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Abstract 

The interaction of water with TiO2 is crucial to many of its practical applications, 

including photocatalytic water splitting. Following the first demonstration of this 

phenomenon 40 years ago there have been numerous studies of the rutile single 

crystal TiO2(110) interface with water. This has provided an atomic level 

understanding of the water/TiO2 interaction. However, nearly all the previous studies 

of water/TiO2 interfaces involve water in the vapour phase. In this Article we explore 

the interfacial structure between liquid water and a rutile TiO2(110) surface pre-

characterised at the atomic level. Scanning tunneling microscopy and surface X-ray 

diffraction are used to determine the structure, which is comprised of an ordered array 

of hydroxyl molecules with molecular water in the second layer. Static and dynamic 

density functional theory calculations suggest that a possible mechanism for 

formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on 

a partially defected surface. The quantitative structural properties derived here 

provide a basis with which to explore the atomistic properties and hence mechanisms 

involved in TiO2 photocatalysis.  

 

The generally accepted mechanism of photocatalysis by TiO2 involves 

photoexcitation of electrons from the valence band to conduction band by light with 

energy greater than the 3 eV bandgap1,2. Holes in the valence band and electrons in 
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the conduction band created by this excitation travel to the surface where they initiate 

chemical reactions. For example, the electrons can reduce water to hydrogen. The 

potential for harvesting light in this way to produce a portable fuel in the form of H2 

has motivated the study of technical catalysts. It has also motivated the study of 

model systems in the form of single crystal surfaces as a route to understanding the 

nature of the surface reactions at the atomic and molecular scale. Indeed, the 

interaction of water with TiO2 in ultrahigh vacuum (UHV) has been extensively 

studied (see e.g. refs. 1,3–10). This is especially true for the most commonly explored 

rutile TiO2(110) surface (depicted in Fig. 1a), which is the lowest energy termination 

of rutile11 and hence is the most appropriate model system for a technical catalyst.  

The surface chemistry of water interacting with TiO2(110) under UHV is 

complex and has been the subject of considerable debate, mostly focusing on the level 

of water dissociation and the role of surface defects (see e.g. refs. 1,3–7,10,12). 

However, many aspects of the adsorption process have now been established. It is 

known, for example, that at room temperature water dissociates at bridging oxygen 

vacancies (Ob-vac) as well as <111> oriented steps, producing bridging OH (OHb) 

groups1,3–7,10,12. These groups can be converted into terminal OH groups bound to 5-

fold coordinated Ti atoms by reaction with O2
13. 

Although in the past, the emphasis has been on studies of the gas phase H2O 

interface with TiO2, it is clear that the liquid/solid interface is more relevant for 

practical applications. Surface X-ray diffraction (SXRD) provides a potential means 

of elucidating the structure of this model photocatalytic interface at a quantitative 

level. This technique has been used extensively to determine metal/liquid interfacial 

structures under electrochemical control14, which allows the metal surface to be 

cleaned in situ. This procedure is less straightforward for a semiconducting oxide 
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substrate such as TiO2. There has been a ground-breaking SXRD measurement of a 

TiO2(110)-water interface15,  and one of the first near ambient pressure photoemission 

measurements investigated the chemical states at the interface between TiO2(110) and 

an ultrathin film of water16
.  However, in both cases a non-standard surface 

preparation method was employed. As for related modeling of the interface, there 

have been several computational studies of the water interface formed by the perfect 

TiO2(110) surface. The results of these calculations are controversial, being centred 

around the question of dissociation on the pristine surface17–22. 

Here we employ a novel approach to provide the first quantitative structure of 

a well-defined metal oxide-water interface, which also represents a model of the 

interface present in the rutile TiO2 photocatalyst. More specifically, we perform both 

ex situ and in situ measurements of the liquid water-TiO2 interface in an aerobic 

environment, formed by either temporarily immersing (dipping) a rutile TiO2(110) 

surface into water or by depositing a water droplet, respectively. Here we simplify the 

model photocatalyst to its oxide component in the absence of band gap light and 

metal co-catalyst. However, we note that UV light does not modify TiO2(110)23. 

Moreover, the most effective co-catalyst is well-dispersed Pt nanoparticles24, which 

are not expected to affect the TiO2(110)-water component.  Understanding a simple 

model system like the one considered here is an essential first step towards the 

characterisation of more complex TiO2 photocatalysts.    

The surfaces were characterised before and after exposure to liquid water 

using UHV STM and SXRD. STM measurements in conjunction with photoelectron 

spectroscopy in the same instrument evidence the formation of an ordered 2×1 

hydroxyl overlayer formed after dipping. The SXRD results identify the bonding site 

as the 5-fold coordinated Ti atoms. This site is also occupied at the in situ liquid 
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water-TiO2(110) interface, with ordering of molecular water in the second layer. This 

result is surprising based on what is known from UHV studies. It appears to arise 

from the availability of a small concentration of O2 during the formation of the 

interface, which was not previously anticipated. This work demonstrates the 

importance of in situ structural characterisation of model photocatalytic interfaces and 

provides the basis for more realistic modeling of the photocatalytic interface with 

computational approaches.  

 In order for our liquid phase experiments to be connected with the results from 

TiO2(110) UHV studies and to ensure accurate comparison with calculations19,20,25, 

we employ UHV preparation and analysis methods that are known to produce and 

verify the presence of an atomically ordered substrate1. A section of the vacuum 

chamber (base pressures ~1×10-10 mbar) is then vented to N2 (BOC, 99.998% purity) 

before dipping the sample in water or depositing a droplet of water to form a 

meniscus. The N2 gas used has a nominal O2 content of 5 ppm by volume, which 

introduces an aerobic environment as found in a real photocatalytic system. At the 

near-atmospheric pressure used for venting, this equates to a partial O2 pressure of 

~5×10-3 mbar and an equivalent exposure of ∼105 Langmuir (1 L = 1.33 × 10-6 

mbar.sec).  

Figure 1b shows STM images of the as-prepared TiO2(110) surface10. In the 

high-resolution image of the inset, bright (Ti) rows are seen that run in the [001] 

direction. Bright spots are also present and these are a mixture of Ob-vacs and 

bridging hydroxyls (OHb), the latter being formed by water dissociation at defect 

sites. After venting to N2 and immersion in 10 ml water (18.2 MΩ.cm, total organic 

content < 2 ppm) for 5 mins, the sample (H2Odip sample) was reintroduced to UHV. 

STM images of the H2Odip sample are shown in Fig. 1c. The basic morphology of the 
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surface is the same as that in Fig. 1b. There is no evidence of any pitting or erosion of 

the step edges following immersion in water26.  

The high-resolution image shown in the inset of Fig. 1c evidences a (2×1) 

overlayer. Antiphase domains of this overlayer can form by an offset of one unit cell 

along the [001] direction. The domains are small, most being shorter than ten 

TiO2(110) unit cell lengths in [001]  (~30 Å) and four units in 110  (~26 Å). Half 

order low energy electron diffraction (LEED) beams were not observed, most likely 

due to either the small domain size and/or electron-stimulated desorption of the 

adsorbate. X-ray photoelectron spectroscopy (XPS) measurements indicate the level 

of C contamination to be around 0.1 monolayer (ML) (see Supplementary Fig. S1), 

where 1 ML is the density of primitive surface unit cells. Venting an as-prepared 

TiO2(110) sample to air or pure O2 without immersion in water was found not to form 

a (2×1) overlayer. A previous study also noted the absence of an ordered overlayer 

after exposure to a nitrogen atmosphere27. Hence, we conclude that the (2×1) 

overlayer is formed specifically by immersion in liquid water. 

From the STM images, we find the coverage of the ordered overlayer to be 

0.30±0.05 ML. This coverage and the domain size did not vary when we used 

samples with different initial Ob-vac concentrations of 0.16 and 0.07 ML. This 

suggests that neither Ob-vacs nor OHb (the coverage of which is proportional to the 

initial Ob-vac density) play a key role in the nucleation process. Hence, strain is a 

likely origin of the limited domain size28.  

In order to probe the chemical nature of the (2×1) overlayer, we employed 

XPS and UV photoelectron spectroscopy (UPS). A peak at ~532 eV binding energy in 

the O 1s spectrum that originates from OH becomes more intense after immersion. 
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Supplementary Fig. S2a,b shows a pair of XPS spectra taken before and after 

immersion of TiO2(110) in water. Similarly, in UPS spectra taken after immersion in 

water, peaks appear at 8.0 and 10.2 eV below the Fermi level (EF) that are 

characteristic of chemisorbed OH (Ref. 2) (Supplementary Fig. S2c). UPS also detects 

a band-gap state (BGS) associated with Ob-vac and OHb that lies ~0.8 eV below EF
29–

31. This BGS is quenched after immersion in water, which can be explained by 

healing of the Ob-vacs/OHb by exposure to O2 during the N2 venting procedure 

(Supplementary Fig. S2d). The O2 exposure of ~105 L is at least an order of 

magnitude larger than that required to attenuate the BGS (~400 L)3,29.  

Figure 2a shows selected SXRD results in the form of crystal truncation rods 

(CTRs) recorded from the H2Odip surface together with those from the as-prepared 

UHV surface. The latter results are consistent with those reported previously32. Best 

fits to the data are also shown in Fig. 2a, with a larger dataset being presented in 

Supplementary Fig. S3. A model for the clean surface is shown in Fig. 2b and the 

best-fit model for the H2Odip surface is shown in Fig. 2c. Supplementary Tables S1 

and S2 show the atomic displacements, the key for each atom being obtained from 

Supplementary Fig. S4.   

Due to its low X-ray scattering contribution, hydrogen is not included in the 

analysis and is not shown in the model. Instead, water molecules or hydroxyls are 

represented only by their oxygen atoms. The bond distance between O(1#) and Ti(2) 

(see Fig. 2c) is 1.95 ± 0.03 Å, which is in good agreement with the literature value for 

the Ti–OHt (terminal OH) bond of 1.85 ± 0.08 Å33, whereas the Ti–H2O bond is much 

longer at 2.21 ± 0.02 Å34. Hence, we assign O(1#) to OHt, which is also consistent 

with our photoelectron spectroscopy data. The SXRD data cannot rule out the 

presence of OHb, however both the XPS and STM results from the H2Odip surface 
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suggest that only one form of OH species is present. In the case of XPS, the OH 

related peak in the O 1s spectrum increases by a factor of 5±1 after dipping. The STM 

image appears to contain only one type of adsorbate in the 2×1 overlayer. 

As STM showed very little change to the morphology of the surface after 

immersion in liquid water, a near-perfect model was simulated, i.e. the occupancies 

were fixed to 1 during the fit, except that of the OHt molecule. This has an occupancy 

of 0.45±0.1, consistent with the STM results. If the occupancy of the OHt molecule is 

fixed at unity, χ2, the goodness of fit worsens to 1.6 from a minimum value 1.4 at 0.45 

ML. This occupancy of below 0.5 is what one would expect for the (2×1) overlayer 

with domain wall absences and therefore supports the model. There is no intensity in 

the position of half-order rods, which is consistent with the small domain sizes found 

in STM.  

The dipping (ex situ) experiments allow us to gain chemical composition as 

well as direct (STM) and reciprocal space (SXRD) information about the interface 

initially formed at the liquid water interface. Taken together, these measurements 

paint a robust picture of the interface. Only in situ SXRD measurements are possible 

at the liquid water interface (H2Odrop sample). As we shall show below, a clear 

connection can be made between the structures obtained from the in situ and ex situ 

measurements.  

Selected CTRs of the H2Odrop surface are shown together with those from the 

H2Odip and as-prepared UHV surfaces in Fig. 2. A larger data set is shown in 

Supplementary Fig. S5. The best-fit model (hydrated model) is shown in Fig. 2d and 

has a χ2 of 1.7. The model is essentially the same as that of the OHt model (Fig. 2c), 

except for the presence of a hydration layer above the (2×1) OHt contact layer. As 

with the H2Odip sample, evidence for OHt (and not H2O molecules) at the Ti5c sites 
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comes from the bond distance between OHt and Ti(2) of 1.95 ± 0.03 Å (see 

Supplementary Fig. S4 and Table S1). Our model differs from that derived from a 

previous SXRD measurement of a TiO2(110)/liquid water interface. In this case an 

experimental Ti-OHt bond distance of 2.12 ± 0.02Å was found15, which is closer to 

the Ti-OH2 bond distance34. Our model also differs from that obtained from the near 

ambient pressure photoemission study, which concluded that bridging hydroxyls only 

were present at the interface16. In both cases the discrepancy will arise from the 

difference in sample preparation and characterisation.  A 2×1 overlayer was recently 

observed in STM measurements of a TiO2(110)-liquid water interface, where the 

substrate was prepared in the same manner employed here. By comparison with DFT 

calculations, water dimers are thought to form the overlayer35. However, on the basis 

of the work presented here, it seems more likely that the 2×1 overlayer arises from 

OHt groups.  

 In order to understand the formation of OHt from exposure of the TiO2(110) 

surface to liquid water, we note that UHV-prepared samples contain Ob-vac and that 

these react with water in the residual vacuum to form OHb
 (ref. 3–7,10,12). 

Approximately 105 L O2 is also supplied here during the N2 venting procedure. Thus 

water, O2(g), OHb, and Ob-vac are all potential reactants when we expose our 

TiO2(110) surfaces to liquid water and when combined, OHt is a likely candidate 

product13. Subsurface defects, such as sub-surface Ti-interstitials (Tiint), can also 

participate in the reaction process, by providing a source of excess electrons for the 

dissociation of O2(g)30,36.  

With the above considerations in mind, we performed an extensive series of 

density functional theory (DFT) calculations to understand the formation of the (2 × 

1) OHt overlayer. Both geometry optimisations for the interface under UHV-like 
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conditions and ab initio molecular dynamics (AIMD) under aqueous conditions were 

performed. Taken together these suggest that this overlayer most likely forms through 

the mixed dissociation of O2 and H2O on a TiO2(110) surface containing point defects, 

in the form of OHb, oxygen adatoms (Oad) and Tiint. Specifically, in Fig. 3 we show 

the potential energy diagram obtained for the vacuum interface for a possible 

mechanism through which the (2 × 1) OHt overlayer can form. The mechanism that 

governs the stabilisation of the overlayer relies on a competition between charge 

transfer arising from the presence of defects (see Supplementary Fig. S6) and the 

surface distortion due to the adsorption of the OHt
37,38.  

In the process shown in Fig. 3, the energy zero reference state (see Fig. 

3(a),(b)) is represented by a TiO2(110) surface model with 1/4 ML of OHb, 1/8 ML of 

Oad and 1/4 ML of subsurface Tiint. From this initial state the formation of the (2 × 1) 

OHt overlayer proceeds with the adsorption of O2 from the gas phase on a Ti5c site 

adjacent to a OHb site (Fig. 3(c)). O2 can then react with the OHb to form a pair of 

OHt (Fig. 3(d)). Following this step, water may adsorb on Ti5c sites to form a mixed 

overlayer made of an OHt pair, an Oad and three H2O (Fig. 3(e)). Through a sequence 

of proton transfer events involving the water and the OHt pair, as well as water and 

the Oad, a (2 × 1) OHt overlayer can form. In this state (see Fig. 3(f)) two water 

molecules are co-adsorbed with four OHt, with four OHt  arranged in a (2 × 1) 

symmetry. The 4OHt+2H2O and the 2OHt+Oad+3H2O states are almost degenerate 

(the 4OHt+2H2O state is about 50 meV less stable). In the final step shown in Fig. 3 

water is desorbed to the gas-phase, leaving only a (2 × 1) overlayer of OHt (Fig. 3(g)). 

From Fig. 3 it is clear that the bare OHt (2 × 1) overlayer is less stable than the state 

where water is present. This result is consistent with our STM measurements, where it 

has been observed that the OHt species are arranged in (2 × 1) symmetry only after 
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dipping the sample in water. Under aqueous conditions instead, the OHt (2 × 1) 

overlayer may be stabilised by the presence of water molecules from the liquid phase. 

This is indeed what we find from analysis of our AIMD simulations of the interface 

under aqueous conditions, where we find that: (i) the OHt (2 × 1) overlayer remains 

stable over two separate AIMD simulations with a total length of 70 ps; and (ii) on 

average 0.15 ML of the Ti5c sites adjacent to the terminal OH groups are occupied by 

water molecules. 

The AIMD simulations also provide an understanding of the second layer 

water structure in the case of the H2Odrop surface. Figure 4 shows a comparison 

between the results from SXRD and from AIMD on the structure of the top TiO2 

layers and of the first two overlayers. Figure 4a illustrates a typical structure extracted 

from an AIMD trajectory of a liquid water film on TiO2(110) with 1/4 ML Tiint and 

the (2 × 1) OHt overlayer structure. The histograms in Fig. 4b show a comparison 

between the number of O and Ti atoms per unit cell obtained from SXRD and from 

AIMD as a function of the height from the surface. It can be seen that the histogram 

of the number of O and Ti atoms computed from AIMD overall agrees well with that 

extracted from SXRD. In terms of the location of the first adsorption layer, AIMD 

predicts a height of 2.07 Å, which is only moderately larger than the height of 

1.95±0.03 Å measured in SXRD. The location of this first peak is actually rather 

similar to what one obtains from AIMD and classical force field simulations for both 

intact and dissociated water on TiO2
15,19. Our AIMD simulations predict that there are 

on average 0.68 O atoms per unit cell in this layer and also that a fraction of water 

(about 1/8 molecules per unit cell) diffuse in and out of this layer during the course of 

the simulation (see Supplementary Movie S1). The second adsorption layer consists 

of water molecules that are H-bonded to OHt, to the transient molecular water in the 
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first adsorption layer, or to Ob atoms. Our AIMD simulations predict that this layer is 

at a height of 3.98 Å from the top surface layer, in reasonable agreement with the 

height extracted from SXRD of 3.80 ± 0.04 Å. It is interesting to note that our AIMD 

simulations do not show any evidence of facile proton transfer within the (2 × 1) OHt 

overlayer. We cannot exclude that proton hopping and/or proton diffusion events 

could occur on longer timescales than we have been able to simulate. Nevertheless, 

the rate for such processes at this interface would still be significantly lower than 

proton transfer events in liquid water or at other liquid water/oxide interfaces (see e.g. 

39,40). As shown in the SI, individual proton transfer events invariably destabilise the 

overlayer by causing pairs of OH groups to be adsorbed at adjacent adsorption sites. 

Our measurements were carried out at near neutral pH, which is the optimum 

for photocatalysis by TiO2/Pt (see ref. 24). Thermodynamic models suggest that at pH 

7 there could be a coverage of hydroxyls on TiO2 associated with a pH greater than 

the point of zero charge18. The latter has been measured to be around 5 for the (110) 

termination41. To examine this further, we carried out an additional AIMD simulation 

to examine the possibility that the OHt overlayer was formed from the type of OH- 

diffusion to the oxide/water interface predicted by an AIMD study of liquid water on 

anatase TiO2(101)42. The results of this simulation are shown in the Supplementary 

Fig. S7. An OHt (2 × 1) overlayer made of OH- ions is found to be unstable as 

evidenced by frequent proton transfer events, which disrupt the (2 × 1) symmetry and 

also result in the formation of O-adatoms. This suggests that the OHt (2 × 1) overlayer 

instead arises from a mixed O2 and H2O dissociation in the presence of point defects 

as described above. 

In summary, we have shown that a model for a photocatalytic interface 

between liquid water and rutile TiO2(110) has terminal hydroxyls in the contact layer. 
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This picture comes from a combination of data from real space imaging, 

spectroscopic measurements and surface X-ray diffraction, with interpretation aided 

by DFT calculations. The ideal coverage of OHt is half a monolayer, corresponding to 

a (2 × 1) structure, but this is decreased to approximately 0.4 monolayers by absences 

at domain wall boundaries. This interface structure, created in the aqueous aerobic 

environment considered here, had not been anticipated and is different from what has 

been established for water on TiO2(110) under UHV conditions. It is likely to have 

important implications for the chemistry of wet TiO2 surfaces. For example, proton 

hopping and proton transfer is likely to be more facile at an aqueous interface with a 

high proportion of hydroxide groups (see e.g. ref 40). Of greatest importance, perhaps, 

is that the energetics of each elementary step and possibly also the mechanism of the 

water oxidation process could be altered by the new interface structure identified 

here43,44. Understanding of water oxidation processes in TiO2 interfaces under 

operating aqueous conditions is key to improve the activity of photoelectrochemical 

cells. Because the presence of OHt is likely to open up new reaction pathways to 

water oxidation, it could be possible to enhance the degree of hydroxylation further 

through e.g. self-doping of the substrate and exposure to O2. We hope that by 

providing accurate experimental structural data for a model photocatalytic interface, 

this work paves the way to more reliable calculations of the elementary steps involved 

in water splitting, including a treatment of the excited state electronic properties. 

Ultimately, this will lead to an atomistic level understanding of the photocatalytic 

process of water splitting in more complex systems. 

  



 14 

Methods 

The TiO2(110) (Pi-Kem) samples were prepared following an established procedure10 

involving cycles of Ar+ ion sputtering and annealing to ~1000 K in UHV. Auger 

electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) were used to 

confirm the surface cleanliness and low energy electron diffraction (LEED) or 

scanning tunneling microscopy (STM) were used to ensure that the surfaces were 

well-ordered and unreconstructed. For all three methods, any adventitious UV-

induced modification was avoided by using a red light. Prior to dipping, ultra-pure 

water was de-aerated by bubbling N2 through the liquid for >1 hour. This results in a 

pH of 6.9. 

Scanning tunneling microscopy (STM). STM measurements were performed with 

an Omicron UHV variable temperature STM. Tunneling was into empty sample states 

with the sample bias (Vs = 1.2-1.5 V) and tunneling current (It = 0.2-0.5 nA). The 

sample was dipped in ultra pure, deoxygenated H2O for a range of volumes (2 ml - 2 

l) and times (15 s – 10 min). Surface contamination was minimised by purging the 

load-lock with N2. Immediately after the immersion, the sample was reintroduced into 

UHV where it was transferred to the analysis chamber for STM measurements.  

Photoelectron Spectroscopy. Normal emission measurements were performed at 

room temperature in an Omicron UHV low temperature STM system, incorporating 

an Omicron HA125 hemispherical energy analyser. UV photoelectron spectra (UPS) 

used He II (hv = 40.80 eV) and He I (hv = 21.20 eV) excitation in order to monitor 

the valence band and band-gap regions. The Fermi energy (EF) was determined from 

the tantalum sample holder that was in electrical contact with sample. Samples were 

also monitored using the in situ STM to ensure the presence of a 2×1 overlayer. 
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Surface X-ray Diffraction (SXRD). All SXRD measurements were carried out on 

the ID32 beamline at the European Synchrotron Radiation Facility (ESRF), 

employing UHV facilities located in the associated surface characterisation laboratory 

for sample preparation. Once prepared, the sample was transferred under UHV to one 

of two bespoke, small portable UHV chambers that were mounted on a six-circle 

diffractometer with the sample surface in the horizontal plane. For the H2Odip 

measurements, data acquisition and analysis followed the procedures described in ref. 

31 and therein. For H2Odrop measurements, a total of 1450 non-equivalent reflections 

were measured, employing an ‘electrochemical cell’ apparatus45. H2Odip 

measurements, following a similar procedure to STM measurements, were conducted 

on a sample that was dipped in ~20 ml of ultra-pure, deoxygenated H2O for 

approximately 15 s. A large data set of 20 CTRs was collected that, after corrections, 

comprised of 835 non-equivalent reflections. The following reflections were 

monitored at regular intervals to ensure that there was no sample degradation: (1,0,1) 

H2Odip; (1,0,0.2) UHVas-prepared; (1,3,0.05) H2Odrop. Data for the latter reflection are 

shown in Fig. S8. The best-fit model takes into account Ti sites that are both 

occupied/unoccupied with OH, with the latter simulating domain walls. 

Theoretical. Adsorption of the various species on TiO2(110) was modeled through 

spin-polarised DFT structure optimisations using periodic supercells ranging from 

(2×1) to (4×2). Adsorption on one side of a four tri-layer TiO2(110) surface was 

considered with the bottom tri-layer fixed at its bulk position and at least 15 Å 

separating periodic images along the surface normal. We considered a degree of 

hydroxylation of the surface ranging from 1/4 to 1 ML and a range of Tiint located in 

the second subsurface layer in a range of concentrations between 0 and 1/2 ML. 

Interstitials were located in the second subsurface layer, and a very small dependence 
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of the adsorption energy of O2 on the position of the Tiint has been observed37. The 

VASP46,47 code was used for these calculations with a plane wave cut-off of 400 eV 

and projector augmented wave potentials48. Sampling of the Brillouin zone was 

achieved using a Γ-centred (2×2×1) per primitive surface cell k-point mesh. The 

PBE49 exchange-correlation functional with a Hubbard-U correction of 4.2 eV was 

used. By comparing our results with the hybrid functional HSE0650 (see 

Supplementary Information) we ensured that the chosen value of U did not 

significantly affect the results regarding the formation of the (2×1) OHt overlayer. 

The other set of simulations performed as part of this study involved spin-

polarised DFT based molecular dynamics. These AIMD simulations were performed 

in order to investigate the structure of the liquid water/TiO2 interface and the stability 

of the OHt (2×1) overlayer under aqueous conditions. The computational details are 

similar to those reported in our previous work (see refs 19,20) but are included here 

for clarity. In brief we used the CP2K/QUICKSTEP51 code with the PBE exchange-

correlation functional. CP2K/QUICKSTEP employs a mixed Gaussian and plane-

wave basis set and norm conserving pseudopotentials. We used a short-range double 

valence polarised Gaussian basis52 and a 480 Ry cut-off for the plane wave expansion. 

The AIMD trajectory analyzed in the main text is 50 ps in length, with a 1 fs timestep 

and deuterium masses for the hydrogens in the canonical ensemble with a target 

temperature of 360 K. As with the static DFT calculations, TiO2(110) was modeled 

using a (4×2) unit cell, comprised of four tri-layers and 15 Å of vacuum. The liquid 

water film in contact with the surface was ca. 2 nm thick, being comprised of 87 

molecules. The (2×1) overlayer was modeled with neutral OHt adsorbed at Ti5c sites 

with Tiint positioned in the second subsurface layer at a concentration of 1/4 ML. We 

also performed an additional 50 ps-long AIMD simulation without interstitials to test 



 17 

their effect on the stability of the OHt overlayer. The results of these tests show that 

the OHt (2×1) overlayer is only stable in the presence of interstitials and with neutral 

OH species as opposed to OH- (results are shown in the Supplementary Figs. S5,S6). 

Finally, we performed a number of additional AIMD simulations (each of which is 

about 20 ps-long) of TiO2(110) under aqueous conditions as well as static DFT 

calculations under UHV-like conditions to compare the stability of the OHt (2×1) 

overlayer against that of other less ordered overlayers and to investigate the proclivity 

of proton transfer at the water/TiO2(110) interface. Overall, we find that proton 

transfer and proton diffusion is much more facile at less ordered structures compared 

to the OHt (2×1) overlayer (see Supplementary Figs. S9-S11). 
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Figure Legends 

Figure 1. The TiO2(110) surface. a, Ball model of TiO2(110) together with Ob-vac, 

OHb, OHt, and Oad. Ti is shown red and O blue: Ob is shown lighter, and adsorbed O 

lighter still. H is shown yellow. b, c, STM images (0.2 nA, Vs=1.2 V) of the surface 

before and after immersion in liquid water, respectively. In the large-area images, the 

red scale bars are 100 Å and in the insets 20 Å.  Before immersion, the TiO2(110) 

surface is characterised by bright rows that arise from Ti5c atoms and bright spots that 

correspond to Ob-vac (0.11 ML) and OHb (0.10 L). After immersion in liquid water to 

form the H2Odip sample, the surface is characterised by bright spots arranged with a 

(2×1) periodicity. The blue and green shapes mark areas that are particularly well 

ordered. Note that these two areas are antiphase domains; the bright spots are offset 

by one TiO2 surface unit cell in the [001] direction.  

 

Figure 2. Selected CTRs from the SXRD measurements alongside proposed 

models. a, The structure factors of the different TiO2(110) surfaces are plotted for the 

(0,1,l), (1,2,l) and (2,1,l) CTRs. Black, red, and blue error bars represent the data from 

the as-prepared surface recorded before the H2Odrop experiment, H2Odip, and H2Odrop 

samples, respectively, with solid lines being the calculated data. Profiles are offset for 
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clarity. Notches on the x axes correspond to Bragg peaks. b-d, Ball-stick models for 

clean, H2Odip, and H2Odrop samples, respectively. 

 

Figure 3. Possible sequence of reaction steps leading to the formation of the OHt 

(2 ×  1) overlayer. a, Potential energy diagram for the formation of the OHt overlayer 

resulting from the mixed adsorption of O2 and H2O on a defective TiO2(110) surface 

model. The value of the potential energy 𝚫𝑬 at each state 𝒔 is obtained as the 

difference between the total energy of that state 𝑬𝒔 and that of the previous state 

𝑬𝒔!𝟏 , i.e. 𝚫𝑬𝒔 = 𝑬𝒔 − 𝑬𝒔!𝟏 − 𝑬𝒔
𝒈𝒂𝒔!𝒂𝒅𝒔 + 𝑬𝒔

(𝒈𝒂𝒔!𝒅𝒆𝒔) , and where 𝑬𝒔
𝒈𝒂𝒔!𝒂𝒅𝒔  and 

𝑬𝒔
(𝒈𝒂𝒔!𝒅𝒆𝒔)  are the total energy of any gas-phase specie that has been adsorbed or 

desorbed upon going from state 𝒔− 𝟏 to state 𝒔, respectively. The index 𝒔 goes from 

1 to 5 and the state for 𝒔 = 𝟎 corresponds to the reference zero state composed of a 

surface with 1/4 ML of subsurface Tiint, 1/4 ML of OHb, and 1/8 ML of Oad. The 

values of the potential energy refer to a (𝟒×𝟐) unit cell. The dashed line connecting 

the 4OHt + 2H2O state with the 4OHt state indicates the desorption of 2 water 

molecules to the gas phase. b-g, Structures of adsorbates on the defective TiO2(110). 

The configurations are labeled according to the states shown in the potential energy 

diagram in a. 

 

Figure 4. Structure of the water/TiO2 interface in aqueous conditions. (a) 

Snapshot of a liquid water film on TiO2 obtained from AIMD simulation. (b) 

Comparison between the number of Ti and O atoms per unit cell obtained from 

AIMD and from SXRD as a function of the height from the surface. The zero in the 
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height corresponds to the top surface layer of the Ti5c atoms. The shaded red curve in 

b is the number density of the O and Ti atoms per unit cell 𝒏 𝒛  as a function of the 

height 𝒛, obtained from the AIMD. Integration of 𝒏 𝒛  between the minima of each 

peak 𝒑 (delimited by the heights 𝒛𝒑 and 𝒛𝒑!𝟏) gives the number of O and Ti atoms 

per unit cell for a given layer 𝑵(𝒛𝒑) , which is shown in b by                                         

the red bar charts for each interface layer: 𝑵 𝒛𝒑 = 𝒏 𝒛 𝒅𝒛𝒛𝒑!𝟏
𝒛𝒑

, and where                                              

𝒛𝒑 = 𝒛  𝒏 𝒛 𝒅𝒛𝒛𝒑!𝟏
𝒛𝒑

𝒏 𝒛 𝒅𝒛𝒛𝒑!𝟏
𝒛𝒑

.  

 

 


