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In this series of behavioural and electroencephalography (EEG) experiments,

we investigate the extent to which repeating patterns of sounds capture

attention. Work in the visual domain has revealed attentional capture by stat-

istically predictable stimuli, consistent with predictive coding accounts which

suggest that attention is drawn to sensory regularities. Here, stimuli comprised

rapid sequences of tone pips, arranged in regular (REG) or random (RAND)

patterns. EEG data demonstrate that the brain rapidly recognizes predictable

patterns manifested as a rapid increase in responses to REG relative to

RAND sequences. This increase is reminiscent of the increase in gain on

neural responses to attended stimuli often seen in the neuroimaging literature,

and thus consistent with the hypothesis that predictable sequences draw

attention. To study potential attentional capture by auditory regularities, we

used REG and RAND sequences in two different behavioural tasks designed

to reveal effects of attentional capture by regularity. Overall, the pattern of

results suggests that regularity does not capture attention.

This article is part of the themed issue ‘Auditory and visual scene analysis’.
1. Introduction
The human brain is highly sensitive to patterns in sensory input [1–5]. A grow-

ing body of work in vision [3,6], touch [7], language [1] and audition [8–13]

has demonstrated that subjects rapidly and automatically learn complex sen-

sory statistics, and that these are exploited to improve perceptual inference,

even when outside conscious awareness. This capacity is often interpreted as

a fundamental element of the predictive mechanisms, which are proposed to

constitute the principal substrate of perception [14–16].

In hearing, automatic sequence learning has commonly been studied via the

mismatch negativity (MMN), an electrophysiological marker for the processing

of sounds that break an established rule [11]. MMN to sequence violations has

provided (indirect) evidence that the auditory system can learn complex rules

governing sequences [10,17]. The repetition positivity, which increases with the

number of repeated stimuli, is another neural marker of simple regularity extrac-

tion [18]. Recently, Barascud et al. [19] provided direct evidence of the process of

regularity extraction in more complex tone sequences. They used rapid sequences

of tones with frequencies changing in a regular, cyclical pattern, and matched

sequences of tones arranged in a random order. Behavioural reaction times

(RT) and neural response dynamics indicated rapid recognition of regularity,

on par with the latency predicted from an ideal observer model.

Learned knowledge about regularities, whether from low-level statistical

learning or conceptual understanding of the phenomena causing sounds, enables

predictions to be formed about future sensory input [20]. Such expectations

improve behavioural performance in predictable contexts; for example, by orient-

ing resources to a point in time when a stimulus is expected [21], or by facilitating
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selective attention and segregation of concurrent sound streams

[10,22–24]. In addition, recognition of regularities can aid

detection of changes in the environment, which causes sensory

input that is in disagreement with these predictions [9,25,26].

It has been proposed that the same predictive mechanisms

underlie both the detection of regularity violations and

auditory scene analysis [20,25].

Attention allows the prioritization of useful streams of

information for further processing. Within this context, the

relationship between predictability and attention is attracting

increasing research interest [27–31]. However, there is dis-

agreement as to whether it is unpredictable, surprising

events [32–34] or predictable ones [35] that are the most infor-

mative in scene analysis, and should therefore (in the parlance

of Itti & Koch [36,37]) be flagged as more ‘salient’ and attract

selective attention (see also [38–40]). In visual studies, it has

been shown that learning of regularities helps guide attention

to expected locations [41,42] and features [41,43]. Zhao et al.
[44] recently proposed a framework for attentional guidance

whereby automatically learned regularities in the sensorium

bias attention, even if not relevant for performing a task, and

demonstrated this to operate in guiding visual search. They pre-

sented sequences of abstract shapes; the order of which was

statistically structured at a particular location in the search

array and random at others. This was followed by a static

visual search array. RT were faster to targets presented at the

statistically structured array location, despite the regularity

carrying no predictive information as to the target location.

Zhao et al. [44] suggest that the prioritization of regular fea-

tures is a means to focus resources on stable aspects of the

world, which can then be learnt. The notion that the brain is

‘hardwired’ to prioritize regularities is at the heart of popular

models of the brain as a statistical organ of prediction. The

expected precision of bottom-up information streams plays a

vital role in such predictive processing accounts [14,31].

Reliable prediction errors are up-weighted in proportion to

their expected precision, thereby refining the brain’s generative

model based on the most informative streams [31].

These ideas may help explain an intriguing recent finding

concerning the passive brain response to acoustic patterns.

Barascud et al. [19] found a substantial increase in the neural

response to regularly repeating sound sequences over similar

random sequences. This finding seems contrary to a large

body of work showing reduced responses to predictable

stimuli [45–50]. The proposed explanation for the discrepancy

is that, unlike many of the signals used in previous work

which often consist of oddball or roving sequences [45,51],

the stimuli used in [19] were complex auditory patterns

where the predictability of sound sequences was not con-

founded with neural adaptation resulting from repetition of

identical sounds. There are several possible explanations for

the increased response to regularity. One is that it reflects the

engagement of neural circuits for sequence learning, whose

activity in addition to the basic response to the stimulus in

auditory cortex results in a net increase in magnetic field

strength. Another is that the same neural population is

simply more active, with the effect resulting from an increased

gain on the activity of auditory neurons responding to the

stimuli, potentially signalling greater expected precision. At

the cognitive level, the result could potentially indicate that

subjects were having their attention spontaneously biased

towards the regular sounds, even though they were engaging

in an unrelated visual task. Indeed, it has been shown that
neural response magnitude is enhanced to attended, predict-

able stimuli in audition [52,53], and in vision [29].

In the experiments presented in this paper, we investigate

whether regularity captures (exogenous) attention. We use

the same stimuli as [19], consisting of tone-pip sequences

whose frequency pattern is either regularly repeating (REG)

or random (RAND; figure 1). In Experiment 1, we demon-

strate that the increased brain response to REG relative to

RAND also occurs in electroencephalography (EEG). In a

series of behavioural experiments, we then investigate the

capacity of REG and RAND to exogenously capture attention

when they act as auditory distractors (Experiment 2) and test

whether auditory regularity biases attention in scenarios

where multiple sound streams are attended and task-relevant

(Experiment 3). In both of these paradigms, we find no evi-

dence for attentional capture by acoustic regularity.
2. Experiment 1 (electroencephalography)
Experiment 1 investigated EEG brain responses to regularly

repeating (REG) and random (RAND) tone-pip sequences of

varying complexity (figure 1) while participants, naive to the

auditory stimuli, were engaged in an unrelated visual task.

The stimuli were identical to those previously used by Baras-

cud et al. [19] in a magnetoencephalography (MEG) study.

The main aim was to replicate these results using EEG.

In addition to the differences in sensitivity between the two

techniques [54], a replication in EEG is key to assimilating

those findings with the existing literature, where the majority

of electrophysiology studies on regularity detection use EEG.

(a) Methods
(i) Stimuli
Stimuli (figure 1) were 3000 ms long sequences of 50 ms

tone pips (60 tone pips altogether; each ramped on and off

with a 5 ms raised cosine ramp). Tone frequencies were

drawn from a pool of 20 logarithmically spaced values between

222–2000 Hz. A unique sequence was presented on each trial.

Sequences were defined by two parameters: Rcyc (alphabet

size)—the number of frequencies chosen (at random, with

replacement) from the pool, and regularity (REG or RAND).

In regular (REG) sequences, a sub-pool of Rcyc frequencies

were chosen from the full pool, and arranged in repeating

cycles of length Rcyc. Random (RAND) sequences were gener-

ated by drawing each tone at random from the sub-pool of Rcyc
frequencies. REG and RAND sequences of the same Rcyc were

generated in pairs, using the same sub-pool, such that con-

ditions were matched for the occurrence of each frequency

(figure 1). REG conditions used Rcyc ¼ 5, 10 and 15; RAND

included an additional condition of Rcyc ¼ 20 (using the

whole frequency pool), yielding 7 conditions (REG5, REG10,

REG15, RAND5, RAND10, RAND15 and RAND20). These

sequences are too rapid to allow deliberate reasoning of the

order of individual tones; nevertheless, the repetitions in

REG sequences lead to a strong, ‘pop-out’ percept of a pattern

[19]. Examples of the stimuli used are provided as the electronic

supplementary material.

(ii) Procedure
The procedure was similar to the MEG experiment described

in [19]. Subjects were engaged in an incidental visual task

http://rstb.royalsocietypublishing.org/
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and were naive about the nature of the auditory stimuli.

Auditory stimuli were presented binaurally with the Psycho-

physics Toolbox extension in MATLAB [55]. In total, subjects

heard 700 unique stimuli (100 for each condition). The

inter-stimulus interval (ISI) was jittered between 1100 and

1500 ms. The visual task was displayed on a separate compu-

ter using Cogent 2000 in MATLAB (www.vislab.ucl.ac.uk/

cogent.php). The timing was not correlated with that of the

auditory stimuli. For each trial, three colour photographs of

landscapes were shown for 5 s each, and images faded gradu-

ally from one image to the next to minimize visual transients.

Subjects were instructed to press a keyboard button if the first

and third image within a trial were identical (10% of trials),

and to withhold a response otherwise. Inter-trial interval

was jittered between 2 and 5 s. The session was split into

four consecutive blocks. Feedback (number of hits, misses

and false alarms) for the visual task was provided at the

end of each block.

(iii) Recording and data preprocessing
EEG signals were recorded using a Biosemi system (Biosemi

Active Two AD-box ADC-17, Biosemi, Netherlands) with 64

electrodes; at a sampling rate of 2048 Hz. Recording was re-

started at each block. Data were analysed with SPM12 (Stat-

istical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/

spm/) and Fieldtrip (http://www.fieldtriptoolbox.org/;

[56]) toolboxes for MATLAB (2015a, MathWorks). All filtering

was performed with a two-pass, Butterworth, fifth order

filter. Data were low-pass filtered at 110 Hz, downsampled

at 256 Hz, high-pass filtered at 0.1 Hz, re-referenced to the

average, divided into 5000 ms epochs (with 1000 ms pre

stimulus onset and 1000 ms post-offset) and baseline-
corrected relative to the pre-onset interval. Outlier epochs

were removed, if the average power over all time samples

and channels exceeded 2 s.d. from the mean over trials; on

average, 76% of epochs were retained. Subsequently, data

were low-pass filtered at 30 Hz and de-noising source separ-

ation (DSS; [57,58]) was applied to maximize reproducibility

across epochs, keeping the first five components and project-

ing back into sensor space. Finally, data were averaged over

epochs for each channel, condition and subject.

(iv) Data analysis
For each participant and condition, the root-mean-square

(RMS) over channels was calculated at each time sample in

the epoch. This was used as a measure of brain activation

over time. The distribution of RMS (mean, s.e.) was then esti-

mated for each condition using bootstrap resampling across

subjects (1000 iterations; [59]). This was used to calculate

the group-level t-statistic of the difference between pairs of

conditions at each time-point. T-tests (two-tail) were per-

formed using t-statistics computed on clusters in time, and

controlled for a family-wise error rate of 0.05 [60]. Addition-

ally, a repeated-measures ANOVA with factors of regularity

and alphabet size was performed on the mean RMS power

between 1000 and 3000 ms, including all conditions except

RAND20 to give a balanced design.

(v) Subjects
In total, 23 paid subjects took part (mean age 23.3 years,

range 20–29 years; 11 female). Two subjects were excluded

due to exceptionally noisy EEG data. None reported a history

of hearing impairment or neurological disorder.

http://www.vislab.ucl.ac.uk/cogent.php
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(b) Results and discussion
Group RMS (RMS of all subjects’ RMSs) for the three regular

conditions, REG5, REG10 and REG15, alongside RAND20

as a common control, are shown in figure 2a. The brain

response shows an N1 peak (at 100 ms post-onset) before

rising gradually and reaching a sustained level, which

persists until stimulus offset. An offset response is visible

about 100 ms after sequence cessation. The sustained

evoked response is characterized by regular fluctuations at

20 Hz reflecting responses to individual tones. All three

REG conditions show an increased sustained response

when compared with RAND20. The timing at which the

group RMS for REG conditions diverge from RAND20

(taken to reflect the time required by the brain to discover

the regularity) increases with cycle length: 406 ms (8 tones),

750 ms (15 tones), 1067 ms (21 tones); for REG with Rcyc ¼
5, 10, 15, respectively. This is during the second cycle in

each case (1.6, 1.5 and 1.4 cycles, respectively), before the

pattern has repeated completely, although stable statistical

significance is reached somewhat later (horizontal lines
beneath the RMS plot). As discussed in [19], this demonstrates

the operation of a rapid, automatic process of regularity detec-

tion. Group RMS for REG and RAND of matched Rcyc are

shown in figure 2b. The response to REG is consistently

higher than its matched RAND. The scalp voltage map of the

difference between REG and matched RAND conditions, cal-

culated between 2.4 and 2.6 s post-onset, is shown in

figure 2b. For comparison to a standard scalp voltage distri-

bution in response to sound, the scalp topography of the N1

onset response (calculated over a 40 ms window centred on

100 ms following stimulus onset) is also provided.

The RMS, over the interval 1000–3000 ms post-onset,

extracted from each condition, was subjected to a repeated-

measures ANOVA with regularity (REG versus RAND) and

Rcyc (alphabet size of 5, 10 or 15 tones) as within subject

factors. This yielded significant main effects of regularity

(F ¼ 23.2, p¼ ,0.001) and of Rcyc (F ¼ 5.4, p ¼ 0.014), with

no interactions. The relative mean increase between RAND

and REG of matched Rcyc was 29.7%, 36.7% and 27.5% for

Rcyc ¼ 5, 10 and 15, respectively.

http://rstb.royalsocietypublishing.org/
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Experiment 1 demonstrated a rapid differentiation in

brain response between regular and random sequences, repli-

cating the MEG results [19]. However, the EEG responses are

somewhat noisier than those measured with MEG, probably

influenced by a number of factors including ambient electric

noise and the smaller number of sensors used here (64, versus

274 in MEG), which impairs the efficiency of de-noising.

Electrode voltage drifts, which introduce low frequency

noise, may also have affected the robustness of the observed

sustained responses.

Overall, the data demonstrate that regular, predictable

sequences lead to a dramatic power increase of some 30%,

which is remarkable for evoked responses, and suggests a

large change in the underlying neural activity. This finding is

surprising in the light of previous work consistently reporting

reduced evoked responses to predictable patterns and inter-

preted as reflecting reduced prediction error (e.g. [47]; for a

review see [51]). The discrepancy with previous work may be

due to much of the existing work using sound patterns,

which confound repetition with predictability, making it diffi-

cult to dissociate adaptation effects from those purely due to

prediction. The present paradigm, using wide-band signals

and complex sound patterns allows us to control for simple

effects of adaptation (see additional discussion in [19]).

Furthermore, we use very rapid sequences, where the percep-

tion of patterns pops-out spontaneously rather than being

consciously trackable. It is likely that the neural proces-

ses involved in extracting the regularity are different from

those implicated in work using slower temporal patterns

(e.g. [52,53]), which allow high-level (conscious or mnemonic)

prediction of future events.

One possible explanation for the activation pattern

observed here is that it reflects automatic, bottom-up–driven

attentional capture by REG patterns. This attentional process

will be the focus of the rest of this paper. The behavioural

experiments below investigate the hypothesis that the large,

sustained amplitude shift that was observed for the REG

stimuli may reflect increased perceptual salience [36,37]. That

is to say, the more reliable REG stimuli trigger an automatic

(exogenous) attentional bias. This proposition leads to the tes-

table prediction that REG and RAND will have different effects

on behaviour, reflecting an attentional bias towards regularity

in REG sequences, even when task-irrelevant.
3. Experiment 2
This experiment aimed to measure the (assumed) behavioural

consequences of attentional capture by regular sounds. We

evaluated performance on a demanding listening task, with

REG or RAND sequences presented concurrently, as task-

irrelevant distractors. If REG patterns spontaneously capture

exogenous attention, we predicted that REG sequences will

prove more detrimental to performance than RAND sequences.

This prediction is in line with previous behavioural exper-

iments, whereby task-irrelevant stimuli outside the focus

of attention can result in attentional capture manifest as

degradation in performance in a behavioural task [61,62].

The main task was based on an auditory change-detec-

tion paradigm [63,64]. Stimuli were artificial acoustic

scenes, comprised of multiple simultaneous tone-pip streams,

each characterized by a distinct, constant frequency and

amplitude-modulation (AM) rate. The task required listeners
to detect occasional changes (appearance or disappearance

of one stream) within these scenes. This simulates the chal-

lenges faced by listeners in natural acoustic scenes, in

which many concurrent sound sources must be processed

and monitored simultaneously.

We presented the change-detection task and REG-RAND

distractor sequences concurrently to different ears, such

that they competed directly throughout the trial (figure 3a).

If REG patterns spontaneously capture exogenous atten-

tion, we predicted that REG sequences will prove more

detrimental to performance than RAND sequences.

(a) Methods
(i) Stimuli
The stimuli and experimental approach for the change-detec-

tion paradigm are described in detail in a previous study [65].

In brief, stimuli were artificial acoustic scenes consisting of

eight concurrent streams of tone pips, each with a unique fre-

quency (between 200 and 4000 Hz) and AM rate (3 to 35 Hz).

In total, 50% of the stimuli contained a change partway

through the scene: appearance (CA) or disappearance (CD)

of a stream. Scene changes occurred between 1000 and

2000 ms post-onset. The overall stimulus duration was

between 2000 and 4000 ms.

On each trial, a scene stimulus and a REG10 or RAND10

distractor sequence (with equal probability) were presen-

ted concurrently at the same dB level, to different ears,

such that they competed directly throughout the trial

(figure 3a). Each REG-RAND sequence consisted of between

40 and 80 tones. For REG sequences, this constituted between

4 and 8 cycles; i.e. sufficient for the regularity to become

perceptually established.

(ii) Procedure
Stimuli were blocked by change type (CA or CD), with 50% of

the trials in each block (160 overall) containing a change. The ISI

was randomized between 700 and 2000 ms. REG or RAND

sequences were randomly paired with each scene stimulus.

Subjects were instructed to attend to the ear containing the

scene and respond by button-press as soon as they heard a

change. To avoid confusion, the ear of presentation was fixed

throughout the experiment, but counterbalanced across sub-

jects. Subjects were naive to the structure of the REG-RAND

sequences, and told these were simply distractors to the main

change-detection task. The block order was counterbalan-

ced between subjects, and a break was allowed after every

40 trials. The session began with a short training block where

feedback was given on each trial.

(iii) Subjects
Ten subjects participated in this experiment (mean age 24.0

years; 7 female).

(b) Results and discussion
Figure 3b shows RT and sensitivity (d’) scores for detection of

scene changes with REG or RAND distractors presented

concurrently. A repeated-measures ANOVA was performed

on RT and d’; with change type (CA/CD) and distractor regu-

larity (REG/RAND) as factors. RT showed main effects of

change type (F ¼ 16.299; p ¼ 0.003) and regularity (F ¼
8.064; p ¼ 0.019) with no interaction. Similarly, d’ showed

http://rstb.royalsocietypublishing.org/
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a main effect of change type (F ¼ 18.244; p ¼ 0.002) and

regularity (F ¼ 9.786; p ¼ 0.012) with no interaction.

The results reveal that, contrary to our hypothesis, RAND

is more detrimental to performance than REG. The data are

consistent with the interpretation that RAND is harder

to ignore, at least when in direct competition with a concur-

rent, task-relevant, auditory stream (see also [23]; more

discussion below).
4. Experiment 3
Rather than using REG or RAND sequences as task-irrelevant

distractors, Experiment 3 placed REG and RAND sequences

in direct competition as task-relevant streams. Here, REG and

RAND were presented concurrently and both actively moni-

tored for targets (a silent gap). This is in contrast with

Experiment 2, where performance on the task required ignoring

REG or RAND stimuli. We predicted that when both sequence

types are monitored simultaneously, gaps in REG sequences

should be more readily detectable than gaps in RAND

sequences. This design is similar to that used in [44], who

demonstrated that targets embedded within regularly repeat-

ing visual streams are more easily detected, even though the

regularity of the stream was not itself goal-relevant.

(a) Methods
(i) Stimuli
This experiment used REG5 and RAND5 sequences consisting

of 50 ms tone pips interspersed with 50 ms gaps. Trials

involved the presentation of two concurrent sequences, one
in each ear (figure 4a). Sequences could be both REG or both

RAND, or one of each. In order to facilitate the perception of

the two sequences as independent concurrent streams, the

sequences were staggered by 50 ms, such that tones occurred

in alternation between the ears. In addition, sequences were

spectrally separated, such that the sequence in the right ear

was always a higher pitch. The tones were chosen from a

pool of 13 logarithmically spaced frequencies between 1587

and 6205 Hz for the right ear and between 280 and 1122 Hz

for the left.

On 50% of trials, one of the sequences contained a

target (an omission of two consecutive tones). Stimuli were

6000 ms long. When present, the target occurred at least

2000 ms after stimulus onset (following four REG cycles);

i.e. at a point in the REG stimulus when the regular pattern

has been established.

The main experiment consisted of the following conditions:

(i) RAND sequences in both ears (RAND-RAND, 25% of trials);

(ii) REG sequences in both ears (REG-REG, 25% of trials);

(iii) REG sequence in one ear and RAND in the other

(REG-RAND, 50% of trials). The target occurred in one of

the two sequences with equal probability. For REG-RAND,

we denote the stream containing the target using bold type;

thereby sub-dividing this condition into (iii(a)) REG-RAND

and (iii(b)) REG-RAND. Each condition was counterbalanced

across the two ears, such that target occurrence and REG versus

RAND sequences were equally likely in each ear. Before the

main session, subjects also completed a block where only a

single-sequence (REG or RAND) was presented to one of the

ears with equal probability; a target was present on 50% of

trials. These conditions are denoted as REG- and RAND-.
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(ii) Procedure
Subjects were instructed to press a keyboard button as soon as

they heard a gap in a sequence. Feedback was provided after

each trial. The single-sequence block contained 80 stimuli

(40 for each of REG- and RAND-). The main experiment

contained 120 trials for each of the four dual-sequence con-

ditions, presented in a randomized order. Subjects were

given short breaks every 10 min.

(iii) Subjects
Eleven subjects participated in this experiment (mean age ¼

25.7; 7 female)

(b) Results and discussion
We used hit rates as our primary outcome measure, as most

subjects produced low false positive rates (2.1% for single-

sequence, 2.0% for dual-sequence) yielding ‘artificially’ high

d’ scores. Hit rates were deemed the most unambiguous and

representative outcome measure of performance in this task.

In order to test the main hypothesis that regular sequences

would ‘pop-out’ and attract attention, we initially compared

performance for REG-RAND and REG-RAND, as both

contain simultaneously presented random and regular sequen-

ces (figure 4b). We postulated that regularity would bias
attention, leading to improved performance when targets

were embedded in regular streams (REG-RAND) as opposed

to random (REG-RAND). A repeated-measures ANOVA

showed no significant difference between the average hit rate

values for REG-RAND and REG-RAND (hit rates were 0.65

and 0.67, respectively; F ¼ 1.2; p ¼ 0.3). These results suggest

that regular sound patterns do not bias attention.

Figure 4c,d shows the hit rate for all conditions, separated

by whether the target is in the REG or the RAND stream—for

both single-sequence and dual-sequence stimuli. The hit rates

for targets in the single-sequence (REG- and RAND-)

conditions are the left-most bars in each plot. In the single-

sequence condition, subjects were better at identifying targets

in regular streams compared with random streams (F ¼ 20.6;

p ¼ 0.001). These findings are consistent with previous work

showing that performance is improved when targets are

embedded in temporally regular sequences [66–68]. This is

the case even when the dimension in which the regularity

expressed is independent of the dimension along which

targets differ.

A repeated-measures ANOVA was conducted on hit rates

in the dual-sequence conditions, with factors for regularity

of the target stream (REG-RAND) and the parallel stream

(REG-RAND). There was a main effect of target stream (F ¼
51.48; p , 0.01); here again subjects were overall better

http://rstb.royalsocietypublishing.org/
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at detecting targets in REG. We also found a main effect of

parallel stream (F ¼ 26.97; p , 0.01); revealing overall poorer

target detection when the parallel stream was RAND relative

to when it was REG. This pattern is in agreement with the

outcomes of Experiment 2, and consistent with the interpret-

ation that RAND patterns incur increased demand on

processing resources (discussed further below). However,

there was no interaction between the two factors, suggest-

ing that a RAND parallel stream was equally costly to

target-detection performance in a RAND or a REG stream.
 g
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5. Discussion
Brain responses measured with functional magnetic reson-

ance imaging (fMRI), MEG [19] and EEG (as seen here)

show consistently increased activation to regular acoustic pat-

terns, relative to matched random stimuli. One interpretation

of these systematic, pronounced effects is that they indicate

large differences in attentional capture between regular and

random patterns, such that regular patterns automatically

and involuntarily attract more attention. This account of the

imaging data is consistent with previous behavioural work

in the visual modality [44] and is broadly in line with the

fact that sensitivity to predictable patterns in the natural

environment is a major pre-requisite for survival. Organisms

produce regular, periodic motor sequences, such as loco-

motion and vocalizations, which are expressed as a pattern

in the temporal succession of sensations. The ability to auto-

matically orient towards such patterns within a crowded,

noisy scene is often critical for continued existence.

(a) Attentional capture by regularity?
The behavioural experiments reported here aimed to identify a

behavioural correlate for the observed brain response effects.

Using two tasks designed to probe different aspects of atten-

tional capture, we consistently find no evidence for the

exogenous capture of attention by regular acoustic patterns.

Despite the sizeable change in the EEG signal associated with

processing regular (REG), relative to random (RAND) tone-

pip patterns, REG sequences were not more distracting than

matched random sequences when task irrelevant, and were

also no more perceptually salient when participants were

actively monitoring REG and RAND streams concurrently.

While there is no evidence for REG sequences being more

perceptually salient than RAND sequences (or vice versa),

Experiments 2 and 3 suggest that RAND sequences are

more computationally demanding, and hence more distract-

ing, than REG sequences (e.g. [69]; the discussion below

disentangles these issues).

The paradigm in Experiment 2 shared key similarities

with the EEG experiment (Experiment 1). Participants were

naive to the nature of the distracting REG or RAND patterns,

and focused on a different task. A change-detection task,

rather than a visual task similar to that in the EEG exper-

iment, was chosen because: (i) its rapid nature allowed us

to probe behaviour more frequently, and hence efficiently;

and (ii) a competing auditory (rather than a visual) task is

more likely to reveal effects of distraction, because it poses

more competition for shared resources (see review in

[70,71]). It is therefore unlikely that failure to observe effects

of attentional capture is due to the difference in task per se.

Furthermore, by removing the decoy task altogether,
Experiment 3 constitutes a stricter test for a possible atten-

tional bias. When REG and RAND are monitored

concurrently, we observe equal gap-detection performance

whether the target is in REG or RAND, which suggests that

they do not differ in their perceptual salience.

The reasons for the discrepancy with results from vision

[44], where effects of attentional capture by regularity have

been reported, are unclear and may be due to many factors,

perhaps including a genuine difference in the mechanisms

of attentional allocation in the visual and auditory domain.

Further work directly comparing the two modalities is

required to resolve this issue.
(b) Processing of regular versus random sequences
The results of Experiment 3, demonstrating increased sensi-

tivity to targets in REG relative to RAND sequences when

presented alone, are consistent with many previous demon-

strations that regularity facilitates behavioural performance.

These studies, albeit mostly using regularity in the temporal

dimension rather than in frequency as we do here, consistently

show that regularity facilitates behavioural performance.

Expected events are detected and assessed more rapidly and

accurately than unexpected events [61–64,66,67,72–75]. This

occurs, as is the case here, even when the task dimension is

orthogonal to the feature dimension over which the regula-

rity is defined (e.g. [68]) and hypothesized to arise due to

the ‘pre-activation’ of the relevant neural machinery for

processing-predicted events [63,76].

The same processes have been demonstrated to contri-

bute to the suppression of regular streams when they are

not behaviourally relevant. For example, Andreou et al. [23]

demonstrated that it is easier to ignore a temporally regular

sequence, relative to a temporally irregular sequence (see also

[24,77,78]). Similarly, in Experiment 2, we show that REG

sequences are less distracting than RAND sequences when par-

ticipants are required to ignore those sequences and focus on a

competing change-detection task. A potential mechanism for

this effect is supplied by predictive coding [15,16], whereby

predictable inputs are attenuated by top-down predictions,

and the resulting prediction error triggers a process of updat-

ing the internal predictive model. Regularity allows the

derivation of a predictive rule; therefore, it becomes easier to

‘explain away’ the irrelevant stimulus, by suppressing the pre-

diction error with a closely matching top-down prediction.

Irregular stimuli demand more resources for processing as

they elicit a constant stream of prediction errors and thus con-

stantly trigger model updating. This may be taken to suggest

that (unpredictable) RAND sequences are more perceptually

salient. From the point of view of predictive coding, this is sen-

sible because RAND sequences are characterized by higher

information content than REG sequences. Friston et al. [79]

define salience in terms of the ability to reduce uncertainty or

to inform hypotheses about the sensory scene being sampled.

In the visual domain, this is usually measured in terms of

Bayesian surprise [33] and more generally as information

gain or epistemic value [80]. However, whether the theoreti-

cally information-rich RAND signals are useful in reducing

uncertainty about high-level representations is an open ques-

tion. In other words, is unpredictability itself salient? The

lack of a bias in performance between REG and RAND

sequences presented in direct competition (Experiment 3)

suggests not.

http://rstb.royalsocietypublishing.org/
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(c) If not attentional capture, what is the source of the
electroencephalography effect?

EEG and MEG measurements demonstrate an increase in

the amplitude of the sustained response for REG relative to

RAND stimuli. In fMRI, this is associated with greater acti-

vation for REG relative to RAND sequences across a large

portion of the superior temporal gyrus, including Heschl’s

gyrus and planum temporale [19]. The behavioural results

reported above suggest that this increased activation is

not associated with attentional bias towards (or increased

perceptual salience of) REG sequences.

Critically, the above explanation for why RAND sequences

were, in some cases, more detrimental to performance than

REG sequences implies more activation (increased demand

for computational resources) for random patterns relative to

regular ones. This may seem contradictory to the brain-level

effects. However, it is possible, that the increased auditory cor-

tical activation for regular patterns observed in M/EEG and

fMRI reflects increased inhibition. It is difficult to dissociate

excitatory and inhibitory activation with standard non-inva-

sive brain imaging techniques; rather future computational

and electrophysiological tools would be critical for exploring

this possibility. Indeed, recent findings in animal models

demonstrate a critical role for inhibition in shaping the

response of primary auditory cortex neurons to regularly

repeating sounds in the context of an oddball paradigm [81].

Another potential explanation for the larger response to

REG is that regularity detection is associated with heightened

sensitivity (increased gain) of the sensory units activated by

the regular pattern. According to this ‘precision-weighting’

account, precise, i.e. highly predictable, sensory streams are

preferentially weighted by increasing the post-synaptic gain

of the relevant (prediction error) units [14]. Importantly,

this can occur within the remit of automatic processing, so

does not entail attentional capture [31].
Lastly, it is possible that the increased sustained response

we observe is due to another process (or indeed multiple pro-

cesses) such as learning, working memory or recognition of a

match to a memory of previous stimulation (see [19] for

further discussion). This interpretation is consistent with the

diffuse source network including auditory cortex, hippo-

campus and inferior frontal gyrus identified in [19] as

contributing to the brain response to structured sequences.

To summarize, a picture emerges from these results in

which regularity in non-attended items does not capture atten-

tion. In fact, as demonstrated in Experiment 2, random stimuli

can be more distracting than regular ones. Consistent with the

literature, we found that regularity does, however, aid in scene

analysis by being easier to ignore (Experiment 2) and requiring

fewer resources to process (Experiment 3). Collectively, the be-

havioural and brain imaging findings can be reconciled by

considering both to result from mechanisms that minimize

surprise and uncertainty about the world [10,25].
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61. Correa Á, Nobre AC. 2008 Neural modulation by
regularity and passage of time. J. Neurophysiol.
100, 1649 – 1655. (doi:10.1152/jn.90656.2008)

62. Rohenkohl G, Cravo AM, Wyart V, Nobre AC. 2012
Temporal expectation improves the quality of

http://dx.doi.org/10.1111/j.1469-8986.1988.tb01239.x
http://dx.doi.org/10.1111/j.1469-8986.1988.tb01239.x
http://dx.doi.org/10.1016/j.tics.2006.01.010
http://dx.doi.org/10.1016/j.tics.2006.01.010
http://dx.doi.org/10.1073/pnas.1508523113
http://dx.doi.org/10.1016/j.tics.2009.09.003
http://dx.doi.org/10.1016/j.conb.2007.07.006
http://dx.doi.org/10.1016/j.conb.2007.07.006
http://dx.doi.org/10.1016/j.jphysparis.2006.09.012
http://dx.doi.org/10.1016/j.jphysparis.2006.09.012
http://dx.doi.org/10.1016/j.heares.2011.06.001
http://dx.doi.org/10.1016/j.heares.2011.06.001
http://dx.doi.org/10.1121/1.3500695
http://dx.doi.org/10.1007/s10548-013-0334-6
http://dx.doi.org/10.1162/jocn_a_00481
http://dx.doi.org/10.1162/jocn_a_00481
http://dx.doi.org/10.1038/nrn3838
http://dx.doi.org/10.1016/j.tics.2016.03.008
http://dx.doi.org/10.1016/j.tics.2016.03.008
http://dx.doi.org/10.1093/cercor/bhr310
http://dx.doi.org/10.1523/JNEUROSCI.0114-13.2013
http://dx.doi.org/10.3389/fnhum.2010.00215
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.1016/j.visres.2008.09.007
http://dx.doi.org/10.1016/j.visres.2008.09.007
http://dx.doi.org/10.1098/rstb.2016.0101
http://dx.doi.org/10.1037/h0076778
http://dx.doi.org/10.1037/h0076778
http://dx.doi.org/10.1016/S0042-6989(99)00163-7
http://dx.doi.org/10.1016/S0042-6989(99)00163-7
http://dx.doi.org/10.1117/1.1333677
http://dx.doi.org/10.1117/1.1333677
http://dx.doi.org/10.1038/81504
http://dx.doi.org/10.1098/rspb.2011.0836
http://dx.doi.org/10.1111/1467-9280.00168
http://dx.doi.org/10.1111/1467-9280.00168
http://dx.doi.org/10.1016/j.neuron.2006.01.021
http://dx.doi.org/10.1167/10.8.2
http://dx.doi.org/10.1177/0956797612460407
http://dx.doi.org/10.1177/0956797612460407
http://dx.doi.org/10.1523/JNEUROSCI.1227-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.1227-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.3730-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.3730-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.2599-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2599-11.2011
http://dx.doi.org/10.1073/pnas.1112895108
http://dx.doi.org/10.1073/pnas.1112895108
http://dx.doi.org/10.1523/JNEUROSCI.1425-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1425-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2227-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.2227-12.2012
http://dx.doi.org/10.1027/0269-8803.21.34.204
http://dx.doi.org/10.3389/fnhum.2014.00152
http://dx.doi.org/10.3389/fnhum.2014.00152
http://dx.doi.org/10.1093/cercor/bhu323
http://dx.doi.org/10.1007/s10548-010-0154-x
http://dx.doi.org/10.1007/s10548-010-0154-x
http://dx.doi.org/10.1155/2011/156869
http://dx.doi.org/10.1016/j.jneumeth.2008.03.015
http://dx.doi.org/10.1016/j.jneumeth.2008.03.015
http://dx.doi.org/10.1016/j.neuroimage.2014.05.068
http://dx.doi.org/10.1016/j.neuroimage.2014.05.068
http://dx.doi.org/10.1016/j.jneumeth.2007.03.024
http://dx.doi.org/10.1016/j.jneumeth.2007.03.024
http://dx.doi.org/10.1152/jn.90656.2008
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160105

11

 on February 24, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
sensory information. J. Neurosci. 32, 8424 – 8428.
(doi:10.1523/JNEUROSCI.0804-12.2012)
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