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Abstract

Understanding what distinguishes quantum mechanics from classical mechanics is crucial for
quantum information processing applications. In this work, we consider two notions of non-
classicality for quantum systems, negativity of the Wigner function and contextuality for Pauli
measurements. We prove that these two notions are equivalent for multi-qudit systems with odd local
dimension. For a single qudit, the equivalence breaks down. We show that there exist single qudit
states that admit a non-contextual hidden variable model description and whose Wigner functions are
negative.

1. Introduction

Understanding what distinguishes quantum mechanics from classical mechanics and probabilistic modelsisa
central question of physics. Besides its foundamental aspects, this question is crucial for quantum information
processing applications since the features that set quantum and classical mechanics appart are precisely the
properties that we must exploit in order to obtain a quantum superiority for certain tasks [1-20]. In the present
work, we compare two notions of non-classicality: contextuality [21-27] and negativity of the Wigner function
[28-30].

The Wigner function shares several properties of probability distributions with the difference that it can take
negative values. This phenomenon is generally considered as an indicator of non-classicality of quantum states
[31-36] (see also the discussion in [37]).

The ressemblance between contextuality and negativity was exploited by Spekkens who generalized these
two notions in order to prove that they coincide [38]. However, this result remains difficult to apply, since a large
number of Wigner functions must be probed to identify contextuality. Howard et al [ 18] showed that, if one
restricts to a particular class of measurements, namely Pauli measurements, one can select a particular Wigner
function which allows by itself to characterize contextuality in the traditional Kochen—Specker sense [22]. They
proved that contextuality for stabilizer measurements and negativity of Gross’ Wigner function [30] coincide for
quopits, i.e. odd prime dimensional qudits. Namely, they showed that a single quopit state p has a negative
Wigner function if and only if its tensor product with any other single-quopit state violates a two-quopit non-
contextuality inequality.

In the present work, we establish the equivalence between contextuality for stabilizer measurements and
negativity of Gross’ Wigner function [30] for any multi-qudit state with odd local dimension. Such a neat
equivalence between these features introduced in different fields is quite unexpected. Indeed, while contextuality is
grounded in the foundations of quantum physics, Wigner functions originate from quantum optics. In addition,
our proof of this equivalence is much more straightforward. Indeed, we directly compute the value of the Wigner

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Relation between different notions of non-classicality. The equivalence HWVE [18] is only proven for product states when
n = 2anddisan odd prime number.

function in terms of the hidden variable model (HVM) and we observe that if the HVM is non-contextual then the
Wigner function is non-negative. Howard et al required a two-qudit experiment to demonstrate contextuality of a
single qudit state. We elucidate this by showing explicitly that in a single qudit experiment, the equivalence between
contextuality and negativity does not hold. We show this by constructing quantum states that admit a non-
contextual HVM (NCHVM) description although their Wigner functions take negative values.

Our proof of this equivalence relies on the choice of a simple definition of contextuality based on value
assignments introduced in the work of Kochen and Specker [22], whereas the work of Howard et alis based on
the graphical formalism of Cabello et al [39]. The relations between these different notions of non-classicality are
depicted in figure 1. Following [22—24], we consider only contextuality of stabilizer measurements and HVMs
are assumed to be deterministic. This last assumption is also present in the graphical formalism of Cabello et al
[39] and in the work of Howard et al [18]. Our argument does not apply to the generalized notion of HVMs
considered for instance by Spekkens [38, 40].

Our work clarifies the relationship between discrete Wigner function and stabilizer contextuality for odd-
dimensional qudits. It cannot be extended to systems of qubits due to the presence of state-independent
contextuality [23-25]. In addition, no qubit Wigner function that satisfies all the properties of Gross’ qudit
Wigner function seems to exist [41-43].

This article is organized as follows. The necessary stabilizer formalism is recalled in section 2. Section 3
introduces a notion contextuality based on value assignment and a proof of the equivalence between this notion
and the negativity of Gross’ discrete Wigner function, i.e. (ii) < (iv). The purpose of section 4 is to prove the
equivalence between the two notions of contextuality (i) and (ii), completing the square in figure 1.

2. Background on the stabilizer formalism

In what follows, we consider the Hilbert space H = (C?)®", where d is an odd integer and 7 is a non-negative
integer. We consider an orthonormal basis (|a)),cz, of C“. The n-fold tensor products of these vectors provide
an orthonormal basis (|a))ac 7 of the Hilbert space  indexed by Zj. This section recalls standard tools of the
stabilizer formalism for qudits [44].

The space V = Zj x Z} thatis called the phase space and will be used to index generalized Pauli operators
acting on H. Vectors in Vare denoted (uz, ux), where both uz and ux live in Z};. The space Z; is equipped with
the standard inner product (a|b) = >°7_, a;b; forall a, b € Z}j, whereas the phase space V'is equipped with the
symplectic inner product defined by

[u, v] = (uz|vx) — (ux|vz) mod d,
whereu = (uz, ux) € Vand v = (vz, vx) € V.

Pauli matrices can be generalized to obtain matrices acting on C? as follows. Let w be the dth root of unity,
w = e%™/4 The generalized Pauli matrices X and Z are defined by

Xla) =la+ 1), Zla) = wa)
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forall a € Z,, where the addition of basis labels is considered modulo d. Tensor products of these matrices are
denoted Z* = Z% ® ...Z%and X* = X" ® ... X% wherea = (ay, ..., a,) € Z}. They satisfy
73Xb = @b xbza,

Generalized Pauli operators acting on this Hilbert space H are of the form w*Z"2X"x where
u = (uz, ux) € V,anda € Z,. Justas qubit Pauli operators, they form a group. We fix the phase of Z"2X"x to
be w~®zl")/2 Recall that, since d is an odd integer,1/2 = (d + 1) /2 exists in Z, and the term (uz|ux) /2 isa
well defined element of Z,;. This defines Heisenberg—Weyl operators

T, = wuzluo/27uz xux M

forallu € V. This choice is well suited to describe measurement outcomes since T, T, = wI™¥1/2T;, ,,in
particular two operators T, and T, can be measured simultaneously if and only if [u, v] = 0, which implies
Tu T, = T,v. Their commutation relation depends on the symplectic inner product as follows
T, T, = w™YIT, T,,. These operators satisfy (T, )? = 1which proves that their eigenvalues belong to the group
Uj = {w* | s € Zy} of dthroots of unity.

Measuring a family of n mutually commuting operators C = {T,, ..., T, } returns the outcome
s = (51, ---» Sm) € Z} with probability Tr (I}, p), where IT}, is the projector onto the common eigenspace of
the operators T,, with respective eigenvalue w*. When no confusion is possible, this projector is simply denoted
I1¢. Such a subset C of mutually commuting operators is called a context. The largest possible size of a context
isd", which means that m < d". The set of all the contexts is denoted C. For a single operator T, we

have T,, = 3=, 7 w’Il, by definition of these projectors. Moreover, II; can be obtained from the operator
T, as
m = L S ok Q)
u d u
k€Zy

Indeed, one can check that if [¢)) is an eigenvector of T, with eigenvalue w*, we have ézke 7 W BT = 6, 4l1h).
In order to generalize equation (2) toafamily C = {T,,, ..., T, } of operators, introduce the Z;-linear subspace
M, = (ay, ..., ap,) of Vgenerated by the vectors a;. Any measurement outcome s € Z induces a Z-linear
form 4 : M, — Z;definedby 6,31 x;a;) = >/L, x;5;where x; € Zgforalli = 1, ..., m. This map &
parametrizes the group generated by the operators w* T, as follows (w5 T,.) = {w*WT, | u € M,}. The
projector 11 can be written

s 1

I =
|Ma|

Z w G 3)

ueM,

This expression can be deduced from equation (2) by writing IT; as the product IT; = [T}, II;.. The image of
the projector (3) is a stabilizer code [44].

3. Contextuality of value assignments and negativity

In this section, we prove that the notion of non-contextuality based on the existence of non-contextual value
assignments [22—25] is equivalent to the non-negativity of the discrete Wigner function. A special case of this
equivalence was proven by Howard et al [ 18] in odd prime dimension. We propose a simple proof of this result
which allows us to generalize this equivalence to any system of multiple qudits and to any odd local dimension.

Recall that contextuality refers to the fact that measurement outcomes cannot be described in a deterministic
way [22]. One cannot associate a fixed outcome A (A) with each observable A in such a way that this value is
simply revealed after measurement. The algebraic relations between compatible observables must be satisfied by
outcomes as well, making the existence of such pre-existing outcomes impossible. For instance, given two
commuting operators A and B, the three observables A, Band C = AB can be measured simultaneously and the
values A(A), A(B)and A(C) associated with these operators must satisfy A(C) = A(A) A(B). No value
assignment satisfying all these algebraic constraints exists in general.

The Wigner function of a state is a description of this state that was introduced in quantum optics in order to
identify states with a classical behavior. Quantum states with a non-negative Wigner function are considered as
quasi-classical states. The non-negativity of the Wigner function allows to describe the statistics of the outcomes
of alarge class of measurements in a classical way. The success of this representation motivated its generalization
to finite dimensional Hilbert spaces, called discrete Wigner function. Different generalizations have been
considered and finding a finite-dimensional Wigner representation that behaves as nicely as its original infinite-
dimensional version [28] of use in quantum optics is a non-trivial question. The qubit case illustrates the
difficulty of this task [41, 42]. In this work, we restrict ourselves to systems of qudits with odd local dimension

3
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and we consider Gross’ discrete Wigner function which encloses most of the features of its quantum optics
counterpart [30].

3.1. Value assignments are characters in odd local dimension

In this definition, the HVM associates a deterministic eigenvalue A\, (a) € Uj; with each operator T,,.
Measurements only reveal these pre-existing values that are independent on other compatible measurements
being performed. Formally, non-contextual value assignments are defined as follows.

Definition 1. Let p be a density matrix over H. A set of NCvalue assignments for the state p isa triple (S, q,, A)
where Sis a finite set, g , is a probability distribution over S and A is a collection of maps A, : V — Uj, for each
v € S, such that

l.forallu, v € V, [u, v] = Oimplies A, (u + v) = A\, (W) A\, (v),
2.forallu € V, Tr(Typ) = EI/ES)\’/(u)qp(V)'

This definition corresponds to the notion of value assignment introduced by Kochen and Specker [22]
restricted to measurements associated with Heisenberg—Weyl operators. The set S represents the hidden variable
states or ontic states. Without loss of generality, one can assume that the value assignment associated with
distinct states v € S are distinct. Then, S is necessarily a finite set since there is only a finite number of distinct
maps A, from Vto U;. Amap A, which satisfies A\, (u + v) = A\, (w) A, (v) forall u, v such that[u, v] = 0, is
called a value assignment. Recall that the value A, (u) is associated with the operator T, defined in equation (1).
With this phase convention, a value assignment is defined in such a way that the value of the product
Tu+v = T, T, of two compatible operators is the products of their values. As we will see later, multiplicativity of
A, whenever [u, v] = 0is the non-contextuality assumption whereas the condition
Tr(Typ) = X, csh (g , (v) ensures that this triple is sufficient to recover the prediction of quantum mechanics
for the measurement of T,.

Avalue assignment is a map )\, that satisfies the constraint A, (u + v) = A, (w) A, (v), for all pairs of vectors
such that [u, v] = 0. This enourages us to consider the characters of V. Recall that a character of V'is defined to be
group morhism from V to the multiplicative group C*. In other words, itisamap A : V — C* that satisfies the
constraint A(u + v) = A(u) A(v) forallu, v € V. Thereexist|V| = d?" characters of Vand they are of the form
Aa(u) = W forsomea € V. Thesed”” characters provides d*" value assignments. Conversely, any value
assignment \,: V — C* coincindes with a character of V over any isotropic subspace. However, nothing in
definition 1 guarantees that these assignments are actually characters of V. The next lemma proves this property. As
a consequence, the only consistent value assignments of the HVM are given by the d*” characters of V..

Lemma 1. For any odd integer d > 1 and for any integer n > 2, value assignments )\, are characters of V.

Proof. To make the proof easier to follow, we regard A as a map from V'to Z, (through the group isomorphism
between U and Z;) and we use the additive notation A (u) + A(v) instead of A(u) A(v) in C. We already know
that A(u 4+ v) = A(u) + A(v) whenever [u, v] = 0.Inparticularforallu € V andforall k € Z;we
have A\ (ku) = kA(u).

Consider the canonical basis of Z!; x Z[; that we denote (ey, ..., ey, fi,... f). Clearly, [e;, fj] = 1andthe
planes P, = (e;, f;) are pairwise orthogonal with respect to the symplectic inner productforalli = 1, ..., n. The
orthogonality between these planes allows us to write

A =Y Maje; + 5if)
i-1

forallu = 37 (a;e; + B; f). It remains to prove that the restriction of A to any plane p, is additive.

We will use a second plane P; = (e, fj) with j = i (which exists only when n > 2). Denote u = «;e; and
v = f;fiand define u’ = f;ejand v/ = «; fjso that [u, v] = [/, v/]. To conclude it suffices to prove that
A(u + v) = A(u) + A(v). Write

u+V:%((u+v+u’+v’)+(u+v—u’—v’))-

This decomposition is chosen in such away that (u + v + u’ + v/)and (u + v — v’ — v’) are orthogonal:

[(u+v+u +V),u+v—u —V)]=[uv]+[v,u + [, —V]+ [V, —u] =0
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We will also use the orthogonality relations [u & v/, v & u] = 0 and between the planes p. and P;. We obtain

)\(u+v)=)\(%(u+v+u’+v’)+%(u—&—v—u’—v’))
zé)\(u—i—v—ku’—&-v’)—k%)\(u—i—v—u’—v’)
= %A((u +V)++u) + %)\((u —V)+ (v—1u))
= %(A(u +V)+ AV +U) + Au— V) + Ay — )

_ %(A(u) FAG) 4 AW + AW + A@) — AV + AV) — A@))
=A(u) + A(v)

This proves that \is a character. O

3.2. Discrete Wigner functions
The purpose of this section is to recall that a set of NC value assignments can be derived from a discrete Wigner
function of a state whenever this function is non-negative [18].

Quantum states are generally represented by their density matrix p. The Wigner function W, of a state pis an
alternative description of the state p. This representation is sometimes more convenient than the density matrix.
Wigner functions have been introduced in quantum optics [28] and the negativity of the Wigner function of a
state is regarded as an indicator of non-classicality of this quantum state. In the present work, we consider their
finite dimensional generalization which is called discrete Wigner function [7,29].

We focus on Gross’ discrete Wigner function [30] W, : V — R defined by W, (u) = d~" Tr(A, p) where
Ay = d7"Y,cyw!™YIT,. The operators A, are Hermitian. The family (A, )y v is an orthonormal basis of the
space of (d" x d")-matrices equipped with the inner product (A|B) = d~" Tr(A"B). The values W, (u) for
u € V are simply the coefficients of the decomposition of the matrix p in this basis:

p= Z va () Ay. 4)
ucV
This proves that the Wigner function W), fully describes the state p.

In order to describe measurement outcomes, the Wigner representation can be extended to POVM
elements (E;);. The Wigner function of a POVM element E; is defined to be Wy (u) = Tr(E;Ay). This definition is
chosen in such a way that the probability Tr(E; p) of the outcome sis given in terms of the Wigner functions W,
and Wg by

Tr(E;p) = ) Wi (W)W, (u). 5)
ucV
This expression is obtained by replacing p by its decomposition (4).

Consider for instance the measurement of an operator T,,. It corresponds to the POVM elements (I3 )se 7,
Calculating the value of the Wigner function of the POVM element IT;, we find Wiy: (0) = 6ja,u},-» and injecting
this in equation (5) yields Tr(II3 p) = > c y0(a,u1,sW, (0). Using the decomposition of T, as a sum of projectors,
this provides the expectation of T;.

Lemma 2. For all Heisenberg—Weyl operators T, given in equation (1), it holds that
Ti(Tp) = 3 Wy(w)wis.

ucV
Comparing lemma 2 with definition 1, we see that the triple (V, W,, (Ay)ucv) is aset of NC value assignments
for \y(a) = w®% whenever the Wigner function of the state p is non-negative. Note that all characters of V can
be written as wl>" forsome u € V.

3.3. Equivalence between NC value assignments and non-negativity
The previous section shows that non-negativity of W, implies the existence of a set of NC value assignments for
the state p. We now prove the converse statement.

Proposition 1. Let n > 2 and let p be a n-qudits state of odd local dimension d > 1. Ifp admits a set of NC value
assignments then W, > 0.
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Proof. Given a set of NC value assignments, let us compute the value of the Wigner function of p to prove that it
is non-negative. We have

W,(u) =d " Tr(Aup)
=d Z WYITH(T, p)

veV

= d S W 3 A, (Mg, )

veV veS

=d 2y ( > whe] )\,,(v))qp(z/).

veS\veV

The fact that such a sum is positive or even real is not clear. However, lemma 1 shows that w™J )\, (-), whichisa
product of two characters, is also a character. Hence, any sum Y_, _,w!"vI \,, (v) is either 0 or d*"[45]. Since
qp(V) > 0, this proves that W, (u) > 0. 0

Actually the HVM derived from the discrete Wigner function is essentially unique. The following corollary
shows that the distribution g, of any set of NC value assignments can be identified with the Wigner function
distribution W, over V.

Corollary 1. Let n > 2 and let p be a n-qudits state of odd local dimension d > 1.If (S, q,, A) isa NCset of value
assignments for p then there exists a bijectivemap o : S — V such that

g,) = Wy(0 (1))
forallv € S.

Proof. Let us refine the argument of the proof of proposition 1. Bylemma 1 and since value assignments
corresponding to distinct states of S are assumed to be different, there exists an injective map ¢ : S — V such
that \, = w1 Without loss of generality, we can assume that ¢ is sujective by adding extra elements to S
corresponding to the missing characters of V. For these new elements v € S, we simply set g ,(v) = Otopreserve
the prediction of the triple (S, g,, ). With this notation, the expression of W, () obtained in the previous proof
becomes

Wp(u) — d—ZnZ[Z w[“+‘/’(”)"’])qp(V) = Z 5u+®(y),0 . qp(l/). 6)
veS\veV ves

For all vectors u, there exists a unique state v € Ssuchthatu + ¢(v) = 0. Denote by v, this state. Then,

equation (6) becomes W, (u) = g ) (tw)- To conclude the proof, note that the map u — 1, isinvertible, by

bijectivity of ¢. Its inverse is the map o of the corollary. O

3.4. The single qudit case
This section shows that the previous equivalence breaks down for single qudits.

Lemma 1 breaks down for n = 1. For instance, for a prime dimension d, there exists d+lyalue assignments
while there is only d* characters. Let us prove this property. By straightforward calculation we can check that two
non-unit Pauli operators T, and T, commute if and only if they are integer powers of one another. Therefore,
each maximal context consists of a picked operator and its powers. Each non-unit observable thus appearsin a
single maximal context, and thereare d — 1 non-unit operators T, in each maximal context. The total number
of non-unit Pauli operator is d> — 1. Therefore, there are d + 1 contexts. In each context, we can freely choose
the value of one non-unit Pauli observable, and the other values in the context then follow. There are thus d
choices per context, and the total number of value assignments is di+1,

Breakdown of proposition 1forn = 1andd = 3. We consider the case of a single qutrit. Our strategy is to
show that there is a valid quantum state that admits a set of NC value assignments, whose Wigner function is
negative. To this end, we loop through all 81 consistent value assignments ), and construct the density matrix p,
and Wigner function W), corresponding to each value assignment A. The density matrix p, is given by

Py = Z % TJ
ueV
p, reproduces the measurement statistics of the value assignment ), i.e. in the measurement of T, the outcome
A(a) is certain. Further, p, is Hermitian and has unit trace, but is in general not positive semidefinite.
To mitigate the latter shortcoming, we add an admixture of the completely mixed state to p,, with increasing
probability p,
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b
3

We check whether the resulting state p, , becomes positive semidefinite before the corresponding Wigner

Prp =1 = p)py+ ZL.

function Wy , = (1 — p)W) + gl becomes positive, where 1 denotes the constant Wigner function taking the
value 1.

Denote the smallest eigenvalue of p, by v, and the height of the deepest valley of W), by w. Because of the
special form of the admixture, the smallest eigenvalue v, , of p, , and the height w), , of the deepest valley of W), , are

—(1 — b
Uap =1 =pva+ 3,
wyp = (1 — p)wy + g-
Therefore, there is a region of p for which p, , is positive semidefinite while W}, < 0ifand only if
3wy < min(vy, 0). 7)

Checking all 81 value assignments, we find that there are two cases.
Case I: value assignments that are characters of V' (occurs 9 times).

wy=20, vy= -1

The condition equation (7) is not satisfied, as expected for linear value assignments.
Case II: value assignments that are not characters of V' (occurs 72 times).

1
wy = —g, vy = —0.618.

The condition equation (7) is satisfied, and we thus know that there are positive semidefinite density matrices
with negative Wigner functions. (The value of v/, above is minus the golden ratio.)

It remains to show that the density matrices p, » discussed in Case IT have a representation in terms of NC
value assignments. To this end, note that each p, has an NC value assignments representation, namely the
probability distribution peaked at the assignment A. The completely mixed state I /3 also hasa NC value
assignments description, namely it is the equal mixture of all value assignments that are characters of V. Hence,
the probabilistic mixture of these two density matrices also is represented by a set of NC value assignments. [

To summarize, we have shown that there are well-defined quantum states whose Wigner function is negative
but which have an NCHVM description. These states are counterexamples to an extension of proposition 1 to
n = 1. Our argument is presented for a qutrit but we believe that such single qudit states exist for all odd
dimensions. We leave the general case as an open question. More generally, it would be interesting to provide a
simple characterization of the single qudit states that admit a set of NC value assignments.

In [18], the equivalence between Wigner function negativity and contextuality is established for single qudit
states, and the question arises whether their result and the above argument are in contradiction. This is not the
case. The construction of [ 18] uses an auxiliary qudit that can be in any state o, for instance the completely mixed
state. The desired equivalence between Wigner function negativity and contextuality is established for one qudit
states p by considering the tensor product state p ® o on the contextuality side. Since o is merely a by-stander,
Howard et al count the settingas n = 1. By our counting, since the involved observables act on two qudits, the
settingis n = 2. There is thus no contradiction between the result of [ 18] and the above argument that
proposition 1 does notextend ton = 1.

4. Operational definition of non-contextuality

Our proof of the equivalence between non-contextuality and non-negativity of the Wigner function relies on the
choice of a simple definition of contextuality (definition 1). The purpose of this section is to prove that, although
simple, this definition is sufficient to capture the same notion of contextuality as the one considered in previous
work [38, 40]. Namely, we prove that the notion of NC value assignments is equivalent to the operational
definition of contextuality given below, inspired by the work of Spekkens with the restriction to deterministic
models. All the results of this section are true for both multi-qudit systems and single qudit systems. They also
remain valid for even local dimension d.

4.1. Deterministic hidden variable model

The role of a HVM is to describe the outcome distribution of Pauli measurements for a state p. In what follows,
an ordered family of commuting operators C = {T,, ..., T, } is called a context. This guarantees that they can be
measured simultaneously. We denote by C the set of all the contexts, that is of all ordered tuples of commuting
Heisenberg—Weyl operators T,.
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The HVM considered in definition 1 is designed to predict the expectation of single Pauli operators. We now
consider a framework which is a priori more general. The HVM is required to predict the outcome distribution
of the measurement of any Pauli context C € C.

Definition 2. A HVM for a state p is defined to be a triple (S, g » p)such that Sisaset, g p is a distribution over S
and p = (p.)cec is afamily of conditional probability distributions p.(s|v/) over the possible outcome s for any
context C € C and for anystate v € S. Werequire that the prediction of the HVM matches the quantum
mechanical value, i.e.

Tr(ITgp) = Y pe(slv)q, ), ®)

ves
for every context C € C and for every outcome s € Z.

The set S is the set of states of the HVM. Note that this set is not a priori the same as the set used in definition
1. We understand the probability g, (1) as the probability that the system is in the state € S. As suggested by
the notation, the probability p.(s|) can be interpreted as the probability of an outcome s when measuring the
operators of the context C and when the system is in the state v of the HVM. It is then natural to define the
prediction of the HVM as in equation (8).

In the present work, we consider HVM that are deterministic in the following sense. We can associate a fixed
measurement outcome s with each state v of the model. In other words, conditional probabilities p.-(s|v/) are
delta functions.

Definition 3. AHVM (S, ¢ 1 p) is said to be deterministic if conditional distributions p, are all delta functions,
i.e.forall C € Candforall outcome s, we have p.(s|t) = 04, (c),s for some map «, that associates a value
a,(C) € Z'dcl with each context.

We often denote such a HVM by the triple (S, g, o). When C contains m operators, both «,, (C) and s are m-
tuples. If o, (C) = (%3, ..., Xn), then &, ()¢ is the product of the delta functions 6.

4.2. Operational definition of non-contextuality
Within our formalism restricted to measurement of Pauli operators T, there exist different ways to realize a
measurement. The operational notion of contextuality refers to the fact that the conditional distribution of
outcomes in the HVM may depend on the way the measurement is implemented [40]. This section presents a
formal definition of this notion.

To illustrate what should be the right definition of an implementation, we start with some examples. We can
measure the operators ofa context C = {1, ..., T,,} € Candreturn the corresponding outcome
s = (5p ..., S¢). This realizes the measurement defined by the family of orthogonal projectors (IL3)s for s € ZJ'.
Different contexts C may produce the same family of projectors, that is the same measurement. For instance, the
2-qudit measurement defined by the projectors P = |x) (x| ® %) (x|, indexed by (x;, %) € Z3, canbe
implemented via the contexts C = {X ® I, I ® X} oralternativelyviaC’ = {X ® I, X ® X}.

We can also measure of a family of operators but read only a subset of the outcomes or even of function of the
outcomes. Such a classical postprocessing extends the set of projectors that can be reached. For instance, for
u € V consider a pair of projectors {II® = II%, IT' = I — I12}. This measurement is realized by measuring T,
and returning 0 if the outcome is 0 and returning 1 for all other outcomes s € Zg\ {0}. To provide an example
with aless trivial postprocessing consider the measurement (I3, | ,) with outcome s € Zy, for u, v € V such
that [u, v] = 0. We can realize this measurement by measuring the pair C = {T,, T,} and by returning only the
sum s = s, + sy € Zy of the two outcomes.

These examples motivate our definition of an implementation of a measurement. Consider a measurement
defined by a family of stabilizer projectors (II);c o, that sum up to identity, indexed by the elements of a finite
set O.

Definition 4. An implementation of a measurement (I1%);¢ o, is defined to be a pair (C, oc) where

C={L,...T,} €Candoc: 75 — Oisasurjective postprocessing map such that
= > I
teZg
oc(t)=s
foralls € O.
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Neither the choice of the context C nor the corresponding map o is unique. The postprocessing map is
assumed to be surjective only to ensure that all the projectors of the family (II%)sc o are reached.
Let (S, g ) v) be a HVM describing measurement outcomes for a state p. Consider an implementation
(C, oc) ofameasurement (I1%)s¢ . By definition of the projectors IT°%, the HVM predicts that the outcome s
occurs with probability
peloc' @) = > pe(tlv)
tez!!
oc(t)=s
when the system is in position . Quantum mechanics predicts that the distribution of the outcome of a
measurement only depends on the projectors II* and not on the implementation. That means that for any two
implementations (C, oc) and (C’, o¢r) of a measurement 11%, we have

Tr(I*p) = 3 pe(oc' (9)1v)g,¥)

ves

=3 po(oc' (®)V)g,W).
vES

However, nothing in definition 2 requires that the probabilities p.(o¢ (s)|v) and Por (UE/1 (s)|v) coincide for all
v € S.Thisassumption is a notion of non-contextuality. It leads to the following definition of a NCHVM. This
definition is based on the work of Spekkens [40] with the restriction to deterministic models and to systems of
qudits. Spekkens approach differs also in the fact that it does not refer to the internal structure of quantum
mechanics at all. The relationship between Spekkens’ form of contextuality and Kochen—Specker contextuality
is examined here [46].

Definition 5. AHVM (S, ¢ ) p) is said to be non-contextual if for all implementations (C, o¢) of a measurement

(IT%)5c 0, forall v € S, the conditional probability p-(c¢'(s)|v) depends only on the projector IT* and not on the
implementation (C, o¢).

For instance, we saw that the measurement (II;, |, )scz, can be implemented by C = { T, } with a trivial
map o¢ butalso using C' = {T,, T, } with the postprocessing map oc/(sy, Sy) = Sy + Sy. For anon-contextual
model, the corresponding conditional probabilities p-(s|) and p., (UE/1 (s)|v) coincide for all states v of the
HVM. In this example, we have UE«I () =A{t,s—1t)|t € Zy}.

4.3. Equivalence of the two definitions of non-contextuality
In this section we prove that the existence of a NCHMYV as given in definition 5 and the existence of a set of NC
value assignments as in definition 1 are two equivalent notions of non-contextuality. This is the equivalence (i)
& (ii) in figure 1.

The following proposition shows that the implication (ii) = (i) holds.

Proposition 2. Let p bea n-qudit sysemwith d > 1andn > 1.1f(S, q,, A) beaset of NCvalue assignments, then
(S, 4, p) defines a deterministic NCHVM where p is defined by

1

> wtWL N, () )

| al ueM,

pc(slu) =
forallC={T,, ..., T,,} € C.

The notations M, and ¢; used in equation (9) were introduced in equation (3). Recall that, by deterministic,
wemean p(s|lv) € {0, 1}.

Proof. First, let us prove that the HVM (S, ¢, p) defined in this proposition produces the same predictions as
quantum mechanics. By equation (3), the probability of an outcome s = (s, ..., s,,) when measuring
{Tap --.> To, } is given by

1

TrH(p) = — 3. w SOTr(Tp).

IMal e,

Replacing Tr(T, p) by its value in terms of the value assignments, we obtain

1

Tr(I5p) = > Yo w WA (W) |q,).

veS |Ma| ucM,

This proves that the HVM (S, q,,, p) defined by equation (9) reproduces the quantum mechanical predictions.

9
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Itis deterministic since thesum - ., w™ %W . )\ (u), which is the sum of the values of a character, is either

0 or |M,|, implying that p.(s|lv) € {0, 1}. This HVM is also non-contextual. Indeed, conditional probabilities
are defined in such a way that they do not depend on the particular choice of generators a; for the subspace M,,
that is they do not depend on the context. O

We now prove the converse statement. Together with the non-contextuality assumption, determinism of the
HVM yields extra compatibility contraints on the functions . The following proposition proves that o, is
completely determined by its value o, ({ T, }) over single operator contexts { T, }. We shorten the notation
o, ({ Ty }) by oy, (u). Moreover, we show that «, is additive when [u, v] = 0. Then, we will prove that we can
construct a set of NC value assignments from the maps «,.

Proposition 3. Let p be a n-qudit system with d > landn > 1. If(S, p, «) isa deterministic NCHVM then,

* forallcontexts C = (T, ..., T} € C,wehave
Oél/({T;lp e ’I;lm}) = (alj(al)a LR au(am)))

« if T, and T, commute, i.e. if[u, v] = 0, we have

ay(u+v) = a,(u) + o (v)-

Proof. To prove the first item, we consider two implementations of the measurement (II;, );cz, for some
a; € V. First, one can simply measure { T,, } and reveal the outcome s;. A second implementation is obtained via
the context C = {T,, ..., T, .} € Candthe map o¢ thatsends a measurement outcome t = (#, ..., t,,) onto its
ith component t;. In other words, we measure these 1 operators but we only keep the outcome of T,,. By non-
contextuality, these two procedures yield the same conditional probabilities at the level of the HVM, that is
Pe (0c'G)v) = P, (slp) forallv € S, forall s € Z,. Replacing the first term by its definition, we obtain

> pe(tly) = pp Glv). (10)

(s - L) EZLY

ti=s
Fix v € Sanddenote o, (C) = (x;, ..., X,,). Sharpness of the measurements implies that p.(t|lv) = HTZI 6,(].,5.
and p;. i (s|v) = 0a,(ay,s- Injecting these expressions in equation (10) produces the equality

m
H 6xj,tj - 60[,/(3;),5 (11)
(s oo t)€ZF j=1
ti=s

that is satisfied forall s € Z4. The only possibility to have a non-trivial product at the left-hand side is to pick ¢; =
x;jforall j = i,leadingto
bxis = a,ap,s-

This equality is satisfied for all s € Z, proving that o, (a;) = x;. This concludes the proof of the first property.

The second item is proven using two implementations of the measurement of (113, , , );cz,. First, we consider
the direct implementation by measuring T, .. Then, we use the context C = {1,,, T, } with the postprocessing
map oc(Sy, Sy) = Su + Sy. Non-contextuality leads to

3 peltky s = BIW) = pp._(slo).

kEZq4
Using the first result, the delta function describing the conditional distribution for Cis associated with
a,({Ty, T,}) = (o, (w), o, (v)). Thisimplies

Z 6(},,(u),k : 6(1,,(v),sfk = 60,,,(u+v),s-
k€Zy

The left-hand side is equal to 8, (v),s—a, () Proving that ay, (u) + 0, (v) = o, (u + v). O

Asa corollary, we prove that the maps u — «,, (u) define a family of NC value assignments. This complete
the proof of the equivalence between (ii) and (iii).

Corollary 2. Let p be a n-qudit systemwithd > landn > 1. If (S, q,, «)isadeterministic NCHVM then the
triple (S, q " \) wherethemap X, : V — Uyisdefined by \,(u) = w®®™ forall v, is a set of NC value assignments.

10
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Proof. Additivity of the maps A, was proven in proposition 3. It remains to prove that this value assignment
provides a good prediction for the expectation of operators T,. Writing this operator as a linear combination of

projectors T, = - 7 w*IL, we find

Tr(Tp) = Y w* Tr(ITp).

s€Zq

Using the prediction of the HVM and sharpness of the measurements, we obtain

Tr(Tup) = Y| Y @ba,mys|d,®) = > w™q, ()

veS\s€Zy ves

proving the corollary. O

5. Concluding remarks

Through this work we show that negativity of the Wigner function and contextuality are exactly equivalent for
systems of multiple qudits with odd local dimension. We also show that there exist single qudits quantum states
that are described by a NCHVM while their Wigner functions take negative values. The description of all single
qudit states admitting a non-contextual description is left as an open question.
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