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Abstract 

Fenton or Fenton-like processes have been regarded as feasible methods to degrade a wide variety of contaminants 

by generating reactive species, but the efficiency is highly affected by the slow transformation from Fe(III) to Fe(II) 

as well as pH. This study proposed a method by adding hydroxylamine (HA) to the Fe(II)/HSO5
- (Fe(II)/PMS) 

process to accelerate the degradation of contaminants, selecting a broad-spectrum sulfonamide antibiotic - 

sulfamethoxazole (SMX) - as the target compounds. The degradation efficiency and mechanism of SMX by the 

HA/Fe(II)/PMS process was elucidated for the first time. Compared with Fe(II)/PMS process, HA/Fe(II)/PMS 

process showed about 4 times higher degradation efficiency of SMX at pH 3.0 and it also exhibited high efficiency 

in a wider range of pH (3.0-6.0). The addition of HA enhanced the transformation of Fe(III) to Fe(II), which 

participated in the formation of reactive species as electron donor. Based on the experiments of alcohols quenching 

and competition kinetics between benzoic acid and SMX, the mechanism study indicated that both the sulfate 

radicals (SO4
•-) and the hydroxyl radical (HO•) resulted in the degradation of SMX, with the latter regarded as the 

dominant reactive species. Furthermore, degradation intermediates of SMX were analyzed, and three main 

transformation pathways were thus proposed, including the cleavage of S-N bond, oxidation of amine group on the 

aromatic ring, and hydroxylation of the benzene ring. The HA/Fe(II)/PMS process was also effective in removal of 

SMX and total organic carbon (TOC) from the real pharmaceutical wastewater. This work would broaden the scope 

of application of Fenton and Fenton-like processes enhanced by HA in treatment of contaminants.  
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1. Introduction 

An increasing number of antibiotics are environmentally widespread and routinely found in aquatic environment 

including effluent of wastewater treatment plant, surface water, even drinking water (Kümmerer, 2009; 

Rivera-Utrilla et al., 2013), and they are of great concern for their toxicity and potential to induce resistance of drug 

acting on aquatic ecosystems and human health (Marx et al., 2015; Pomati et al., 2006). Industrial pharmaceutical 

wastewater treatment plants without effective treatment of antibiotics have become a significant threat for aquatic 

environment (Larsson, 2007).  

Conventional treatment processes exhibit poor removal for antibiotics from pharmaceutical wastewater (Michael 

et al., 2013). Advanced oxidation processes (AOPs) based on hydroxyl radical (HO•) oxidation, such as photolysis 

(Ryan et al., 2011), electrochemical oxidation (De Amorim et al., 2013), and catalytic ozonation (Gonçalves et al., 

2012) have indicated a certain success in the degradation of antibiotics. Recently, increasing attention has been paid 

to the catalytic peroxymonosulfate (HSO5
-, PMS) oxidation based on sulfate radicals (SO4

•-) due to its high 

efficiency of selection and degradation for some refractory organic contaminants (Neta et al., 1988). Having a 

comparable oxidizing ability of HO• (E0 = 1.9-2.7V) (Buxton et al., 1988), SO4
•- with E0 of 2.5-3.1V (Neta et al., 

1988) presents a powerful oxidation capacity of antibiotics (Ahmed et al., 2012), e.g., destruction of antibiotics in 

pure water, underground water, domestic wastewater, and swine wastewater (Ahmed et al., 2012; Ahmed et al., 

2014; Ben et al., 2009; Ji et al., 2014). However, little information is currently available with regard to the 
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remediation of antibiotics in pharmaceutical wastewater based on SO4
•- oxidation.  

Generally, generation efficiency of SO4
•- controls the oxidation of antibiotics. Activated approaches of PMS or 

persulfate (PS) by such as photons (Ahmed et al., 2014; Kim H.Y. et al., 2015), heat (Ji et al., 2015; Qi et al., 2014), 

organic compound (Lei et al., 2015; Zhou et al., 2015), metal-based catalyst (Ayoub and Ghauch, 2014; Ghauch et 

al., 2013), transition metals (Ji et al., 2014) have been used to produce more SO4
•- to eliminate organic 

contaminants. Among these activated methods, ferrous iron (Fe(II)) has the superiority of low cost, high activity, 

and environmental-friendly nature. Nonetheless, some intrinsic drawbacks of Fe(II)/PMS oxidation process have 

been gradually exposed. The slow conversion from Fe(III) back to Fe(II) is considered to be the major drawback of 

Fe(II)/PMS process (Zou et al., 2013). Chen et al. (2011) reported that hydroxylamine (NH2OH, HA) could 

effectively accelerate the redox cycle of Fe(III) to Fe(II). Owing to the low rate constants with SO4
•- (Neta et al., 

1988) and HO• (Buxton et al., 1988), protonated HA can improve the degradation of benzoic acid (Zou et al., 2013), 

trichloroethylene (Tan et al., 2012), diuron (Wu et al., 2015), and Orange G (Han et al., 2014), as well as reducing 

the dosage of Fe(II) in Fe(II)/PMS or Fe(II)/PS system. To the best of our knowledge, few literature reported the 

enhancement of HA on the capacity of Fe(II)/PMS process applied in the pollution remediation of antibiotics.  

Considering the bioactivity and potential risk arising from the toxicity of oxidation products of antibiotics, 

attention has to be paid to the degradation pathways of typical antibiotics in oxidation processes in order to assess 

the safety of treatment methods. Previous researches indicated the degradation products and pathways for same 

targets (e.g., SMX) were different in various SO4
•--based on oxidation processes (Ahmed et al., 2012; Ayoub and 

Ghauch, 2014; Gao et al., 2015; Ghauch et al., 2013; Ji et al., 2015). Qi et al (2014) reported the nitro derivative of 

SMX as an intermediate in microwave-activated persulfate process, but the same product were not found in 

ferrous-activated persulfate process (Ji et al., 2014). However, the lack of that information in the HA/Fe(II)/PMS 

process necessitates the study about degradation pathways and mechanism of antibiotics in the system. 

Therefore, the objective of this study is to investigate the efficiency and mechanism of the HA/Fe(II)/PMS 

process in eliminating typical antibiotics. Sulfamethoxazole (SMX), one of the most widely used sulfonamide 

antibiotics to treat human and veterinary diseases as well as to promote the growth of food animals, was selected 

due to its frequent detection in the aquatic environment (Al Aukidy et al., 2012). The study is specifically focused 

on, (i) the degradation efficiency of SMX; (ii) the role of HA; (iii) the role of the reactive species involved; (iv) the 

identification of degradation products and possible transformation pathways in the HA/Fe(II)/PMS process, and (v) 

the treatment efficiency of SMX from the real pharmaceutical wastewater by the process. 

2. Materials and methods 

2.1. Materials 

All chemicals were obtained from commercial sources and are listed in Text S1. All of these chemicals were used 

as received without further purification. Solutions were prepared in 18.2 MΩ cm Milli-Q water (Millipore). Stock 

solutions of ferrous sulfate and HA were prepared freshly with Milli-Q water everyday.  

  The raw pharmaceutical wastewater was collected from the effluent of secondary sedimentation tank of Fuhe 

pharmaceutical wastewater treatment plant located in Zhaodong, China. The raw wastewater was filtrated using 

0.45 μm cellulose membrane and stored at 4 C in dark before use.  

2.2. Experimental procedure 

All experiments were performed in 100 mL triangular flasks with a constant stirring rate with a PTFE-coated 
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magnetic stirrer at 25 ± 0.5 C. The samples were covered with aluminum foil to avoid possible photodegradation. 

Each 30 mL reaction solution with desired concentrations of SMX or BA or SMX and BA, Fe(II), and HA, was 

prepared with ultrapure water or real pharmaceutical wastewater and adjusted to the initial desired pH with sodium 

hydroxide and sulfuric acid. Before the experiments were started, the reaction system was blown 15 min by high 

purity N2 to eliminate the shadow of dissolved oxygen in solution. Each run was switched on by adding the desired 

dosage of PMS. Samples were withdrawn at set time intervals and quenched with excess pure methanol before 

analysis. The quenching experiments employed methanol and TBA as the quenchers, which were performed by 

adding desired alcohols into the reaction system and induced immediately after the addition of PMS. All 

experiments were repeated independently at least two times, and average values along with one standard deviation 

(± SD) were presented. 

2.3. Analytical methods 

The concentrations of SMX, BA, and p-HBA were determined by a high-performance liquid chromatography 

(HPLC, Waters e2695), and the detailed parameters are shown in Text S2. Solution pH was measured by a pH 

meter (PHS-3C, Shanghai Rex). The concentration of ferric iron was measured at 300 nm (Scharf, 1971) with an 

UV-vis spectrometer (SP-752, Shanghai Spectrum), and the detailed procedure is shown in Text S3. The 

degradation intermediates of SMX were detected by ultra-performance liquid chromatography coupled with 

electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS, Waters), the detailed 

parameters are shown in Text S4. The analysis of water quality of real pharmaceutical wastewater is given in Text 

S5. 

3. Results and discussion 

3.1. Degradation efficiency of SMX in HA/Fe(II)/PMS process 

Fig. 1 shows the degradation of SMX in HA/Fe(II)/PMS process. Less than 20% of SMX was degraded within 15 

min in Fe(II)/PMS process, similar to that in PMS process. The low degradation efficiency could be due to the low 

Fe(II) concentration (Anipsitakis and Dionysiou, 2004). Surprisingly, HA (0.4 mM) improved the efficiency greatly 

and approximate 80% of SMX was degraded within 15 min in the HA/Fe(II)/PMS process. In comparison, HA in 

the PMS process inhibited the degradation of SMX degradation and only 10% of SMX was degraded within 15 min 

in HA/PMS process. It is possible that HA competed for and consumed PMS directly (Han et al., 2014). Therefore, 

HA and Fe(II) both should play a role in accelerating removal of SMX in the HA/Fe(II)/PMS process (Wu et al., 

2015). The incomplete degradation of SMX in the HA/Fe(II)/PMS process might be due to the depletion of PMS 

(Zou et al., 2013). It should be pointed out that the HA/Fe(II)/PMS process exhibited an equivalent or even higher 

degradation efficiency of SMX, compared to reported catalytic PS oxidation processes (Table S1), e.g., Fe(II)/PS 

(Ji et al., 2014), thermo/PS (Ji et al., 2015), and Fe0/PS (Ghauch et al., 2013). 
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Fig. 1. Degradation of SMX in HA/Fe(II)/PMS process. Conditions: [HA]0 = 0.4 mM (no addition in PMS and Fe(II)/PMS process), 

[Fe(II)]0 = 10 μM for HA/Fe(II)/PMS and Fe(II)/PMS process, [PMS]0 = 0.3 mM, [SMX]0 = 20 μM, pH0 = 3.0, 25 °C. Error bars 

represent the standard deviation from at least duplicate experiments. 

3.2. Effect of pH on SMX degradation in HA/Fe(II)/PMS process 

Solution pH determines the speciation distribution of HA, Fe(II), and Fe(III), and the self-decomposition kinetics of 

PMS. Fig. 2 shows the effect of initial pH on the degradation of SMX in the HA/Fe(II)/PMS process. No buffering 

agents were added to stabilize the solution pH in the experiments, and the variation of pH is given in the Fig. S1.  
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Fig. 2. Effect of initial pH on SMX degradation in HA/Fe(II)/PMS process. Conditions: [HA]0 = 0.40 mM, [Fe(II)]0 = 10 μM, [PMS]0 

= 0.3 mM, [SMX]0 = 20 μM, pH0 = 2.0-9.0, 25 °C and reaction time (T) = 15 min. Error bars represent the standard deviation from at 

least duplicate experiments. 

 

From Fig. 2, the degradation of SMX was obviously promoted by increasing the initial pH from 2.0 to 3.0, 

reflecting the yield of reactive species could be improved greatly. The variation tendency could be mainly 

attributed to the formation and increase of Fe(OH)2 with increasing solution pH. Fe(OH)2 has been demonstrated to 

be more active than Fe(II) iron to activate peroxide and PMS (Wells and Salam, 1968; Zou et al., 2013). The 

optimal initial pH range is 3.0 to 6.0 in the system for degradation of SMX (the final balanced range of pH from 2.9 



to 3.7 as shown in Fig. S1). And with further elevation of initial pH from 6.0 to 9.0 (the final balanced range of pH 

from 6.5 to 7.3 as shown in Fig. S1), the degradation of SMX was greatly inhibited. The decrease in SMX 

degradation efficiency in various degrees implies the inhibited generation of reactive species accordingly. Within 

the initial range of pH (3.0-9.0), on one hand, the yield of Fe(OH)2 decreased by the increase of ferric 

oxyhydroxides precipitation above pH 3.0 (Flynn, 1984; Stefánsson, 2007), and the self-decomposition of PMS 

increased with the increase of solution pH (Ball and Edwards, 1956), which were bound to reduce the yield of 

reactive species directly. On the other hand, the primary form of HA is NH2OH (pKa = 5.96 and 13.74) (Hughes et 

al., 1971) at pH values in the range of 6.0 to 9.0.  NH2OH has high reaction rate constants with reactive radicals  

(k1 = 8.5 × 108 M-1 s-1 for SO4
•- (Neta et al., 1988), k2 = 9.5 × 109 M-1 s-1 for HO• (Buxton et al., 1988)), which is 

comparable to that of SMX (k3 = 1.6 × 1010 M-1 s-1 for SO4
•-, k4 = 7.0 × 109 M-1 s-1 for HO•) (Zhang et al., 2015). 

From the perspective of competition and consumption of radicals, NH2OH would also decrease the contribution of 

reactive species to degrade SMX. Therefore, the speciation distribution of the involved species including HA, 

Fe(II), and Fe(III), and also the self-decomposition of PMS would be the dominant factors to influence the 

generation of reactive species and the degradation of SMX at different pH ranging from 2.0 to 9.0. 

3.3. Role of HA in HA/Fe(II)/PMS Process  

The aforementioned data and analysis suggest that HA plays an important role in improving the degradation 

efficiency of SMX in the HA/Fe(II)/PMS process. So, the effect of HA concentration on SMX degradation was 

investigated and the results are shown in Fig. 3. With the increase of HA concentration in the range of 0.0 to 0.4mM, 

the degradation efficiency of SMX obviously increased. Then increasing HA concentration continuously from 0.4 

to 1.0mM, the improvement on the removal of SMX was found to be insignificant. Authors (Chen et al., 2011; Zou 

et al., 2013) reported that HA could effectively promote the redox cycle of Fe(III) to Fe(II), improve the generation 

of reactive species and increase the removal of organic pollutants at pH 3.0. However, excess HA could quench the 

reactive species (e.g., SO4
•- and HO•) with a high reaction rate (Buxton et al., 1988; Neta et al., 1988) in 

HA/Fe(II)/PMS process at pH 3.0. Here, 0.4 mM of HA was optimum for SMX degradation and thus was used in 

the following experiment in this study. 
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Fig. 3. Effect of HA concentration on SMX degradation in HA/Fe(II)/PMS Process. Conditions: [HA]0 = 0.0-1.0 mM, [Fe(II)]0 = 10 

μM, [PMS]0 = 0.3 mM, [SMX]0 = 20 μM, pH0 = 3.0, 25 °C. Error bars represent the standard deviation from at least duplicate 



experiments. 

For the sake of better understanding the role of HA, the variation of Fe(III) concentrations in Fe(II)/PMS process 

with/without SMX and HA/Fe(II)/PMS process with/without SMX were measured respectively. The results are 

shown in Fig. 4. The interference of HA and PMS on the measurement could be ignored at the experimental 

concentration (Chen et al., 2011; Zou et al., 2013). However, due to the obvious absorption of SMX and its 

degradation products at 300 nm, methanol was used to consume the reactive radicals (i.e., SO4
•- and HO•) in the 

processes without SMX. 
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Figure 4. Effect of HA on Fe(III) concentration in HA/Fe(II)/PMS process. Conditions: [HA]0 = 0.40 mM (no addition for Fe(II)/PMS 

process), [Fe(II)]0 = 100 μM, [PMS]0 = 0.3 mM, [SMX]0 = 20 μM or [methanol]0 = 10 mM, pH0 = 3.0, 25 °C. Error bars represent the 

standard deviation from at least duplicate experiments. 

 

  From Fig. 4, almost all Fe(II) was transformed into Fe(III) within 10 s and kept relatively steady throughout the 

runs in the Fe(II)/PMS processes without SMX and with SMX. This might be attributed to the fast reaction between 

Fe(II) and PMS via Eqs. (1) and (2) (Brandt and Van Eldik, 1995) and the slow transformation from Fe(III) to Fe(II). 

In the HA/Fe(II)/PMS processes without SMX and with SMX, the similar phenomenon about the generation of 

Fe(III) occurred within 10 s as the Fe(II)/PMS processes, however, the concentration of Fe(III) rapidly decreased 

after 10 s and then kept relatively steady after 300 s with the runs of reaction. It should be noted that the 

concentration of Fe(III) was reduced from approximate 100 μM to less than 42 μM and 27 μM in the 

HA/Fe(II)/PMS system with and without SMX, respectively. Moreover, the steady-state concentration of Fe(III) 

could be attributed to dynamic equilibrium of the iron ion circulation given in Eqs. (3)-(5) (Chen et al., 2011; Han 

et al., 2014). The higher steady-state concentration of Fe(III) in the system with SMX was probably due to the 

influence of target organics and intermediates on the UV absorption of solution at 300 nm. However, the decrease 

of Fe(III) concentration in both systems supports that the addition of HA intensively promoted the redox cycle of 

Fe(III) to Fe(II) and thus improved the removal of SMX in the HA/Fe(II)/PMS process. 
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3.4. Role of reactive radicals in HA/Fe(II)/PMS Process 

It was reported that three reactive radicals (i.e., SO4
•-, HO•, and SO5

•-) could be generated during the 

catalyst-mediated decomposition of PMS (Brandt and Van Eldik, 1995; Maruthamuthu and Neta, 1977; Zou et al., 

2013). Among these radicals, SO4
•- and HO• are commonly known as the dominant reactive species for degrading 

aqueous organic contaminants in catalytic PMS oxidation processes (Gao et al., 2015; Ji et al., 2015; Zou et al., 

2013). Based on the radical reaction characteristics, methanol and TBA were selected as quenching compounds to 

investigate their inhibition effects on SMX degradation, and thus explore the degradation mechanism of SMX in 

HA/Fe(II)/PMS process. 

Fig. 5 shows the inhibitory effects of methanol and TBA on the degradation of SMX in the HA/Fe(II)/PMS 

process. From Fig. 5, it is obvious that HO• and SO4
•- should be the responsible reactive species. The difference of 

inhibition effects between methanol and TBA were less than 10% in terms of SMX degradation, strongly 

suggesting a relatively weak contribution of SO4
•- to the SMX degradation. Therefore, HO• could be the dominant 

reactive species for the degradation of SMX. The results agree with that obtained by Zou et al (2013) who had 

proved the major role of HO• in the degradation of BA in the same system. In addition, considering the relative 

inertia of alcohols toward SO5
•- (k  103 M-1 s-1) (Hayon et al., 1972), approximately 25% of SMX degradation in 

non-alcohol system could be attributed to the rapid degradation in the initial reaction or the contribution of SO5
•- 

which is similar to the degradation of BA in HA/Fe(II)/PMS process (Zou et al., 2013). 
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Fig. 5. Inhibition effect of radical scavengers on SMX degradation in HA/Fe(II)/PMS process. Conditions: [HA]0 = 0.40 mM, [Fe(II)]0 

= 10 μM, [PMS]0 = 0.3 mM, [SMX]0 = 20 μM, [TBA]0 = 10 mM or [methanol]0 = 10 mM, pH0 = 3.0, 25 °C. Error bars represent the 
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standard deviation from at least duplicate experiments. 

 

In order to further confirm the major reactive species in the HA/Fe(II)/PMS process, the competition kinetics 

between SMX and BA were carried out and the results are shown in Fig. 6. Theoretically, the degradation of SMX 

and BA should agree with Eqs. (6) or (7) assuming that either HO• or SO4
•- causes the degradation. The data of 

within 30 min (Fig. S2) was used considering the degradation trend of BA and SMX.  
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Fig. 6. Competition kinetics between SMX and BA with reactive species in HA/Fe(II)/PMS process. Conditions: [HA]0 = 0.4 mM, 

[Fe(II)]0 = 10 μM, [PMS]0 = 0.3 mM, [SMX]0 = 20 μM, [BA]0 = 20 μM, pH = 3.0, 25 C. 
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Here, k1 and k2 are the rate constants of HO• with BA and SMX, respectively; k1
’ and k2

’ are the rate constants of 

SO4
•- with BA and SMX, respectively. At pH 3.0, k1 = 4.3 × 109 M-1 s-1 (Buxton et al., 1988), k2 = 7.0 × 109 M-1 s-1 

(Zhang et al., 2015), k1
’ = 1.2 × 109 M-1 s-1 (Neta et al., 1988), and k2

’ = 1.6 × 1010 M-1 s-1 (Zhang et al., 2015). Thus, 

k1 / k2 = 0.614, and k1
’ / k2

’ = 0.075.  

The slope in Fig. 6 for the competition kinetics is about 0.4756, approaching k1 / k2, but deviating far from k1
’ / 

k2
’. This agreement indeed validated the dominant role of HO• in the system. Furthermore, the formation of p-HBA 

(Fig. S3) also confirmed the contribution of HO• to the degradation of BA and SMX (Klein et al., 1975). It was 

noted that the formation ratio of p-HBA didn’t agree with the reported one of about 1/5.87 (Zhou and Mopper, 

1990), possibly ascribed to the attack of HBA or their intermediate precursors by Fe(III) and persulfate 

(Duesterberg and Waite, 2007).  

3.5. Degradation products and pathways of SMX in HA/Fe(II)/PMS process 

To further study the degradation mechanism of SMX in HA/Fe(II)/PMS process, UPLC-ESI-QTOFMS was 
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employed to identify the transformation intermediates. The HPLC chromatogram of major degradation 

intermediates are shown in Fig. S4. A total of eight oxidation products, P-93, P-98, P-155, P-189, P-267, P-269, 

P-270, P-283, were identified in the HA/Fe(II)/PMS process. The corresponding product ion spectrum and the 

proposed fragment structures are shown in Fig. S5. Among these products, only P-98 and P-270 had been detected 

in Fe(II)/PS process (Ji et al., 2014). 

Based on the accurate mass spectrum of degradation product in Fig. S6, P-98 (m/z = 99 for MH+) was identified 

as 3-amino-5-methylisoxazole, which was attributed to the cleavage of S-N bond in SMX. P-98 had also been 

detected in other oxidation processes based on sulfate radical oxidation (Ahmed et al., 2012; Ghauch et al., 2013; Ji 

et al., 2014; Ji et al., 2015). Accompanying with the yield of P-98, another intermediate, P-155, would also be 

yielded and be transformed to P-189 (m/z = 190 for MH+) partially. Combining the daughter ion spectrums of P-155 

and P-189 (Fig. S7 and S8), P-155 and P-189 were identified as 4-sulfonylcyclohexa-2,5-dien-1-imine and 

hydroxysulfanilic acid, respectively. P-189, as a well-known product, had been identified in various catalytic PS 

processes (Gao et al., 2015; Qi et al., 2014), nevertheless, P-155 was only found in ozonation process 

(Gómez-Ramos et al., 2011). In addition, P-155 and P-189 could be further transformed as aniline (P-93, m/z = 94 

for MH+) to some degree as shown in Fig. S5 (Gao et al., 2015; Ji et al., 2015).  

  The fragment at m/z = 284 for MH+ (i.e., P-283) in Fig. S5 was another primary intermediate. Several primary 

ion fragments (m/z = 98, 122, 138, 178, 193, 203 and 220) occurred in the daughter ion spectrum of P-283 (Fig. S9). 

Studies have reported the ion fragments at m/z = 122 and m/z = 138 were identified as nitro benzene (C6H4NO2) 

(Gao et al., 2014) and nitro phenol (Abellán et al., 2008), respectively. Thus, the structure of P-283 was proposed as 

nitro SMX (Ahmed et al., 2012; Ji et al., 2015). The proposed fragmentation pathways and structures of daughter 

ions of P-283 are shown in Fig. S9. In addition, P-267 (m/z = 268 for MH+) and P-269 (m/z = 270 for MH+) were 

both detected during the degradation of SMX in the HA/Fe(II)/PMS process. The accurate mass spectrum of P-267 

with daughter ion fragments at m/z = 107, 160, 146, 188, 204 (Fig. S10) shows P-267 was the nitroso derivative of 

SMX (Ahmed et al., 2012), which was ultimately oxidized as nitro group (-NO2) and conformed P-283. The 

identification of P-267 and P-283 suggested the amino group (-NH2) on the aromatic ring of SMX was susceptible 

to be attack by reactive radicals. Therefore, the hydroxylamine derivative of SMX (P-269 with m/z = 270 for MH+) 

could be yielded before the conformation of P-267 and P-283. P-269, as an intermediate, was also found during the 

oxidation of SMX in heat/PS process (Gao et al., 2015). 

  For P-270 (m/z = 271 for MH+), two primary ion fragments (m/z = 99 and 175 for MH+) occurred in the daughter 

ion spectrum of 271 (Fig. S11), which indicated the formation of a hydroxylated derivative of SMX. Furthermore, 

the loss of methyl group to yield the fragment with m/z = 256 and the losses of methyl group and oxygen to yield 

the fragment with m/z = 230 also confirmed the addition of hydroxyl group to the benzene ring of SMX. The 

proposed structures of fragments and positon of hydroxyl group is shown in Fig. S11. P-270 had also been reported 

as an intermediate of the degradation of SMX in the processes of Fe(II)/PS (Ji et al., 2014), Cobalt(II)/PMS 

(Ahmed et al., 2012), thermo/PS (Ji et al., 2015), and microwave/PS (Qi et al., 2014). 

Combined with the identification of oxidation intermediates, three major transformation pathways (A, B, and C) 

are proposed in Fig. 7, where the reactive species (HO• and SO4
•-) could attack the reaction sites of S-N bond, 

amine group on the aromatic ring, and benzene ring in SMX, respectively. On the basis of aforementioned 

discussion, HO• was validated to be the predominant reactive species for the degradation of SMX in the 

HA/Fe(II)/PMS process. Therefore, HO• definitely played a key role for the proposed pathways of SMX. In general, 

HO• likely reacts with organic compounds by radical adduct formation, hydrogen atom abstraction, and single 

electron transfer (An et al., 2014). For pathway A, after the S-N bond in the SMX was attacked by HO•, 

http://www.sciencedirect.com/science/article/pii/S0304389411005103


3-amino-5-methylisoxazole (P-98) and 4-sulfonylcyclohexa-2,5-dien-1-imine (P-155) were formed. Subsequently, 

the addition of HO• to the reaction sites of –SO2 and –NH in P-155 resulted in the formation of hydroxysulfanilic 

acid (P-189). P-189 could be further oxidized to lose sulfuric acid and finally yield aniline (P-94), which indicated 

the reactivity of sulfonated moiety with HO• (Gonçalves et al., 2012). For the pathway B, hydroxylamine derivative 

of SMX (P-269) with m/z of [M+16]+ indicated the attack of HO• through abstracting the hydrogen of -NH2 to form 

hydroxylamine moiety (Dirany et al., 2012). The hydroxylamine moiety of P-269 could be further oxidized by HO• 

to yield nitroso-SMX (P-267) and nitro-SMX (P-283) (Kim C. et al., 2015). Meanwhile, the S-N bond of P-269 

was also probably cleaved through hydrogen abstraction and addition of HO• to transform as P-98 and P-189 (Ji et 

al., 2015). In addition, the direct addition of HO• to benzene ring of SMX could form hydroxylated SMX (P-270) 

through pathway C (Hu et al., 2007).  

However, considering the existence of SO4
•- in HA/Fe(II)/PMS system, to some extent, the degradation products 

of SMX could also be generated by attack of SO4
•- on the above sites of SMX through electron-transfer mechanism 

(Neta et al., 1977). Especially, as a preferred reactive site of SO4
•-, the amino and imino moiety was easily to be 

oxidized by SO4
•- and transformed as P-189 (Qi et al., 2014) and P-269 (Gao et al., 2015). Ji et al (2015) and Yan et 

al (2011) also noted that SO4
•- was responsible for the formation of hydroxylated SMX. 
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Fig. 7. Proposed transformation pathways for SMX degradation in HA/Fe(II)/PMS process.  

3.6. Degradation of SMX in real pharmaceutical wastewater 

To examine the efficiency of HA/Fe(II)/PMS process in realistic wastewater, experiments were performed in the 

real pharmaceutical wastewater (the water quality is shown in Table S2). Fig. 8 shows the degradation of SMX by 

HA/Fe(II)/PMS process in the wastewater sample. The process exhibited good capacity to remove SMX and total 

organic carbon (TOC) from the wastewater sample. Approximately 70% of SMX and 50% of TOC (Fig. S12) were 
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removed within 15 min at PMS dosage of 2.0 mM and Fe(II) dosage of 20.6 μM, respectively. The efficiency was 

comparable to that of Cobalt(II)/PMS reported by Ahmed et al (2012) (Table S1). Although the removal rates of 

SMX were reduced with the decreased dosage of PMS, the degradation of SMX were almost finished within the 

first 4 min. The similar phenomenon was also reported in a previous study about the degradation of SMX in swine 

wastewater by Fenton process (Ben et al., 2009), and it was probably due to the fast generation of and attack from 

the reactive species (e.g., HO• and SO4
•-) in the initial period of reaction.  

Furthermore, compared with the Milli-Q water sample (Fig. S13), the coexisting water components in the 

wastewater sample only inhibited approximately 7% of SMX degradation within 15min at PMS dosage of 0.3 mM 

and Fe(II) dosage of 20.6 μM. Although a high concentration of chloride (6.7 mM) was detected in the 

pharmaceutical wastewater, the degradation of SMX was hardly influenced by the chloride (Fig. S13) as reported 

by Zhang et al. (2015). Therefore, the other coexisting components (especially organic contaminants) in the real 

wastewater could be the dominant factor to result in the reduction of SMX removal rate. However, the comparison 

of SMX degradation in different water samples indicated that the HA/Fe(II)/PMS process exhibited a strong 

selective oxidation of SMX in the wastewater sample.  
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Fig. 8. Effect of PMS concentration on the degradation of SMX in real pharmaceutical wastewater in HA/Fe(II)/PMS process. 

Conditions: [HA]0 = 0.4 mM, [Fe(II)]0 = 20.6 μM, [PMS]0 = 0.3~2.0 mM, [SMX]0 = 31.3 μM, pH = 5.0, 25 C. Error bars represent the 

standard deviation from at least duplicate experiments.  

4. Engineering Implications 

In HA/Fe(II)/PMS process, the transformation of Fe(III) to Fe(II) was strongly promoted with the addition of HA, 

so that a low Fe(II) concentration at several micromolar (μM) was enough to remove approximately 70% of SMX 

(Fig. 8) and 50% of TOC (Fig. S12) from realistic wastewater at pH 5.0. Such a low concentration of Fe(II) could 

efficiently alleviate the accumulation of ferric oxide sludge in conventional Fe(II)/PMS process. Although 

hydroxylamine is a toxic compound, it can be decomposed completely by catalysts such as transition metals with 

enough dosage of oxygen or air at ambient temperature with environmentally benign by-products (nitrogen and 

water) (Gomez et al., 1990; Song et al., 2008). Considering the efficient generation of powerful oxidants like HO• 

and the more selective oxidant like SO4
•-, the HA/Fe(II)/PMS process might be a promising process to remove 

SMX even other antibiotics and refractory organic contaminants from wastewater. 

5. Conclusions 
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In this research, the HA/Fe(II)/PMS process was adopted to degrade SMX and exhibited an effective degradation 

capacity. The enhanced degradation efficiency in a wider range of solution pH (3.0-6.0) in the HA/Fe(II)/PMS 

process was attributed to the enhancement of HA through accelerating the conversion from Fe(III) back to Fe(II). 

The optimum dosage of HA depended on the concentration of PMS and pH, and the excess HA inhibited the 

degradation by reacting with PMS and quenching the reactive species. The degradation of SMX was initiated by 

SO4
•-and HO•, although HO• played the dominant role. Eight intermediates of SMX were produced via the cleavage 

of S-N bond, oxidation of amine group on the aromatic ring and hydroxylation of the benzene ring in the system. 

The process also exhibited an effective removal of SMX and coexisting other organic pollutants (i.e., TOC) in the 

real pharmaceutical wastewater.  
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