEL-AML1+ ALL (Haferlach et al., 2010). A recent 

study used whole genome and exome sequencing to examine the association between 

RSS and the genomic breakpoints of structural variations found in t(12;21) ALL 

(Papaemmanuil et al., 2014). Truncated RSS motifs were found at 40% and terminal 

deoxynucleotidyl transferase (TdT) activity at 70% of breakpoints. Most of these 

variants were present at promoter regions of genes known to be mutated in pre-B 

ALL such as ETV6, BTG1, TBL1XR1, RAG2 and CDKN2A-CDKN2B. This 

suggested that the secondary events leading to leukaemic transformation in the 

presence of TEL-AML1 are mainly driven by genomic rearrangement mediated by 

aberrant RAG activity (Papaemmanuil et al., 2014).  Another enzyme, activation-

induced cytidine deaminase (AID), normally involved in immunoglobulin class 

switching and somatic hypermutation in B cells, has also been associated with 

leukaemia. Aberrant AID activity has been observed in B-ALL, generating AID-

dependent chromosomal translocations (Tsai et al., 2008). Further analysis showed 
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that AID co-operates with the RAG complex to generate these chromosomal 

translocations. A more recent study has shown that many of the genes recurrently 

mutated in pre-B ALL are potential targets of AID. Therefore, continuous 

illegitimate RAG- and AID-mediated recombination appears to be a major driver of 

diverse secondary mutations in TEL-AML1 leukaemia (Swaminathan et al., 2015).  

 

1.10 Heterogeneity in ALL 
 
 
 Genome-wide expression analysis of acquired copy number alterations in 

paired diagnostic and relapse ALL samples showed that in some cases, the relapse 

clones did not contain lesions present in the diagnostic clone, suggesting that both 

clones were derived from an ancestral clone present at diagnosis (Mullighan et al., 

2008b). An independent study comparing profiles of genome wide copy number 

alterations at diagnosis and relapse of 21 TEL-AML1 patients, reported that 

irrespective of the time of relapse, the relapse clone was derived from a major or 

minor sub-clone, present at diagnosis (van Delft et al., 2011). Furthermore, 

backtracking analysis by fluorescence in situ hybridization (FISH) identified a minor 

sub-clone at diagnosis that matched the genotype of a clone present at relapse 10 

years later. This suggests sub-clonal diversity at diagnosis in TEL-AML1 patients, 

from which intraclonal origins of relapse are generated (van Delft et al., 2011).  

 

 Anderson et al, recently used multiplexed FISH to analyse copy number 

alterations in single cells from 30 paediatric TEL-AML1+ ALL cases. They reported 

significant heterogeneity in the sub-clones present at diagnosis and relapse, 

suggesting a dynamic and evolving clonal architecture in ALL (Anderson et al., 

2011) (Fig. 7). More recently, Gawad et al, also used single-cell genomics to 
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examine the genomic heterogeneity of mutations in 1479 single cells from six 

different ALL patients. They reported significant subclonal heterogeneity in point 

mutations as well as structural lesions. Furthermore, they found that structural 

variants were acquired prior to point mutations, which occurred at later stages of 

clonal evolution and had hallmarks of apoliproprotein B mRNA editing enzyme, 

catalytic polypeptide-like (APOBEC) mutagenesis (Gawad et al., 2014). APOBEC, 

like AID, is a cytidine deaminase that has key roles in inducing genomic damage in 

multiple cancers due to its DNA deaminating activity. While AID acts in antigen-

driven antibody diversification processes, APOBEC function in the innate immune 

system against viruses. Therefore, this report highlighting APOBEC mutagenesis 

was consistent with studies showing continuous AID- and RAG- mediated 

mutagenesis acting as a driver of sub-clonal diversity in ALL (Papaemmanuil et al., 

2014; Swaminathan et al., 2015).  

 

 These studies suggest that significant heterogeneity is present in ALL, 

although the order in which mutations are acquired and the precise clonal structure at 

diagnosis is still largely unknown. It is possible that minor sub-clones can escape 

therapies targeting pathways deregulated by additional lesions, and pre-leukaemic 

cells that are not targeted can remain post-treatment to give rise to disease relapse. 

Therefore, it is important to identify therapies that target the one indispensable 

abnormality common to pre-leukaemic cells and all leukaemia sub-clones, the TEL-

AML1 fusion protein.  
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Figure 7 - Clonal architecture in TEL-AML1+ ALL  

(A) The figure shows a linear architecture with three different clones. A moderately complex 

architecture with five subclones is seen in (B), with loss of the untranslocated TEL allele occurring 

independently in three separate subclones. (c) This figure shows a complex architecture with eight 

subclones, where PAX5 deletions occur independently in two separate subclones. Although this shows 

that the clonal architecture can range from very simple to complex, in all cases, all subclones contain 

the fusion gene shown with F. Adapted from (Anderson et al., 2011) 
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1.11 Mechanism of TEL-AML1 function  
 
 
 Since the AML1 moiety in the fusion still retains its RUNT domain, TEL-

AML1 can bind to AML1 transcriptional target genes. Indeed, the RUNT DNA 

binding domain has been shown to be crucial for TEL-AML1 function (Morrow et 

al., 2007). AML1 can act as a DNA-binding transcriptional activator, involved in 

expression of genes such as PU.1 (Okada et al., 1998) and IL-3 (Uchida et al., 1997), 

but can also act as a transcriptional repressor when associated with mSin3A or other 

co-repressors, through recruitment of Histone deactylases (HDACs) (Fears et al., 

1997; Fenrick et al., 2000; Hiebert et al., 1996). Therefore, the effect of AML1 on 

target gene transcription may depend on the balance between its association with 

positive and negative cofactor complexes (Brettingham-Moore et al., 2015). The 

most frequently postulated mechanism for TEL-AML1 function is that the fusion 

protein acts as an antagonist of endogenous RUNX1 transcriptional activity (Fears et 

al., 1997; Hiebert et al., 1996; Uchida et al., 1999). TEL-AML1 repression activity 

depends on its ability to recruit co-repressor/HDAC complexes to the TEL moiety 

through its pointed domain, forming stable repressor complexes (Petrie et al., 2003). 

This results in deregulation of AML1 target genes. Although the AML1 moiety may 

still have the ability to associate with p300, its HAT activity may be suppressed in 

the context of the other bound cofactors (Zelent et al., 2004).  
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A recent study examined gene expression and protein changes in TEL-AML1 

expressing BaF3 cells using global gene expression analysis and stable isotope 

labeling by amino acids in cell culture (SILAC) (Linka et al., 2013). Using a novel 

anti-TEL-AML1 antibody, followed by chromatin immunoprecipitation (ChIP), they 

identified direct targets of the fusion protein. Although the bound promoters were 

found to be enriched in consensus AML1 binding motifs, most of the genes were not 

bound by TEL or AML1 in these cells. Therefore, this indicates that although TEL-

AML1 functions by binding DNA at AML1 binding sequences to regulate 

 

 

Figure 8 - Hypothetical model of TEL-AML1 function 

This diagram shows a hypothetic model for the molecular function of TEL-AML1. In this model the 

TEL-AML1 fusion uses its TEL moiety to bind to co-repressors such as N-CoR and mSin3A to form 

a stable repressor complex. The fusion retains its ability to bind to DNA using the RUNT domain of 

AML1, so it may function as a HDAC-dependent repressor causing deregulation of AML1 target 

genes. Although p300 may still bind to the AML1 moiety of TEL-AML1, its HAT activity may not 

function correctly. Adapted from (Zelent et al., 2004) 
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transcription, many of the genes it regulates are distinct to those regulated by wild-

type TEL or AML1 (Linka et al., 2013).  

 

 Although experimental models and studies have demonstrated that TEL-

AML1 alone is insufficient to cause leukaemia, data from recent studies have 

established its importance in leukaemia maintenance. One study used short hairpin 

RNA (shRNA) directed against TEL-AML1 fusion to silence the fusion gene 

expression in REH cells (Fuka et al., 2011). Global gene expression analysis 

revealed that the fusion protein was involved in regulating various essential 

pathways such as cell survival, stem-cell self-renewal pathways. In particular the 

PI3K/AKT/mTOR signalling pathway was highly enriched in the list of down-

regulated genes. This study also showed induction of apoptosis in TEL-AML1 cell 

lines following shRNA gene silencing. Furthermore, silencing of TEL-AML1 resulted 

in impaired leukaemia engraftment and disease progression in immunodeficient 

recipient mice (Fuka et al., 2012).  

 

1.12 STAT3 signalling in cancer 
 

1.12.1 Structure and signalling of STAT3 
 
 
 Signal transducer activator of transcription 3 (STAT3) is a member of the 

signal transducers and activators of transcription (STAT) family. The STAT proteins 

are involved in various signal transduction pathways that control apoptosis, cell cycle 

progression and cell migration. It is the most ubiquitous of the STAT proteins and 

can be activated by a variety of cytokines, growth factors and oncogenes, including 

interleukin 6 (IL-6), epidermal growth factor (EGF) and platelet-derived growth 
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factor (PDGF) (Levy and Lee, 2002; Wake and Watson, 2015). However, its 

activation is primarily through IL-6 cytokine receptor-associated Janus Kinases 

(JAK), which phosphorylate STAT3 on a conserved tyrosine residue. The structure 

of STAT3 is similar to other members of the STAT family, consisting of a C-

terminal transactivation domain, an N-terminal coiled-coil domain, a DNA-binding 

domain, a linker domain and a Src homology (SH2) domain. The N-terminal coiled-

coil domain is necessary for dimer-dimer interactions during STAT3-driven 

transcriptional activation of genes (Fig. 9). The SH2 domain has three sub-pockets 

that stabilise homo and hetero-dimerisation with other STAT3 molecules or other 

members of the STAT family, and also plays a role in STAT3-receptor interactions. 

The DNA binding domain is responsible for DNA binding, enabling activated 

STAT3 dimers to bind specific DNA sequences and initiate transcription of target 

genes (Caldenhoven et al., 1996; Wake and Watson, 2015). An alternative splice 

variant of STAT3, STAT3β lacks the C-terminal transactivation domain, and was 

originally thought to have a dominant negative role, until it was shown to be a 

functional transcription factor regulating expression of several distinct target genes 

(Caldenhoven et al., 1996; Maritano et al., 2004; Yoo et al., 2002). It is 

phosphorylated on tyrosine 705 and can therefore form dimers that have been shown 

to possess DNA-binding activity (Maritano et al., 2004).  

 

STAT3 activation requires phosphorylation of specific tyrosine residues 

(Tyr705) in the C-terminal region by receptor or intracellular tyrosine kinases (Fig. 

9). Once phosphorylated, STAT3 homodimerises through reciprocal SH2 domain-

Y705 interactions and dimers translocate to the nucleus (Yu and Jove, 2004). These 

can then bind distinct canonical palindromic sequences in promoter regions of genes 
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to generate important cellular responses (Kang et al., 2013). STAT3 is also capable 

of forming heterodimers with STAT1 due to their sequence similarity, and other 

STAT proteins, to control transcription of a larger set of target genes (Ho and 

Ivashkiv, 2006; Schroder et al., 2004). The serine residue, Ser727 is phosphorylated 

to promote full STAT3 activation and is important in prolonging nuclear retention. 

However, it is only found to be present in the STAT3α isoform (Wake and Watson, 

2015).  

 

STAT3 expression is tightly regulated in cells by various endogenously 

expressed proteins that are capable of inhibiting STAT3 signalling. Suppressors of 

cytokine signalling (SOCS) can bind activated JAKs or receptor domains to block 

STAT phosphorylation and effectively inhibit JAK/STAT signalling. SOCS3 is a 

transcriptional target of STAT3, which specifically inhibits STAT3 signalling in a 

negative feedback mechanism (Starr et al., 1997). Likewise, protein inhibitor of 

activated STAT3 (PIAS3) is a member of a family of small ubiquitin-like modified 

(SUMO) E3 ligases, and directly inhibits STAT3 by blocking its DNA-binding 

activity (Chung et al., 1997).  

 

Figure 9 - STAT3 functional domains 

The diagram depicts the functional domains of STAT3 and the respective amino acid boundaries 

between each domain. The N-terminal domain, coiled-coil domain, DNA-binding domain, linker 

domain, SH2 domain and transactivation domain are shown. The phosphorylation sites Tyr705 and 

ser727 are shown along with the acetylation site Lys685. Adapted from (Wake and Watson, 2015). 
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1.12.2 STAT3 in cancer   
 
 

Abnormal STAT3 activity is found in multiple haematological and solid 

cancers and was first observed to be constitutively active in breast cancers. It is 

directly associated with oncogenic transformation mediated by different 

oncoproteins, such as sarcoma viral oncogene homolog tyrosine kinase (v-SRC). For 

example, constitutively active STAT3 in AML patients correlated with significantly 

shorter disease-free survival (Benekli et al., 2009). Furthermore, constitutive 

activation of STAT3 affects the function of many oncogenic mediators known to be 

deregulated in cancers. For example, STAT3 up-regulates cell cycle-regulators such 

as c-MYC and cyclins D1 and D3 (Amin et al., 2004) and can also inhibit TP53 

expression (Niu et al., 2005). These main target genes of STAT3 alter cell cycle 

progression and prevent apoptosis. Therefore, STAT3 inhibition impedes tumour 

progression and can induce cell death (Wake and Watson, 2015). In contrast to most 

oncogenes, STAT3 mutations are not common in tumours but recently activating 

STAT3 mutations have been discovered in 40% of T-cell large granular lymphocytic 

leukaemia (Koskela et al., 2012).  

 

STAT3 inhibition and knockdown have been shown to increase cell death 

and reduce cancer cell growth in vivo and in vitro. For example, STAT3 inhibition in 

malignant glioma xenograft models, inhibited c-MYC, BCL-XL and MCL-1 

expression measured by western blot analysis and induced apoptosis (Iwamaru et al., 

2007), and STAT3 siRNA-mediated knockdown in laryngeal tumours down-

regulated BCL-2, survivin and cyclin D1 protein levels and stimulated apoptosis 

(Gao et al., 2006). Therefore, targeting the STAT3 pathway may be effective at 
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inhibiting cancer progression. In addition, identification of STAT3 regulated genes 

may provide additional targets for therapy.  

 

1.12.3 Role of STAT3 in TEL-AML1+ leukaemia  
 
 

Recent work from our laboratory used shRNA to establish a direct role for 

TEL-AML1 in aberrant signalling pathways that promote leukaemia (Mangolini et 

al., 2013). A TEL-specific shRNA was used to silence TEL-AML1 expression in 

REH cells, which lack the untranslocated wild type TEL allele. TEL-AML1 silencing 

resulted in growth inhibition and reduced colony formation. This study reported that 

TEL-AML1 leukaemia cells are dependent on aberrant activity of STAT3 for 

survival and in vivo progression. STAT3 activation is mediated through TEL-AML1 

induced RAC1 activation in these cells (Fig. 10). Furthermore, TEL-AML1+ primary 

ALL cells were also susceptible to pharmacological STAT3 inhibition. These 

findings suggest that the fusion protein has an active role in up-regulating expression 

of genes fundamental to the activity of oncogenic pathways, in addition to 

functioning as an atagonist to wild-type AML1.  
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The significant degree of clonal heterogeneity in ALL suggests that minor 

clones may escape therapies targeting pathways deregulated by secondary lesions. 

Therapies that spare pre-leukaemic cells are also likely to give rise to higher relapse 

rates. Therefore, one possible solution would be to identify therapies targeting the 

common abnormality in pre-leukaemic cells and leukaemic clones, in this case the 

TEL-AML1 fusion protein itself. Moreover, since TEL-AML1 is thought to induce 

aberrant RAG gene expression, which contributes to secondary genetic events, 

Figure 10 - Model of TEL-AML1-induced leukaemogenesis 

This figure shows TEL-AML1 induces RAC1 activation, which in turn promotes STAT3 

phosphorylation at specific residues. This results in c-MYC transcriptional induction leading to 

leukaemogenesis. Adapted from (Mangolini et al., 2013) 
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targeting the fusion may also impair acquisition of these lesions (Papaemmanuil et 

al., 2014). Therefore, significant focus has been placed on identifying transcriptional 

and signalling pathways regulated by TEL-AML1. Studies showing TEL-AML1+ 

cells to be particularly susceptible to PI3K/AKT/mTOR (Fuka et al., 2012) and 

STAT3 inhibition (Mangolini et al., 2013) suggest promising therapeutic approaches 

by targeting these pathways.  

 

1.13 Role of infection in TEL-AML1+ leukaemia  
 
 

As previously mentioned, although there is limited experimental evidence for 

the role of delayed infection and abnormal immune signalling in leukaemia, recent 

studies have explored the role of immune modulators in TEL-AML1+ leukaemia. The 

study by Swaminathan et al, suggested a role for inflammatory factors in leukaemia 

pathogenesis (Swaminathan et al., 2015). In normal pre-B cell development, AID 

expression increases at the developmental stage associated with pre-BCR signaling-

mediated IL7R downregulation, concomitant with increased RAG expression. 

However, stimulation of pre-B cells with the inflammatory lipopolysaccharide (LPS) 

in the absence of IL7 further increased AID expression. Since TEL-AML1 is known 

to induce expression of the RAG complex, this study demonstrated that strong 

inflammatory stimuli can co-operate with TEL-AML1 to induce RAG- and AID- 

dependent mutagenesis in t(12;21) leukaemia (Swaminathan et al., 2015).  

 

 As well as indirectly promoting secondary mutagenesis, evidence suggests 

that TEL-AML1 may also contribute to leukaemogenesis through a different 

mechanism. Thus, the fusion was found to confer resistance to TGF-β in mouse 
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BAF3 cells and human cord blood cells (Ford et al., 2009). The authors suggest that 

this may reveal the underlying mechanism responsible for the association of 

leukaemogenesis and delayed infection. According to the hypothesis, TEL-AML1-

expressing pre-leukaemic cells would expand at the expense of normal progenitors in 

the face of abnormal systemic TGF-β exposure, favouring their progression to overt 

leukaemia (Fig. 11). Indeed, it is possible that expansion of the pre-leukaemic 

subpopulation would have the effect of increasing the likelihood that RAG- and 

AID- dependent mutagenesis would generate leukaemia promoting lesions. The 

precise mechanism by which TEL-AML1 inhibits TGF-β signalling remains unclear, 

although the study suggested it may be due to sequestration of SMAD3 by TEL-

AML1 (Ford et al., 2009).  

 

 

Abnormal cytokine and immune modulators’ signalling can result in the suppression of normal 

haematopoietic cells and select for the outgrowth of TEL-AML1 pre-leukaemic cells. This results in 

proliferation of pre-leukaemic cells, increasing the pool of cells available to undergo RAG- and AID-

Figure 11 - Speculative model of the role of infection in leukaemia induction. 
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mediated secondary genetic aberrations, resulting in ALL. Further clonal diversification may be 

present at later stages of clonal evolution, for example hallmarks of APOBEC mutagenesis have been 

detected.  Adapted from (Greaves, 2006b) 

 
 

 

1.14 TGF-β  signalling  
 

1.14.1 TGF-β canonical signalling pathway 
 
 
 TGF-β belongs to the transforming growth factor superfamily, along with 

other family members such as nodals, activins and bone morphogenetic proteins 

(BMPs). TGF-β exists in three different isoforms: TGF-β1,  TGF-β2 and TGF-β3. 

The three isoforms have high sequence homology but in vivo the gene knockouts of 

the isoforms result in very different phenotypes. About half of TGF-β1 null mice die 

after birth as a result of uncontrolled inflammation (Clark and Coker, 1998). TGF-β2 

knockout mice exhibit perinatal mortality and instead have multiple developmental 

defects that are not found in TGF-β1/3 knockout phenotypes (Sanford et al., 1997). 

TGF-β3 null mice die within 20 hours of birth and have a unique phenotype of 

delayed pulmonary development and defective palatogenesis (Kaartinen et al., 1995). 

TGF-β1 is the most abundant isoform present in tissues (Vaidya and Kale, 2015). 

 TGF-β has a wide range of activities, controlling different developmental pathways 

in a tissue-dependent manner. The complexity of TGF-β activity was discovered in 

the 1980s, when it was found that effects of TGF-β were different depending on the 

cell type examined and the conditions analysed (Massague, 2012). TGF-β  regulates 

gene expression of numerous different target genes, both positively and negatively, 
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depending on the target gene and the cellular context. The complexity behind how 

TGF-β transcriptional responses result in activation or repression of hundreds of 

target genes, under tightly controlled conditions, has been an on-going area of 

research and involves understanding canonical TGF-β signalling (Massague, 2012) 

 

TGF-β signalling is mediated by receptor activation of SMAD transcription 

factors (Fig. 12). Eight SMAD proteins are encoded in the human genome, with only 

five acting as substrates for TGF-β family of receptors, known as receptor-regulated 

SMADs (R-SMADs) (Massague, 1998). SMAD2 and SMAD3 are two R-SMADs 

specific to activin, nodal and TGF-β signalling, while SMAD1/5/8 act as substrates 

to BMP signalling. SMAD4 is known as co-SMAD and acts as a common SMAD for 

all TGF-β family members. SMAD7 is an inhibitory SMAD (I-SMAD) of TGF-β, 

acting negatively to disrupt R-SMAD interactions and activation in TGF-β signalling 

(Massague and Chen, 2000). TGF-β functions as a homodimeric ligand but is 

secreted in a latent form, bound to its propeptide, or is trapped by binding occluding 

factors. Once released from its inactive complexes, the ligand binds to a pair of 

membrane receptor serine/threonine kinases, the TGF-β receptors, generating a 

hetero-tetrameric receptor complex. This results in the phosphorylation of SMAD2 

and SMAD3 (Fig. 12). SMAD2 and SMAD3 can exist as homodimers or 

heterodimers, which then bind to the co-SMAD, SMAD4. In the basal state, the R-

SMADs and SMAD4 undergo constant nucleocytoplasmic shuffling (Massague et 

al., 2005; Whitman, 1998). Following activation, the SMAD complex translocates to 

the nucleus, and incorporates different DNA-binding cofactors that specify target 

gene selectivity, influencing binding to different transcriptional co-activators and co-

repressors. Hundreds of genes are then transcriptionally regulated by TGF-β, 
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including SMAD7, the product of which subsequently inhibits signalling in a 

negative feedback mechanism (Massague et al., 2005). Although SMADs are critical 

mediators of TGF-β signalling, TGF-β can function via SMAD-independent 

pathways, involving mediators such as mitogen-activated protein kinases (MAPK), 

c-Jun N-terminal kinases (JNK) and Nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) (Vaidya and Kale, 2015).   
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Figure 12 - TGF-β  canonical signalling  

The TGF-β ligand binds to a pair of TGFβR-II serine/threonine kinases which results in 

phosphorylation of the GS domain on a pair of TGFβR-I kinases.  This creates a repeated pS-X-S 

motif which serves as a docking site for the R-SMADs. In the basal state, R-SMADs and SMAD4 

undergo constant nucleocytoplasmic shuffling. Anchor proteins present the R-SMADs to the receptor 

resulting in the phosphorylation of R-SMADs at the C terminus, which permits R-SMADs to enter the 

nucleus and to be recognised by a basic pocket in SMAD4. This SMAD complex then binds to 

different DNA-binding co-factors and recruits transcriptional co-activators and repressors to regulate 

several different genes, including SMAD7, the I-SMAD.  
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Figure 13 - Structure of SMAD proteins 

This figure illustrates the structural domains of SMAD proteins. SMAD proteins have two globular 

domains, MH1 and MH2. R-SMADs and SMAD4 use the MH1 domain to bind to DNA using a β-

hairpin structure (hp). I-SMADs lack the MH1 domain. The linker region of R-SMADs and I-SMADs 

contains a PY motif for recognition by Smurf ubiquitin ligases, involved in the deactivation of SMAD 

signalling. R-SMADs also have kinase sites in their linker region for interactions with protein kinases 

such as MAPKs and CDKs. The MH2 domain of R-SMADs and SMAD4 contains a basic pocket for 

interaction with activated type I receptors. The SxS motif of R-SMADs is the site phosphorylated by 

the activated receptor. The hydrophobic corridor is a site for multiple interactions. The linker region 

of SMAD4 contains a nuclear export signal (NES) for nuclear translocation. The Smad4 activation 

domain (SAD) mediates interactions with transcriptional activators and repressors. Adapted from 

(Massague et al., 2005) 

 
 

 

 TGF-β plays an important role in regulating the immune system. It is 

produced by every leukocyte lineage, including lymphocytes, macrophages and 
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dendritic cells but can also be produced by many non-immune cells (Letterio and 

Roberts, 1998; Travis and Sheppard, 2014). It has an effect on adaptive immunity, 

mainly in the regulation of effector and regulatory CD4+ T cell responses, and plays 

a fundamental role in regulating differentiation of T cells into effector and regulatory 

cells, in a context specific manner. For example, TGF-β acts as a suppressor of Th1 

effector T-cell differentiation, however under certain in vitro conditions it can 

enhance Th1 cell differentiation in the presence of IFN-γ (Travis and Sheppard, 

2014). It is also involved in initiation and resolution of inflammatory responses 

(Wrzesinski et al., 2007), driving either pro- or anti-inflammatory responses 

depending on the amount of TGF-β present in the cells and other factors present at 

the time of TGF-β exposure (Travis and Sheppard, 2014).  

 

1.14.2 The role of TGF-β in haematopoiesis  
 

The role of TGF-β in regulation of HSCs and progenitor cells has been 

studied from the late 1980s (Kulkarni et al., 1993; Larsson et al., 2001; Oshima et al., 

1996). Studies in both human and mouse models have shown inhibitory functions of 

TGF-β on early haematopoietic stem cells and primitive progenitors in vitro. Studies 

showed that TGF-β inhibited the growth of early MPPs, whilst more mature 

progenitors remained unaffected (Larsson and Karlsson, 2005). Although the exact 

mechanism of how TGF-β acts on HPCs is not fully understood, some studies 

suggest that these effects are largely due to its regulation of cytokine receptors such 

as receptors for IL3, SCF and granulocyte-colony stimulating factor (G-CSF) 

(Larsson and Karlsson, 2005). One study reported that TGF-β induces cell cycle 

arrest in primary human haematopoietic cells by down-regulating c-MYC and 
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upregulating a cyclin-dependent kinase inhibitor, p57 (Scandura et al., 2004). These 

studies complement data showing that the growth inhibitory effect of TGF-β can be 

reversed, by expressing a dominant negative TβRII to block autocrine TGF-β 

signalling, resulting in enhanced proliferation and survival of human HSCs in vitro. 

This suggests that the main effect of TGF-β on HSCs is the inhibition of 

proliferation, rather than induction of apoptosis. In contrast, some other studies 

suggest TGF-β may be pro-apoptotic, for example by inhibiting stem cell factor and 

other cytokines that promote viability of primitive murine haematopoietic cells 

(Jacobsen et al., 1995). However, it is also thought to have an anti-apoptotic role by 

inhibiting Fas-induced growth suppression and apoptosis of murine progenitor cells 

(Dybedal et al., 1997). These data collectively suggest that TGF-β may regulate 

HSCs via both cell cycle control and apoptotic mechanisms (Soderberg et al., 2009) 

(Vaidya and Kale, 2015).   
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HSCs can self-renew to maintain the stem cell pool, differentiate into different haematopoietic cell 

lineages, migrate out into the blood steam or undergo apoptosis. TGF-β1 inhibits self-renewal and 

differentiation of HSCs, as well as promoting apoptosis. Therefore, it has a prominent role in HSC 

development, with positive and negative effects on the different stages of development.  

 

To examine the role of SMAD transcription factors in haematopoiesis, one 

study blocked SMAD signalling in HSCs (Soderberg et al., 2009). This was achieved 

by either expressing SMAD7, which inhibits phosphorylation of all R-SMADs, or 

conditional deletion of Smad4, which is critical for nuclear transduction of SMAD 

signalling (Soderberg et al., 2009). Forced expression of SMAD7 in HSCs resulted 

in disrupted SMAD signalling and TGF-β responsiveness in vitro. Furthermore, bone 

marrow (BM) transplantation assays showed that SMAD7 overexpressing HSCs had 

significantly greater capacity to engraft secondary recipients compared to control 

cells. As SMAD7 overexpression blocks R-SMAD signalling this suggests that when 

R-SMAD signalling is blocked, self-renewal is promoted in vivo, whereas in control 

animals the HSC pool becomes exhausted (Blank et al., 2006; Blank and Karlsson, 

2011). Since differentiation appeared to be unperturbed, this suggests that self-

Apoptosis Self-renewal 

Differentiation Migration 

TGF-β1 TGF-β1 

TGF-β1 

Figure 14 - Role of TGF-β1 in the different cell fates of HSCs 
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renewal and differentiation are modulated independently by SMAD signalling. 

However, experiments with Smad4 deficient cells did not support these findings, 

since deletion of Smad4 resulted in impaired self-renewal and maintenance of the 

HSC pool. The apparent contradiction in these findings can be explained by the role 

of SMAD4 in balancing the negative effects of the SMAD pathway and the positive 

regulation of HSCs in cross-talk with Notch and Wnt signalling pathways, involved 

in haematopoiesis regulation (Soderberg et al., 2009). Therefore, abolishing SMAD4 

expression in HSCs may result in impaired interactions between SMAD4 and other 

positive regulatory pathways, leading to impaired self-renewal, explaining why cells 

behave differently to cells overexpressing SMAD7. 

 

 TGF-β is involved in lymphopoiesis and affects B cells at all stages of 

development. Primarily, TGF-β has a role in the generation of B cells from lymphoid 

precursors. TGF-β down-regulates IL-7 production by stromal cells which can 

inhibit IL-7 dependent B cell proliferation. (Lebman and Edmiston, 1999). 

Furthermore, TGF-β also inhibits the pre-B to B cell transition by inhibiting light 

chain rearrangement at the pre-B cell stage. (Lebman and Edmiston, 1999). TGF-β 

can also induce apoptosis, although this appears to be independent to proliferation 

inhibition, since one study found that TGF-β induced apoptosis of human B-cell 

lymphoma occurred prior to cell cycle arrest (Lebman and Edmiston, 1999). TGF-β 

has further roles in B cell maturation, such as regulating expression of cell surface 

molecules, including inhibition of IgM, IgD, and IgA, and induction of MHC class II 

expression on both pre-B and mature B cells (Letterio and Roberts, 1998). It is also 

known to induce class switch recombination to IgA in humans, but the specific 

events leading to this class switching are yet to be elucidated.  In mature B cells, 
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TGF-β does not inhibit proliferation, unlike in B cell progenitors. Therefore, TGF-β 

is important for normal B cell development but differentially affects B cells 

according to their stage of differentiation (Letterio and Roberts, 1998).  

 

1.14.3 TGF-β and cancer 
 

Since TGF-β has multiple functions, perturbations in its signalling pathway 

are linked to many clinical disorders, including cancer. It has a complex role in 

cancer as it can act as both a tumour suppressor and promoter, at different stages of 

tumourigenesis (Roberts and Wakefield, 2003) (Drabsch and ten Dijke, 2012). At 

early stages, it can act as a tumour suppressor due to its ability to induce apoptosis. 

At later stages, tumour cells can become resistant to the anti-proliferative effects of 

TGF-β, but remain responsive to TGF-β signalling, frequently secreting TGF-β, in 

cases such as pancreatic cancer. In this context, the pro-oncogenic activities of TGF-

β may be revealed, such as induction of epithelial to mesenchymal transition (EMT), 

and increasing motility, invasiveness and metastasis (Nicolas and Hill, 2003).  

Mutations in genes encoding mediators of the TGF-β pathway are frequent in cancer, 

with alterations mainly affecting genes encoding TGF-β receptors, R-SMADs and 

SMAD4. These mutations have been recorded in almost all pancreatic and colon 

cancers. Aberrations affecting SMAD2 and SMAD4 take the form of deletions, 

frameshift mutations and loss of entire chromosomal regions (Lebrun, 2012). 

Reduced expression of SMAD2 is associated with enhanced tumourigenicity in 

breast cancer cell lines (Kretzschmar, 2000) and SMAD4 mutations are found in the 

germ line of a subset of juvenile polyposis families (JNP) (Howe et al., 1998). In 

leukaemia, TGF-β has recently been implicated in the natural killer (NK) cell 
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mechanism of immune evasion in childhood B-ALL (Rouce et al., 2015). A study 

showed that ALL-derived TGF-β was an important mediator of NK cell dysfunction, 

which was abrogated by blocking TGF-β. The data indicated that by regulating the 

TGF-β/SMAD pathway, ALL blasts induced changes in NK cells to circumvent 

innate immune surveillance (Rouce et al., 2015).  

 

As TEL-AML1 has been shown to have a direct role in regulating TGF-β 

signalling, this suggests that the fusion gene has an active role in not only 

functioning as an antagonist of wild-type AML1, but dysregulates important 

signalling pathways in leukaemia. Due to the significant heterogeneity of the disease, 

it is important to target the transcriptional networks and oncogenic pathways directly 

deregulated by the TEL-AML1 fusion itself to gain a better understanding of how it 

promotes childhood ALL and to generate better therapies.  
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PROJECT AIM 

 

A popular hypothesis to explain childhood leukaemia aetiology is that aberrant 

signalling responses of pre-leukaemic clones to cytokines and immune modulators 

trigger progression to overt leukaemia. Since TGF-β has previously been implicated 

in promoting outgrowth of pre-leukaemic cells, one aim of this project was to 

examine the role of TGF-β signalling in TEL-AML1+ leukaemia. Recent data from 

our laboratory established the importance of STAT3 signalling in TEL-AML1+ 

leukaemia. Since STAT3 and TGF-β signalling pathways are known to be subject to 

cross-talk in many different systems, we also aimed to investigate the importance of 

such interactions in leukaemia progression. Therefore the objectives of my project 

were to: 

 

1. Examine the impact of TEL-AML1 on TGF-β sensitivity in ALL and pre-

leukaemia cells 

2. Determine the role played by SMAD7 in regulating TGF-β responses and 

leukaemia progression 
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CHAPTER II. Materials and Methods 
 
 

2.1 Molecular Biology  
 

2.1.1 Transformation of bacteria 
 
 

Sub-cloning efficiency DH5αTM, library efficiency DH5αTM and One 

Shot® Stbl3™ chemically competent cells (ThermoFisher Scientific, Loughborough, 

UK) were used for transforming bacteria. The competent cells were thawed on ice 

and incubated with 1μg of DNA in polypropylene tubes (BD Bioscience, Oxford, 

UK). The mixture was incubated for 20 minutes on ice, followed by 30 seconds of 

heat shock in 37°C water bath. Following this, the mixture was incubated for a 

further 2 minutes on ice. 300μl pre-warmed SOC outgrowth medium (New England 

BioLabs, Ipswich, UK) was then added to the mixture and shaken at 37°C for 1 hour 

at 225rpm. The mixture was then plated onto plates containing: LB agar (1.5g bacto 

Agar [BD Bioscience] per 100 ml LB broth (1% w/v Bacto Tryptone [BD 

Bioscience], 0.5% w/v bacto Yeast Extract [BD Bioscience], 1% w/v Sodium 

Chloride [NaCl], [pH 7.0]) and 100μg/ml Ampicillin (Sigma-Aldrich, Dorset, UK) 

and shaken at 37°C overnight. 

 

2.1.2 Isolation of plasmids 
 
 

Individual bacterial colonies were inoculated into 3ml LB broth containing 

100μg/ml Ampicillin for selection and incubated at 37°C overnight at 225 rpm. The 

bacterial cultures were then used to extract DNA using the PureYield™ Plasmid 
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Miniprep System (Promega, Southampton, UK) according to the manufacturer’s 

instructions. 600μl of bacterial cell culture was mixed with 100μl of lysis buffer. The 

mixture was inverted several times and 350μl of cold neutralisation buffer added. 

The mixture was centrifuged at 15,000xg for 3 minutes. The supernatant was then 

transferred to a column and centrifuged at 15,000xg for 15 seconds and the flow-

through discarded. 450μl of endotoxin removal buffer was used to wash the column, 

followed by a second wash with 200μl wash solution containing ethanol. The 

plasmid DNA was eluted with 30μl of distilled water. The extracted plasmid DNA 

concentration was measured using a spectrophotometer at an absorbance of 

260/280nm (NanoDrop.ND-1000, Lebtech International, East Sussex, UK). 

 

In order to obtain large quantities of plasmid DNA, individual bacterial 

colonies were inoculated into 3ml LB broth with 100μg/ml ampicillin and incubated 

in a shaker at 37°C for 6 hours at 225rpm. This starter culture was then added to 

300ml LB broth containing 100μg/ml ampicillin and shaken at 225rpm at 37°C 

overnight. The Genopure Plasmid Maxi Kit (Roche, Burgess Hill, UK) was used to 

isolate the plasmid DNA according to manufacturer’s guidelines. The bacterial 

culture was centrifuged for 20 minutes at 15,000xg at 4°C. The pellet was re-

suspended in 12ml or 24ml chilled resuspension buffer for lentiviral vector DNA and 

normal plasmid, respectively. The same volume of lysis buffer was added and 

incubated for 2-3 minutes at room temperature. Following incubation, the same 

volume of chilled neutralisation buffer was added to the mixture and the tubes 

inverted 10 times and incubated on ice for 5 minutes. The lysate was cleared by 

filtration and the supernatant added to a pre-equilibrated column. The column was 

washed 3 times with 16ml wash buffer followed by 15ml pre-warmed elution buffer 

to elute the DNA. The eluted plasmid DNA was precipitated with 11ml isopropanol 
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and centrifuged at 15,000xg for 30 minutes at 4°C. The supernatant was carefully 

discarded and the plasmid DNA was washed with 4ml chilled 70% ethanol and 

centrifuged again for 10 minutes at 15,000xg in 4°C. The DNA pellet was air-dried 

and dissolved in distilled water. The concentration of the plasmid DNA was 

determined using the Nanodrop and the purity was assessed by the absorbance at 

260/280nm.  

 

2.1.3 Plasmid sub-cloning 
 
 
Restriction enzyme digest 

Digestion of plasmid DNA using restriction enzymes was performed 

according to manufacturer’s instructions. In general, 5μg plasmid DNA was digested 

with 1μl of 10U/μl restriction enzyme, 20μl of 10x restriction enzyme buffer, 2μl of 

10μg/μl BSA in a final volume of 200μl, made up with H2O. The DNA was digested 

for 1-4 hours depending on the restriction enzymes used. The digested products, 

depending on the size of the fragment, were subjected to electrophoresis on 0.7-2% 

w/v agarose gels [Agarose (Invitrogen, Paisley, UK), 1x TAE buffer (National 

diagnostics, Hessle, UK), 0.5% Ethidium Bromide (Sigma)] in order to be visualised 

(UV1doc HD/26M, Cambridge, UK) and isolated.  

 

To generate blunt end fragments required for some cloning procedures, T4 

DNA polymerase (Promega) was used to fill dNTPs to linearised DNA with a 5’ 

overhang, according to manufacturer’s protocol. In general, 2μg of fragmented DNA 

was filled in with 10 units of T4 DNA polymerase (Promega), 100μM of each dNTP, 

10μl of 10x reaction buffer [250mM Tris-Acetate (pH 7.7), 1M potassium acetate, 

100mM magnesium acetate and 10mM DTT] and H2O was added to make the final 
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volume of 100μl. The mixture was incubated for 30 minutes at 37°C and 4μl of 0.5M 

Ethylenediamineetetraacetic acid (EDTA) was added to stop the reaction. The blunt 

end product was purified using the QIAquick Nucleotide removal kit (Qiagen, 

Manchester, UK) according to manufacturer’s instructions.  

 

Gel Extraction 

The isolated digested DNA products were purified from the agarose gel using 

QIAquick Gel Extraction Kit (Qiagen) according to manufacturer’s guidelines. The 

DNA fragment was excised from the agarose gel and weighed. Buffer QG was added 

to the excised DNA fragment at a volume corresponding to 3x the weight of the 

fragment. The mixture was incubated at 50°C for 10 minutes, or until the gel was 

completely dissolved. 1x the gel volume of isopropanol was added to the mixture and 

transferred into a QIAquick spin column and centrifuged at maximum speed for 1 

minute. The column was washed with 0.75ml of Buffer PE to remove any traces of 

salt contamination at maximum speed for 1 minute. The column was emptied and 

centrifuged for an additional 1 minute to remove ethanol contamination from Buffer 

PE. DNA was then eluted by centrifuging the QIAquick spin column, with 30μl of 

elution buffer [10mM Tris-Cl (pH8.5)].  

 

 Ligation 

Following gel extraction, the DNA fragment and vector were ligated to 

generate plasmid DNA. The concentrations of the DNA fragment and vector were 

measured using the Nanodrop and depending on the cloning, the molar ratio between 

the fragment and the vector varied from 1:1 to 10:1 for the ligation. The following 

formula was used to determine the mass of insert required for each ratio. For 

example, for 3:1 ratio (vector: DNA) ligation:  
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Xng insert required = [(100ng vector x kb insert)/ kb vector] x 3  

 

100ng vector and the required amount of insert DNA were ligated with 5μl of 2x 

Rapid Ligation Buffer (Promega) and 1 Weiss unit of T4 DNA ligase (Promega), 

with nuclease-free H2O to make up the final volume of the reaction to 10μl. The 

mixture was incubated at room temperature for 30 minutes for ligation, prior to 

transformation (Section 2.1).  

 

2.1.4 DNA constructs 
 
 

Schematic diagram of the lentiviral expression constructs is shown in Fig. 15. 

The pHR-SIN-CSGW was a kind gift from Y.Ikeda (Mayo Clinic, Rochester, MN). 

This vector was generated by removing one NotI site from the SIN-CSGW vector. 

The vector was subsequently modified to replace the eGFP sequence with a PGK-

PURO-IRES-eGFP from a pMSCV-PGK-PURO-IRES-eGFP vector.  

 

5’LTR RRE cPPT SFFV PGK PuroR IRES eGFP WPRE 3’	LTR Ψ  

polylinker pHRSIN CSGW-PIG 

SMAD7 5’LTR RRE cPPT SFFV PGK PuroR IRES eGFP WPRE 3’	LTR Ψ  

BamHI NotI 

pHRSIN CSGW-PIG/SMAD7 

Figure 15 – Lentiviral expression vectors used in this study 
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LTR, long terminal repeat; Ψ, viral packaging signal; RRE, rev response element; cPPT, central 

polypurine tract; SFFV, spleen focus-forming virus LTR; PGK, phosphoglycerate kinase eukaryotic 

promoter; PuroR, puromycin resistance gene; IRES, internal ribosomal entry site; eGFP, green 

fluorescent protein; WPRE, woodchuck hepatitis posttranscriptional regulatory element. 

 

Small hairpin RNA (shRNA) vector  

The following shRNA vectors used in this study were purchased from Sigma-

Aldrich (Table 1). Lentiviral MISSION shRNA constructs targeting STAT3, SMAD7, 

SREBP-1 were used to silence relevant gene expression. A non-targeting shRNA was 

used as a negative control that activates the RISC and RNAi pathway but without 

targeting any human or mouse genes (referred to as control [scramble] in this thesis). 

Therefore it is a useful reference for the interpretation of knockdown.  

 

Figure 16 - Graphic representation of the pLKO shRNA vector used in this study  

The human U6 promoter (a pol III promoter) is used to drive the expression of the shRNA hairpin. 

The human phosphoglycerate kinase eukaryotic (hPGK) promoter drives the expression of the 
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puromycin resistance gene for mammalian selection (puroR); ccpt, central polypurine tract; SIN/LTR, 

3’ self-inactivating long terminal repeat; f1 ori, f1 origin of replication; ampR, ampicillin resistance 

gene; pUC ori, pUC origin of replication; 5’ LTR, 5’ long terminal repeat; Ψ, viral packaging signal; 

RRE, Rev response element. Adapted from (http://www.sigmaaldrich.com/life-science/functional-

genomics-and-rnai/shrna/library-information/vector-map.html) 

 

 

 

Table 1 – pLKO driven shRNA sequences used in this study   

 

 

 

GENE (Accession no) Sequence (5’-3’) (sense-loop-antisense) 

Non-mammalian 

shRNA control  

CCGG CAACAAGATGAAGAGCACCAA CTCGAG 

TTGGTGCTCTTCATCTTGTTG TTTTT 

SMAD7_1 (86) 

(NM_005904) 

CCGG CGTGCAGATCAGCTTTGTGAA CTCGAG 

TTCACAAAGCTGATCTGCACG TTTTT 

SMAD7_2 (44) 

(NM_005904) 

CCGG CTTAGCCGACTCTGCGAACTA CTCGAG 

TAGTTCGCAGAGTCGGCTAAG TTTTTTGAAT 

SMAD7_3 (72) 

(NM_005904) 

CCGG ACTACTTTGCTGCTAATATTT CTCGAG 

AAATATTAGCAGCAAAGTAGT TTTTTTGAAT 

STAT3_1 (42) 

(NM_003150) 

CCGG GCACAATCTACGAAGAATCAA CTCGAG 

TTGATTCTTCGTAGATTGTGC TTTTT 

SREBP1_1 (05) 

(NM_004176) 

CCGGGCCATCGACTACATTCGCTTTCTCGAGAAA

GCGAATGTAGTCGATGGC TTTTT 

SREBP1_2 (07) 

(NM_004176) 

CCGGCCAGAAACTCAAGCAGGAGAACTCGAGTTC

TCCTGCTTGAGTTTCTGG TTTTT 
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2.1.5 Preparation of total protein lysate for western blot analysis  
 
 

Cells were harvested and washed with Phosphate Buffer Saline (PBS) by 

centrifugation at 300xg for 5 minutes at 4°C. The cells were lysed using 60μl 1x 

Radio-Immunoprecipitation Assay (RIPA) buffer (Cell Signaling) [20mM Tris-HCl 

(pH 7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% NP-40, 1% sodium 

deoxycholate, 2.5mM sodium pyrophosphate, 1mM beta-glycerophosphate, 1mM 

Na3VO4, 1μg/ml leupeptin], 1X HALT Protease Inhibitor Cocktail (ThermoFisher 

Scientific) and 1X Phosphatase Inhibitor Cocktail Set V (Merck, Nottingham, UK) 

per 1x106 cells. The mixture was incubated on ice for 30 minutes, vortexed for 10 

seconds and centrifuged at 16,000xg for 20 minutes at 4°C. The supernatant was 

collected and total cell lysate was stored at -80°C. For time-course experiments 

involving treatments of less than an hour, cells were harvested by centrifugation for 

30 seconds at 16,000xg at 4°C, lysed in RIPA buffer and immediately incubated on 

dry ice for 5 minutes before storing in -80°C.  Alternatively, cell pellets were lysed 

using 60μl 2x Reducing Sample Buffer [100mM Dithiothreitol (DTT), 4% w/v 

sodium dodecyl sulphate (SDS), 20% v/v Glycerol, 0.1% w/v Bromophenol blue, 

125mM Tris-HCl (pH 6.8)] per 1x106 cells. The lysate was boiled for five minutes at 

100°C in a heating block followed by vortexing for 10 seconds. The lysate was then 

centrifuged at 16,000xg for 10 minutes at 4°C. The supernatant was collected and 

stored at -80°C. In order to denature proteins before loading, samples were boiled for 

five minutes in a 100°C heating block and kept on ice until loading. 

 

For nuclear and cytoplasmic extracts, the Nuclear Extract kit (Activ Motif) 

was used according to the manufacturer’s instructions. At least 3x106 cells were 

harvested and washed with PBS by centrifugation at 300g for 5 minutes at 4°C. Cell 
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pellets were lysed using 250µl of 1x Hypotonic Buffer and incubated on ice for 15 

minutes. 12.5µl of detergent was added to the nuclear pellet and vortexed at highest 

setting for 10 seconds. The suspension was centrifuged for 30 seconds at 14,000xg at 

4°C. The supernatant (Cytoplasmic fraction) was stored at -80°C. The nuclear pellet 

was then suspended in 25µl of Complete Lysis Buffer and vortexed at the highest 

setting for 10 seconds. The suspension was incubated on ice for 30 minutes. 

Following the incubation, the nuclear lysate was vortexed for 30 seconds and 

centrifuged for 10 minutes at 14,000xg at 4°C. The supernatant (nuclear fraction) 

was stored at -80°C. Protein concentration was measured using the Bradford reagent 

(BioRad), by measuring the absorbance at a wavelength of 595nm using the 

Ultrospec 2100 pro (Amersham Pharmacia Biotech) spectrophotometer.   

 

2.1.6 Western blot analysis 
 
 

Protein gel electrophoresis was performed using Bio-Rad Mini-PROTEAN® 

Tetra handcast system. Protein samples were resolved on 10% SDS-Polyacrylamide 

gels (Table 2) and stacked in 4% Sodium Dodecyl Sulphate (SDS)-polyacrylamide 

gels (Table 3). Protein samples and PageRuler Protein Ladder plus molecular weight 

marker (ThermoFisher Scientific) were subjected to electrophoresis at 140V at room 

temperature for 1.5 hours.  
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Components of a 10% Resolving gel  

Reagent  Required volume  

30% w/v Acrylamide/Bis-acrylamide solution (37.5:1) 

(Geneflow) 

3ml  

Buffer [1.25M BisTris (pH 6.8)] 2.7ml  

H2O 3.2ml 

10% w/v Ammonium Persulfate (APS, BioRad) 50μl  

Temed (BioRad) 6μl 

 

Table 2 - Components of a 10% resolving gel used for western blot analysis 

 

Components of a 4% Stacking gel 

Reagent  Required volume 

30% w/v Acrylamide/Bis-acrylamide solution (37.5:1) 

(Geneflow) 

0.7ml 

Buffer [1.25M BisTris (pH 6.8)] 1.1ml 

H2O 2.4 ml 

10% w/v Ammonium Persulfate (APS, BioRad) 50μl 

Temed (BioRad) 6μl 

 
 

Table 3 - Components of a 4% stacking gel used for western blot analysis 

 
 
  

20x Running Buffer (Tris, MOPS, 0.5M EDTA, 20% SDS) was diluted with 

distilled water to generate 1x Running buffer, which was used to perform SDS-

PAGE. The samples were subsequently transferred onto a polyvinylidenefluoride 
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(PVDF) membrane (Millipore, Hertfordshire, UK) for 3 hours at 4°C at 400mA 

using Transfer Buffer [25mM Tris (Sigma-Aldrich), 192mM glycine (Sigma-

Aldrich), 20% methanol)].  

 

 Following transfer, membranes were blocked in PBS with 5% non-fat milk 

and 0.2% v/v Tween-20 (Sigma-Aldrich) and stained with one of the primary 

antibodies listed. The antibodies were diluted in PBS with 5% non-fat milk and 0.2% 

v/v Tween-20. In the case of phospho-proteins, membranes were blocked in PBS 

with 5% Bovine Serum Albumin (BSA) (Sigma Aldrich) and 0.2% v/v Tween-20. 

The antibodies were diluted in PBS with 5% BSA and 0.2% v/v Tween-20. Excess 

antibody was removed by washing with PBS with 0.2% v/v Tween-20 3 times for 10 

minutes each. Proteins were detected using the listed secondary antibodies 

conjugated with horseradish peroxidise listed and a chemiluminescent substrate 

(ECL, Amersham Biosciences) or SuperSignal West Pico Chemiluminescent 

Substrate (ThermoFisher Scientific), according to manufacturer’s instructions. 

Hypofilms ECL (Amersham) were exposed to membranes for different exposure 

times and developed using a Xograph CompactX4 (BioRad) developer. Exposed 

films were scanned using a calibrated densitometer (GS-800, BioRad) and individual 

bands were quantified using QuantityOne software (BioRad). The relative protein 

expression was calculated by dividing the value of the protein of interest by the value 

of the loading control. Membranes were stripped using Restore™ Western Blot 

Stripping Buffer (ThermoFisher Scientific) for some experiments for 10 minutes at 

room temperature followed by re-probing with different primary and secondary 

antibodies.  
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Antibody Supplier Dilution 

Phospho-SMAD2 (Ser465/467)  Cell Signaling Technology 1:1000 

Phospho-SMAD3 (Ser 423/425) Cell Signaling Technology 1:1000 

SMAD2/3 (D27F4) Cell Signaling Technology 1:1000 

SMAD7 (IMG-531A) Imgenex 1:500 

SREBP-1 (C-20) (SC-366) Santa Cruz Biotechnology 1:1000 

Human influenza hemagglutinin 

(HA) (3F10) 

Roche 1:1000 

TATA Binding Protein (AB51841) Abcam 1:1000 

GAPDH (SC-32233) Santa Cruz Biotechnology 1:1000 

HSP90 (SC-13119) Santa Cruz Biotechnology 1:3000 

Tubulin (SC-53029) Santa Cruz Biotechnology 1:3000 
 

Table 4 - Primary antibodies used for western blot analyses in this study 

 
Antibody  Supplier Dilution 

Anti-mouse IgG HPR-linked whole antibody  GE Healthcare 1:3000 

Anti-rat IgG HPR-linked whole antibody GE Healthcare  1:3000 

Anti-rabbit IgG HPR-linked whole antibody GE Healthcare  1:5000 

Anti-goat IgG HPR-linked whole antibody  Santa Cruz 

Biotechnology  

1:5000 

 

Table 5 - Secondary antibodies used for western blot analyses in this study 
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2.1.7 RNA isolation, cDNA preparation and quantitative real-time PCR 
 
 

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen) 

according to manufacturer’s instructions. The cells were disrupted by adding Lysis 

buffer RLT, containing 2-mercaptoethanol, followed by vortexing at the highest 

setting for 30 seconds to ensure homogenization of the samples. One volume of 70% 

ethanol was added to the samples and the mixture transferred to a RNeasy spin 

column. After centrifugation for 15 seconds at 14,000xg, the flow-through was 

discarded. 700μl of RWI wash buffer was added to the spin column followed by 

centrifugation. The sample was subsequently washed twice with 500μl of RPE wash 

buffer. RNA was then eluted using 30μl of RNase free water and the concentration 

determined using a spectrophotometer (NanoDrop ND-1000, Lebtech International). 

The purity of the extracted RNA was determined by measuring the ratio of the 

absorbance at 260nm and 280nm. A ratio of ~2.0 was considered as pure RNA 

(NanoDrop user’s manual).  

 

RNA was converted into cDNA using the High Capacity RNA-to-cDNA kit 

(Applied Biosystems) according to manufacturer’s guidelines. 1μg of RNA or 500ng 

of RNA was converted using 1μl of 20X Enzyme mix and 10μl of 2X RT Buffer Mix 

in a total volume of 10μl. Samples were treated with DNase (Invitrogen) prior the 

reverse transcription.  

 

Quantitative RT-PCR (qRT-PCR) was performed on isolated mRNA using 

Taqman probe based chemistry and an ABI Prism 7900HT fast Sequence Detection 

System (Life Technologies). All probes used were inventoried probes from Applied 

Biosystems, Life Technologies. 
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2.2 Cell Biology 
 

2.2.1 Cell culture and cell lines  
 
 

The 293FT (Invitrogen) packaging cell line was cultured in 10cm culture 

dishes (NUNC) in Dulbecco’s Modified Eagle’s medium (DMEM, Sigma-Aldrich), 

supplemented with 10% heat-inactivated Foetal Calf Serum (FCS) (Sigma-Aldrich), 

100U/ml Penicillin (Sigma-Aldrich), 100μg/ml Streptomycin (Sigma-Aldrich) and 

2mM L-glutamine (Sigma-Aldrich) (complete DMEM). 293FT were maintained in 

500μg/ml Geneticin selection antibiotic (G418 Sulfate) (ThermoFisher Scientific). 

To replate the cells, the cells were washed with 5ml PBS (Gibco) followed by 

trypsinisation using 1ml of 1xTrypsin/EDTA (Gibco) for 5 minutes, at 370C. Cells 

were then diluted in complete DMEM in order for the FCS to inactivate trypsin and 

centrifuged at 300xg for 5 minutes at room temperature and seeded at a density of 

approximately 0.35 x 106/ml for 3 to 4 days in the presence of Geneticin. 

 

Human leukaemic cells lines REH, 697, TOM-1 and SUP-B15 were obtained 

from the German Collection of Microorganisms and Cell Cultures (DSMZ, 

Brunswick, Germany). BEl-1 and SEMK-2 were kind gifts from R. Stam (Erasmus 

MC, Rotterdam, Netherlands) and AT-2 a kind gift from R.Panzer-Grümayer 

(Children’s Cancer Research Institute, Vienna, Austria). For RNA-sequencing, REH 

cells that were a kind gift from R.Stam (Erasmus MC, Rotterdam, Netherlands) were 

used (Table 4). The identities of the human leukaemic cell lines used were confirmed 

by STR profiling in the GOSH Haematology department. All human leukaemic cell 

lines with the exception of AT-2 cells, were cultured in Roswell Park Memorial 

Institute (RPMI) medium (Sigma-Aldrich) supplemented with 10% heat-inactivated 
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Fetal Calf Serum (FCS) (Sigma Aldrich, Dorset), 100U/ml Penicillin (Sigma-

Aldrich), 100μg/ml Streptomycin (Sigma-Aldrich) and 2mM L-glutamine (Sigma-

Aldrich) (complete RMPI). AT-2 cells were cultured in Iscove’s Modified Eagle’s 

medium (IMDM, Sigma-Aldrich), supplemented with 10% heat-inactivated Fetal 

Calf Serum (FCS) (Sigma Aldrich), 100U/ml Penicillin (Sigma-Aldrich), 100μg/ml 

Streptomycin (Sigma-Aldrich) and 2mM L-glutamine (Sigma-Aldrich) (complete 

IMDM). Each cell line was sub-cultured every 3-4 days and plated between 0.25-

0.8x106 cells/ml according to supplier’s instructions (DSMZ). 

 

Cell Line Translocation Fusion gene 

REH t (12;21) TEL-AML1 

AT-2 t (12;21) TEL-AML1 

BEL-1 t (4;11) MLL-AF4 

SEMK-2 t (4;11) MLL-AF4 

SUP-B15 t (9;22) BCR-ABL 

TOM-1 t (9;22) BCR-ABL 

697 t (1;19) E2A-PBX1 

 

Table 6 - ALL cell lines used in this study 

 
 

 

2.2.2 Lentiviral packaging cell line transfection  
 
 

To transfect the 293FT lentiviral packaging cell line, the cells were seeded at 

a density of 0.75 x 106 per 10 cm culture dish three days prior to transfection, 
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without geneticin. To transfect the cells, 5μg of expression vector, 3.75μg of pCMV-

PAX2 (kindly supplied by Professor D. Trono, Lausanne, Switzerland) and 1.5μg of 

pVSV-G were added in 1ml of Optimem (GIBCO) medium. 30μl of MegaTran 

transfection reagent (OriGene) was added to the mixture followed by immediate 

vortexing at the highest setting for 10 seconds. The DNA-megatran complexes were 

then incubated for 10 minutes at room temperature and added to the cells. MegaTran 

containing medium was then replaced with 8ml of complete DMEM medium the 

following day.  

 

2.2.3 Lentiviral transduction of human leukaemic cell lines 
 

To transduce REH, AT-2, SEMK-2, REH-LUC-CD2 and THP-1, an MLL-

AF9+ AML cell line, 293FT supernatant was cleared using Ministart 0.45μm filters 

(Sartorius Stedim Biotech). In order to concentrate lentivirus for the purpose of some 

experiments, ultracentrifugation was performed using Sorvall 12ml centrifuge tubes 

(ThermoFisher Scientific). The tubes were sterilised with 70% ethanol followed by 2 

washes with PBS prior to use. The tubes were filled with 11ml of virus each and 

concentrated using an ultracentrifuge (ThermoFisher Scientific, Discovery 100) at 

17,000xg for 2 hours at 4°C. The supernatant was discarded and the pellet was re-

suspended in 1.1ml of complete RPMI medium. 0.65x106 cells supplemented with 

5μg/ml polybrene in 24 well plates were transduced by spinoculation at 700xg for 45 

minutes at 25°C. 24 hours following transduction, 1ml of complete RPMI or 

complete IMDM was added to the cells. 48 hours following transduction, cells were 

harvested and plated in complete RPMI or complete IMDM supplemented with 

1μg/ml puromycin.  
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2.2.4 Flow cytometry 
 
 

Cells were washed with wash buffer (PBS supplemented with 0.05% w/v 

sodium azide). Cells were stained with anti-human CD2-PE (Tonbo Biosciences) 

antibody diluted 1:20 in stain buffer (PBS supplemented with 0.05% w/v sodium 

azide and 1% w/v BSA) for 15 minutes on ice. The cells were then washed with 

wash buffer and re-suspended in 200μl stain buffer prior to analysis. All flow 

cytometry was performed on an LSRII analyser (BD Biosciences) and the data was 

analysed with or FlowJo v8.6 (Tree Star, Ashland, Oregon) software.  

 

2.2.5 Apoptosis  
 
 

Apoptosis was detected using the Annexin V Apoptosis Detection Kit APC 

(eBioscience). Cells were washed with PBS followed by a second wash with 1X 

Annexin V Binding Buffer. Following centrifugation, the pellet was re-suspended in 

95μl of 1X Binding buffer and 5ul of Annexin V-APC and incubated for 15 minutes 

at room temperature in the dark. The mixture was washed with 1X Binding buffer 

and re-suspended in 195μl of 1X Binding buffer and 5μl of 500ug/ml 4’,6-

diamidino-2-phenylindole (DAPI) or Propidium Iodide (PI). Cells were analysed by 

flow cytometry.  

 

2.2.6 Cell cycle assays 
 
 

Cell cycle analysis was performed using the Click-iT EdU Alexa Fluor 647 

Flow Cytometry Assay Kit (Invitrogen). Cells were cultured with 10μM Click-iT® 
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EdU for 1 hour. The cells were harvested and fixed with 100μl 4% paraformaldehyde 

(PFA) for 15 minutes at room temperature. Following one wash with PBS 

supplemented with 0.01% w/v sodium azide and 1% w/v BSA, the cells were 

permeabilised with Saponin-based buffer (PBS with 1% BSA, 0.1% Saponin and 

0.1% sodium azide). 500μl Click-it® reaction cocktail  [Copper (II) sulphate 

(CuSO4); 1:10 Reaction Buffer Additive (1M ascorbic acid); Fluorescent dye; TBS 

up to 500μl] was added to the cells and incubated for 30 minutes at room 

temperature in the dark. Following incubation, the cells were washed in Saponin-

buffer and re-suspended in 500μl of Saponin buffer containing 0.5μl of 1μg/ml 

Ribonuclease A (Qiagen) and 500μg/ml DAPI (Roche) or 1mg/ml PI. Cells were 

then analysed by flow cytometry.  

 

2.2.7 Dead cell removal  
 
 
 Apoptosis, cell cycle analysis and injection of shRNA transduced cells into 

mice was performed following dead cell removal using the Dead Cell Removal Kit 

(Miltenyi Biotec, Woking, UK) to obtain equivalent numbers of viable cells.  Cells 

were centrifuged at 300g for 5 minutes, re-suspended in 100μl of Dead Cell Removal 

microbeads and incubated at room temperature for 15 minutes. MS columns were 

prepared by washing with 1X binding buffer and placed in a magnetic field of a 

MACS® Separator. 500μl of 1X binding buffer was added to the cells and the 

mixture was loaded to the column. The effluent collected contained the live cell 

fraction. The column was then washed 4 times with 500μl of 1X binding buffer, 

which was collected and added to the live cell fraction. This was then centrifuged at 

300g for 5 minutes and re-suspended in appropriate medium.  
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2.2.8 Mouse cell-depletion  
 
 
 To enrich for human cells following xenotransplantation of patient samples 

and a transduced human leukaemia cell line in mice, mouse cell depletion was 

performed using the Mouse Cell Depletion Kit (Miltenyi Biotec). Cells were 

centrifuged at 300g for 10 minutes and re-suspended in 80μL of MACS buffer and 

20μL of Mouse Cell Depletion cocktail per 2x106 tumour cells or 107 total cells. The 

mixture was incubated for 15 minutes in 4°C. The volume of the mixture was 

adjusted to 500μl per 2x106 tumour cells or 107 total cells. A 40μm pre-separation 

filter was placed above an LS type column in the magnetic field of a MACS 

separator. The filter and column were prepared by rinsing with 3mL of MACS 

buffer. The mixture was then added and the effluent collected contained the enriched 

human tumour cells. The column was washed with 1ml buffer twice and the effluent 

was centrifuged at 300g for 5 minutes. The cells were then re-suspended in the 

appropriate medium.  

 

2.2.9 Proliferation assays  
 
 

Cells were cultured at a density of 7x104 cells per well in flat bottomed 96-

multiwell plates (TPP, Trasadingen, Switzerland) in the presence of dimethyl 

sulphoxide (DMSO) vehicle control, specific drugs or following shRNA mediated 

knockdown. 10μl of CellTiter 96® Aqueous One Solution Reagent (Promega) was 

added to 100μl of assay volume in each well according to the manufacturer’s 

instructions. Following 2 hours of incubation at 37°C, proliferation was determined 

by measuring the absorbance at 490nm using a Infinite® 200 PRO plate reader 

(Tecan, Reading, UK).  
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2.2.10 Colony forming assays  
 
 
 For CD34+ human cord blood cells (purchased from Zen-bio), 1.5x103 cells 

were re-suspended in 300μl of StemSpanTM Serum-Free Expanison medium II 

(SFEM II) (Stemcell Technologies, Cambridge, UK). The cells were added to 3ml of 

methylcellulose (HSC005 R&D Systems). DMSO or different concentrations of 

Fatostatin were then added to the 3.3ml aliquot containing methylcellulose and cells. 

The mixture was then vortexed briefly and allowed to sit at room temperature for 10 

minutes. 1.1ml of this mixture was added using a blunt end needle into a 35mm 

plate, in duplicate (non-TC treated, Greiner Bio One, Stonehouse, UK).  Following 

14 days in culture, the cells were then counted manually and scored according to 

their morphology. 800μl of 10mg/ml 2-2-(P-iodophenyl)-3-(p-nitrophenyl)-5-phenyl 

tetrazolium chloride (INT) in 75% ethanol, diluted 1:20 with PBS, was added to each 

plate and cultured for an additional day. An image of the cultures was then acquired 

using a calibrated densitometer (GS-800, BioRad).  

 

 For human cell lines transduced with shRNA vectors, cells were re-

suspended in 600μl medium and added to 2.7 ml of human methylcellulose (HSC002 

R&D systems). 600μl of this mixture was plated into 24 multi-well plates (Non-TC 

treated, Greiner Bio One) using blunt end needles. In the case of cell lines treated 

with DMSO or 20μM Fatostatin, this was added to the methylcellulose aliquot 

containing cells and the mixture was then vortexed and plated into 24 multi-well 

plates as previously mentioned. The cells were cultured for 14 days before being 

cultured for an additional two days in the presence of 180μl of 10mg/ml INT in 75% 

ethanol, diluted 1:20 with PBS. An image of the cultures was then acquired using a 
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calibrated densitometer (GS-800, BioRad) and the colonies quantified using 

OpenCFU software (http://opencfu.sourceforge.net).  

 

 For serum-free colony forming assays, human cell lines were cultured in AIM 

V® Serum Free Medium (ThermoFisher Scientific) for 1 day. Following this, the 

cells were re-suspended in 600μl of serum-free medium with different concentrations 

of TGF-β. The mixture was then added to 2.7ml of human serum-free 

methylcellulose (HSC002SF, R&D Systems) and 600μl of this mixture was plated 

into 24 multi-well plates using blunt needles. The cells were cultured for 14 days 

before being cultured for an additional two days in the presence of 180μl of 10mg/ml  

INT in 75% ethanol, diluted 1:20 with PBS. An image of the cultures was then 

acquired using a calibrated densitometer (GS-800, BioRad) and the colonies 

quantified using OpenCFU software. 

 

2.2.11 Cholesterol assays  
 
 
 Total cholesterol was measured using the Amplex® Red Cholesterol Assay 

Kit (ThermoFisher Scientific) according to manufacturer’s instructions. This assay is 

based on an enzyme-coupled reaction that detects both free cholesterol and 

cholesteryl esters. Following hydrolysation of cholesteryl esters by cholesterol 

esterase, the cholesterol is oxidised by cholesterol oxidase. The hydrogen peroxide 

(H2O2) that is produced in addition to the ketone product upon oxidisation is detected 

by the 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent), when it is in the 

presence of Horseradish peroxidase (HRP). A cholesterol standard curve was 

performed by diluting 2mg/ml (5.17mM) cholesterol reference standard into 1X 

Reaction Buffer to produce cholesterol concentrations of 0 to 8μg/ml (0-20μM). To 
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perform the assay, 1x105 cells were diluted in 50μl of 1X Reaction buffer and plated 

in triplicate in a 96 multi-well plate. A solution of 300μM Amplex Red Reagent, 

2U/ml HRP, 2U/ml cholesterol oxidase and 0.2U/ml cholesterol esterase was 

prepared and 50μl was added to the cells and in addition, to the cholesterol reference 

standard to generate a standard curve. The reaction was incubated for 60 minutes at 

37°C, protected from light and the fluorescence measured using the Infinite® 200 

PRO plate reader (Tecan) using excitation detection at 550nm and emission detection 

at 590nm wavelength. The amount of total cholesterol was calculated using the 

standard curve.  

 

2.2.12 Luciferase assays  
 
 
 To measure luciferase signal expressed by cells, the Luciferase Assay System 

(Promega) was used according to manufacturer’s instructions. Briefly, 1x103 cells 

were plated in a white 96-multiwell plate (Non-TC treated, Greiner Bio One) and 

washed with PBS. Following centrifugation, cells were re-suspended in 20μl 1X 

Lysis reagent and incubated on a shaker in the dark for 15 minutes. Following this, 

100μl of Luciferase assay reagent was injected into each well by the injector in the 

Infinite® 200 PRO plate reader (Tecan) and the level of luciferase signal in each 

well measured.  
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2.3 Animal work 
 

2.3.1 NSG mice  
 
 

All mice were maintained in the animal facilities of UCL Institute of Child 

Health. Experiments were performed according to the United Kingdom Home Office 

regulations. Dr. Owen Williams and Dr. Luca Gasparoli performed 

xenotransplantations in this study on 5-12 week old NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ 

(NSG) mice. These mice lack mature T cells, B cells and natural killer (NK) cells 

and are deficient in multiple cytokine signalling pathways. Furthermore, they have 

multiple defects in innate immunity. NSG mice have features of the NOD/ShiltJ 

background, the combined immune deficiency mutation (scid) and IL-2 receptor γ 

chain deficiency. They have been shown to support high levels of human 

haematopoietic stem cell engraftment (McDermott et al., 2010).  The NSG mice used 

in this study were recipients for transplantation of luciferase-expressing REH cells 

that were transduced with lentiviral vectors expressing scramble shRNA (referred to 

as control scramble in this thesis) or shRNA targeting SMAD7 or SREBP1. Mice 

were injected intravenously in the lateral tail vein with 1 x 105 transduced cells. Mice 

were sacrificed when they developed clinical signs of disease and the spleen and 

bone marrow were harvested for analysis. 

 

2.3.2 Primary patient samples 
 
 
 Informed consent was given by parents and/or guardians to use excess 

leukaemic cell material remaining following diagnostic procedures, for research 

purposes as approved by an NHS Health Research Authority sub-committee ethical 
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review panel. NSG mice were transplanted with excess diagnostic material. 

Following primary engraftment, the primograft cells were stored in cryovials in -

80°C. Prior to experiment, cells were defrosted, purified, mouse cell depleted and 

cultured in SFEM II for 24 hours in the presence of 100ng/ml Flt3, 50ng/ml IL-7 and 

10ng/ml IL-3. Dead cell removal was then performed and cells were treated in the 

same culture conditions but with added DMSO or 20μM Fatostatin for 72 hours. An 

apoptosis viability assay was then performed on the cells. 



 101 

 

2.4 RNA-sequencing  
 
 

Total cellular RNA was extracted using the RNeasy Plus Mini Kit (Qiagen) 

according to manufacturer’s instructions. 250ng of RNA for each sample was 

analysed using Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) to verify 

RNA integrity prior to amplification. The samples were submitted to UCL Genomics 

for RNA-seq and processed using an Illumina TruSeq RNA sample prep kit Version2 

(p/n RS-122-2001) according to manufacturer’s instructions (Illumina, Cambridge, 

UK). Briefly, mRNA was selected using paramagnetic dT beads and fragmented by 

metal hydrolysis to approximately 150bp lengths. Random primed cDNA was 

generated and adapters compatible with Ilumina sequencing were ligated followed by 

14 cycles of PCR. Libraries were quantified, normalised and pooled prior to 

sequencing on an Illumina NextSeq 500 (Illumina), generating approximately 20-24 

million reads for each sample. Sequencing reads were aligned to NCBI build 37.2 of 

the human genome using TopHat 2.0.10 and deduplicated using a Picard Tools 1.79. 

As part of the in-house pipeline, Cufflinks 2.1.1 was then used to generate 

normalised estimates of expression from each gene transcript. Ilumina BaseSpace 

(Ilumina) and Strand NGS (Strand, San Francisco, CA) software was used to analyse 

and visualise RNA-seq data.  A list of gene transcripts ordered according to 

differential expression between control cells and SMAD7 knockdown cells was 

generated by setting different parameters using both Ilumina BaseSpace and Strand 

NGS software. Further downstream analysis such as Ingenuity Pathway Analysis 

(IPA) (Qiagen) was performed on the sets of differentially expressed genes between 

the two data sets. 
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CHAPTER III.  The role of TGF-β  in TEL-AML1+ 

leukaemia 

 

3.1 Introduction 
 

A growing body of epidemiological studies suggest a role for ‘delayed 

infection’ as a trigger of ALL. In affluent societies, many children have reduced 

exposure to infectious pathogens in early life. This may generate an aberrant or 

atypical immune response when exposed to these infections at a later stage. In the 

presence of initiating genetic lesions such as chromosomal translocations, this 

atypical immune response may select for leukaemic transformation by providing a 

favourable environment for selective pre-leukaemic clone expansion and acquisition 

of secondary mutations (Greaves, 2006b). There is evidence showing that 

inflammatory cytokines might provide this selective pressure for the outgrowth of 

pre-ALL clones. Moreover, B-cell precursor ALL cells show a gene expression 

signature that indicates exposure to interferons, similar to breast and ovarian cancer 

(Einav et al., 2005).  Different childhood ALL samples separated on the basis of 

‘high’ and ‘low’ expression of 30 identified genes of the interferon pathway showed 

a large clustering of leukaemic subgroups prevalent in early childhood (age at which 

children are most susceptible to infection) in the ‘high’ interferon-related gene set 

signature (Einav et al., 2005).   

  

Recently, a study by Ford et al. tested the hypothesis that selective 

proliferative advantage of TEL-AML1+ pre-leukaemic cells occurs in the presence of 
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the immune modulator, TGF-β (Ford et al., 2009).  They used mouse and human 

model systems to demonstrate that TEL-AML1 may block the inhibitory effect of 

TGF-β in the ALL cells themselves. A murine B cell progenitor cell line expressing 

inducible TEL-AML1, although proliferating at a slower rate, showed resistance to 

proliferation suppression by TGF-β. In mice with pre-pro-B cells expressing the 

TEL-AML1 transgene, reduced sensitivity to TGF-

β mediated inhibition of proliferation was observed. Importantly, human cord blood 

CD34+ cells transduced with a TEL-AML1-expressing lentiviral vector were 

enriched, relative to cells not expressing the oncogene, in MS-5 stromal co-cultures 

exposed to TGF-β. This was not seen in the absence of TGF-β (Ford et al., 2009). 

These experiments suggest that TEL-AML1 may confer a survival and growth 

advantage to pre-leukaemia cells in the context of high systemic TGF-β. Although 

the precise mechanism by which this resistance to TGF-β occurs remains to be 

established, the data indicate that the inhibition occurs downstream of R-SMAD 

phosphorylation. As TEL-AML1 has been shown to bind SMAD3, one possibility is 

that it sequesters SMAD proteins away from their target sites in the nucleus. 

Alternatively, the TEL-AML1/SMAD3 complex may additionally bind to NcoR and 

Sin3A co-repressors, disabling SMAD–mediated transcriptional activation. 

Therefore, in this study we focused on examining the mechanisms behind the 

interplay between TEL-AML1 and TGF-β signalling, to further understand how 

TEL-AML1 modulates the anti-neoplastic activity of TGF-β. 
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3.2 Results 
 

3.2.1 Sensitivity of human ALL cell lines to TGF-β  
 
 
 In order to determine whether TGF-β resistance correlated with TEL-AML1 

expression, we decided to study responses to TGF-β stimulation across a panel of 

human ALL cell lines, including two TEL-AML1 expressing cell lines. Cell lines 

were subjected to treatment with varying concentrations of TGF-β1, and their 

proliferation was measured using an MTS proliferation assay, at 48 and 96 hours 

post treatment. Unexpectedly, this assay showed that whilst TEL-AML1+ REH cells 

were resistant to TGF-β, AT-2 cells, also TEL-AML1+ were sensitive to suppression 

by TGF-β1. 697 cells, expressing the E2A-PBX1 fusion gene, were the most 

sensitive cells and therefore were used as positive controls for further experiments. 

Other cell lines expressing a variety of fusion genes showed varying degrees of 

sensitivity to TGF-β1 (Fig. 17).   
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(A) The graph shows the relative proliferation (relative to day 0) of seven human leukaemic cell lines 

Figure 17 - Effect of TGF-β1 on human ALL cell lines 
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by MTS assay at 48 hours and 96 hours when treated with the indicated concentrations of TGF-β1 

compared to untreated cells. (B) The bar chart shows the mean decrease in proliferation of all cell 

lines following 10ng/ml TGF-β1 treatment normalised to untreated cells, measured at 96 hours. All 

data show mean ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

compared to control (One-sample t test).  

 

 

Due to the unexpected sensitivity of one of the TEL-AML1+ cell lines to 

TGF-β1, we then further investigated the effect of TGF-β1 on cell cycle in 697 cells 

and both TEL-AML1+ cells. The cell lines were treated with TGF-β1 for 48 hours 

and an EdU incorporation cell cycle assay was performed and analysed by flow 

cytometry. TGF-β1 induced a significant decrease in the percentage of cells in the S-

phase of cell cycle in both 697 and AT-2 cells, but had almost no effect on REH 

cells. This confirmed that while REH cells were resistant to suppression by TGF-β, 

both 697 and AT-2 cells were sensitive to TGF-β, showing a decrease in the number 

of actively cycling cells (Fig. 18 and 19).  
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The flow cytometry plots are examples of the cell cycle profiles of 697 and REH cells following 

treatment with 10ng/ml TGF-β1 for 48 hours from three different experiments. Cell cycle profile was 

evaluated after pulsing with 10μM EdU for 1 hour. The percentages of cells in G0/G1, S and G2/M 

phases of the cell cycle are indicated in the plots. The bar chart represents the mean percentages of 

cells in the S-phase ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

compared to control (Student’s unpaired t test).  

 
 
 

The flow cytometry plots are examples of the cell cycle profile of AT-2 cells following treatment with 

10ng/ml TGF-β1 for 48 hours from three different experiments. Cell cycle profile was evaluated after 

pulsing with 10μM EdU for 1 hour. The percentages of cells in G0/G1, S and G2/M phases of the cell 

cycle are indicated in the plots. The bar chart represents the mean percentages of cells in the S-phase ± 

s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control 

(Student’s unpaired t test). 

 

 

 
 

Cell culture medium containing FBS can have low levels of latent TGF-β 

present (Oida and Weiner, 2010), which can be activated by changes in the medium 

during cell culture, such as alterations in pH  (Lyons et al., 1988). The resulting 
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‘background’ stimulation may confound evaluation of TGF-β responsiveness. To 

eliminate any effect of autocrine TGF-β signalling or any TGF-β present in the 

culture medium while observing sensitivity of cells to TGF-β1, cell lines were 

treated with 1D11, an anti-human/mouse TGF-β monoclonal antibody (Affymetrix 

eBioscience), that blocks all three isoforms of TGF-β. First, we tested to confirm that 

1D11 blocks TGF-β in these leukaemic cells. To do this, we cultured 697, with and 

without 1D11 for 1 hour in the presence of TGF-β and observed phosphorylation of 

SMAD2 by Western blot analysis (Fig. 20A and B). We hypothesised that if TGF-β 

signalling was blocked, a decrease in the phosphorylation of SMAD2 would be 

observed. As expected, we saw a decrease in phospho-SMAD2 levels following 

1D11 treatment. REH and AT-2 cells treated with 1D11 alone, showed a decrease in 

phospho-SMAD2 levels, suggesting that 1D11 blocks TGF-β in culture medium. 

Once we confirmed that ID11 blocks TGF-β, we treated 697 cells with different 

concentrations of TGF-β in the presence of 1D11. This showed that 1D11 rescued 

the TGF-β mediated proliferation suppression in 697 cells. When REH cells were 

treated with 1D11 alone, no change in proliferation was apparent (Fig. 20C).  
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 (A) The western blot analysis shows phospho-SMAD2 levels of 697, REH and AT-2 cells following 

1D11 treatment at the protein level. Cells were treated for 1 hour with and without 50ug/ml 1D11 and 

in the case of 697, with and without 10ng/ml TGF-β to make cell lysates. The western blots were 
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probed with an anti-phospho-SMAD2 antibody. An anti-α-tubulin antibody was used as a control for 

protein loading. (B) The bar chart represents the mean densitometric quantitation of phospho-SMAD2 

levels normalised to α-tubulin ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 

0.005 compared to control (One-sample t test). (C) The bar chart shows the mean cell viability of 697 

and REH cells following 1D11 treatment measured by an MTS assay after 72 hours of culture. The 

data show mean ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

compared to control (Student’s unpaired t test) 

 
 
 
 

 

Next, we decided to evaluate colony forming ability of the ALL cell lines in 

the presence of TGF-β. Cells were grown in a serum-free medium (AIM V® Serum 

Free Medium, ThermoFisher Scientific, UK) for 24 hours and subsequently plated in 

serum-free methylcellulose with or without TGF-β1 to examine their colony forming 

ability (Fig. 21). Unfortunately, AT-2 could not be used in this assay, since they 

failed to form colonies at the time these experiments were performed. However, two 

AML cell lines, THP1 and OCI-AML3 were used along with 697 and REH cells. As 

expected, REH cells were resistant to TGF-β1 and maintained their colony formation 

in its presence, whereas colony formation by 697, THP-1 and OCI-AML3 cells was 

severely impaired upon TGF-β1 stimulation. Taken together, these data indicate that 

ALL cell line resistance to TGF-β does not correlate with expression of TEL-AML1. 

Furthermore, the concentrations of TGF-β required to inhibit colony formation by 

sensitive cell lines were roughly equivalent in ALL and AML cells. 

 

However, it is possible that experiments in leukaemia cell lines do not 

accurately reflect TGF-β responsiveness in original pre-leukaemic cells. For this 

reason, we decided to examine TGF-β responses in primary haematopoietic cells, 
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using an experimental mouse model previously described in our laboratory 

(Mangolini et al., 2013; Morrow et al., 2004; Morrow et al., 2007); (Lyons et al., 

2010). 

   

The figure shows an example of a colony forming assay of the indicated cell lines plated in 

methylcellulose in the presence of the indicated TGF-β1 concentrations. 1x103 697 and REH cells, 
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0.3x103 THP-1 cells and 0.15x103 OCI-AML cells were plated in each well.  The cells were stained 

with INT 10-14 days following plating. The bar chart shows the mean number of colonies for each 

cell line treated with the indicated TGF-β1 concentration ± s.d. for three independent experiments, 

from quadruplicate wells in each experiment. *P < 0.05, **P < 0.01, ***P < 0.005 compared to 

control (Student’s unpaired t test). 

 
 
 
 

3.2.2 TEL-AML1+ immortalised mouse pre-B cells  
 
 

In order to examine the effect of TEL-AML1 on TGF-β responsiveness in 

primary cells, we used immortalised mouse pre-B cells derived from Ter119-ckit+ 

mouse foetal liver cells, conditionally expressing the TEL-AML1 fusion. These cells 

had been transduced with a conditional Tet-off retroviral expression vector, TEL-

AML1 expression being switched off upon exposure of the cells to doxycycline 

(Lyons et al., 2010). Since the TEL-AML1 protein was fused with an HA-epitope 

tag, an anti-HA antibody was used to detect its expression. Western blot analysis of 

2x105 cells confirmed that TEL-AML1 expression was lost following 48 hours of 

doxycycline treatment (Fig. 22).  
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The western blot analysis shows conditional TEL-AML1 pre-B cells following 48 hours culture in 

normal medium or medium containing 1 mg/ml doxycycline. The western blots were probed with an 

anti-HA antibody. An anti-α-tubulin antibody was used as a control for protein loading. The bar chart 

represents the mean densitometric quantitation of HA-TEL-AML1 levels normalised to α-tubulin ± 

s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control 

(One-sample t test). 

 

 

 

 
In this experiment, both untreated and doxycycline treated cells were cultured 

in mouse methylcellulose in the presence of 20ng/ml IL-7, 20ng/ml Flt-3 and 

100ng/ml SCF, and re-plated with and without TGF-β1 to test their colony forming 

ability (Fig. 23).  Upon INT addition it was observed that TGF-β1 stimulation 

resulted in decreased colony formation in cells not expressing TEL-AML1. 

However, cells expressing TEL-AML1 also showed an inhibition in their colony 

forming ability following TGF-β1 stimulation. This showed an inhibition of self-

renewal ability upon TGF-β stimulation irrespective of TEL-AML1 expression.  
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(A) The figure shows an example of colony forming assays of untreated and doxycycline-treated 

conditional TEL-AML1 pre-B cells, in the presence of the indicated TGF-β1 concentrations.  5x104 

untreated and doxycycline cells were plated in a 3cm dish in methylcellulose in the presence of the 

indicated TGF-β1 concentrations. Cells were stained with INT 14 days following plating.  (B) The bar 

chart shows the mean fold change ± s.d in colony formation by the conditional TEL-AML1 pre-B 

cells upon TGF-β stimulation for three independent experiments. (C) The bar chart shows the mean 

fold change ± s.d in colony formation by pre-B cells constitutively expressing TEL-AML1, for three 

independent experiments.  *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t 

test). 

 

(+) Doxycycline 

 
0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	

Re
la
ti
ve
	C
FU
	n
um

be
r	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

 (-)	Doxycyline	  	(+)	Doxycyline	

Re
la
ti
ve
	C
FU
	n
um

be
r	

0	 0.1	 10	
C) 

0 0.1 TGF-β concentration (ng/ml) 10 

(-) Doxycycline 

A) 

B) 

***
 

***
 

***
 

*** 

TGF-β concentration 
(ng/ml) 

Figure 23 – TGF-β  impairs self-renewal ability of mouse progenitor cells conditionally 

expressing the TEL-AML1 fusion 

ns 

           (-)            (+) 
 Doxycyline 



 115 

 
Therefore, it appears that TGF-β responsiveness is not affected by TEL-

AML1 expression in this model either. To exclude the possibility of a non-specific 

doxycycline effect on colony formation, cells constitutively expressing TEL-AML1 

were used as a control. These cells were plated in methylcellulose in the presence of 

doxycycline and colony formation was observed. Treatment with doxycycline had no 

effect on colony forming ability of TEL-AML1 expressing cells. Therefore, these 

data indicate that doxycycline per se did not significantly alter colony formation by 

the pre-B cells in these experiments.   

 

3.2.3 Characterisation of TGF-β signalling in human ALL cells  
 
 

In order to determine which point of the TGF-β signalling cascade was 

blocked in REH cells, we examined SMAD2 phosphorylation by western blot 

analysis by preparing lysates at various time-points after TGF-β stimulation. If the 

TGF-β receptors in REH cells were non-functional, this would be reflected in the 

absence of downstream activation of the TGF-β signalling pathway. An increase in 

SMAD2 phosphorylation was apparent after 5 minutes of TGF-β1 stimulation, and 

this continued to increase over the time course, indicating that signals from the 

receptors were transmitted to SMAD2 upon TGF-β binding (Fig. 24).  



 116 

 

The western blot analysis shows levels of phosphorylated SMAD2, total SMAD2 and total SMAD3, 

in REH cells at different time points following 10ng/ml TGF-β1 treatment. The western blot was 

probed with anti-phospho-SMAD2 and anti-total SMAD2/3 antibodies. An anti-HSP90 antibody was 

used as a control for protein loading. The bar chart represents the mean densitometric quantitation of 

phosphorylated SMAD2 bands, normalised to total SMAD2 bands, which are then plotted relative to 

the loading control, HSP90. The means ± s.d. are shown for three independent experiments. *P < 

0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test).  

 

 

These data suggest that the TGF-β receptors expressed in REH cells are 

functional and capable of transmitting TGF-β1 induced signals, and that the 

resistance of REH cells to TGF-β must occur further downstream in the pathway. 

Since TGF-β responses are transmitted by nuclear translocation of phosphorylated 
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SMAD2, we then examined the levels of phosphorylated SMAD2 in the nucleus 

following TGF-β1 stimulation (Fig. 25 and 26).  

 

  

(A) The western blot analysis shows phosphorylated SMAD2, total SMAD2 and total SMAD3 in the 

cytoplasm and nucleus following 10ng/ml TGF-β1 treatment for 30 minutes, in 697 and REH cells. 

The western blots were probed with anti-phospho-SMAD2 antibody and anti-Total SMAD2/3 

antibody. An anti-GAPDH antibody and an anti-Tata Binding Protein (TBP) antibody were used as 

controls for protein loading for the cytoplasmic and nuclear extracts, respectively. (B) The bar chart 

shows the mean densitometric quantitation of total SMAD3 levels in the nucleus relative to the 

loading control, TBP. (C) The bar chart represents the mean densitometric quantitation of 
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phosphorylated SMAD2 bands in the nucleus, normalised to total SMAD2 bands, which are then 

plotted relative to the loading control, TBP. All data show means ± s.d. for three independent 

experiments.  *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test).  

 

 

The western blot analysis shows phosphorylated SMAD2 levels and total SMAD2 and SMAD3 levels 

in the nucleus and cytoplasm of AT-2 cells following 10ng/ml TGF-β1 treatment for 30 minutes. The 

western blots are probed with anti-phospho-SMAD2 antibody and anti-Total SMAD2/3 antibody. An 

anti-GAPDH and an anti-TBP antibody were used as controls for protein loading for cytoplasmic and 

nuclear extracts respectively. The bar chart represents the mean densitometric quantitation of 

phosphorylated SMAD2 bands in the nucleus, normalised to total SMAD2 bands, which are then 

plotted relative to the loading control, TBP. The means ± s.d. are shown for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test). Since 

there was almost no detectable phosphorylated SMAD2 in the cytoplasm, this data could not be 

quantified. 

 
 
 
 

An increase in the levels of phosphorylated SMAD2 in the nucleus was 

apparent in the three cell lines, 697, REH and AT-2 cells in response to TGF-β1 
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stimulation. No differences were observed in the expression of total SMAD2 protein 

levels between the cell lines. However, unlike 697 and AT-2, REH showed a striking 

deficit in total SMAD3 protein expression. Therefore, to investigate further we 

studied the levels of phosphorylated SMAD3 in REH cells, using 697 as controls. 

Low levels of phosphorylated SMAD3 protein were detected in REH cells, relative 

to 697 cells. Furthermore, there was almost no increase in SMAD3 phosphorylation 

following TGF-β exposure in REH cells. As expected, there was a significant deficit 

in total SMAD3 protein in REH cells.  

 

 

(A) The western blot analysis shows phosphorylated SMAD3 following 10ng/ml TGF-β1 treatment 

for 30 minutes in 697 and REH cells. Total SMAD2 and SMAD3 levels are also shown. The western 
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blot was probed with anti-phosphorylated SMAD3 antibody and anti-Total SMAD2/3 antibody. An 

anti-GAPDH antibody was used as a control for protein loading. (B) The bar chart shows the mean 

densitometric quantitation of phosphorylated SMAD3 levels relative to total SMAD3 levels, which in 

turn is measured against the control, GAPDH. The means ± s.d. are shown for three independent 

experiments. (C) The bar chart shows the mean densitometric quantitation of total SMAD3 levels of 

untreated REH cells relative to untreated 697. The mean ± s.d. are shown for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test).  

 

 

 

Next, we examined the total levels of SMAD2 and SMAD3 across our panel 

of ALL cell lines. BEL-1, an MLL-AF4+ cell line, showed almost no expression of 

SMAD2 and SMAD3. While SMAD2 levels were mostly similar across the panel, 

there were significant differences between SMAD3 expression levels between cell 

lines. Moreover, cell lines with almost no SMAD3 or very low levels of SMAD3 

expression were previously shown to be resistant to TGF-β, whereas cell lines 

expressing SMAD3 were sensitive to the anti-proliferative effects of TGF- β (Fig. 

28).   
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 (A) The western blot analysis shows total SMAD2 and SMAD3 levels following 10ng/ml TGF-β1 

treatment for 30 minutes across a panel of ALL cell lines. The western blot was probed with an anti-

Total SMAD2/3 antibody. An anti-tubulin antibody was used as a control for protein loading. (B) The 

bar chart shows the mean densitometric quantitation of total levels of SMAD2 and SMAD3 in all cell 
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lines relative to corresponding tubulin expression, followed by relativity to the level of total SMAD2 

expression in 697 cells. The means ± s.d. are shown for three independent experiments except in the 

case of AT-2 cells which was performed once. Expression of SMAD2/3 in BEL-1 was too low to be 

detected and quantified. (C) The table shows the ratio of SMAD3 expression in all cell lines and its 

correlation to the sensitivty to TGF-β.  
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3.3 Discussion 
 
 
 To investigate the putative link between TGF-β responsiveness and 

leukaemia aetiology hypothesised in a recent publication, we examined TGF-β 

signalling in a panel of ALL cell lines. We treated this panel of cell lines with TGF-β 

and showed that while TEL-AML1+ REH cells were resistant to TGF-β growth 

inhibition, TEL-AML1+ AT-2 cells were sensitive. This was further shown by cell 

cycle assays, where there was decreased proliferation of AT-2 cells following TGF-β 

treatment, while such treatment did not cause a change in the percentage of REH 

cells in the S-phase of the cell cycle. Since the FBS used to culture cells may contain 

traces of TGF-β, we cultured REH and 697 cells in parallel with two AML cell lines 

in a serum-free medium and subsequently used serum-free methylcellulose to culture 

cells with and without TGF-β, to monitor their colony forming ability. These 

experiments demonstrated that colony formation by REH cells was not affected by 

TGF-β treatment, whereas colony formation was reduced in the other cell lines, 

including 697 cells, confirming the MTS and cell cycle assays. Unfortunately, we 

were not able to perform colony assays with AT-2 assays at this time in the 

laboratory. Taken together, this data indicated that resistance to TGF-β did not 

correlate with TEL-AML1 expression in ALL cell lines.  

 

There are several possible explanations for these results. The simplest 

explanation is that TEL-AML1 does not influence TGF-β responsiveness. However, 

it is also possible that examining responses to TGF-β in ALL cell lines does not 

reflect responsiveness in pre-leukaemic cells. Thus, the capacity of cells to respond 

to TGF-β may change upon acquisition of overt leukaemia characteristics. Ford et al. 
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used three human and mouse models to show resistance of TEL-AML1 expressing 

cells to TGF-β induced suppression of proliferation: Inducible TEL-AML1 BaF3 

cells, that is a pro-B cell line, murine B progenitor cell lines transduced with 

retroviral TEL-AML1 constructs and human cord blood cells transduced with 

lentiviral TEL-AML1 and plated on MS-5 stroma. In this project, we wanted to 

examine TGF-β responsiveness of TEL-AML1 expressing cells in a model 

previously developed in our laboratory (Lyons et al., 2010; Mangolini et al., 2013; 

Morrow et al., 2004; Morrow et al., 2007).  To do this, we used mouse cells with 

conditional TEL-AML1 expression, where the addition of doxycycline repressed 

expression of the fusion protein. Colony forming assays of these mouse pre-B cells 

demonstrated that TGF-β stimulation resulted in a similar decrease in colony 

formation, independent of the presence of doxycycline, and consequent TEL-AML1 

expression. Thus, TEL-AML1 expression failed to affect TGF-β responsiveness in 

this experimental model, consistent with the lack of correlation between its 

expression and resistance to TGF-β in human ALL cells.  

 

To examine whether TGF-β was capable of initiating signal cascades in 

resistant REH cells, we monitored phosphorylated SMAD2 levels following 

stimulation. SMAD2 showed a gradual increase in phosphorylation with time, when 

treated with TGF-β. Moreover, we observed SMAD protein translocation to the 

nucleus upon TGF-β exposure. Meanwhile, SMAD3 protein appeared to be 

underexpressed in REH cells, with little increase in the nucleus upon TGF-β 

stimulation. However, this was not the case in AT-2 cells, where SMAD3 was 

observed at similar levels to SMAD2 protein. This may suggest that REH resistance 

to TGF-β may have been acquired as a result of deficiency in SMAD3 protein, a 
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crucial transcriptional regulator in the TGF-β pathway. Reduced SMAD3 expression 

in other ALL cell lines in our panel also correlated with TGF-β resistance. Therefore, 

it is possible that resistance to TGF-β is acquired as a result of SMAD3 deficit, and 

not TEL-AML1 expression.  

 

In conclusion, our experiments do not support the hypothesised link between 

resistance to the anti-proliferative effects of TGF-β and TEL-AML1 expression. 

However, there are a number of caveats to this conclusion, including the possibility 

that human ALL cell lines and mouse primary cells do not accurately reflect the 

biology of pre-leukaemic cells. Thus, it remains possible that this fusion may 

influence TGF-β responsiveness, but only under very specific conditions.   
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CHAPTER IV. SMAD7 is crucial for leukaemia survival  
 

4.1 Introduction   
 

4.1.1 STAT3 and SMAD7 
 
 

Although we established that it is unlikely in our models that TEL-AML1 

expression is linked to resistance to TGF-β in ALL cells, we decided to investigate if 

the negative regulator of TGF-β, SMAD7, can regulate TGF-β responsiveness in 

ALL cells. SMAD7 can inhibit TGF-β in a negative feedback loop through 

downregulation of R-SMADs and has previously been suggested to play a role in 

different cancers (Zhu et al., 2011). Furthermore, studies have also shown a link 

between STAT3, which is important in TEL-AML1 pathogenesis, and SMAD7 

signalling in different cancers (Jenkins et al., 2005). One study noted that STAT3 

hyper-activation promoted gastric adenoma growth and desensitised cells to the 

cytostatic effect of TGF-β (Jenkins et al., 2005). Using luciferase reporter assays and 

qRT-PCR, this study observed that this desensitisation was achieved through STAT3 

transcriptional induction of SMAD7. Furthermore, siRNA mediated SMAD7 

silencing blocked the ability of STAT3 to desensitise cells to TGF-β-mediated 

suppression. This demonstrated the molecular link between the STAT3 and SMAD 

pathways, specifically identifying SMAD7 as a key mediator in desensitising cells to 

TGF-β and promote STAT3 induced gastric adenomas (Jenkins et al., 2005). 

Another more recent study showed that tumour-associated overexpression of EGFR 

desensitised cells to TGF-β signalling, via STAT3 activation and SMAD7 induction 

(Luwor et al., 2013). They identified STAT3 as a key mediator, persistently activated 

by EGFR, in desensitising cells to TGF-β, using shRNA-mediated STAT3 
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knockdown in head and neck and epidermoid tumour cell lines. Furthermore, STAT3 

knockdown xenografts showed decreased SMAD7 expression compared to control 

xenografts in vivo. SMAD7 mRNA and protein expression were also decreased when 

EGFR activity was blocked and in STAT3 knockdown tumours (Luwor et al., 2013).   

 

4.1.2 SMAD7: canonical and non-canonical signalling  
 
 

SMAD7 is transcriptionally induced by TGF-β but acts as an inhibitor of 

TGF-β signalling, establishing a negative feedback mechanism (Massague et al., 

2005). SMAD7 has a conserved C-terminal MH2 domain, but unlike R-SMADs it 

lacks the N-terminal MH1 domain and the C-terminal amino acid residue 

phosphorylated by TGF-βRI (Yan et al., 2009) (Fig. 13). SMAD7 localisation differs 

between cell types, with SMAD7 being predominantly localised in the nucleus in 

most cell types (Zhang et al., 2007). SMAD7 acts as a negative regulator of TGF-β 

in many ways. Firstly, it can inhibit signalling by interfering with activation of R-

SMADs through blocking TGF-βRI induced phosphorylation of SMAD2 and 

SMAD3 (Nakao et al., 1997). The association of SMAD7 with TGF-β receptors 

suggests it competes with R-SMADs for receptor binding, forming a stable complex 

(Massague and Chen, 2000). Its interaction with TGF-βRI also inhibits association of 

SMAD2 with SMAD4 and the nuclear accumulation of SMAD2, as shown in HepG2 

cells (Hayashi et al., 1997). Additionally, a recent study has shown SMAD7 can also 

directly inhibit R-SMAD-SMAD4 complex, irrespective of its interaction with TGF-

βRI (Yan et al., 2016). Secondly, SMAD7 can recruit the HECT type E3 ubiquitin 

ligases, SMURF1 and SMURF2. SMAD7 binds to SMURFs in the nucleus and 

translocates to the cytoplasm in response to TGF-β and recruits the ubiquitin ligases 
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to the activated type I TGF-β receptor, leading to degradation of the receptor through 

the proteasomal pathway (Ebisawa et al., 2001; Yan et al., 2009). SMAD7 also acts 

as an adaptor protein for other E3 ligases such as NEDD4-2- and WWP1- mediated 

degradation of TGF-β receptors, R-SMADs and SMAD4 (Yan et al., 2016; Yan et 

al., 2009). SMAD7 can also interact with a range of other proteins to inhibit TGF-β 

effectively. For example, SMAD7 works synergistically with the serine/threonine 

kinase receptor associated protein (STRAP), which associates with TGF-β type I and 

II receptors and SMAD7 to stabilise the complex between TGF-βRI and SMAD7 

and thereby inhibit TGF-β signalling (Yan et al., 2009). While SMAD6, another I-

SMAD, is a specific inhibitor of the BMP pathway, SMAD7 has been shown to 

inhibit both the TGF-β and BMP signalling in some cell types. There are more than 

20 BMP family members, involved in regulation of cell proliferation, differentiation 

and apoptosis, with essential roles in embryonic development (Zhang and Li, 2005). 

BMPs are also involved in induction of haematopoietic tissue during early 

embryonic development and BMP signalling is known to function in controlling 

HSC numbers through regulation of the haematopoietic niche.  Moreover, BMP 

signalling has been reported to play a role in promoting acute leukaemia (Crispino 

and Le Beau, 2012).  

 

Although SMAD7 is transcriptionally induced by TGF-β and plays a key role 

in TGF-β canonical signalling, other signalling pathways have also been shown to be 

involved in the transcriptional regulation of SMAD7. The transcription of SMAD7 

can be induced by inflammatory cytokines, such as interleukin 1, IFN-γ and TNF-

α (Fig. 29). There is also increasing evidence to support a role for SMAD7 in p38 

MAPK, ERK and JNK signalling pathways (Yan et al., 2009). Furthermore, it also 
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has an inhibitory role in other intracellular pathways such as disrupting the formation 

of TRAF2-TAK1-TAB2/3 complex and inhibiting TNF-α/NF-κB signalling to 

promote apoptosis (Yan et al., 2009). It has been shown to antagonise Wnt 

signalling, by forming complexes with β-catenin and Smurf2, resulting in 

proteasomal degradation of β-catenin (Han et al., 2006). This can also result in 

deregulation of transcription factors involved in tumourigenesis, such as c-Myc 

(Millar, 2006). Therefore, SMAD7 is crucial in mediating cross-talk between TGF-β 

signalling and other key pathways, and may have important functions that are 

independent of TGF-β signalling. In haematopoiesis, SMAD7 is also important in 

the development of primitive human haematopoietic cells. Its role in altering cell fate 

commitment decisions in HSCs has been observed, by favouring the development of 

myeloid progenitors over lymphoid progeny (Chadwick et al., 2005). Indeed, 

overexpression of SMAD7 in HSCs results in enhanced myeloid differentiation and 

reduced lymphoid development. In addition, as previously mentioned, 

overexpression of SMAD7 in murine HSCs results in significantly increased self-

renewal capacity of HSCs in vivo, through relieving its inhibition by R-SMADs 

(Blank et al., 2006).  

 

 Additionally, SMAD7 has important roles through its nuclear 

function. As a negative regulator of TGF-β, it interrupts functional R-SMAD-DNA 

complex formation in the nucleus (Zhang et al., 2007). SMAD7 associates with R-

SMADs via its MH2 domain, with studies showing that mutations in four specific 

amino acids in the SMAD7 MH2 domain disrupt its interaction with R-SMADs (Yan 

et al., 2016). In addition to its inhibitory role in the nucleus, SMAD7 has also been 

shown to transcriptionally regulate target genes. It can bind to DNA in the nucleus 
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by binding DNA elements that contain the SMAD-binding element (SBE) CAGA 

box. Thus, SMAD7 binding of the SBE in PAI-1, a TGF-β target gene, has been 

shown to inhibit TGF-β signalling (Hanyu et al., 2001; Yan et al., 2016; Zhang et al., 

2007). SMAD7 also regulates gene transcription through interactions with HDACs, 

such as SIRT1, and HATs, such as p300 (Kume et al., 2007; Simonsson et al., 2005). 

Furthermore, in addition to directly regulating transcription, SMAD7 can act as a 

transcriptional co-activator, for example, by promoting the interferon regulatory 

factor 1 (IRF1) transcription factor to eventually induce apoptosis in breast cancer 

cells (Hong et al., 2013).  

 

This diagram shows SMAD7 is transcriptionally induced by TGF-β signalling and inhibits TGF-β 

signalling via a negative feedback mechanism. SMAD7 is also induced by other indicated cytokines 

or stimuli such as TNF-α /IL1, INF-γ, EGF, laminar shear stress etc. SMAD7 is also known to 

enhance transcription of IkB, which is a key inhibitor of NF-κB pathway. SMAD7 can down-regulate 

Figure 29 - SMAD7 mediates the cross-talk of TGF-β  signalling with other pathways  
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B-catenin protein by recruiting E3ligase SMURF1. Furthermore, SMAD7 itself can also undergo 

proteasome mediated degradation in both cytoplasm and nucleus. Adapted from (Yan et al., 2009) 

 

 

 

4.1.3 SMAD7 and cancer  
 
 
 Due to its functions in various key signalling pathways, SMAD7 affects 

numerous processes, including modulation of immune responses, embryo cardiac 

development and function, and skeletal muscle cell differentiation (Stolfi et al., 

2013). Deregulated SMAD7 expression has been observed to play a role in many 

human disorders. For example, SMAD7 is implicated in the progression of fibrosis in 

different organs such as the pancreas, liver, lung and kidney (Stolfi et al., 2013). 

Increasing evidence suggests a dual role for SMAD7 in cancers, where it can restrain 

or enhance cancer cell growth in a cell type dependent manner. In some cancers, 

stable SMAD7 overexpression has been associated with reduced tumour progression. 

It has been reported to inhibit formation of osteolytic metastases by human breast 

cancer and melanoma. On the other hand, high SMAD7 expression levels have been 

associated with thyroid follicular tumours and hepatocellular carcinomas (Cerutti et 

al., 2003; Dowdy et al., 2005; Javelaud et al., 2007; Mikula et al., 2006). SMAD7 

can also promote tumourigenesis by blocking TGF-β mediated growth inhibition and 

apoptosis in pancreatic cancer and it has been linked to poor survival rates in 

oesophageal squamous cell carcinoma (Stolfi et al., 2013). SMAD7 gene variants 

have been particularly analysed in colorectal cancers (CRC), showing that patients 

with SMAD7 deletion have a favourable clinical outcome compared to patients with 

SMAD7 amplification (Stolfi et al., 2014). Silencing of SMAD7 in CRC cell lines in 
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vitro and in vivo after transplantation into immunodeficient mice, results in tumour 

growth inhibition. Two genome-wide association studies (GWAS) show that further 

genetic variations of SMAD7 influence the risk of colorectal carcinogenesis 

(Broderick et al., 2007; Slattery et al., 2010). SMAD7 has also been linked to adult 

T-cell leukaemia (ATLL), with constitutively active SMAD7 inhibiting TGF-β 

mediated growth suppression of cancer cells (Nakahata et al., 2010). This dual role 

of SMAD7 could be a result of the different functions of the TGF-β pathway in 

various cancer types. SMAD7 can also switch from tumour-suppressive to tumour-

promoting function, which can be caused by the opposite role of TGF-β signalling in 

early versus advanced tumour stages (Lebrun, 2012). Therefore, further investigation 

into the mechanisms used by SMAD7 to exert its function in different cancers and 

different stages of oncogenesis, may reveal new therapeutic strategies.  

 

Since activation of STAT3 has been shown to play a key role in TEL-AML1 

pathogenesis and has been shown to regulate SMAD7 in other cancers, we decided to 

investigate if SMAD7 was a STAT3 target in TEL-AML1+ leukaemia and further 

identify its role in regulating TGF-β responsiveness of leukaemic cells.  
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4.2 Results 
 

4.2.1 STAT3 regulates SMAD7 in TEL-AML1+ cells  
 
  
 In order to establish whether STAT3 regulated SMAD7 in TEL-AML1+ 

leukaemia, we performed lentiviral transduction of REH cells (Fig. 30A) and AT-2 

cells (Fig. 30B) with an shRNA targeting STAT3, previously used in our laboratory. 

Following 72 hours of puromycin selection (five days after transduction), total RNA 

was extracted and qRT-PCR was performed using a specific probe set to detect 

SMAD7 mRNA expression. Following confirmation of STAT3 knockdown, we 

observed a decrease in SMAD7 gene expression as a result of the knockdown in both 

REH and AT-2 cells (Fig. 30). Therefore, these data indicated that STAT3 did indeed 

regulate SMAD7 gene expression in TEL-AML1+ cells. 

 

 

The figure shows qPCR analysis of STAT3 silencing in (A) REH and (B)AT-2 cells transduced with 

control scramble or STAT3 shRNA. 2 days after transduction, cells were selected with puromycin for 

a further 3 days. Dead cell removal was then performed and STAT3 silencing measured by qPCR (Day 
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5 post transduction). The gene expression analysis of SMAD7 following STAT3 knockdown is also 

shown. The mean ±	s.d. is shown for three independent experiments. *P < 0.05, **P < 0.01, ***P < 

0.005 compared to control (One sample t test). 

 

 

 

4.2.2 SMAD7 knockdown in TEL-AML1+ cells results in cell cycle block and 

apoptosis 

 
 Since STAT3 activated SMAD7 expression, we decided to examine the 

function of SMAD7 in TEL-AML1+ cells. In particular, we were interested to 

determine whether STAT3 induced SMAD7 expression played a part in resistance to 

TGF-β in REH cells. In order to do this, we silenced SMAD7 in REH cells using 

shRNA constructs. A set of five different shRNA targeting SMAD7 were tested, from 

which we identified two independent hairpins capable of reducing the expression of 

SMAD7. The shRNAs used resulted in silencing of SMAD7 to different extents, as 

determined by qRT-PCR analysis (Fig. 31A).  

 

Following SMAD7 knockdown, we measured the proliferation and survival of 

leukaemic cells. Cells transduced with control scramble and two different shRNA 

were cultured with and without TGF-β1 and viability of cells measured by MTS 

assay, 48 and 96 hours post treatment. These experiments demonstrated that 

proliferation of REH cells was inhibited by SMAD7 silencing. It was observed that 

the greater the knockdown, the greater the inhibition of proliferation (Fig. 31B). 

Interestingly, TGF-β1 addition had no effect on the degree of proliferation inhibition 

(Fig. 31C). This suggested that, regardless of TGF-β1, SMAD7 knockdown resulted 
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in suppression of leukaemic cell proliferation, implicating a TGF-β independent role 

for SMAD7 in REH cells.  

 

(A) The figure shows qPCR analysis of SMAD7 silencing in REH cells transduced with control 

scramble or two different SMAD7 shRNAs for three independent experiments. 2 days after 

transduction, cells were selected with puromycin for a further 3 days. Dead cell removal was then 

performed SMAD7 silencing measured by qPCR (Day 5 post transduction). The line charts show 

mean proliferation of REH cells as measured by MTS 48 and 96 hours following dead cell removal. 

Cells were either (B) untreated or (C) treated with 10ng/ml TGF-β1. All data show the means ± s.d. 

Figure 31 – Inhibition of SMAD7 leads to a specific block in proliferation in REH cells 
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for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One 

sample t test). 

 

 

 

Meanwhile we identified a third shRNA targeting SMAD7 that generated 

better knockdown of SMAD7 than shSMAD7-2. Therefore, for the rest of the 

experiments, we used this shRNA (shSMAD7-3) together with shSMAD7-1 (Fig. 

32A). Although SMAD7 silenced cells stopped proliferating in the absence of 

exogenous TGF-β1, it was important to rule out any effect of autocrine TGF-β 

signalling or by any TGF-β present in the culture medium. Therefore, following 

SMDA7 knockdown, REH cells were treated with and without the anti-TGF-β1 mAb 

1D11, and we examined whether this would rescue the proliferation suppression 

upon SMAD7 silencing. We have previously shown that 1D11 does block TGF-β 

induced SMAD2 activation and suppression of proliferation in these cells. These 

experiments showed that despite blocking autocrine TGF-β1 signalling with 1D11 

and in the absence of exogenous TGF-β1, SMAD7 silencing still resulted in 

proliferation inhibition of REH cells (Fig. 32B). This suggested that SMAD7 

function is independent of TGF-β signalling in these cells, suggesting a different 

mechanism of action.  
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(A) The figure shows qPCR analysis of SMAD7 knockdown in REH cells transduced with control 

scramble or two independent SMAD7 shRNA. 2 days following transduction, cells were selected with 

puromycin for a further 3 days. Dead cell removal was then performed and SMAD7 silencing 

measured by qPCR (Day 5 post transduction). The data show the means ± s.d. for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One sample t test). (B) The 

chart shows proliferation of REH cells transduced with control scramble or the two SMAD7 shRNA 

and subjected to 20ng/ml 1D11 treatment on day 5 post transduction. The proliferation is measured by 

MTS assay at 72 hours following treatment. All data show the means ± s.d. for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (Student’s unpaired t test).  
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In order to determine whether the sensitivity of REH cells to SMAD7 

knockdown was due to induction of cell cycle block and eventual cell death, we 

evaluated its effect on cell cycle profile and level of apoptosis in the cells. SMAD7 

knockdown cells resulted in a substantial cell cycle block, in the G1-S phase 

transition (Fig. 33) and a significant increase in apoptosis (Fig. 34). This confirmed 

that knockdown of SMAD7 induced both cell cycle arrest and cell death in REH 

cells. We then decided to analyse the clonogenic capacity of REH cells following 

SMAD7 knockdown using colony-forming assays. Cells were plated out into 

methylcellulose medium and colony formation assessed after two weeks culture. 

This showed that the ability of REH cells to form colonies after SMAD7 silencing 

was significantly reduced compared to control cells (Fig. 35). 
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The flow cytometry plots are examples of the cell cycle profiles of REH cells transduced with control 

scramble and two SMAD7 shRNA. 2 days after transduction, cells were selected with puromycin for 3 

days. Dead cell removal was then performed and viable cells were cultured for a further 2 days. Cell 

cycle profile was then evaluated after pulsing with 10uM EdU for 1 hour (Day 7 post transduction). 

This figure is representative of three independent experiments. The bar chart represents the mean 

percentage of cells in the S-phase  ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (Student’s unpaired t test). 
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Figure 33 - SMAD7 knockdown causes cell cycle block in REH cells 
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The flow cytometry plots are examples of the apoptosis profiles of REH cells transduced with control 

scramble and two SMAD7 shRNA. 2 days after transduction, cells were selected with puromycin for 3 

days. Dead cell removal was then performed and viable cells were cultured for a further 3 days. The 

cells were then stained with Annexin V and PI (Day 8 post transduction). This figure is representative 

of three independent experiments. The bar chart represents the mean percentage of apoptotic Annexin 

V+PI- cells ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to 

control (Student’s unpaired t test).  
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The figure shows an example of colony forming assay of REH cells plated in quadruplicate in 

methylcellulose at 1x103 cells per well after transduction with control scramble and two SMAD7 

shRNA. 2 days after transduction cells were selected with puromycin for a further 3 days. Dead cell 

removal was then performed and viable cells were plated in methylcellulose (Day 5 post 

transduction). The cells were stained with INT 14 days following plating. This figure is representative 

of three independent experiments. The bar chart shows the mean fold change of colonies relative to 

control scramble ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

compared to control (One sample t test). 
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Figure 35 - SMAD7 silencing reduces self-renewal ability of REH cells 
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To examine whether SMAD7 silencing resulted in a cell cycle block in the 

second cell line carrying the t(12;21) translocation, AT-2 cells, we performed a cell 

cycle analysis. This confirmed the data observed in REH cells, showing a similar 

cell-cycle block in the S-phase of the cycle (Fig. 36). Therefore this data suggests an 

important role for SMAD7 in TEL-AML1+ leukaemia survival in vitro.  

 
 

(A) The figure shows qPCR analysis of SMAD7 silencing in AT-2 cells transduced with control 

scramble or two different SMAD7 shRNAs for three independent experiments. 2 days after 

transduction, cells were selected with puromycin for 3 days. Dead cell removal was then performed 
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and SMAD7 silencing measured by qPCR (Day 5 post transduction). The data show means ± s.d. for 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One sample 

t test). (B) Viable cells were cultured for a further 2 days and cell cycle profile was then evaluated 

after pulsing with 10uM EdU for 1 hour (Day 7 post transduction). The bar chart represents the mean 

percentage of cells in the S-phase  ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (Student’s unpaired t test). (C) The flow cytometry plots are 

examples of the cell cycle profile obtained for three independent experiments. 

 
 
 
 
 

4.2.3 SMAD7 is necessary for leukaemia progression in vivo 
 
 
 In order to address the importance of SMAD7 in leukaemia progression in 

vivo, we next transplanted NSG mice with luciferase expressing REH cells following 

SMAD7 knockdown. To do this, REH cells were transduced with a lentiviral vector 

expressing the luciferase gene and a cDNA encoding a tailless human CD2 molecule, 

lacking most of its cytoplasmic domain (Woodward et al., 2010). Transduced cells 

were positively selected by magnetic sorting of CD2+ cells (Fig. 37). The sorted cells 

were then transduced with shSCR or shSMAD7-1 vectors (Fig. 37B and 37C). 

Following puromycin selection, viable cells were purified and an equal number of 

cells were injected into NSG recipient mice.  
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The figure shows flow cytometry analysis of REH cells transduced with a vector expressing luciferase 

and CD2, sorted, and stained using an anti-human CD2-PE antibody (A). Untransduced REH cells 

(red) were used as control cells. The percentage of luciferase-CD2 transduced cells (blue) is shown. 

(B) The bar chart shows SMAD7 silencing of REH-LUC-CD2 cells as measured by qPCR prior to 

transplantation. 2 days after transduction with control scramble or shSMAD7-1, cells were selected 

with puromycin for 3 days. Dead cell removal was then performed and qPCR and protein levels 

examined pre-transplantation (pre-transplantation: 5 days post transduction).  (C) The western blot 

analysis shows SMAD7 silencing of REH-LUC-CD2 cells at the protein level, pre-transplantation and 

the bar chart shows the densitometric quantitation of SMAD7 levels relative to HSP90. All 

experiments were performed once.     
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Figure 37 - SMAD7 silencing in luciferase-CD2 transduced REH cells 
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Prior to injection, a luciferase assay was performed to confirm that both 

groups exhibited similar levels of luciferase activity (Fig. 38A) and the viability of 

the cells was examined (Fig. 38B) to ensure similar viability of control and 

knockdown cells. Although most of the mice transplanted with SMAD7 knockdown 

cells developed leukaemia, the latency of leukaemia onset was significantly longer 

than in those transplanted with control scramble cells (Fig. 39). Indeed, one 

shSMAD7-1 transplanted mouse survived and was culled at the end of the experiment 

but showed no signs of clinical disease. Moreover, increased levels of SMAD7 

mRNA expression were detected in the engrafted cells recovered from the first three 

shSMAD7-1 mice that were sacrificed, in comparison to levels observed in the cells 

pre-transplantation, in both cases relative to levels expressed in control scramble 

cells (Fig. 39D). This demonstrates in vivo selection against leukaemic cells with low 

SMAD7 expression.  

 
 

(A) The bar chart shows the luciferase signal measured using Promega Luciferase assay kit of REH-

LUC-CD2 cells following transduction with control scramble or shSMAD7-1. 2 days following 

transduction, cells were selected with puromycin for 3 days. Dead cell removal was performed and 
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Figure 38 - Testing luciferase levels and viability of REH-LUC-CD2 transduced cells pre-

transplantation 
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luciferase signal was then measured on day 5 post transduction. Results were measured in triplicates 

and the mean ± s.d. shown. (B) The flow cytometry plots show apoptosis analysis of REH-LUC-CD2 

cells day 5 post transduction with control scramble or shSMAD7-1, prior to transplantation. Apoptosis 

profiles were evaluated after staining with Annexin V to show equal levels of viability.        

 
 

(A) The figure shows a bioluminescent image of NSG mice 32 days after transplantation with 1x105 

of control scramble or shSMAD7-1 luciferase expressing REH cells and (B) the resulting survival 

curve. (C) The line chart shows the luminescence radiance measured at 7-day intervals starting from 

day 11 for each mouse transplanted either with control scramble or shSMAD7-1 luciferase expressing 

REH cells. (D) shSMAD7-1 transduced cells isolated from bone marrow of leukaemic mice (post-

leukaemia) show loss of knock-down after in vivo progression. SMAD7 expression was normalised to 
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 Figure 39 - Leukaemia silencing in vivo after SMAD7 silencing 
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SMAD7 expression in control scramble shRNA transduced REH-LUC-CD2 cells. qPCR was 

performed in triplicate wells and mean ± s.d. shown.  

 
 
 
 
 

4.2.4 SMAD7 is also important in other subtypes of leukaemia  
 
 

To investigate if SMAD7 was important specifically in TEL-AML1 

leukaemia or also required by other subtypes of leukaemia, we used two additional 

human leukaemic cell lines: MLL-AF4+ SEMK-2 ALL cells and, MLL-AF9+ THP-1 

AML cells. Both cells lines were transduced with the two shRNA targeting SMAD7. 

Subsequently, following 72 hours of puromycin, the level of SMAD7 knockdown 

was examined by qRT-PCR. Dead cell removal was performed on the cells and after 

48 hours cell cycle analysis was performed to determine whether the shSMAD7-

mediated block in cell cycle observed in TEL-AML1+ cells was also apparent in 

other leukaemias.  Both SEMK-2 and THP-1 exhibited an almost complete block in 

the S-phase of the cell cycle following SMAD7 knockdown (Fig. 40 and 41).  
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(A) The bar chart shows qPCR analysis of SMAD7 silencing in SEMK-2 cells transduced with 

control scramble or two different SMAD7 shRNAs for three independent experiments. 2 days after 

transduction, cells were selected with puromycin for 3 days. Dead cell removal was then performed 

and SMAD7 silencing measured by qPCR (Day 5 post transduction). The data show means ± s.d. for 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-

sample t test). (B) Viable cells were cultured for a further 2 days and cell cycle profile was then 

evaluated after pulsing with 10uM EdU for 1 hour (Day 7 post transduction). The bar chart represents 

the mean percentage of cells in the S-phase ± s.d. for three independent experiments. *P < 0.05, **P < 

0.01, ***P < 0.005 compared to control (Student’s unpaired t test). (C) The flow cytometry plots are 

examples of the cell cycle profile obtained for three independent experiments.  
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Figure 40 - SMAD7 silencing causes cell cycle block in MLL-AF4+ ALL cells 
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(A) The bar chart shows qPCR analysis of SMAD7 silencing in THP-1 cells transduced with control 

scramble or two different SMAD7 shRNAs for three independent experiments. 2 days after 

transduction, cells were selected with puromycin for 3 days. Dead cell removal was then performed 

and SMAD7 silencing measured by qPCR (Day 5 post transduction). The data show means ± s.d. for 

three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-

sample t test). (B) Viable cells were cultured for a further 2 days and cell cycle profile was then 

evaluated after pulsing with 10uM EdU for 1 hour (Day 7 post transduction). The bar chart represents 

the mean percentage of cells in the S-phase ± s.d. for three independent experiments. *P < 0.05, **P < 

0.01, ***P < 0.005 compared to control (Student’s unpaired t test). (C) The flow cytometry plots are 

examples of the cell cycle profile obtained for three independent experiments.  
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Figure 41 - SMAD7 silencing results in cell cycle block in MLL-AF9+ AML cells 
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4.2.5 Global gene expression analysis in REH cells following SMAD7 silencing 
 

RNA-seq is a powerful method that uses deep sequencing technology (where 

the genomic region is sequenced multiple times) to detect and analyse the 

transcriptome profile of cells. Our data show that SMAD7 expression is required for 

proliferation and survival of different ALL and AML cell lines, and that it appears to 

function independently to the TGF-β signalling pathway. In order to establish the 

mechanisms underpinning the function of SMAD7 in leukaemia, we used this 

technology to determine global gene expression changes caused by SMAD7 

silencing in REH cells. REH cells transduced with control scramble and two 

different SMAD7 shRNA were used. When viral supernatant titres for control 

scramble and the SMAD7 shRNA were measured, shSMAD7-3 was found to have a 

lower titre than shSMAD7-1. Despite further rounds of virus supernatant production, 

using new DNA preparations, shSMAD7-3 titres were consistently lower than those 

of shSMA7-1. It is important to use equivalent viral titres for control and 

experimental constructs, such that the gene expression data reflect the loss of the 

targeted gene rather than the different levels of shRNA expressed in each group. 

Therefore, we divided the experiment in two, using equivalent control scramble titres 

to those of each SMAD7 shRNA (Fig. 42A). In the case of shSMAD7-3, this was 

achieved by diluting the control scramble supernatant (Fig. 42B). 2 days after 

transduction, cells were selected with puromycin for 3 days. Dead cell removal was 

then performed and RNA was extracted (Day 5 post transduction). The concentration 

of RNA was determined using the NanoDrop ND-1000 and the quality using the 

Agilent 2100 Bioanalyzer. In total 12 samples were submitted to UCL Genomics and 

RNA-seq was performed by T. Brooks and K. Pearce. The data was analysed using 

two different software packages, Ilumina BaseSpace and Strand NGS 2.6 (Avadis). 
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Figure 42 - Measurement of viral titres prior to RNA-sequencing 

(A) The chart shows the measured viral titres for REH cells transduced with scramble and the two 

shRNA targeting SMAD7. 2 days following transduction in 96 well plates with different virus 

concentrations, cells were selected with puromycin for a further 3 days. On day 5 post transduction, 

cells were fixed with 4% PFA for 10 minutes and re-suspended in TO-PRO-3 stain (ThermoFisher 

Scientific), which was diluted 1:20 in PBS. The viral titres were then measured using flow 

cytometry.  (B) The chart shows viral titres measured as previously for (A) using REH cells 

transduced with diluted scramble (Scramble-3) and shSMAD7-3 on day 5 post transduction.   
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(A) The bar chart shows SMAD7 silencing of REH cells as measured by qPCR after transduction with 

control Scramble and two different SMAD7 targeted shRNA. 2 days after transduction, cells were 

puromycin selected for 3 days. Dead cell removal was then performed and cells were analysed by 

qPCR (Day 5 post transduction). (B) The western blot analysis is a representative of SMAD7 

silencing of REH cells at the protein level (Day 5 post transduction) for three independent 

experiments. The bar chart shows the mean relative quantity of SMAD7 protein for three independent 

experiments. All data show mean ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (One sample t test). 
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Figure 43 - Detection of SMAD7 knockdown in REH cells for RNA-sequencing 
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Table 7 - Samples used for RNA-sequencing 
 
The table shows the RNA samples used for RNA-seq. Three independent experiments were performed 

using control scramble-1 and shSMAD7-1 in REH cells and all 6 samples were submitted for RNA-

sequencing. Similarly, three independent experiments were performed using a diluted, lower titre 

control scramble-3 and shSMAD7-3 in REH cells and all 6 samples submitted for RNA-sequencing.  

 
 

 

For the first analysis, we used Ilumina BaseSpace, the RNA-express tool, 

which aligns the RNA-Seq reads with the STAR aligner and assigns the aligned 

reads to genes and calculates the differential gene expression with DESeq2 

(Ilumina). More than 90% total alignment was observed with all 12 samples. The 

RNA-express tool then generates the differential gene expression between samples 

using DESeq2. The sequencing results were normalised using the reads per kilobase 

per million (RPKM) method and the gene transcripts were assembled using Cufflinks 

2.1.1. Scramble-1 samples were grouped as replicates and shSMAD7-1 samples were 

grouped separately as replicates to allow pair-wise comparison. The same grouping 

was performed for Scramble-3 and shSMAD7-3. Gene transcripts were filtered based 

on their fold change, keeping only genes with a fold change of 2 or higher. This 

generated a list of 2,190 genes.  With regard to genes differentially expressed 

between Scramble-3 and shSMAD7-3, when genes were filtered to only show genes 

with a fold change of 2 or higher this generated a list of 508 genes. We identified 250 

SAMPLES 

Controls shSMAD7 

Scramble -1 (x3) shSMAD7-1 (x3) 

Scramble -3 (x3) shSMAD7-3 (x3) 
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out of these 508 gene expression changes present in the list of gene expression 

changes obtained using scramble-1 vs shSMAD7-1 (Fig. 44).  

 

(A) The scatter plots generated by RNA-express tool in Ilumina BaseSpace show the differentially 

expressed genes in control scramble vs shSMAD7 for both pairings. The number of genes is reduced 

when a filter is applied to show genes whose expression changes more than 2-fold.  The scatter plots 

display the log2(fold change) against the mean count of a gene. (B) The venn diagram represents the 

number of gene changes 2 fold or above, identified using scramble-1 vs shSMAD7-1 (orange) and 

Gene expression changes above 2 fold 

Scramble-1 vs shSMAD7-1 

Scramble-3 vs shSMAD7-3 

2,190 genes 

508 genes 

Figure 44 - Analysis of differential gene expression following SMAD7 silencing using Ilumina 

BaseSpace software 
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scramble-3 vs shSMAD7-3 (purple) and the number of genes common to both gene sets is shown in 

white.  

 

 

 

Next, we used a second approach by analysing the RNA-seq data using the 

Strand NGS software to gain more confidence in our data sets. We first filtered the 

data by selecting for genes using a defined p-value cut off at 0.05, whose expression 

level changed more than 1.5 fold.  We then selected for gene expression changes that 

were detected in at least 2 out of 3 replicates. A p-value is generated for each gene 

using an unpaired t-test. The p-value cut off at 0.05 allows a 5% chance of error. 

Therefore, we applied a multiple testing correction procedure, known as the 

Benjamini-Hochberg method, to control the false positive discovery rate. Multiple 

testing adjusts the individual p-value for each gene to keep the overall false positive 

rate to less than or equal to the specified p-value cut-off. We then filtered gene 

expression changes that were common to both data sets: i.e. Scramble -1 vs 

shSMAD7-1 and Scramble-3 vs shSMAD7-3. Use of a second shRNA, shSMAD7-3, 

allowed filtering out off-target gene expression changes from shSMAD7-1. 

Therefore, we generated a list of genes common to both data sets. Application of 

these filters generated the final target gene list of 56 upregulated genes and 250 

downregulated genes following SMAD7 silencing (Appendix Tables 10 and 11).  

 

In order to compare the number of these gene expression changes present in 

the Ilumina BaseSpace analysis, we generated the final downregulated and 

upregulated gene list common to both shRNA used, setting a 1.5 cut off fold change 

in Microsoft Excel. This highlighted that 28 out of the 56 upregulated gene 
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expression changes from NGS Strand analysis was present in the Ilumina BaseSpace 

list and 196 out of the 250 downregulated gene expression changes from NGS Strand 

were present in our Ilumina BaseSpace generated analysis (Fig. 45).  

 
 
  
 
 

 

(A) The venn diagram represents the number of upregulated gene expression changes 1.5 fold or 

above, identified using Ilumina BaseSpace (green) and Strand NGS analysis (red). The number of 

gene expression changes in common to both analyses is displayed in white. (B) The venn diagram 

represents the number of downregulated gene expression changes, 1.5 fold or above, identified using 

Ilumina BaseSpace (purple) and Strand NGS analysis (blue). The number of gene expression changes 

in common to both analyses is displayed in white.  

 

 

 

 

The list of differentially expressed genes following SMAD7 knockdown 

obtained using Strand NGS analysis was examined using Ingenuity Pathway 

Analysis (IPA) (Qiagen) software, which assembles genes with known relationships 

and identifies relevant pathways using databases of biological pathways pre-loaded 
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onto the software. This analysis revealed the top canonical pathways generated using 

our upregulated gene list. This identified pathways related to serine biosynthesis and 

pathways related to sperm motility and cytokine production. However, only one or 

two genes in each pathway were present in our list of upregulated genes. We then 

performed the same analysis using the downregulated gene list. Unexpectedly, this 

showed that the top four pathways in the analysis were specifically related to 

cholesterol biosynthesis. The top canonical pathway was found to be the 

superpathway of cholesterol biosynthesis (Fig. 46). Furthermore, out of 27 well-

established genes in this top pathway, 6 of the genes were present in our final list of 

downregulated genes (22.2%). These six genes also appeared in the next three 

pathways in the analysis, which consist of intermediates in the cholesterol pathway 

that contribute to the main superpathway of cholesterol biosynthesis (Table 8). 

Furthermore, all the gene changes in the cholesterol biosynthesis pathway were also 

present in our final gene list from Ilumina Basespace analysis. This indicated a 

significant association between SMAD7 expression and expression of multiple genes 

in the cholesterol biosynthesis pathway.  
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(A) The top canonical pathways generated by IPL in relation to the final upregulated target gene set. (B) The top canonical pathways generated by IPA in relation to the final 

downregulated target gene set. 22.2% of genes in the Superpathway of Cholesterol Biosynthesis were present in the target gene set.  

 
 

A) 

Figure 46 - IPA shows the top canonical pathways related to upregulated and downregulated gene sets following SMAD7 silencing 

 

 

 

Analysis Name: up both - 2015-09-16 05:32 PM
Analysis Creation Date: 2015-09-16
Build version: 377306M
Content version: 24390178 (Release Date: 2015-06-17)

Top Canonical Pathways
Name p-value Overlap
Serine Biosynthesis 9.38E-03 20.0 % 1/5
Superpathway of Serine and Glycine Biosynthesis I 1.31E-02 14.3 % 1/7
Sperm Motility 1.95E-02  1.8 % 2/114
GADD45 Signaling 3.52E-02  5.3 % 1/19
IL-15 Production 4.97E-02  3.7 % 1/27

Top Upstream Regulators
Upstream Regulator p-value of overlap Predicted Activation
CEBPA 1.19E-03
WHSC1 1.33E-03
RUVBL1 1.71E-03
PSMC5 1.80E-03
PSMC4 1.80E-03

Top Diseases and Bio Functions
Diseases and Disorders
Name p-value #Molecules
Infectious Diseases 3.70E-02 - 7.42E-05 5
(c) 2000-2016 QIAGEN. All rights reserved. 1

 

 

 

Top Canonical Pathways
Name p-value Overlap
Superpathway of Cholesterol Biosynthesis 8.02E-07 22.2 % 6/27
Cholesterol Biosynthesis I 1.50E-05 30.8 % 4/13
Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 1.50E-05 30.8 % 4/13
Cholesterol Biosynthesis III (via Desmosterol) 1.50E-05 30.8 % 4/13
Mitotic Roles of Polo-Like Kinase 1.27E-04  9.5 % 6/63

Top Upstream Regulators
Upstream Regulator p-value of overlap Predicted Activation
CCND1 9.17E-16
CDK4 1.31E-15
NUPR1 1.23E-12
E2F4 4.44E-12
RABL6 9.95E-12

Top Diseases and Bio Functions
Diseases and Disorders
Name p-value #Molecules
Cancer 2.78E-02 - 2.63E-11 180
Organismal Injury and Abnormalities 2.78E-02 - 2.63E-11 180
Reproductive System Disease 2.48E-02 - 2.63E-11 111
Connective Tissue Disorders 2.74E-02 - 8.96E-07 25
Developmental Disorder 2.46E-02 - 8.96E-07 29

Molecular and Cellular Functions

Summary of Analysis - down both - 2015-09-16 05:30 PM

(c) 2000-2015 QIAGEN. All rights reserved. 2

Analysis of downregulated genes 

Analysis of upregulated genes 

B) 
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Table 8 - Genes present in the top canonical pathways generated in response to downregulated target gene set  
 
This table shows the list of top canonical pathways highlighted by genes that were downregulated upon SMAD7 knockdown. The p-value and list of genes associated with 

each pathway are shown. The top pathway and the six genes related to it from the gene set are highlighted in red. 

 

Ingenuity Canonical Pathways -log(p-value) Molecules 
Superpathway of Cholesterol Biosynthesis 6.10E+00 FDPS,DHCR7,ACAT2,MSMO1,LSS,LBR 
Cholesterol Biosynthesis I 4.82E+00 DHCR7,MSMO1,LSS,LBR 
Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 4.82E+00 DHCR7,MSMO1,LSS,LBR 
Cholesterol Biosynthesis III (via Desmosterol) 4.82E+00 DHCR7,MSMO1,LSS,LBR 
Mitotic Roles of Polo-Like Kinase 3.90E+00 CDC20, CCNB2, PKMYT1, PLK1, KIF11, SMC1A 
Cell Cycle: G2/M DNA Damage Checkpoint Regulation 3.47E+00 TOP2A, CCNB2, PKMYT1, PLK1, SFN 
Zymosterol Biosynthesis 2.65E+00 MSMO1,LBR 
Role of BRCA1 in DNA Damage Response 2.55E+00 RAD51,BRCA2, PLK1, BRIP1, E2F2 
TR/RXR Activation 2.39E+00 RAB3B, CAMK4, SREBF1, NRGN, PCK1 
Cell Cycle Control of Chromosomal Replication 2.36E+00 CDT1, CDC6, MCM7 
ATM Signaling 2.21E+00 RAD51, SMC2, CCNB2, SMC1A 
Oleate Biosynthesis II (Animals) 2.19E+00 FADS2, FADS1 
Pyridoxal 5'-phosphate Salvage Pathway 2.11E+00 MAP2K6, PLK1, TTK, NEK2 
Asparagine Biosynthesis I 1.91E+00 ASNS 
Lanosterol Biosynthesis 1.91E+00 LSS 
DNA Double-Strand Break Repair by Homologous 
Recombination 

1.90E+00 RAD51,BRCA2 

Superpathway of Geranylgeranyldiphosphate Biosynthesis I 
(via Mevalonate) 

1.79E+00 FDPS,ACAT2 
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4.3 Discussion   
 
 

STAT3 activity has been shown to be necessary for TEL-AML1 leukaemia 

maintenance (Mangolini et al., 2013). Here, we identify SMAD7, a TGF-β inhibitor, 

as a transcriptional target of STAT3 in TEL-AML1 leukaemia, and its key role in 

leukaemia progression.  

 

 REH and AT-2, two TEL-AML1+ human cell lines, lentivirally transduced 

with a shRNA construct targeting STAT3 showed a decrease in SMAD7 gene 

expression. The exact mechanism behind how STAT3 regulates SMAD7 expression 

in TEL-AML1+ cells is unclear. One possible mechanism is direct regulation via 

binding of STAT3 to the SMAD7 gene promoter. Indeed, studies have reported 

SMAD7 as a target gene of STAT3 using ChIP analysis and microarray studies 

(Snyder et al., 2008).  

 

Subsequently, we explored the role of SMAD7 in TEL-AML1+ leukaemia 

using independent shRNA constructs targeting SMAD7 in REH cells. Although 

SMAD7 is known to function through inhibition of TGF-β canonical signalling, cells 

transduced with shSMAD7 stopped proliferating even in the absence of exogenous 

TGF-β1. Moreover, use of the 1D11 mAb, a TGF-β blocking antibody, to exclude 

autocrine TGF-β signalling or TGF-β1 in the culture medium, did not alter the effect 

observed following SMAD7 knockdown. Furthermore, the greater the level of 

knockdown, the greater the inhibition of proliferation compared to control cells. 

Therefore, this suggested a role for SMAD7 signalling in inhibiting leukaemia 

progression through a mechanism independent of TGF-β signalling. While SMAD6 
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is an inhibitor of the BMP pathway, SMAD7 has been shown to inhibit both the 

TGF-β and BMP signalling in some cell types. BMP signalling has been reported to 

play a role in promoting paediatric acute leukaemia through self-renewal of 

haematopoietic progenitors. Therefore, we thought one possibility was that SMAD7 

was involved in regulation of BMP signalling in these cells.    

 

 SMAD7 inhibition in REH cells resulted in cell cycle block, apoptosis and 

impaired colony forming ability. In addition, SMAD7 silencing in AT-2 cells also 

showed an inhibition of proliferation and a cell cycle block. This indicates an 

important role for SMAD7 in leukaemic progression in TEL-AML1+ leukaemia. 

Moreover, leukaemic cell lines carrying distinct genetic aberrations, such as SEMK-

2 (MLL-AF4) and THP-1 (MLL-AF9), an AML cell line, also showed significant 

cell cycle arrest upon SMAD7 knockdown. Therefore, our data indicate that SMAD7 

is important not only for TEL-AML1+ leukaemia but may play a role in leukaemia 

cells in general, and more importantly, it functions independent of TGF-β in these 

cells. Previously, a role for SMAD7 independent of TGF-β signalling, functioning 

through multiple alternate pathways such as BMP signalling has been established. 

Therefore, SMAD7 may be a therapeutic target in different subtypes of leukaemia, 

although exactly how it functions remains unclear.  

  

 Similar to the results obtained in vitro, when shSMAD7 transduced REH cells 

were transplanted into mice, the latency of disease was significantly longer compared 

to mice transplanted with control scramble cells, indicating that SMAD7 is important 

for leukaemia progression in vivo. These data indicate that SMAD7 has a role in 

disease maintenance both in vitro and in vivo. 
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To determine how SMAD7 functions in leukaemia, we performed RNA-

sequencing of REH cells with SMAD7 silencing using two different shRNAs 

targeting SMAD7 and control scramble cells. We expected to identify genes in the 

BMP family to be regulated by SMAD7, as SMAD7 has been shown to inhibit BMP 

signalling. However, although genes in the BMP pathway such as SMAD1, SMAD5, 

BMP2 and BMP3 were differentially expressed, this was not consistent using both 

shRNA. While some of the genes decreased in expression following knockdown with 

shSMAD7-1, for example, SMAD1, other genes had increased expression following 

knockdown using shSMAD7-3. Therefore, we decided to focus on other gene 

changes between scramble and SMAD7 knockdown and used IPA software to 

identify genes that were related and present in the same pathway. This analysis 

highlighted down regulation of multiple genes in the same metabolic pathway, 

superpathway of cholesterol biosynthesis, showing 22.2% of genes in this pathway to 

be present in our final target gene set. These six genes are known to encode various 

enzyme intermediates in the cholesterol pathway, implicating SMAD7 in the 

regulation of this metabolic pathway to promote leukaemic progression. There is no 

previous evidence linking SMAD7 to cholesterol biosynthesis, therefore it is 

unknown how it may regulate genes in the cholesterol pathway. As SMAD7 is 

capable of binding DNA and transcriptionally regulating genes it may be possible 

that it directly regulates some of the highlighted genes in the cholesterol pathway. 

Another possibility is that SMAD7 may indirectly regulate the genes involved in 

cholesterol biosynthesis via other target genes.    

 

 In conclusion, we observed that STAT3 regulates SMAD7 in TEL-AML1+ 

cells, where we show SMAD7 has a crucial role in leukaemia survival. Furthermore, 
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other subtypes of ALL and AML expressing different oncogenes require SMAD7 for 

survival. RNA sequencing indicates that SMAD7 functions by regulating multiple 

genes in the cholesterol biosynthesis pathway in TEL-AML1+ cells. 
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CHAPTER V. SMAD7 regulates cholesterol biosynthesis to 

maintain leukaemia survival   

5.1 Introduction 
 

5.1.1 The cholesterol biosynthesis pathway  
 
 

In humans and animals, cholesterol is a biologically important molecule, with 

essential physiological functions: it is a major constituent of cell membranes that in 

turn affects function of membrane proteins such as receptors and transporters, it is a 

biosynthetic precursor of bile acids and steroid hormones and intermediates of the 

cholesterol biosynthesis pathway are required to make Vitamin D and for post-

translational modification of membrane proteins (J. Thomas, 2012). In addition to 

cholesterol being obtained from the diet, almost 50% of cholesterol in the body is 

derived from de novo synthesis (Berg JM, 2002). The majority of body cholesterol is 

synthesised by the liver and secreted as circulating lipoproteins. The process of 

cholesterol synthesis involves multiple enzymes and stages, but it can be broken 

down into five major steps (Berg JM, 2002; J. Thomas, 2012): 

1. Like most biological lipids cholesterol synthesis begins from acetyl-CoA. In the 

first step, acetyl-coA is converted to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). 

2. HMG-CoA is converted to mevalonate  

3. Mevalonate is converted to the isoprene-based molecule, isopentenyl 

pyrophosphate (IPP) 

4. IPP is converted to squalene  

5. Squalene is converted to cholesterol  (Fig. 47) 
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Figure 47 - Cholesterol biosynthesis pathway 

This figure shows a simple depiction of the cholesterol biosynthesis pathway. The major intermediates 

and end products are indicated in blue. Enzymes in the pathway are shown in black. The enzymes circled 

in red are derived from genes present in the top cholesterol biosynthesis pathways highlighted in the IPA 

analysis. All genes (except SREBP-1) from our gene list encode enzymes that function to generate 

different intermediates in the cholesterol pathway, as indicated. SREBP-1 is shown at the beginning of 

the pathway, where it activates transcription of genes that give rise to substrates for HMG-CoA reductase 

(HMGCR) and other enzymes.      
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Although regulation of cholesterol can be controlled by dietary intake it is 

primarily controlled by the level of de novo synthesis. It is important to maintain 

cholesterol at a steady level to prevent atherosclerosis and heart disease (Dayton. S, 

1969). Regulation of HMG-CoA reductase (HMGCR), the enzyme that catalyses the 

formation of mevalonate is the primary means of controlling cholesterol 

biosynthesis. This is carried out through controlling different mechanisms: Firstly, 

sterol regulatory element-binding proteins (SREBPs) enhance transcription of 

HMGCR mRNA. SREBPs are released from the endoplasmic reticulum, migrate to 

the nucleus and activate transcription. When cholesterol levels rise, SREBP is 

sequestered in the endoplasmic reticulum and degraded in the nucleus to halt 

transcription of the genes in the cholesterol biosynthesis pathway including HMGCR 

mRNA (Berg JM, 2002). Secondly, the rate of translation of HMGCR mRNA is 

blocked by non-sterol metabolites derived from cholesterol (Berg JM, 2002). 

Thirdly, the degradation of HMGCR is a highly controlled process, where 

oxygenated derivatives of cholesterol such as 24-, 25- and 27-hydroxycholesterol can 

induce polyubiquitination and degradation via the proteasomal pathway (Berg JM, 

2002). Finally, HMGCR is most active in its dephosphorylated state. Therefore, 

phosphorylation of HMGCR decreases its activity, ceasing cholesterol synthesis. The 

importance of HMGCR in cholesterol regulation has made it a favourite target for 

hypercholesterolaemia therapies, specifically using statins, inhibitors of the HMGCR 

family (Endo, 2010). 
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5.1.2 SREBPs in cholesterol biosynthesis  
 
 
 SREBPs belong to the helix-loop-helix-leucine zipper family of transcription 

factors that regulate cholesterol, fatty acid and triglyceride biosynthesis (Brown and 

Goldstein, 1997; Horton et al., 2002). They directly activate expression of more than 

30 genes involved in the synthesis and uptake of cholesterol, fatty acids, triglycerides 

and phospholipids (Horton et al., 2002). The mammalian genome encodes three 

SREBP isoforms, SREBP-1a, SREBP-1c and SREBP-2. SREBP-1a and -1c are 

derived from the same gene but differ through use of alternative transcription start 

sites that produce alternate forms of exon 1 (Shimano, 2001). In humans, SREBP-1a, 

is an activator of all SREBP-responsive genes, including genes involved in mediating 

cholesterol, fatty acids and triglyceride synthesis (Horton et al., 2002). SREBP-1c 

specifically controls transcription of genes required for fatty acid synthesis while 

SREBP-2 preferentially regulates cholesterol synthesis-related genes and LDL 

receptor (LDLR) (Horton et al., 2002). SREBP proteins share a similar structure, 

which is organised into three main sections: an NH2-terminal transcription factor 

domain that contains the bHLH-Zip region for DNA binding; a hydrophobic region, 

containing two hydrophobic transmembrane-spanning segments with a short loop of 

about 30 amino acids in the middle that projects into the endoplasmic reticulum 

(ER), and a COOH-terminal regulatory domain (Rawson, 2003).  

 

 SREBP precursor protein, which is approximately 120kDa, is anchored in the 

membranes of the endoplasmic reticulum (ER) using the two transmembrane 

spanning helices in the protein structure (Rawson, 2003). In order for SREBP to 

function as a transcription factor, the NH2- terminal domain must be released from 

the membrane proteolytically. SREBP cleavage-activating protein (SCAP) associated 
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with SREBPs in the ER, where they are retained by the insulin-induced gene 

(INSIG) product when cellular sterol levels are sufficient (Horton et al., 2002; 

Shimano, 2001). When sterol levels drop, SCAP acts as an escort for SREBP from 

the ER to the Golgi apparatus (Fig. 48). In the Golgi, a specific membrane-bound 

serine protease, Site-1 protease (S1P), cleaves the SREBP in the loop between the 

two membrane-spanning regions, splitting the SREBP molecule in half (Horton et 

al., 2002; Shimano, 2001). Next, the NH2-terminal bHLH-Zip domain is released by 

a second cleavage, mediated by Site-2 protease (S2P), a membrane-bound zinc 

protease. Thus, the NH2-terminal domain, known as nuclear SREBP (nSREBP), 

translocates to the nucleus where it activates transcription by binding to non-

palindromic sterol response elements (SREs) in the promoter regions of multiple 

target genes (Horton et al., 2002). When the cholesterol levels in cells increase, 

SCAP changes its conformation so that the SCAP-SREBP complex is not 

incorporated into ER transport vehicles. Therefore SREBPs loses access to S1P and 

S2P in the Golgi so that the bHLH-Zip domains cannot be cleaved, resulting in a 

block in transcription of target genes (Horton et al., 2002).    
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The SREBP precursor is inserted into membranes of the ER. Both the NH2 and COOH terminal 

domains are in the cytoplasmic compartment. The SREBP precursor protein is transported to the 

Golgi apparatus where S1P cleaves at Site 1 (red line), giving rise to the intermediate membrane-

bound form. Following this, S2P cleaves the intermediate form at Site 2 (red line), releasing the 

transcription-factor domain from the membrane, allowing for entry into the nucleus to direct 

transcription of target genes (Rawson, 2003). Adapted from (Rawson, 2003). 

 

 

 

Early studies investigating the role of SREBPs were carried out in cultured 

cells and were then extended in vivo, where these were mainly focused on the liver as 

this tissue has an important role in homeostasis of cholesterol and fatty acids. 

Cultured cells, including HepG2 hepatocytes and 3T3-L1 mouse pre-adipocytes, 

show high expression levels of SREBP-1a relative to SREBP1-c (Shimomura et al., 

1997). However, in human and mice livers the SREBP-1c transcript is expressed at 

higher levels than SREBP-1a, in contrast to cultured cells, suggesting that the ratio of 

Figure 48 - Two-step processing of SREBPs.  
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expression between the two isoforms differs between in vivo and in vitro studies. 

(Shimomura et al., 1997). Srebp-1 knockout mice have a high incidence of 

embryonic lethality (Shimano, 2001). Studies overexpressing a constitutively active 

form of human SREBP1-a in the liver, in which the NH2-terminal region of SREBP-

1a terminates between the leucine zipper domain and first transmembrane domain, 

results in triglyceride- and cholesterol-enriched fatty livers that were enlarged 4-fold 

above normal (Shimano et al., 1996). Despite this, no feedback repression was 

triggered and the liver continued fatty acid and cholesterol biosynthesis at 20-fold 

and 5-fold greater than normal, respectively. Moreover, a 31-fold increase in the 

mRNAs of genes encoding enzymes such as HMG CoA synthase, HMGCR and 

squalene synthase and a 6-fold increase in mRNA encoding LDLR, were observed 

(Shimano et al., 1996). However, over-expression of a similar form of SREBP-1c in 

the liver showed only a mildly enlarged liver, and a smaller increase in fatty acid 

synthetic enzymes and fatty acid synthesis, and no change in the mRNAs of 

cholesterol biosynthesis genes and LDLR (Shimano et al., 1997). Overexpression of 

the truncated form of SREBP-2 increased the mRNA for cholesterol biosynthetic 

enzymes, with a dramatic 75-fold increase in HMGCR mRNA. The expression of 

genes encoding fatty acid synthesis enzymes increased to a lesser extent. These 

studies highlight specific roles of each SREBP isoform in fatty acid synthesis and 

cholesterol biosynthesis (Brown and Goldstein, 1997). However, studies show that 

the SREBP isoforms have significant overlap in lipid biosynthesis regulation, 

activating either cholesterol or fatty acid synthetic enzymes (Eberle et al., 2004). 

Moreover, in addition to the role of SREBP-1 in regulating lipogenesis genes and the 

LDLR gene, it can alter regulation of cell cycle and proliferation (Williams et al., 

2013). However, whether this is a direct result of SREBP-1 regulated transcription or 

caused by changes in lipid metabolism is still unclear.  
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5.1.3 Cholesterol biosynthesis in cancer  
 
 
 Metabolic reprogramming is a hallmark of cancer as oncogenic signalling 

regulates and accelerates metabolic pathways to meet the extensive needs of rapidly 

proliferating cancer cells. Increasing evidence suggests that cancer cells carry out de 

novo lipogenesis and become independent of systemic regulation (Gabitova et al., 

2014). They require high levels of endogenous cholesterol biosynthesis to build new 

membranes and maintain active signalling. Moreover, oncogenic proteins such as 

RAS, PI3K and AKT use the intermediates in the cholesterol pathway such as 

isoprenoids, farnesyl pyrophosphates and geranylgeranyl pyrophosphates for 

membrane anchoring (Gabitova et al., 2014). Cancer cells can maintain high 

intracellular cholesterol through different mechanisms, including accelerating 

endogenous cholesterol and fatty acid synthesis, regulated by SREBPs, by reducing 

cholesterol efflux, through ATP-binding cassette class A transporters, or by 

increasing uptake of LDL (Gabitova et al., 2014). Therefore, interfering with these 

deregulated pathways would be predicted to compromise cancer cell viability.   

 

 Cholesterol has been shown to play an important role in leukaemia. 

Leukaemia cells have been reported to have increased rates of cholesterol synthesis, 

with a loss of the negative feedback inhibition of cholesterogenesis, an important 

feature of malignancy (Madden et al., 1986). Abnormally high cholesterol levels 

have been observed in AML samples and high HMGCR levels in ALL cell lines 

(Banker et al., 2004). As HMGCR is a rate-limiting enzyme in the cholesterol 

pathway, HMGCR inhibitors are used to block cholesterol synthesis. The group of 

drugs known as statins, used to treat hypercholesterolaemia, work as HMGCR 

inhibitors. Statins have been used to lower cholesterol concentrations and interfere 
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with the mevalonate pathway in ALL and AML cells (Sheen et al., 2011; van der 

Weide et al., 2012). Moreover, AML cells that are resistant to chemotherapy have 

elevated levels of lipids, resulting from cytoprotective adaptive cholesterol responses 

(Kornblau et al., 2007; Li et al., 2003). Therefore, treatment with the drugs 

mevastatin or zaragozic acid reduced cholesterol levels in these leukaemia cells and 

sensitised them to radiotherapy and chemotherapy (Li et al., 2003). Zaragoic acid 

blocks cholesterol synthesis at the level of squalene synthase, an enzyme in the final 

branch of cholesterol synthesis, minimising disruption to the upstream pathway. This 

is important since statins can have the undesired effect of blocking the production of 

a mevalonate-derived Ras inhibitor, and thereby relieving an important anti-

oncogenic block in some leukaemias. However, this does not occur when targeting 

the pathway downstream, such as with squalene synthase inhibition, whilst such 

inhibition does maintain sensitisation to cytotoxic therapy (Li et al., 2003). A recent 

study also noted that mRNAs encoding HMGCR and LDLR were both increased by 

daunorubicin (DNR) and cytarabine (ARA-C) treatment in a large subset of AML 

samples (Banker et al., 2004). However, in most of these samples, there was no LDL 

accumulation during drug treatment, implying that cells primarily relied on de novo 

cholesterol biosynthesis as a mechanism for increased cholesterol levels during drug 

treatment (Banker et al., 2004). This suggests that inhibitors of cholesterol synthesis, 

such as statins that are toxic to AML, ALL, CLL and other leukaemias, may have a 

role in suppressing leukaemic progression. Moreover, one study shows that 

Fluvastatin decreases cardiac fibrosis possibly through regulation of SMAD7 

expression (Zhai et al., 2008). As our RNA-sequencing experiment highlighted 

multiple genes in the cholesterol biosynthesis pathway, we decided to investigate the 

potential regulation of cholesterol synthesis by SMAD7 in our leukaemic cells and if 

this can then be targeted for anti-leukaemia therapy.  
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5.2 Results 
 

5.2.1 Validating RNA-sequencing results  
 
 
 To validate the differentially expressed gene changes in the cholesterol 

biosynthesis pathway following SMAD7 knockdown, we transduced REH cells with 

control scramble and shRNA targeting SMAD7 as previously and isolated the mRNA 

to examine gene expression by qRT-PCR. We chose four genes functioning in the 

superpathway of cholesterol biosynthesis and a fifth gene, SREBP-1, which although 

implicated in the TR/RXR activation pathway in the IPA analysis, is also known to 

function as a master transcription factor of cholesterol biosynthesis (Table 9). As 

expected, using both shSMAD7-1 and shSMAD7-3, decreased expression of all six 

genes was observed in the SMAD7 depleted cells compared to control scramble cells 

(Fig. 49B), suggesting a novel dependence of cholesterol biosynthesis on SMAD7.  

 

 

Table 9 - List of differentially expressed genes validated using qRT-PCR 

A table showing the list of differentially expressed genes in the cholesterol biosynthesis pathway, to 

be validated using qRT-PCR. Two genes, Farnesyl Diphosphate Synthase (FDPS) and Lanosterol 

Differentially expressed genes in cholesterol biosynthesis 

Sterol Regulatory Elementary Binding Transcription Factor 1 (SREBF-1/ SREBP-1) 

Acetyl co-A Acetyltransferase 2 (ACAT2) 

7-dehydrocholesterol reductase (DHCR7) 

Methylsterol Monooxygenase 1 (MSMO1) 

Lamin B receptor (LBR) 
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synthase (LSS) that were also present in the gene change list in the cholesterol biosynthesis pathway 

were not validated, as reliable commercial qRT-PCR taqman probes for these genes were not 

available.  

 

 

 

ACAT2, DHCR7, MSMO1, FDPS, LSS and LBR all encode proteins that act 

as enzymes in intermediate stages of cholesterol biosynthesis (Fig. 47) in addition to 

steroid hormone and vitamin D synthesis. We used the Amplex Red cholesterol 

assay to examine whether the observed down-regulation of genes in the cholesterol 

pathway resulting from SMAD7 knockdown would affect endogenous cholesterol 

levels. This assay detects both free cholesterol and cholesteryl esters and therefore 

shows the level of total cholesterol content in the cells. As previously, 2 days 

following transduction with control scramble and SMAD7 shRNA, REH cells were 

puromycin selected for 72 hours. Subsequently dead cell removal was performed (5 

days after transduction) and 1x105 cells were plated in each well of a 96 well plate 

and the assay performed according to manufacturer’s instructions. This assay showed 

a decrease in total cellular cholesterol following SMAD7 knockdown, indicating a 

role for SMAD7 in the regulation of cholesterol biosynthesis (Fig. 50).  
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The bar chart shows total cholesterol levels, measured using the Amplex Red Kit per 1x105 cells. 

Cells were transduced with control scramble or shRNA targeting SMAD7 for 2 days followed by 

puromycin selection for a further 3 days. Dead cell removal was performed and total cellular 

cholesterol levels were measured using the Amplex Red cholesterol assay (Day 5 post transduction). 

Cells were diluted in reaction buffer, and the Amplex red reagent was added for 60 minutes to the 

cells prior to measurement. A cholesterol standard curve was generated to calculate total cholesterol 

levels. The bar charts show mean ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (Student’s unpaired t test). 
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The bar chart shows total cholesterol levels, measured using the Amplex Red Kit per 1x105 cells. 

Cells were transduced with control scramble or shRNA targeting SMAD7 for 2 days followed by 

puromycin selection for a further 3 days. Dead cell removal was performed and total cellular 

cholesterol levels were measured using the Amplex Red cholesterol assay (Day 5 post transduction). 

Cells were diluted in reaction buffer, and the Amplex red reagent was added for 60 minutes to the 

cells prior to measurement. A cholesterol standard curve was generated to calculate total cholesterol 

levels. The bar charts show mean ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (Student’s unpaired t test). 

 

 

 

5.2.2 SMAD7 transcriptionally regulates SREBP-1 to induce cholesterol synthesis 

and maintain leukaemia survival   

 
We then questioned how SMAD7 regulates cholesterol synthesis in 

leukaemic cells. Although all SMAD7-dependent genes in the cholesterol 

biosynthesis pathway play key roles at different stages of the pathway, SREBP-1 is 
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known to be a master transcription factor involved in lipid homeostasis, controlling a 

range of enzymes required for cholesterol and fatty acid synthesis. For this reason, 

we decided to focus on SMAD7 regulation of SREBP-1. Since SREBP-1 gene 

expression levels decreased following SMAD7 knockdown, we decided to examine 

its expression following SMAD7 overexpression. We cloned the SMAD7 cDNA into 

the lentiviral CSGW-PIG vector and transduced REH cells. mRNA was extracted 5 

days post transduction and gene expression of SREBP-1 measured by qRT-PCR (Fig. 

51). We observed a two-fold increase in SREBP-1 gene expression following 

SMAD7 overexpression, compared to empty vector transduced control cells. This 

complimented the down-regulation of SREBP-1 following SMAD7 knockdown and 

suggested that SMAD7 did indeed regulate SREBP-1 transcription. SMAD7 

overexpression was also found to cause an increase in endogenous cholesterol levels, 

relative to control cells (Fig. 51B). Therefore, these data indicate that SMAD7 

overexpression resulted in elevated SREBP-1 transcription and increased expression 

of SREBP-1 in turn promoted increases in cellular cholesterol.  
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A) The bar chart shows SREBP-1 gene expression levels measured by qRT-PCR in REH cells 

transduced with control CSGW-PIG empty vector or SMAD7-CSGW-PIG vector. 2 days after 

transduction, cells were selected with puromycin for a further 3 days. Dead cell removal was then 

performed and gene expression analysed by qRT-PCR (Day 5 post transduction). The data shows 

mean values ± s.d. of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared 

to control (One-sample t test). (B) The bar chart shows total cholesterol levels measured using the 

Amplex Red Kit per 1x105 cells at day 5 post transduction following dead cell removal. The data 

shows mean values ± s.d. of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

0	

1	

2	

3	

4	

5	

6	

To
ta
l	c
ho
le
st
er
ol
	(n
m
ol
)	

CSGW-PIG	

0	

0.5	

1	

1.5	

2	

2.5	

 SREBP-1	

Re
la
ti
ve
	g
en
e	
ex
pr
es
si
on
	

CSGW-PIG	 SMAD7-CSGW-PIG	  

CS
GW

-P
IG

 
SM
AD
7-
CS
GW
-P
IG

 

SMAD7 

Tubulin 

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	

Re
la
ti
ve
	in
te
sn
it
y	
	

A) B) 

C) 

Figure 51 - SMAD7 overexpression in REH cells induces SREBP-1 gene expression and results 

in increased cellular cholesterol 

*** 

*** 
** 

kDa 

50 

50 



 179 

compared to control (Student’s unpaired t test). (C) The western blot analysis is a representative of 

SMAD7 protein overexpression in REH cells at day 5 post transduction. The western blot was probed 

with an anti-SMAD7 antibody. An anti-tubulin antibody was used as a control for protein loading. 

The bar chart represents the mean densitometric quantitation of SMAD7 protein levels relative to 

tubulin. The data shows mean values ± s.d. of three independent experiments. *P < 0.05, **P < 0.01, 

***P < 0.005 compared to control (One-sample t test). 

 

 

 

5.2.3 SREBP-1 inhibition induces apoptosis and reduces total cellular cholesterol of 

leukaemic cells  

 
 To investigate the role of SREBP-1 in REH cells, we tested five different 

shRNA constructs targeting SREBP-1 by qRT-PCR, to identify two independent 

shRNA that resulted in more than 80% knockdown (Fig. 52A). Following 72-hour 

puromycin selection, after lentiviral transduction, dead cell removal was performed. 

SREBP-1 silencing resulted in a decrease in cholesterol biosynthesis (Fig. 52B) and a 

significant induction of apoptosis (Fig. 53). Cells were plated out in methylcellulose 

medium and colony formation assessed after two weeks culture. SREBP-1 silencing 

resulted in significant inhibition of colony formation by REH cells (Fig. 54).   
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(A) The bar chart shows SREBP-1 silencing in REH cells transduced with control scramble and two 

different SREBP-1 targeting shRNA. 2 days after transductions, cells were selected with puromycin 

for a further 3 days. Dead cell removal was then performed and SREBP-1 silencing measured by qRT-

PCR (Day 5 post transduction). The data show mean ± s.d. from three independent experiments. *P < 

0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test). (B) The bar chart shows the 

cholesterol biosynthesis measured using the Amplex Red Kit per 1x105 at day 5 post transduction. 

The data show mean ± s.d. from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 

compared to control (Student’s unpaired t test). (C) The western blot analysis shows SREBP-1 

silencing of REH cells at the protein level at day 5 post transduction. The western blot was probed 
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with an anti-SREBP-1 antibody. An anti-Tubulin antibody was used as control for protein loading. 

The bar chart shows the densitometric quantitation of SREBP-1 levels relative to tubulin. The data 

show mean ± s.d. from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared 

to control (One-sample t test). 

 
 
 

The flow cytometry plots are examples of the apoptosis profile of REH cells. REH cells were 

transduced with control scramble or two SREBP-1 shRNA for 2 days followed by 3 days of 

puromycin selection. Dead cell removal was then performed on cells and after 24 hours an apoptosis 

profile was evaluated after staining with Annexin V (day 6 post transduction). The bar chart 
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represents the mean percentage of apoptotic Annexin V+PI- cells ± s.d. for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (Student’s unpaired t test). 

 
 
 
 

The figure shows an example of colony forming assays of REH cells plated in quadruplicate in 

methylcellulose at 1x104  cells per well. REH cells were transduced with control scramble or two 

SREBP-1 shRNA for 2 days followed by 3 days of puromycin selection. Dead cell removal was then 

performed and cells plated in methylcellulose in 24 well-plates. Cells were stained with INT 14 days 

following plating. The bar chart shows the mean fold change of colonies relative to control scramble ± 

s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control 

(One-sample t test).   
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To evaluate whether SREBP-1 was important specifically in TEL-AML1+ 

leukaemia or also required by other leukaemia subtypes, we silenced SREBP-1 in 

MLL-AF4+ SEMK-2 ALL cells. Cells were transduced for 2 days followed by 3 days 

of puromycin selection. SREBP-1 expression was then examined by qRT-PCR (Fig. 

55A). Dead cell removal was then performed on the cells and after 24 hours they 

were stained with Annexin V and PI. SREBP-1 knockdown resulted in significant 

induction of apoptosis, as observed with REH cells (Fig. 55B and 55C). Taken 

together, these results show that the requirement for SREBP1 is not limited to TEL-

AML1 expressing leukaemia cells. 
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A) 

The 

The bar chart shows qRT-PCR analysis of SREBP-1 silencing in SEMK-2 transduced with control 

scramble or two different SREBP-1 shRNAs. 2 days after transduction, cells were selected with 

puromycin for a further 3 days. Dead cell removal was then performed and SREBP-1 silencing 

analysed by qRT-PCR (Day 5 post transduction). The data show mean  ± s.d. for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test). (B) The 

bar chart represents the mean percentage of apoptotic Annexin V+PI- cells ± s.d. for three independent. 

(C) The flow cytometry plots are examples of the apoptosis profiles of SEMK-2 cells transduced with 

control scramble or two SREBP-1 shRNA. 24 hours after dead cell removal on day 5 post 

transduction, cells were stained with Annexin V and PI (Day 6 post transduction). The data show 
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 Figure 55 - SREBP-1 silencing induces apoptosis in SEMK-2 cells 
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mean  ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to 

control (Student’s unpaired t test). 

 
 
 
 
 

In order to determine whether SREBP-1 expression was also regulated by 

SMAD7 in SEMK-2 and THP-1 cells, as shown for REH cells, we then transduced 

SEMK-2 and THP-1 cells with two independent shRNA targeting SMAD7 and 

measured SREBP-1 expression by qRT-PCR (Fig. 56). 

 
 
 

The bar charts show qRT-PCR analysis of SREBP-1 expression following SMAD7 silencing in 

SEMK-2 and THP-1 cells transduced with control scramble or two different SMAD7 shRNAs. 2 days 

after transduction, cells were selected with puromycin for a further 3 days. Dead cell removal was 

then performed and gene expression analysed by qRT-PCR (Day 5 post transduction). All data show 

mean  ± s.d. from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to 

control (One-sample t test).  
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Figure 56 - SMAD7 knockdown in SEMK-2 and THP-1 cells results in decreased SREBP-1 gene 

expression 
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5.2.4  SREBP-1 inhibition using the drug Fatostatin induces apoptosis and blocks 

colony formation 

 
 Following SREBP-1 silencing in leukaemic cell lines, we decided to examine 

whether leukaemia survival could be compromised by pharmacological inhibition of 

SREBP-1. We used a small synthetic molecule that has previously been used to 

block adipogenesis, known as Fatostatin. Fatostatin is a diarylthiazole derivative that 

impairs the activation process of SREBPs. It is thought to act by blocking ER-Golgi 

translocation of SREBPs by binding to their escort protein, SCAP (Kamisuki et al., 

2009).  In order to determine whether Fatostatin could interfere with the leukaemia 

cell proliferation, REH cells were exposed to different concentrations of the drug for 

72 hours and subjected to an MTS assay. This assay demonstrated a dose-dependent 

inhibition of REH proliferation by Fatostatin (Fig. 57).  

The graph above shows the relative proliferation (relative to day 0) of REH and AT-2 cell lines 

following Fatostatin treatment at the indicated concentrations compared to untreated cells of each cell 

line. The proliferation of REH cells was measured 3 days and AT-2 cells at 5 days following 
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Figure 57 - Fatostatin decreases proliferation of TEL-AML1+ cell lines 
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treatment using an MTS assay. At each time point, measurements are relative to untreated cells of 

each cell line. The graph shows mean ± s.d. for three independent experiments.	 

 
 
 
 

As we previously observed that SREBP-1 knockdown results in a block in 

colony forming ability, we decided to examine whether this could also be achieved 

with Fatostatin treatment. As previously described, human methylcellulose based 

colony forming assays were performed using a panel of ALL cell lines. Cells were 

treated with 20µM Fatostatin or DMSO for 12-14 days (Fig. 58). Colonies were then 

stained with INT to determine the number of colonies formed. E2A-PBX1+ 697 cells, 

REH and SEMK-2 cells all showed an almost complete block in colony formation 

upon treatment with Fatostatin, compared to control cells. This was in agreement 

with the observed colony formation block after SREBP-1 silencing in REH cells. 

MLL-AF4+ BEL-1 and BCR-ABL+ SUP-B15 cells also showed a decrease in colony 

formation, although to a lesser extent (Fig. 58). These results indicate that targeting 

SREBP-1 pharmacologically blocks self-renewal and colony forming ability of not 

only TEL-AML1+ ALL but also other subtypes of ALL. Furthermore, to determine 

whether SREBP-1 was essential for colony formation in normal haematopoietic 

progenitor cells, human CD34+ cord blood cells were cultured with a range of 

Fatostatin concentrations, and their colony forming ability was examined (Fig. 59A). 

The number of colonies formed and their morphology was determined after 2 weeks 

culture. (Fig. 59B and 59C). Fatostatin treated cord blood cells showed no block in 

colony forming ability compared to control cells, even at high concentrations of the 

drug concentrations. These data suggest a specific requirement for SREBP-1 in 

leukaemia cell colony formation in vitro but not for colony formation by normal 

haematopoietic progenitors.   
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The figure shows an example of colony forming assay of 5 ALL cell lines, REH, SEMK-2, 697, BEL-

1, SUP-B15 plated in quadruplicate in methylcellulose with DMSO or 20μM Fatostatin. The cells 

were stained with INT 12-14 days following plating. The bar chart shows the mean colony formation 

by Fatostatin treated cells, normalised to DMSO treated control cells ± s.d. for three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control (One-sample t test).  
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(A) The figure shows colony formation of CD34+ human cord blood cells plated in methylcellulose in 

the presence of Fatostatin. 1x103 cells were plated in duplicate 3 cm dishes and treated with DMSO or 

Fatostatin (µM) 0 5 10 20 2.5 

Figure 59 - Fatostatin does not block self-renewal ability of human cord blood cells 
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different concentrations of Fatostatin, ranging from 2.5 to 20 μM. The cells were stained with INT 7-

10 days following plating. This figure shows two independent experiments. Prior to staining, each 

colony was counted and its morphology categorised: BFU-E, CFU-GEMM, CFU-GM and CFU-M. 

The bar chart shows the mean number of colonies counted of each cell type from two technical 

replicate cultures for (B) experiment 1 and (C) experiment 2. The values above the bars indicate the 

total number of colonies counted for each concentration of Fatostatin used.       

 
 
 
 
 
 

Next, we evaluated if culturing ALL cell lines with Fatostatin would induce 

apoptosis, as observed by SREBP-1 knockdown in REH and SEMK-2 cells. Cells 

were cultured with DMSO or Fatostatin for 72 hours and the apoptosis profile was 

evaluated. Cells treated with Fatostatin showed significant apoptosis compared to 

control cells (Fig. 60). Therefore pharmacological inhibition of SREBP-1 resulted in 

significant cell death, similar to observed apoptosis after shRNA-mediated SREBP-1 

silencing. Furthermore, we evaluated if Fatostatin would induce apoptosis in 

primograft cells. Five different ALL primograft cells were purified, mouse-cell 

depleted and cultured in SFEM II for 24 hours in the presence of 100ng/ml Flt3, 

50ng/ml IL-7 and 10ng/ml IL-3. Dead cell removal was then performed and cells 

were treated in the same culture conditions but with added DMSO or 20μM 

Fatostatin for 72 hours (Fig.61). Although cells treated with DMSO showed some 

apoptosis to different degrees across the 5 samples, significantly higher cell death 

was observed in Fatostatin treated cells. Therefore, Fatostatin inhibition of SREBP-1 

induced apoptosis in ALL primograft cells.      
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Figure 60 - Fatostatin induces apoptosis in different ALL subtypes 
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The flow cytometry plots are examples of the apoptosis profiles of 697, REH, SEMK-2, SUP-B15 

cells treated with DMSO as control and 20μM Fatostatin for 72 hours. The apoptosis profiles were 

evaluated after staining with Annexin V and PI. The bar chart represents the mean percentage of 

apoptotic Annexin V+PI- cells ± s.d. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 

0.005 compared to control (One-sample t test). 



 193  

 

 

 

DMSO Fatostatin 

Pre-B ALL relapse 

Pre-B ALL (1) 

Pre-B ALL (2) 

Pre-B ALL (3) 

Pro-B ALL 

Annexin V 

Pr
op

id
iu

m
 

Io
di

de
 (P

I) 



 194 

The flow cytometry plots are examples of the apoptosis profiles of five different primograft (primary 

samples from engrafted mice) cells, cultured in SFEMII (supplemented with 100ng/ml human Flt3, 

50ng/ml human IL-7 and human 10ng/ml IL-3) and treated with DMSO as control and 20μM 

Fatostatin for 72 hours following dead cell removal. The apoptosis profile was evaluated after staining 

with Annexin V and PI. The bar chart represents the mean percentage of apoptotic Annexin V+PI- cells 

± s.d. for triplicate measurements. *P < 0.05, **P < 0.01, ***P < 0.005 compared to control 

(Student’s unpaired t test).  

 

 
 

 

5.2.5 SREBP-1 is essential for leukaemia progression in vivo  
 

Since SREBP-1-silencing or pharmacological inhibition resulted in a block in 

proliferation, loss of colony forming ability and apoptosis, this suggested SREBP-1 

may also be required for leukaemia progression in vivo. In order to examine this 

possibility, as previously demonstrated using shSMAD7, we transduced luciferase 

expressing REH cells with control scramble or SREBP-1 (1) shRNA expressing 
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vectors (Fig. 62). Following puromycin selection for 3 days, we performed dead cell 

removal and equivalent numbers of viable cells were transplanted into recipient NSG 

mice. As previously, we performed a luciferase assay to confirm that both groups 

exhibited similar levels of luciferase activity (Fig. 63). As predicted, although all 

mice eventually developed leukaemia, SREBP-1 silencing resulted in a prolonged 

latency of disease development in vivo. This indicated that SREBP-1 was indeed 

essential for leukaemia survival and progression in vivo as well as in vitro (Fig. 64). 

Moreover, increased levels of SREBP-1 mRNA expression were detected in the 

engrafted cells recovered from the first three shSREBP-1 (1) mice that were 

sacrificed, in comparison to levels observed in the cells pre-transplantation, in both 

cases relative to levels expressed in shScramble cells (Fig. 64D). This demonstrates 

in vivo selection against leukaemic cells with low SREBP-1 expression. 
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(A) The bar chart shows SREBP-1 silencing of REH-LUC-CD2 cells transduced with control 

scramble or shSREBP-1 (1). 2 days after transduction, cells were selected with puromycin for a further 

3 days. Dead cell removal was then performed and SREBP-1 silencing measured by qRT-PCR prior to 

transplantation (pre-transplantation: Day 5 post transduction). (B) The western blot analysis shows 

SREBP-1 silencing of REH-LUC-CD2 cells at the protein level, pre-transplantation and the bar chart 

shows the densitometric quantitation of SREBP-1 levels relative to Tubulin. All experiments were 

performed once.  
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Figure 62 - SREBP-1 silencing in luciferase-CD2 transduced REH cells 
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The bar chart shows the luciferase activity measured using the Promega Luciferase Assay System of 

REH-LUC-CD2 cells 2 days after transduction with control scramble or shSREBP-1 followed by 3 

days of puromycin selection and dead cell removal (A). Results were measured in triplicates and the 

mean ± s.d. shown. The flow cytometry plots show apoptosis analysis of REH-LUC-CD2 cells 5 days 

following transduction with control scramble or shSREBP-1, after dead cell removal and prior to 

transplantation. Apoptosis profiles were evaluated after staining with Annexin V and PI. All 

experiments were performed once.         
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The figure shows a bioluminescent image of NSG mice 25 days after transplantation with 1x105 

control scramble or shSREBP-1 (1) transduced luciferase expressing REH cells (A) and the resulting 

survival curve (B). The line chart shows the luminescence radiance measured at 7 day intervals 

starting from day 11 for each mouse (C). shSREBP-1 (1) transduced cells isolated from the bone 

marrow of leukaemic mice (post-leukaemia) show loss of knock-down after in vivo progression (D). 

SREBP-1 expression was normalised to SREBP-1 expression in control scramble shRNA transduced 

REH-LUC-CD2 cells. qRT-PCR was performed in triplicates and mean ± s.d. is shown.  
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Figure 64 - SREBP-1 knockdown in vivo impairs leukaemia progression 
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5.3 Discussion 
 

As mentioned previously, RNA-sequencing established that SMAD7 

knockdown results in down-regulation of multiple genes involved in the cholesterol 

biosynthesis pathway. Here, we have validated these gene expression changes to 

show that SMAD7 does indeed up-regulate genes in the cholesterol biosynthesis 

pathway at the transcriptional level in TEL-AML1+ cells. One of the regulated genes, 

SREBP-1 is a known master transcription factor of cholesterol biosynthesis and is 

downregulated upon SMAD7 knockdown not only in TEL-AML1+ cells but other 

subtypes of leukaemia, specifically MLL-AF4+ ALL and MLL-AF9+ AML cells. 

Using an assay to detect cholesterol synthesis in cells, we demonstrated that SMAD7 

knockdown causes a decrease in cholesterol synthesis in leukaemia cells. 

Additionally, when SMAD7 was overexpressed, an increase in SREBP-1 gene 

expression levels was observed, suggesting that SMAD7 is the crucial rate-limiting 

factor in SREBP-1 expression. In addition to an increase in SREBP-1, SMAD7 

overexpression also results in an increase in cholesterol synthesis, implying that 

SMAD7 induction of SREBP-1 stimulates cholesterol biosynthesis in these 

leukaemic cells. It remains unclear how SMAD7 regulates SREBP-1. One possibility 

is that SMAD7 could regulate SREBP-1 by directly binding to SREBP-1 promoter 

sequences. SMAD7 may also require association with complexes involving other co-

activators for induction of SREBP-1 expression. For example, SMAD7 has been 

shown to interact with p38 and ataxia telangiectasia mutated (ATM) in a complex in 

order to induce p53-mediated apoptosis in prostate cancer cells (Zhang et al., 2006). 

Secondly, SMAD7 may function via deregulation of other transcriptional regulators. 

For example, SMAD7 is known to interfere with TGF-β signalling by blocking 

SMAD2/3 transcriptional activation or repression of target genes (Yan et al., 2009; 
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Zhang et al., 2007) (Han et al., 2013). Therefore, it is possible that SMAD7 may be 

acting indirectly by interfering with SMAD2/3 mediated SREBP-1 regulation. 

Thirdly, SMAD7 may act as a transcriptional co-activator for specific transcription 

factors to trigger transcription of their target genes. SMAD7 has previously been 

shown to act as a transcriptional co-activator for IRF1 to induce transcription of 

Caspase 8 and restore TRAIL-mediated apoptosis in breast cancer cells (Hong et al., 

2013). It is also a possibility that other factors may control SMAD7 regulation of 

target genes. For example, the deubiquitinating enzyme, cylindromatosis (CYLD), 

previously shown to reverse multidrug resistance in leukaemia, has been reported to 

regulate SMAD7 in oral squamous cell carcinoma (OSCC) (Ge et al., 2016). CYLD 

overexpression inhibited SMAD7-mediated cell invasion in OSCC cell lines. 

Therefore, due to the multiple possibilities of how SMAD7 regulates SREBP-1 in 

leukaemia, further experiments are required to clarify the mechanisms underlying 

SREBP-1 activation in these cells.  

     

Metabolic signalling in cancer cells is tightly regulated by SREBPs, which 

have been found to be highly active in different cancers (Ettinger et al., 2004; Guo et 

al., 2009). SREBP has a key role in connecting oncogenic signalling-regulated 

metabolism to de novo lipogenesis (DeBerardinis et al., 2008a; Deberardinis et al., 

2008b). In leukaemia cells, we show that silencing of SREBP-1 results in a loss of 

self-renewal ability, a decrease in cholesterol biosynthesis and induction of 

apoptosis. Furthermore, in vivo transplantation of SREBP-1 silenced cells results in a 

longer latency of disease compared to control cells, establishing the importance of 

SREBP-1 regulated de novo cholesterol synthesis for leukaemia progression. 

However, as with previous studies, it is unclear how SREBP-1 silencing induces 

apoptosis. Firstly, apoptosis could occur as a result of SREBP-1 mediated decrease in 
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total cholesterol levels. Alternately, the intermediate steps in the cholesterol pathway 

produce isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate. 

These intermediates are critical for membrane anchoring of multiple oncogenic 

proteins such as RAS, PI3K and AKT. Metabolic arrest in any of these steps in the 

cholesterol pathway would therefore result in deregulated signalling of these proteins 

(Gabitova et al., 2014). Prenylation of Ras, RhoB and other proteins is mediated by 

farnesyltransferase and geranylgeranyltransferase for farnesylation and 

geranylgeranylation, respectively. Previously, farnesyltransferase inhibitors (FTI) 

have been used alone or in combination with chemotherapy in AML, 

myelodsyplastic syndrome (MDS), head and neck squamous cell carcinoma and 

breast cancer studies to block RAS activation (Baines et al., 2011; Brunner et al., 

2003). FTI treatment of osteosarcoma to block farnesylation of N-Ras and K-Ras 

resulted in geranylgeranylation of N-Ras and K-Ras (Geryk-Hall et al., 2010). This 

alters their downstream signalling, resulting in decreased cell survival. Therefore, it 

is possible that a decrease in isoprenylation of oncogenic signalling molecules could 

also result in apoptosis.    

 

Fatostatin, an inhibitor of SREBP-1 activity, has been used in a recent study 

where SREBP-1 has been shown to promote prostate cancer growth and castration 

resistance progression through induction of lipogenesis and androgen receptor 

activity (Huang et al., 2012). In this study, Fatostatin was shown to suppress the 

proliferation and colony formation of two prostate cancer cell lines (Li et al., 2014). 

In our data, treating different ALL subtypes with Fatostatin resulted in a significant 

loss of colony formation in methylcellulose assays and induction of apoptosis in four 

different subtypes of ALL including TEL-AML1+ and BCR-ABL+ ALL cells. 

Moreover, treatment of human CD34+ cord blood cells did not show a block in 
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colony formation or change in the morphology of the colonies formed. Therefore, 

our data provide evidence for the existence of a therapeutic window in SREBP-1 

targeting by Fatostatin. 

 

Studies dating back to 1970s show that leukaemia cells become dependent on 

cholesterol biosynthesis for their continued survival and metabolism. Mononuclear 

cells from AML patients show increased rates of receptor-mediated uptake and 

degradation of LDL, which is associated with a high rate of cholesterol synthesis in 

these cells, compared to cells from healthy subjects (Vitols et al., 1985). This high 

uptake and degradation of LDL by malignant cells was taken advantage of through 

the use of LDL-bound chemotherapeutic agents to target leukaemic cells. However, 

this has had complications and few applications in cancer therapy (Harisa and 

Alanazi, 2014). Statin targeting of HMG-CoA reductase activity in AML and ALL 

cells was shown to result in growth inhibition and cell killing (Vilimanovich et al., 

2015) (Li et al., 2003; Sheen et al., 2011). However, there is a large discrepancy 

between statin concentrations used in such in vitro experiments and those 

therapeutically achievable in human plasma. While effects of statins are detected at 

concentrations of 1-50umol L-1, the mean concentration of statins in human serum at 

therapeutic doses is only 1-15 nmol L-1 (Bjorkhem-Bergman et al., 2011). In addition, 

a recent study showed that effective simvastatin concentrations used in vitro in 

leukaemia treatment are not clinically achievable, suggesting that statins cannot be 

used as monotherapies in anti-cancer treatment (Ahmed, 2013). To use higher 

effective therapeutic doses of statins, toxicity in patients would have to be assessed. 

Moreover, not all statins have the same outcomes, as leukaemia cells use 

compensatory mechanisms to overcome the effects of statins by cholesterol 

importation via LDLR (Guo et al., 2011) and increased expression of genes in the 
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biosynthesis pathway via SREBPs (Clendening et al., 2010). Our findings highlight 

an alternate way to target the mevalonate pathway and subsequently block 

cholesterol synthesis, by inhibiting SREBP-1. Inhibiting SREBP-1 would also block 

its upregulation of LDL and LDLR expression, which are highly expressed in cancer 

cells. For example, SREBP-1 has been shown to be highly expressed in cancers such 

as glioblastoma, where it mediates up-regulation of LDLR to increase cholesterol 

levels, as a result of EGFR/PI3K/AKT oncogenic signalling (Guo et al., 2014). 

Uptake of LDL is crucial for cancer cells to maintain their supply of cholesterol to 

rapidly form new membranes. It is unclear precisely how cancer cells maintain their 

cholesterol levels, whether it is through uptake or de novo synthesis (Guo et al., 

2011). In glioblastoma, cells prefer to uptake LDL from exogenous medium to 

maintain their cholesterol levels. Rather, they use de novo biosynthesis as a 

compensatory mechanism when exogenous cholesterol is not available (Guo et al., 

2011). Therefore, targeting SREBP-1 could result in decreased LDL and LDLR 

mediated cholesterol uptake in addition to de novo biosynthesis to inhibit total 

cholesterol levels. It is also possible that SREBP-1 targeting can synergise with 

statin-induced HMGCR inhibition, and that combination therapies would require 

lower concentrations of each inhibitor. Such combination therapies may yet represent 

effective approaches to treating certain leukaemias. 

 

We have shown that SMAD7 is essential in regulating SREBP-1 expression 

and therefore controlling cholesterol biosynthesis and promoting leukaemia cell 

survival. However, it remains unclear whether SREBP-1 controls the transcriptional 

activation of all the other genes identified through RNA-sequencing (ACAT2, 

DHCR7, MSMO1, LBR, LSS) in leukaemic cells. It may be possible that SMAD7 

regulation of SREBP-1 results in the activation of other genes, or alternatively, that 
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SMAD7 may directly induce the expression of other genes in the cholesterol 

pathway, therefore inducing cholesterol synthesis via alternate mechanisms in 

leukaemia cells.  Although at present, no pharmacological inhibitor of SMAD7 is 

available, this possibility may make SMAD7 itself a promising therapeutic target, its 

inhibition resulting in a block in cholesterol biosynthesis at multiple points in 

leukaemia cells. 

 
 
 

In our model, we have established a novel signalling pathway where SMAD7 regulates transcription 

of SREBP-1 and other genes involved in the cholesterol biosynthesis pathway, which is essential for 

leukaemia survival. We used an inhibitor of SREBP-1, Fatostatin, that targets SREBP-1 by blocking 

its transport from the ER to the Golgi apparatus and consequently its cleavage and nuclear 

translocation, to induce apoptosis of human leukaemic cell lines and primograft cells.  

Figure 65 - SMAD7 induces SREBP-1 and cholesterol biosynthesis in leukaemia 
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CHAPTER VI. CONCLUSIONS 
 
 
 

This project was based on the hypothesis that aberrant signalling responses of 

pre-leukaemic clones to cytokines and immune modulators underlie the association 

between childhood exposure to pathogens and leukaemia progression. In accordance 

with this hypothesis, in 2009 a study implicated the immune modulator, TGF-β, as 

promoting outgrowth of pre-leukaemic cells. The oncogene, TEL-AML1, was found 

to dysregulate the TGF-β pathway, reducing sensitivity of pre-leukaemic cells to the 

anti-proliferative effects of TGF-β (Ford et al., 2009). Therefore, in this project we 

first aimed to examine the impact of TEL-AML1 upon TGF-β sensitivity across a 

panel of human ALL cell lines and using a previously established model of 

immortalized mouse pre-B cells, with conditional TEL-AML1 expression (Lyons et 

al., 2010). Surprisingly, in our models we discovered that the resistance of human 

leukaemia cells to the anti-proliferative effects of TGF-β was not linked to TEL-

AML1 expression. Furthermore, TGF-β induced equivalent inhibition of self-

renewal in mouse pre-B cells, irrespective of TEL-AML1 expression. Moreover, our 

data showed that leukaemic cell lines that were resistant to TGF-β appeared to have 

reduced levels of SMAD3 expression, in comparison to SMAD2. In contrast, cell 

lines that were sensitive to the anti-proliferative effects of TGF-β, expressed higher 

levels of SMAD3, roughly equivalent to those of SMAD2. 

 

Subsequently, we investigated whether SMAD7, a target gene of TGF-β 

signalling, could regulate the responses of leukaemia cells to TGF-β. SMAD7 has 

been shown to inhibit TGF-β signalling through a negative feedback loop, blocking 
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SMAD2/3 phosphorylation and their consequent activation (Yan et al., 2009). 

Additionally, recent data from our laboratory established the importance of STAT3 

activation in TEL-AML1+ and BCR-ABL+ leukaemia (Mangolini et al., 2013), and 

previous literature has demonstrated cross-talk between STAT3 and TGF-β 

signalling via SMAD7 (Jenkins et al., 2005; Luwor et al., 2013). Therefore we 

questioned whether STAT3 was involved in mediating aberrant TGF-β 

responsiveness via SMAD7 in some ALL cells. Using shRNA silencing we found 

that STAT3 was responsible for transcriptional regulation of SMAD7 gene 

expression. This suggested a mechanism whereby STAT3 signalling could enforce 

resistance to TGF-β stimulation. To investigate this possibility, we silenced SMAD7 

gene expression in TEL-AML1+ REH cells and examined their response to TGF-β. 

Unexpectedly our data showed that loss of SMAD7 compromised REH cell 

proliferation, independent of TGF-β stimulation. SMAD7 knockdown resulted in 

apoptosis and significantly reduced colony-forming ability. The block in cell 

proliferation following SMAD7 knockdown was also observed in an MLL-AF4+ ALL 

cell line and an MLL-AF9+ AML cell line. This showed that SMAD7 knockdown in 

ALL and AML cells can lead to a block in leukaemia proliferation. Furthermore, 

using SMAD7 knockdown in vivo we have demonstrated that mice injected with 

shSMAD7 knockdown cells exhibited a slower disease progression compared to 

controls, verifying that SMAD7 has a key role in leukaemia progression in vivo.   

 

However, as the role of SMAD7 appeared to be independent of TGF-β 

signalling, to identify the downstream pathways regulated by SMAD7 in leukaemia, 

we performed gene expression analysis by RNA-sequencing of REH cells following 

SMAD7 knockdown. Following analyses using Ilumina BaseSpace, Strand NGS and 
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Ingenuity Pathway analysis, we identified that SMAD7 regulates the expression of a 

number of genes encoding transcription factors and enzymes involved in the 

cholesterol biosynthesis pathway. Following validation of these gene changes by 

qRT-PCR, we confirmed that SMAD7 loss resulted in decreased total cholesterol 

levels in leukaemia cells. We focused on one gene identified by our RNA-seq 

analysis, SREBP-1, encoding a master transcription factor involved in controlling 

fatty acid and cholesterol synthesis and metabolism (Eberle et al., 2004). Upon 

SMAD7 overexpression, we observed an increase in SREBP-1 gene expression and 

an increase in total cholesterol in leukaemia cells. This appeared to suggest SMAD7 

may directly regulate SREBP-1 expression. However, further studies will be required 

to examine whether SMAD7 is involved in transactivation of the SREBP-1 promoter, 

or whether it acts indirectly, for example by sequestering repressive co-factors.  

 

We have shown that SMAD7 regulation of SREBP-1 expression is critical to 

leukaemia survival, since SREBP-1 knockdown resulted in significant apoptosis, 

inhibition of colony forming ability and decreased total cholesterol levels in REH 

cells. In addition, we observed significant apoptosis following loss of SREBP-1 in 

MLL-AF4+ ALL cells. Pharmacological inhibition of SREBP-1 using the drug 

Fatostatin, resulted in inhibition of colony formation by a number of different ALL 

cell lines. We observed that treatment of CD34+ human cord blood cells with 

Fatostatin did not affect colony formation, indicating a specific requirement for 

SREBP-1 expression in leukaemia cells for self-renewal. We have also reported 

significant apoptosis following Fatostatin treatment of a number of ALL cell lines 

and primary patient samples harbouring different molecular abnormalities. We also 

established the role of SREBP-1 in leukaemia survival in vivo, as previously with 

SMAD7, by transplanting SREBP-1 silenced REH cells into mice. Mice transplanted 
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with SREBP-1 knockdown cells exhibited a longer disease latency compared to 

control mice, confirming that loss of SREBP-1 impairs leukaemia progression in 

vivo.  

 

Although studies have previously indicated that SMAD7 expression is critical 

in various cancers (Zhu et al., 2011), in this project we have discovered novel aspects 

of SMAD7 function in different subtypes of ALL and AML cells. Furthermore, we 

have established, for the first time, a role for SMAD7 in upregulating SREBP-1 gene 

expression, ensuring enhanced cholesterol biosynthesis in leukaemia cells. Previous 

work has shown that leukaemia dependency upon cholesterol biosynthesis can be 

exploited by targeting HMG-CoA reductase, using inhibitors such as statins (Ahmed, 

2013; Crosbie et al., 2013; Vilimanovich et al., 2015). However, the use of statins 

has proved challenging (Bjorkhem-Bergman et al., 2011). Here, we have identified 

an alternate target in the cholesterol biosynthesis pathway, SREBP-1 that is critical 

for leukaemia survival both in vitro and in vivo and can be successfully targeted by 

drugs. Therefore, by investigating TEL-AML1-specific transcriptional networks and 

their relationship with TGF-β signalling pathways, we have discovered a novel 

pathway present in a broad range of leukaemias and susceptible to pharmacological 

inhibition. Manipulating this pathway can have new therapeutic implications for the 

treatment of a range of leukaemia subtypes.          
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APPENDIX 
 

Table 10 - 250 Down-regulated genes picked up by Strand NGS analysis following SMAD7 

knockdown 

 
Gene Symbol Entrez Gene Name Type(s) 

AARS alanyl-tRNA synthetase enzyme 

AATK apoptosis-associated tyrosine kinase kinase 

ABCB10 ATP-binding cassette, sub-family B (MDR/TAP), member 10 transporter 

ACAT2 acetyl-CoA acetyltransferase 2 enzyme 

ADAM11 ADAM metallopeptidase domain 11 peptidase 

ADCY7 adenylate cyclase 7 enzyme 

ADGRB2 adhesion G protein-coupled receptor B2 

G-protein coupled 

receptor 

ALOX5AP arachidonate 5-lipoxygenase-activating protein other 

ANKRD63 ankyrin repeat domain 63 other 

APPL1 

adaptor protein, phosphotyrosine interaction, PH domain  

and leucine zipper containing 1 other 

AQP3 aquaporin 3 (Gill blood group) transporter 

ARHGAP11A Rho GTPase activating protein 11A other 

ARHGEF39 Rho guanine nucleotide exchange factor (GEF) 39 other 

ARPP19 cAMP-regulated phosphoprotein, 19kDa transporter 

AS3MT arsenite methyltransferase enzyme 

ASAP2 ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 other 

ASNS asparagine synthetase (glutamine-hydrolyzing) enzyme 

ASPM 

asp (abnormal spindle) homolog,  

microcephaly associated (Drosophila) other 

AUNIP aurora kinase A and ninein interacting protein other 

AURKB aurora kinase B kinase 

B4GALNT3 beta-1,4-N-acetyl-galactosaminyl transferase 3 enzyme 

BACE2 beta-site APP-cleaving enzyme 2 peptidase 

BRCA2 breast cancer 2, early onset transcription regulator 
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BRIP1 BRCA1 interacting protein C-terminal helicase 1 enzyme 

BUB1 BUB1 mitotic checkpoint serine/threonine kinase kinase 

C11orf96 chromosome 11 open reading frame 96 other 

C18orf54 chromosome 18 open reading frame 54 other 

C5orf22 chromosome 5 open reading frame 22 other 

C6orf222 chromosome 6 open reading frame 222 other 

C6orf223 chromosome 6 open reading frame 223 other 

CA2 carbonic anhydrase II enzyme 

CACNA1G calcium channel, voltage-dependent, T type, alpha 1G subunit ion channel 

CACNA2D4 calcium channel, voltage-dependent, alpha 2/delta subunit 4 ion channel 

CAMK4 calcium/calmodulin-dependent protein kinase IV kinase 

CASC4 cancer susceptibility candidate 4 other 

CASC4P1 cancer susceptibility candidate 4 pseudogene 1 other 

CASC5 cancer susceptibility candidate 5 other 

CCDC117 coiled-coil domain containing 117 other 

CCDC15 coiled-coil domain containing 15 other 

CCDC74B coiled-coil domain containing 74B other 

CCNB2 cyclin B2 other 

CD109 CD109 molecule other 

CDC20 cell division cycle 20 other 

CDC42EP4 CDC42 effector protein (Rho GTPase binding) 4 other 

CDC42EP5 CDC42 effector protein (Rho GTPase binding) 5 other 

CDC6 cell division cycle 6 other 

CDCA2 cell division cycle associated 2 other 

CDT1 chromatin licensing and DNA replication factor 1 other 

CECR1 cat eye syndrome chromosome region, candidate 1 enzyme 

CENPA centromere protein A other 

CENPH centromere protein H other 

CENPK centromere protein K other 

CENPU centromere protein U other 

CEP128 centrosomal protein 128kDa other 

CEP55 centrosomal protein 55kDa other 

CIT citron rho-interacting serine/threonine kinase kinase 

CKAP2L cytoskeleton associated protein 2-like other 
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CKS1BP7 CDC28 protein kinase regulatory subunit 1B pseudogene 7 other 

CORO2A coronin, actin binding protein, 2A other 

CPD carboxypeptidase D peptidase 

CPED1 cadherin-like and PC-esterase domain containing 1 other 

CYS1 cystin 1 other 

DARS2 aspartyl-tRNA synthetase 2, mitochondrial enzyme 

DCK deoxycytidine kinase kinase 

DENND2A DENN/MADD domain containing 2A other 

DERL3 derlin 3 other 

DHCR7 7-dehydrocholesterol reductase enzyme 

DIAPH3 diaphanous-related formin 3 enzyme 

DLGAP5 discs, large (Drosophila) homolog-associated protein 5 phosphatase 

DMC1 DNA meiotic recombinase 1 enzyme 

DNM1 dynamin 1 enzyme 

DPRXP4 divergent-paired related homeobox pseudogene 4 other 

DSCC1 DNA replication and sister chromatid cohesion 1 other 

E2F2 E2F transcription factor 2 transcription regulator 

E2F8 E2F transcription factor 8 transcription regulator 

ECT2 epithelial cell transforming 2 other 

ELOVL2 ELOVL fatty acid elongase 2 enzyme 

ELOVL6 ELOVL fatty acid elongase 6 enzyme 

EME1 essential meiotic structure-specific endonuclease 1 other 

EML5 echinoderm microtubule associated protein like 5 other 

ENO2 enolase 2 (gamma, neuronal) enzyme 

EPX eosinophil peroxidase enzyme 

ERI2 ERI1 exoribonuclease family member 2 other 

ETV4 ets variant 4 transcription regulator 

FADS1 fatty acid desaturase 1 enzyme 

FADS2 fatty acid desaturase 2 enzyme 

FAM129A family with sequence similarity 129, member A other 

FAM72A family with sequence similarity 72, member A other 

FAM72B family with sequence similarity 72, member B other 

FAM72C/FAM

72D family with sequence similarity 72, member D other 
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FBXO43 F-box protein 43 other 

FDPS farnesyl diphosphate synthase enzyme 

FOLR2 folate receptor 2 (fetal) transporter 

FOXM1 forkhead box M1 transcription regulator 

GALNT12 polypeptide N-acetylgalactosaminyltransferase 12 enzyme 

GAREML GRB2 associated, regulator of MAPK1-like other 

GAS2L3 growth arrest-specific 2 like 3 other 

GCSAM germinal center-associated, signaling and motility other 

GINS1 GINS complex subunit 1 (Psf1 homolog) other 

GJC1 gap junction protein, gamma 1, 45kDa ion channel 

GNAZ 

guanine nucleotide binding protein (G protein),  

alpha z polypeptide enzyme 

GNL3LP1 

guanine nucleotide binding protein-like 3 (nucleolar)-like  

pseudogene 1 other 

GPC4 glypican 4 transmembrane receptor 

GPR161 G protein-coupled receptor 161 

G-protein coupled 

receptor 

GSG2 germ cell associated 2 (haspin) kinase 

HINT2 histidine triad nucleotide binding protein 2 other 

HJURP Holliday junction recognition protein other 

HMGB2 high mobility group box 2 transcription regulator 

HMMR hyaluronan-mediated motility receptor (RHAMM) transmembrane receptor 

IGFBP2 insulin-like growth factor binding protein 2, 36kDa other 

IL21R interleukin 21 receptor transmembrane receptor 

IQGAP2 IQ motif containing GTPase activating protein 2 other 

IRF4 interferon regulatory factor 4 transcription regulator 

ITGB3BP integrin beta 3 binding protein (beta3-endonexin) other 

ITGB7 integrin, beta 7 transmembrane receptor 

JDP2 Jun dimerization protein 2 transcription regulator 

JPH1 junctophilin 1 other 

JPH2 junctophilin 2 enzyme 

KBTBD13 kelch repeat and BTB (POZ) domain containing 13 other 

KCNH2 

potassium channel, voltage gated eag related subfamily H,  

member 2 ion channel 
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KIAA0895 KIAA0895 other 

KIAA1804 mixed lineage kinase 4 kinase 

KIF11 kinesin family member 11 other 

KIF14 kinesin family member 14 enzyme 

KIF15 kinesin family member 15 other 

KIF18B kinesin family member 18B other 

KIF21B kinesin family member 21B other 

KIF2C kinesin family member 2C other 

KLK1 kallikrein 1 peptidase 

LBR lamin B receptor enzyme 

LHX2 LIM homeobox 2 transcription regulator 

LINC01224 

 

other 

LOC100507002 uncharacterized LOC100507002 other 

LOC441179 uncharacterized LOC441179 other 

LRP4 low density lipoprotein receptor-related protein 4 other 

LSS lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase) enzyme 

LTBP1 latent transforming growth factor beta binding protein 1 other 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) other 

MAGEL2 melanoma antigen family L2 enzyme 

MAP2K6 mitogen-activated protein kinase kinase 6 kinase 

MASTL microtubule associated serine/threonine kinase-like kinase 

MCM7 minichromosome maintenance complex component 7 enzyme 

MFI2 

antigen p97 (melanoma associated) identified by  

monoclonal antibodies 133.2 and 96.5 other 

mir-671 microRNA 671 microRNA 

MND1 meiotic nuclear divisions 1 homolog (S. cerevisiae) other 

MNS1 meiosis-specific nuclear structural 1 other 

MRC2 mannose receptor, C type 2 transmembrane receptor 

MSANTD3-

TMEFF1 MSANTD3-TMEFF1 readthrough other 

MSMO1 methylsterol monooxygenase 1 enzyme 

MTFR2 mitochondrial fission regulator 2 other 

MYCN 

v-myc avian myelocytomatosis viral oncogene neuroblastoma  

derived homolog transcription regulator 
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NCAPG2 non-SMC condensin II complex, subunit G2 other 

NCAPH non-SMC condensin I complex, subunit H other 

NDRG2 NDRG family member 2 other 

NEIL3 nei endonuclease VIII-like 3 (E. coli) enzyme 

NEK2 NIMA-related kinase 2 kinase 

NGFR nerve growth factor receptor transmembrane receptor 

NLRP6 NLR family, pyrin domain containing 6 

G-protein coupled 

receptor 

NNT-AS1 NNT antisense RNA 1 other 

NRGN neurogranin (protein kinase C substrate, RC3) other 

NTRK1 neurotrophic tyrosine kinase, receptor, type 1 kinase 

NUF2 NUF2, NDC80 kinetochore complex component other 

NUSAP1 nucleolar and spindle associated protein 1 other 

NXPH4 neurexophilin 4 other 

OIP5 Opa interacting protein 5 other 

OPN3 opsin 3 

G-protein coupled 

receptor 

OTUD6B OTU domain containing 6B other 

P2RX7 purinergic receptor P2X, ligand gated ion channel, 7 ion channel 

PALD1 phosphatase domain containing, paladin 1 phosphatase 

PALLD palladin, cytoskeletal associated protein other 

PBK PDZ binding kinase kinase 

PCK1 phosphoenolpyruvate carboxykinase 1 (soluble) kinase 

PCK2 phosphoenolpyruvate carboxykinase 2 (mitochondrial) kinase 

PHGDH phosphoglycerate dehydrogenase enzyme 

PHLDB2 pleckstrin homology-like domain, family B, member 2 other 

PKMYT1 protein kinase, membrane associated tyrosine/threonine 1 kinase 

PLAUR plasminogen activator, urokinase receptor transmembrane receptor 

PLK1 polo-like kinase 1 kinase 

PLS1 plastin 1 other 

POLQ polymerase (DNA directed), theta enzyme 

PPP4R4 protein phosphatase 4, regulatory subunit 4 other 

PRAME preferentially expressed antigen in melanoma other 

PRF1 perforin 1 (pore forming protein) other 
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PRIM1 primase, DNA, polypeptide 1 (49kDa) enzyme 

PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta kinase 

PRR11 proline rich 11 other 

PTGS1 

prostaglandin-endoperoxide synthase 1  

(prostaglandin G/H synthase and cyclooxygenase) enzyme 

PTPN22 protein tyrosine phosphatase, non-receptor type 22 (lymphoid) phosphatase 

PTPN7 protein tyrosine phosphatase, non-receptor type 7 phosphatase 

PTPRR protein tyrosine phosphatase, receptor type, R phosphatase 

PYGL phosphorylase, glycogen, liver enzyme 

RAB3B RAB3B, member RAS oncogene family enzyme 

RAD51 RAD51 recombinase enzyme 

RAD54L RAD54-like (S. cerevisiae) enzyme 

RASD2 RASD family, member 2 enzyme 

RASSF4 Ras association (RalGDS/AF-6) domain family member 4 other 

RIMS3 regulating synaptic membrane exocytosis 3 other 

RMI1 RecQ mediated genome instability 1 other 

RMI2 RecQ mediated genome instability 2 other 

RNF182 ring finger protein 182 enzyme 

RTKN2 rhotekin 2 other 

SASS6 spindle assembly 6 homolog (C. elegans) other 

SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans) other 

SESTD1 SEC14 and spectrin domains 1 other 

SFN stratifin other 

SIGLEC16 sialic acid binding Ig-like lectin 16 (gene/pseudogene) other 

SKA3 spindle and kinetochore associated complex subunit 3 other 

SLC16A14 solute carrier family 16, member 14 other 

SLC1A4 

solute carrier family 1 (glutamate/neutral amino acid transporter) 

 member 4 transporter 

SLC26A2 solute carrier family 26 (anion exchanger), member 2 transporter 

SLC30A3 solute carrier family 30 (zinc transporter), member 3 transporter 

SLC4A11 solute carrier family 4, sodium borate transporter, member 11 transporter 

SLC4A4 solute carrier family 4 (sodium bicarbonate cotransporter), member 4 transporter 

SLC6A19 solute carrier family 6 (neutral amino acid transporter), member 19 transporter 



 249 

SLC7A3 

solute carrier family 7 (cationic amino acid transporter, y+ system) 

 member 3 transporter 

SMC1A structural maintenance of chromosomes 1A transporter 

SMC2 structural maintenance of chromosomes 2 transporter 

SNX24 sorting nexin 24 transporter 

SOAT1 sterol O-acyltransferase 1 enzyme 

SPC24 SPC24, NDC80 kinetochore complex component other 

SPC25 SPC25, NDC80 kinetochore complex component other 

SPNS2 spinster homolog 2 (Drosophila) transporter 

SPTB spectrin, beta, erythrocytic other 

SREBF1 sterol regulatory element binding transcription factor 1 transcription regulator 

SRPR signal recognition particle receptor (docking protein) other 

SRSF12 serine/arginine-rich splicing factor 12 other 

STARD4 StAR-related lipid transfer (START) domain containing 4 transporter 

STIL SCL/TAL1 interrupting locus other 

STON1 stonin 1 other 

STON1-

GTF2A1L STON1-GTF2A1L readthrough other 

TICRR TOPBP1-interacting checkpoint and replication regulator other 

TMEFF1 

transmembrane protein with EGF-like and  

two follistatin-like domains 1 other 

TMEM144 transmembrane protein 144 other 

TMEM150C transmembrane protein 150C other 

TMEM169 transmembrane protein 169 other 

TMEM194A transmembrane protein 194A other 

TMEM194B transmembrane protein 194B other 

TNFRSF18 tumor necrosis factor receptor superfamily, member 18 transmembrane receptor 

TOP2A topoisomerase (DNA) II alpha 170kDa enzyme 

TPX2 TPX2, microtubule-associated other 

TRIM45 tripartite motif containing 45 other 

TRNP1 TMF1-regulated nuclear protein 1 other 

TSC22D3 TSC22 domain family, member 3 transcription regulator 

TSPAN4 tetraspanin 4 other 

TTF2 transcription termination factor, RNA polymerase II transcription regulator 
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TTK TTK protein kinase kinase 

TUBA4A tubulin, alpha 4a other 

VASH2 vasohibin 2 other 

VAT1L vesicle amine transport 1-like enzyme 

VPS4B vacuolar protein sorting 4 homolog B (S. cerevisiae) transporter 

 

This table shows the list of 250 downregulated genes with 1.5 fold change or higher common to both 

shRNA upon SMAD7 knockdown, identified by Strand NGS analysis of RNA-sequencing data.  
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Table 11- 56 upregulated genes picked up by Strand NGS analysis following SMAD7 

knockdown 

 
Gene Symbol Entrez Gene Name 

ARHGAP24 Rho GTPase activating protein 24 

ARHGEF37 Rho guanine nucleotide exchange factor (GEF) 37 

ARPC3P5 actin related protein 2/3 complex, subunit 3 pseudogene 5 

BTG2 BTG family, member 2 

BZRAP1-AS1 BZRAP1 antisense RNA 1 

C19orf38 chromosome 19 open reading frame 38 

CCND2 cyclin D2 

CHIAP3 chitinase, acidic pseudogene 3 

CTSA cathepsin A 

DUSP26 dual specificity phosphatase 26 (putative) 

ECM2 

extracellular matrix protein 2, female organ and 

 adipocyte specific 

FBXO39 F-box protein 39 

FGF18 fibroblast growth factor 18 

GBP4 guanylate binding protein 4 

GTF2IRD2P1 GTF2I repeat domain containing 2 pseudogene 1 

HIST1H2AC histone cluster 1, H2ac 

HIST1H2BD histone cluster 1, H2bd 

HIST1H2BJ histone cluster 1, H2bj 

HIST1H2BK histone cluster 1, H2bk 

HIST1H4H histone cluster 1, H4h 

HIST2H2BE histone cluster 2, H2be 

IGLC2 immunoglobulin lambda constant 2 (Kern-Oz- marker) 

IGLV3-21 immunoglobulin lambda variable 3-21 

ITM2A integral membrane protein 2A 

KCNJ2-AS1 KCNJ2 antisense RNA 1 (head to head) 

LINC-ROR 

long intergenic non-protein coding RNA,  

regulator of reprogramming 

LINC00158 long intergenic non-protein coding RNA 158 
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LINC01021 long intergenic non-protein coding RNA 1021 

LINC01033 

 LOC100130705 uncharacterized LOC100130705 

LOC101927501 uncharacterized LOC101927501 

LOC101929448 uncharacterized LOC101929448 

LOC115110 uncharacterized LOC115110 

LOC285628 uncharacterized LOC285628 

LRRC70 leucine rich repeat containing 70 

MMRN1 multimerin 1 

MXD4 MAX dimerization protein 4 

NOL4 nucleolar protein 4 

PAG1 

phosphoprotein membrane anchor with glycosphingolipid 

microdomains 1 

PBXIP1 pre-B-cell leukemia homeobox interacting protein 1 

PDE1A phosphodiesterase 1A, calmodulin-dependent 

PLK2 polo-like kinase 2 

PNPLA7 patatin-like phospholipase domain containing 7 

PYHIN1 pyrin and HIN domain family, member 1 

RGMB-AS1 RGMB antisense RNA 1 

RPS6P12 ribosomal protein S6 pseudogene 12 

SCAMP1-AS1 SCAMP1 antisense RNA 1 

SERTAD1 SERTA domain containing 1 

SH3BP5 SH3-domain binding protein 5 (BTK-associated) 

SLC7A8 

solute carrier family 7 (amino acid transporter 

 light chain, L system), member 8 

SNX18P26 sorting nexin 18 pseudogene 26 

TLE4 transducin-like enhancer of split 4 

TMEM150A transmembrane protein 150A 

TNFRSF14 tumor necrosis factor receptor superfamily, member 14 

TRPM4 

transient receptor potential cation channel,  

subfamily M, member 4 

TWF1 twinfilin actin-binding protein 1 

USP30-AS1 USP30 antisense RNA 1 
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This table shows the list of 56 upregulated genes with 1.5 fold change or higher common to both 

shRNA upon SMAD7 knockdown, identified by Strand NGS analysis of RNA-sequencing data.  


