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Abstract
Let Uy,...,Ug41 be n-element sets in R? and let (u1,...,uq41) denote the convex
hull of points u; € U; (for all i) which is a simplex. Pach’s selection theorem is about such
simplices. It says that there are sets Z; C Uy, ..., Zqy1 C Ugyq and a point v € R? such
that each |Z;| > ¢1(d)n and u € {(z1,...,24+1) for every choice of 21 € Z1,..., 2441 €
Zg+1. Here we show that this theorem does not admit a topological extension with

linear size sets Z;. Further we prove a topological extension where each |Z;| is of order
(logn)'/.

1 Introduction

Let Uy,...,Ugsq be n-element sets in R, and let (ui,...,ug4+1) denote the convex hull of
points u; € U;, @ =1,...,d+ 1. Pach’s selection theorem, that we like to call a homogeneous
selection theorem is about convex hulls of this type. It says the following.

Theorem 1.1 (Pach [9]). Under the above conditions there are sets Zy C Uy, ..., Zgy1 C
Ugs1 and a point u € R? such that each | Z;| > ci(d)n and u € (z1,. .., z441) for every choice
of 21 € Z1,..., 2441 € Zgr1 where c1(d) > 0 is a constant depending on d only.

This result was proved by Béarany, Firedi and Lovéasz [2] for d = 2 and by Pach [9] for
general d. Here we show that this theorem does not admit a topological extension when the
size of the Z; is linear in n but does admit one when the sizes are of order (logn)'/4. The
formulation of this topological extension is the following.

Set N = (d + 1)n and consider the (N — 1)-dimensional simplex Ay_; and a partition
of its vertex set of d + 1 sets Vi,..., Vg1 each of size n. Trivially, there is an affine map
f: Ay — R? that is a bijection between V; and U; for each 7. In this setting the
homogeneous selection theorem says that there are subsets Z; C V; such that |Z;| > ¢1(d)n
and

N flz1, 5 za41)) # 0.
21€21,-2d+1€2d+1

Assume now that f is not affine but only continuous. Viewing each V; as a 0-dimensional
complex, consider the join

d+1
AV YD = Visw Vg ={oc |JVitlonVi| < Lforall 1 <i<d+ 1},
=1



which is a subcomplex of the d-skeleton of Ax_1. For a mapping f : (A 0 ) 5 RY et

n—1
7(f) denote the maximal m such that there exist m-element subsets Z; C Vi,...,Z441 C

Vg1 that satisfy

ﬂ fz1, .oy zq01)) # 0.

21€21,,2d+1€2d+1

Define the topological Pach number 7(d,n) to be the minimum of 7(f) as f ranges over
all continuous maps from (Aglozl)*(d+1) to RZ. Our main result is the following:

Theorem 1.2. For d > 1 there exists a constant c3(d) such that 7(d,n) < ca(d)n'/® for all
n. Further, ca(d) = O(d) for all large enough n.

For a lower bound on 7(d,n) we only have the following:

Theorem 1.3. Ford > 1 there exists a constant c3(d) > 0 such that 7(d,n) > c3(d)(logn)'/?
for all n.

The paper is organized as follows. In Section 2 we state Theorem 2.1 that describes
a connection between 7(d,n) and the expansion of the bipartite graph of the atoms vs.
coatoms in a graded lattice of rank d + 1. This result is then used to prove Theorem 1.2.
The proof of Theorem 2.1 is given in Section 3. In Section 4 we prove Theorem 1.3 by using
results of Gromov [6] and Erdds [5].

2 Finite Lattices and Topological Pach Numbers

Let L be a finite graded lattice with a rank function rk(-). Let 0 and 1 be the minimal and
maximal elements of L. Assume that rk(1) =d + 1 and let

A={zeL:tk(x)=1} , C={zeL:rk(z)=d}
be respectively the sets of atoms and coatoms of L. For x € L let
Ay ={acA:a<z} , Co={ceC:x<c}.

For a set of atoms Z C A let I'(Z) = U,czC.. Let G denote the bipartite graph on the
vertex set AU C with edges (a,c) iff a < ¢, for a € A and c € C.

The main ingredient of the proof of Theorem 1.2 is the following connection between 7(d, n)
and the expansion of G.

Theorem 2.1. Let L be a graded lattice of rank d + 1 such that |A] > n(d + 1). Then
m = 7(d,n) satisfies

min  |I'(2)

< — C C|).
ZCA|Z|=m ‘_d+1(?eaj(| al +1C1)

The proof of Theorem 2.1 is deferred to Section 3.

Proof of Theorem 1.2: Let ¢ > 2d be a prime power and let F, be the finite field of



order q. Let L = L(d + 1,q) denote the lattice of linear subspaces of Fg“, ordered by
gdt1_1

containment. The sets of atoms and coatoms of L satisfy [A| = |C| = Ng = ©_—= and
d
|Co| = Ng—1 = ﬁ for all @ € A. Two distinct coatoms, that is, two distinct d-dimensional
d—1
subspaces intersect in a (d — 1)-dimensional subspace whose size is Ng_o = £ q,f L For a

given Z C A the sets C, form an Ny_j-uniform hypergraph on vertex set I'(Z) with |Z]
edges, and any two edges intersect in a set of size Ny_o. In this case a result of Corradi [3]
(see also exercise 13.13 in [7] and Theorem 2.3(ii) in [1]) implies that

1+3
Z N+ (2 - DNaw @1+ 12Na s~ 4T 1]

The last inequality here follows from a routine computation using the values of Ni. Let

n= Ld%llj. Applying Theorem 2.1 together with (1) it follows that m = 7(d,n) satisfies

1+

N
d_ < min |T(2)|
m ZCA|Z|=m

Ng —

d (2)
<
_d+1(I§€aj<|Ca|+|C])
d
= —(N,4_ Ny).
g1 Na-1+ Na)

Rearranging (2) and using ¢ > 2d and n 4+ 1 > % = % we obtain

1
(d+1)N,
~ Ng—dNg_q

<2(d+1)((d+1)(n+1)).

1
<2(d+1)NJ

-

By Bertrand’s postulate, for any large enough integer n (specifically, for any n > %)
one can find ¢ > 2d for which LdLﬁlJ < 29n. Plugging into the above upper bound on

m = 7(d, n) for such n, the resulted constant ca(d) just multiplies by 2 so still ca(d) = O(d).

For n < % = co(d), trivially m < n < cp(d).

O

3 Continuous Maps of Finite Lattices

In this section we prove Theorem 2.1. We first recall some definitions. Let L = L — {0,1}.
The order complex A(L) is a simplicial complex on the vertex set L whose p-dimensional
simplices are increasing chains 2o < --- < x, in L. For a subset 0 C L let Vo = Vye,x. Let
A(L) be the simplicial complex on the vertex set A whose simplices are all ¢ C A such that
Vo < 1. For z € L let L<, ={y € L:y <=z} The main ingredient in the proof of Theorem
2.1 is the following result.

Proposition 3.1. There exists a continuous map f : A(L) — R? such that for any u € R?

He € Crue f({Ac)}] < dmax|Col. (3)

3



We first note the following:

Claim 3.2. There exists a continuous map g : A(L) — A(L) such that for all z € L
9((4z)) € A(L<a).

Proof. We define g inductively on the k-skeleton A(L)®*). On the vertices a € A of A(L) let
g(a) = a. Let k > 0 and suppose g has been defined on A(L)* 1. Let ¢ = (ay,...,a;) €
ALY and let y = Vo < 1. For 0<i<kleto; = (agy .-+, @i—1, 0, Aix1,- - ., ar) be the i-th
face of o. Let y; = Vo;. Then g is defined on o; and by induction hypothesis

9(0i) C A(L<y,) C A(L<y).

Being a cone, A(L<,) is contractible and hence g can be continuously extended from Jo to
the whole of o so that g(o) C A(L<y). O

Proof of Proposition 3.1: By a general position argument we choose a mapping e : L —
R? with the following property: For any pairwise disjoint Si,...,Sqy1 C L, if |S;| < d for
all1 <i<d+1, then ﬂfill aff (e(SZ-)) = (), which implies of course that

d+1
ﬂ relint conv (e(S;)) = 0. (4)

=1

Extend e by linearity to the whole of A(L) and let f = eog: A(L) — R% We claim that
the map f satisfies (3). Let u € R? and let

T={reA(L):ucrelinte((r))}.

Choose a maximal pairwise disjoint subfamily 77 C T'. It follows by (4) that |T’| < d. For
each 7/ € T choose an atom a(7’) € A such that

a(t') < min7’. (5)

Now let ¢ € C such that u € f((A.)). Then there exists a b € g({A.)) C A(L<.) such that
u=e(b). Let 7 € T such that b € relint(7). Then

TE A(Egc)- (6)

By maximality of 7" there exists a simplex 7/ € T” and a vertex z € 7/ N 7. It follows by (5)
and (6) that a(r') <z < ¢, i.e. ¢ € Cyrvy. Therefore

o€ Crue AN < 3 1Cuim] < dmas|Cal.
T'eT’

O

Proof of Theorem 2.1: Let L be a lattice of rank d + 1 whose set of atoms A satisfies
|A| > (d+ 1)n. Let Vi,..., Vg4 be disjoint n-subsets of A. By Proposition 3.1 there exists
a continuous map f : A(L) — R such that for any u € R?

{ee Crue (AN} < dmax|C.

4



Let m = 7(d,n). Then there exist Z; C Vi,...,Zq41 C Vyi1 and a u € R? such that
|Zi| >m forall 1 <i<d+1and

u € ﬂ fz1,e 0y za41))-

21€21,0032d+1€ 2441

Write
d+1
C(Zy,..., Zapa) = [ {c € C: AN Z; # 0}
i=1
If c e C(Z1,...,Z441) then there exist 21 € Z1,...,24+1 € Zg+1 such that z; < ¢ for all i
and hence u € f((z1,...,24+1)) C f((A¢)). Hence by Proposition 3.1

O(Z, ., Za)| < dmax |Cl. (7)
On the other hand
d+1
C(Z1,-., Zapy)| = 1C = | (C = T(2))]
i=1
d+1 d+1 (8)
>|Cl=> (IC]=Ir(Z)) = > T(Z)| - d|C|
i=1 i=1
> i _dcl.
>(d+1),_min_T(Z)] ~dic|

Theorem 2.1 now follows from (7) and (8).

4 The Lower Bound

Theorem 1.3 is a direct consequence of Gromov’s topological overlap Theorem [6] combined
with a result of Erdés on complete (d + 1)-partite subhypergraphs in (d + 1)-uniform dense
hypergraphs [5]. We first recall these results. Let X be a finite d-dimensional pure simplicial
complex. For k > 0, let X*) denote the k-dimensional skeleton of X and let X (k) be the
family of k-dimensional faces of X, fx(X) = |X(k)|. Define a positive weight function
w = wyx on the simplices of X as follows. For o € X(k), let c(0) = |{n € X(d) : 0 C n}|
and let
c(o)

(i) fa(X)

Let C*(X) denote the space of Fa-valued k-cochains of X with the coboundary map dy, :
CH(X) — CHF1(X). As usual, the space of k-coboundaries is denoted by di_1 (C*"1(X)) =
B¥(X). For ¢ € CF(X), let [¢] denote the image of ¢ in C*(X)/B*(X). Let

lol= >  wlo)

oeX (k):p(0)#0

w(o) =



and
I[¢]ll = min{[|¢ + dr—19| : ¢ € C*H(X)}.

The k-th coboundary expansion constant of X is

k|l
o]l

Note that hy(X) = 0 iff H*(X;Fs) # 0. One may regard hy(X) as a sort of distance
between X and the family of complexes Y that satisfy H*(Y;Fy) # 0. Gromov’s celebrated
topological overlap result is the following:

hy(X) :min{ RoRs Ck(X)—Bk(X)}.

Theorem 4.1 (Gromov [6]). For any integer d > 0 and any € > 0 there exists a 6 = 6(d, €) >
0 such that if hi,(X) > € for all 0 < k < d — 1, then for any continuous map f : X — RY
there exists a point u € R? such that

Ho € X(d):ue f(o)} > dfa(X).

We next describe a result of Erdds that generalizes the well known Erdés-Stone and
Ké6vari-Sés-Turan theorems from graphs to hypergraphs.

Theorem 4.2 (Erdds [5]). For any d and ¢ > 0 there exists a constant ¢ = c(d,c’) > 0
such that for any (d + 1)-uniform hypergraph F on N-element set V with at least ¢/ N9+!
hyperedges, there exists an m > c(log N)l/d and disjoint m-element sets Z1,...,Zq+1 CV
such that {z1,...,zq11} € F forall z1 € Z1, ..., 2441 € Zgs1-

Proof of Theorem 1.3: Recall that Vi,...,V 1 are disjoint n-element sets and let V =
ViU-—-UVgy, [V[=N=(d+1)n. Let X =Vi*...xVgyand let f: X — R? be a
continuous map. It was shown by Gromov [6] (see also [4, 8]) that the expansion constants
hi(X) are uniformly bounded away from zero. Concretely, it follows from Theorem 3.3 in
8] that hi(X) > e=2"%for 0 <i<d—1. Let § = §(d,27¢). Then by Theorem 4.1 there
exists a v € R? and a family F C X (d) of cardinality

|f| > 5fd(X) _ 5nd+1 _ 5(d—|— 1)—(d+1)Nd+1

such that u € f(o) for all o € F. Writing ¢/ = 6(d + 1)~ and ¢3(d) = ¢(d, ¢), it follows
from Theorem 4.2 that there exists an m > c3(d)(log N)/¢ > ¢3(d)(logn)*/? and disjoint
m-sets Z1,---,,Zg+1 C V such that u € f({z1,...,244+1)) for all z; € Z1,..., 2441 € Zg41.
Clearly, there exist a permutation 7 on {1, ...,d+1} such that Z ;) C V;forall1 <i < d+1.

O
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