
Pach’s selection theorem does not admit a topological

extension
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Abstract

Let U1, . . . , Ud+1 be n-element sets in Rd and let 〈u1, . . . , ud+1〉 denote the convex
hull of points ui ∈ Ui (for all i) which is a simplex. Pach’s selection theorem is about such
simplices. It says that there are sets Z1 ⊂ U1, . . . , Zd+1 ⊂ Ud+1 and a point u ∈ Rd such
that each |Zi| ≥ c1(d)n and u ∈ 〈z1, . . . , zd+1〉 for every choice of z1 ∈ Z1, . . . , zd+1 ∈
Zd+1. Here we show that this theorem does not admit a topological extension with
linear size sets Zi. Further we prove a topological extension where each |Zi| is of order
(log n)1/d.

1 Introduction

Let U1, . . . , Ud+1 be n-element sets in Rd, and let 〈u1, . . . , ud+1〉 denote the convex hull of
points ui ∈ Ui, i = 1, . . . , d+1. Pach’s selection theorem, that we like to call a homogeneous
selection theorem is about convex hulls of this type. It says the following.

Theorem 1.1 (Pach [9]). Under the above conditions there are sets Z1 ⊂ U1, . . . , Zd+1 ⊂
Ud+1 and a point u ∈ Rd such that each |Zi| ≥ c1(d)n and u ∈ 〈z1, . . . , zd+1〉 for every choice
of z1 ∈ Z1, . . . , zd+1 ∈ Zd+1 where c1(d) > 0 is a constant depending on d only.

This result was proved by Bárány, Füredi and Lovász [2] for d = 2 and by Pach [9] for
general d. Here we show that this theorem does not admit a topological extension when the
size of the Zi is linear in n but does admit one when the sizes are of order (log n)1/d. The
formulation of this topological extension is the following.

Set N = (d + 1)n and consider the (N − 1)-dimensional simplex ∆N−1 and a partition
of its vertex set of d + 1 sets V1, . . . , Vd+1 each of size n. Trivially, there is an affine map
f : ∆N−1 → Rd that is a bijection between Vi and Ui for each i. In this setting the
homogeneous selection theorem says that there are subsets Zi ⊂ Vi such that |Zi| ≥ c1(d)n
and ⋂

z1∈Z1,...,zd+1∈Zd+1

f(〈z1, . . . , zd+1〉) 6= ∅.

Assume now that f is not affine but only continuous. Viewing each Vi as a 0-dimensional
complex, consider the join

(∆
(0)
n−1)

∗(d+1) = V1 ∗ · · · ∗ Vd+1 = {σ ⊂
d+1⋃
i=1

Vi : |σ ∩ Vi| ≤ 1 for all 1 ≤ i ≤ d+ 1},
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which is a subcomplex of the d-skeleton of ∆N−1. For a mapping f : (∆
(0)
n−1)

∗(d+1) → Rd, let
τ(f) denote the maximal m such that there exist m-element subsets Z1 ⊂ V1, . . . , Zd+1 ⊂
Vd+1 that satisfy ⋂

z1∈Z1,...,zd+1∈Zd+1

f(〈z1, . . . , zd+1〉) 6= ∅.

Define the topological Pach number τ(d, n) to be the minimum of τ(f) as f ranges over

all continuous maps from (∆
(0)
n−1)

∗(d+1) to Rd. Our main result is the following:

Theorem 1.2. For d ≥ 1 there exists a constant c2(d) such that τ(d, n) ≤ c2(d)n1/d for all
n. Further, c2(d) = O(d) for all large enough n.

For a lower bound on τ(d, n) we only have the following:

Theorem 1.3. For d ≥ 1 there exists a constant c3(d) > 0 such that τ(d, n) ≥ c3(d)(log n)1/d

for all n.

The paper is organized as follows. In Section 2 we state Theorem 2.1 that describes
a connection between τ(d, n) and the expansion of the bipartite graph of the atoms vs.
coatoms in a graded lattice of rank d + 1. This result is then used to prove Theorem 1.2.
The proof of Theorem 2.1 is given in Section 3. In Section 4 we prove Theorem 1.3 by using
results of Gromov [6] and Erdős [5].

2 Finite Lattices and Topological Pach Numbers

Let L be a finite graded lattice with a rank function rk(·). Let 0̂ and 1̂ be the minimal and
maximal elements of L. Assume that rk(1̂) = d+ 1 and let

A = {x ∈ L : rk(x) = 1} , C = {x ∈ L : rk(x) = d}

be respectively the sets of atoms and coatoms of L. For x ∈ L let

Ax = {a ∈ A : a ≤ x} , Cx = {c ∈ C : x ≤ c}.

For a set of atoms Z ⊂ A let Γ(Z) = ∪z∈ZCz. Let GL denote the bipartite graph on the
vertex set A ∪ C with edges (a, c) iff a ≤ c, for a ∈ A and c ∈ C.

The main ingredient of the proof of Theorem 1.2 is the following connection between τ(d, n)
and the expansion of GL.

Theorem 2.1. Let L be a graded lattice of rank d + 1 such that |A| ≥ n(d + 1). Then
m = τ(d, n) satisfies

min
Z⊂A,|Z|=m

|Γ(Z)| ≤ d

d+ 1

(
max
a∈A
|Ca|+ |C|

)
.

The proof of Theorem 2.1 is deferred to Section 3.

Proof of Theorem 1.2: Let q ≥ 2d be a prime power and let Fq be the finite field of
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order q. Let L = L(d + 1, q) denote the lattice of linear subspaces of Fd+1
q , ordered by

containment. The sets of atoms and coatoms of L satisfy |A| = |C| = Nd = qd+1−1
q−1 and

|Ca| = Nd−1 = qd−1
q−1 for all a ∈ A. Two distinct coatoms, that is, two distinct d-dimensional

subspaces intersect in a (d − 1)-dimensional subspace whose size is Nd−2 = qd−1−1
q−1 . For a

given Z ⊂ A the sets Cz form an Nd−1-uniform hypergraph on vertex set Γ(Z) with |Z|
edges, and any two edges intersect in a set of size Nd−2. In this case a result of Corrádi [3]
(see also exercise 13.13 in [7] and Theorem 2.3(ii) in [1]) implies that

|Γ(Z)| ≥
|Z|N2

d−1
Nd−1 + (|Z| − 1)Nd−2

=
|Z|N2

d−1
qd−1 + |Z|Nd−2

≥ Nd −
N

1+ 1
d

d

|Z|
. (1)

The last inequality here follows from a routine computation using the values of Nk. Let
n = b |A|d+1c. Applying Theorem 2.1 together with (1) it follows that m = τ(d, n) satisfies

Nd −
N

1+ 1
d

d

m
≤ min

Z⊂A,|Z|=m
|Γ(Z)|

≤ d

d+ 1

(
max
a∈A
|Ca|+ |C|

)
=

d

d+ 1
(Nd−1 +Nd).

(2)

Rearranging (2) and using q ≥ 2d and n+ 1 ≥ |A|
d+1 = Nd

d+1 we obtain

m ≤
(d+ 1)N

1+ 1
d

d

Nd − dNd−1
≤ 2(d+ 1)N

1
d
d

≤ 2(d+ 1)
(
(d+ 1)(n+ 1)

) 1
d .

By Bertrand’s postulate, for any large enough integer n (specifically, for any n ≥ (2d)d+1−1
(2d−1)(d+1))

one can find q ≥ 2d for which b Nd
d+1c ≤ 2dn. Plugging into the above upper bound on

m = τ(d, n) for such n, the resulted constant c2(d) just multiplies by 2 so still c2(d) = O(d).

For n ≤ (2d)d+1−1
(2d−1)(d+1) := c2(d), trivially m ≤ n ≤ c2(d).

�

3 Continuous Maps of Finite Lattices

In this section we prove Theorem 2.1. We first recall some definitions. Let L = L− {0̂, 1̂}.
The order complex ∆(L) is a simplicial complex on the vertex set L whose p-dimensional
simplices are increasing chains x0 < · · · < xp in L. For a subset σ ⊂ L let ∨σ = ∨x∈σx. Let
A(L) be the simplicial complex on the vertex set A whose simplices are all σ ⊂ A such that
∨σ < 1̂. For x ∈ L let L≤x = {y ∈ L : y ≤ x}. The main ingredient in the proof of Theorem
2.1 is the following result.

Proposition 3.1. There exists a continuous map f : A(L)→ Rd such that for any u ∈ Rd

|{c ∈ C : u ∈ f(〈Ac〉)}| ≤ dmax
a∈A
|Ca|. (3)
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We first note the following:

Claim 3.2. There exists a continuous map g : A(L)→ ∆(L) such that for all x ∈ L

g(〈Ax〉) ⊂ ∆(L≤x).

Proof. We define g inductively on the k-skeleton A(L)(k). On the vertices a ∈ A of A(L) let
g(a) = a. Let k > 0 and suppose g has been defined on A(L)(k−1). Let σ = 〈a0, . . . , ak〉 ∈
A(L)(k) and let y = ∨σ < 1̂. For 0 ≤ i ≤ k let σi = 〈a0, . . . , ai−1, âi, ai+1, . . . , ak〉 be the i-th
face of σ. Let yi = ∨σi. Then g is defined on σi and by induction hypothesis

g(σi) ⊂ ∆(L≤yi) ⊂ ∆(L≤y).

Being a cone, ∆(L≤y) is contractible and hence g can be continuously extended from ∂σ to
the whole of σ so that g(σ) ⊂ ∆(L≤y).

Proof of Proposition 3.1: By a general position argument we choose a mapping e : L→
Rd with the following property: For any pairwise disjoint S1, . . . , Sd+1 ⊂ L, if |Si| ≤ d for
all 1 ≤ i ≤ d+ 1, then

⋂d+1
i=1 aff

(
e(Si)

)
= ∅, which implies of course that

d+1⋂
i=1

relint conv
(
e(Si)

)
= ∅. (4)

Extend e by linearity to the whole of ∆(L) and let f = e ◦ g : A(L) → Rd. We claim that
the map f satisfies (3). Let u ∈ Rd and let

T = {τ ∈ ∆(L) : u ∈ relint e(〈τ〉)}.

Choose a maximal pairwise disjoint subfamily T ′ ⊂ T . It follows by (4) that |T ′| ≤ d. For
each τ ′ ∈ T ′ choose an atom a(τ ′) ∈ A such that

a(τ ′) ≤ min τ ′. (5)

Now let c ∈ C such that u ∈ f(〈Ac〉). Then there exists a b ∈ g(〈Ac〉) ⊂ ∆(L≤c) such that
u = e(b). Let τ ∈ T such that b ∈ relint〈τ〉. Then

τ ∈ ∆(L≤c). (6)

By maximality of T ′ there exists a simplex τ ′ ∈ T ′ and a vertex x ∈ τ ′ ∩ τ . It follows by (5)
and (6) that a(τ ′) ≤ x ≤ c, i.e. c ∈ Ca(τ ′). Therefore

|{c ∈ C : u ∈ f(〈Ac〉)}| ≤
∑
τ ′∈T ′

|Ca(τ ′)| ≤ dmax
a∈A
|Ca|.

�

Proof of Theorem 2.1: Let L be a lattice of rank d + 1 whose set of atoms A satisfies
|A| ≥ (d+ 1)n. Let V1, . . . , Vd+1 be disjoint n-subsets of A. By Proposition 3.1 there exists
a continuous map f : A(L)→ Rd such that for any u ∈ Rd

|{c ∈ C : u ∈ f(〈Ac〉)}| ≤ dmax
a∈A
|Ca|.
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Let m = τ(d, n). Then there exist Z1 ⊂ V1, . . . , Zd+1 ⊂ Vd+1 and a u ∈ Rd such that
|Zi| ≥ m for all 1 ≤ i ≤ d+ 1 and

u ∈
⋂

z1∈Z1,...,zd+1∈Zd+1

f(〈z1, . . . , zd+1〉).

Write

C(Z1, . . . , Zd+1) =
d+1⋂
i=1

{c ∈ C : Ac ∩ Zi 6= ∅}.

If c ∈ C(Z1, . . . , Zd+1) then there exist z1 ∈ Z1, . . . , zd+1 ∈ Zd+1 such that zi ≤ c for all i
and hence u ∈ f(〈z1, . . . , zd+1〉) ⊂ f(〈Ac〉). Hence by Proposition 3.1

|C(Z1, . . . , Zd+1)| ≤ dmax
a∈A
|Ca|. (7)

On the other hand

|C(Z1, . . . , Zd+1)| = |C −
d+1⋃
i=1

(C − Γ(Zi))|

≥ |C| −
d+1∑
i=1

(|C| − |Γ(Zi)|) =
d+1∑
i=1

|Γ(Zi)| − d|C|

≥ (d+ 1) min
Z⊂A,|Z|=m

|Γ(Z)| − d|C|.

(8)

Theorem 2.1 now follows from (7) and (8).

�

4 The Lower Bound

Theorem 1.3 is a direct consequence of Gromov’s topological overlap Theorem [6] combined
with a result of Erdős on complete (d+ 1)-partite subhypergraphs in (d+ 1)-uniform dense
hypergraphs [5]. We first recall these results. Let X be a finite d-dimensional pure simplicial
complex. For k ≥ 0, let X(k) denote the k-dimensional skeleton of X and let X(k) be the
family of k-dimensional faces of X, fk(X) = |X(k)|. Define a positive weight function
w = wX on the simplices of X as follows. For σ ∈ X(k), let c(σ) = |{η ∈ X(d) : σ ⊂ η}|
and let

w(σ) =
c(σ)(

d+1
k+1

)
fd(X)

.

Let Ck(X) denote the space of F2-valued k-cochains of X with the coboundary map dk :
Ck(X)→ Ck+1(X). As usual, the space of k-coboundaries is denoted by dk−1

(
Ck−1(X)

)
=

Bk(X). For φ ∈ Ck(X), let [φ] denote the image of φ in Ck(X)/Bk(X). Let

‖φ‖ =
∑

σ∈X(k):φ(σ)6=0

w(σ)
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and
‖[φ]‖ = min{‖φ+ dk−1ψ‖ : ψ ∈ Ck−1(X)}.

The k-th coboundary expansion constant of X is

hk(X) = min

{
‖dkφ‖
‖[φ]‖

: φ ∈ Ck(X)−Bk(X)

}
.

Note that hk(X) = 0 iff H̃k(X;F2) 6= 0. One may regard hk(X) as a sort of distance
between X and the family of complexes Y that satisfy H̃k(Y ;F2) 6= 0. Gromov’s celebrated
topological overlap result is the following:

Theorem 4.1 (Gromov [6]). For any integer d ≥ 0 and any ε > 0 there exists a δ = δ(d, ε) >
0 such that if hk(X) ≥ ε for all 0 ≤ k ≤ d − 1, then for any continuous map f : X → Rd
there exists a point u ∈ Rd such that

|{σ ∈ X(d) : u ∈ f(σ)}| ≥ δfd(X).

We next describe a result of Erdős that generalizes the well known Erdős-Stone and
Kővári-Sós-Turán theorems from graphs to hypergraphs.

Theorem 4.2 (Erdős [5]). For any d and c′ > 0 there exists a constant c = c(d, c′) > 0
such that for any (d + 1)-uniform hypergraph F on N -element set V with at least c′Nd+1

hyperedges, there exists an m ≥ c(logN)1/d and disjoint m-element sets Z1, . . . , Zd+1 ⊂ V
such that {z1, . . . , zd+1} ∈ F for all z1 ∈ Z1, . . . , zd+1 ∈ Zd+1.

Proof of Theorem 1.3: Recall that V1, . . . , Vd+1 are disjoint n-element sets and let V =
V1 ∪ · · · ∪ Vd+1, |V | = N = (d + 1)n. Let X = V1 ∗ . . . ∗ Vd+1 and let f : X → Rd be a
continuous map. It was shown by Gromov [6] (see also [4, 8]) that the expansion constants
hi(X) are uniformly bounded away from zero. Concretely, it follows from Theorem 3.3 in
[8] that hi(X) ≥ ε = 2−d for 0 ≤ i ≤ d − 1. Let δ = δ(d, 2−d). Then by Theorem 4.1 there
exists a u ∈ Rd and a family F ⊂ X(d) of cardinality

|F| ≥ δfd(X) = δnd+1 = δ(d+ 1)−(d+1)Nd+1

such that u ∈ f(σ) for all σ ∈ F . Writing c′ = δ(d+ 1)−(d+1) and c3(d) = c(d, c′), it follows
from Theorem 4.2 that there exists an m ≥ c3(d)(logN)1/d ≥ c3(d)(log n)1/d and disjoint
m-sets Z1, · · · , , Zd+1 ⊂ V such that u ∈ f(〈z1, . . . , zd+1〉) for all z1 ∈ Z1, . . . , zd+1 ∈ Zd+1.
Clearly, there exist a permutation π on {1, . . . , d+1} such that Zπ(i) ⊂ Vi for all 1 ≤ i ≤ d+1.

�
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[3] K. Corrádi, Problem at the Schweitzer Competition, Mat. Lapok, 20(1969) 159–162.

[4] D. Dotterrer and M. Kahle, Coboundary expanders, J. Topol. Anal. 4(2012) 499–514.
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