

.

RoboRun: A gamification approach to control flow learning for
young students with TouchDevelop

Siri Vinay
Department of Computer Science

University College London

siri.vinay.12@ucl.ac.uk

Manoj Vaseekharan
Department of Computer Science

University College London

manoj.vaseekharan.12@ucl.ac.uk

Dean Mohamedally
Department of Computer Science

University College London

d.mohamedally@cs.ucl.ac.uk

Abstract

This demo paper introduces young students to writing code in a
touch enabled interactive maze game. Problem-based learning is
given a gamified approach to learning, while simultaneously
introducing the TouchDevelop [1] platform to build basic first
control flow algorithms and to learn about ordering and loops in
conditional statements.

Categories and Subject Descriptors K.3.2 [Computer and In-
formation Science Education]: Computer science education
Keywords: Education tool, early programming, learning pro-
gramming environment, touch-based programming.

1. Introduction

1.1 Game idea

RoboRun is an interactive game developed for Windows 8 tablets
and touch input devices to teach students basic conditional pro-
gramming and algorithm sequence ordering skills. RoboRun acts
as a basic introduction to coding using a gamification [2] interface
to develop key skills and challenge players to come up with better
solutions to increasingly more difficult levels. Structuring our
application around a game format allows for it to appeal to and
engage our target audience of late primary and early secondary
school students aged 7 to 14 [3]. Like prior art such as Logo’s
turtle [4] it uses iconic representation to give immediate visual
feedback for debugging with the aim of improving mathematical
and algorithmic capability.

1.2 RoboRun’s Goals

RoboRun aims to inspire children to learn to program through the
motivation of gaming by programming a robot for points and
challenges. The game lets students experience coding skills need-
ed such as problem solving, basic algorithms and reasoning.

 The game enables a student to gain experience in the Touch-
Develop language through RoboRun’s exercises, which they can
then further use to improve their programming ability in the main
TouchDevelop environment.

1.3 Gameplay

The student controls a robot in a maze using several commands to
navigate across the level to a goal point without collisions. There
are imperative controls that issue commands such as ‘Go
Straight’,’Turn Left’, ‘Turn Right’. There are also loop statement
controls (For loop and While loop) and a decision making
statement control (If...else statement). These are directly mapped
to TouchDevelop’s own ‘if statement’, ‘while loop’ and ‘for loop’
controls.

 The player interacts with our game code editor via the use of
the touch screen buttons located in the ‘controls’ section and
inputting parameters via dropdown box selections and text inputs.
A playback button enables the robot to execute the code in real-
time. The student can see whether the robot runs all the way to the
goal point, or whether it fails and crashes into an obstacle or wall,
with a walkthrough of the code highlighted as it traverses the
maze.

Figure 1: Structure of pseudo-code syntax in RoboRun

 RoboRun uses full English sentences similar to Scratch [5] to
describe the sequence that the robot must follow (figure 1). This
allows the solution to be easier to understand by students, as well
as forming a link between the Standard English language and a
programming language.

 The game scores the student player based on various factors
such as code length, use of loops/decision statements and time
taken to create the solution. Students are discouraged from using
solely imperative statements. Displaying a score encourages
students to do the level again and obtain a higher score by coming
up with more sophisticated solutions.

1.4 TouchDevelop Integration with RoboRun

Once a student completes a maze, they are presented with the
TouchDevelop generated code enabling them to examine and
walkthrough the syntax. Removing the scoring element, this code
is then exported to an external TouchDevelop library with the
same graphical functionality to be shared on the TouchDevelop
cloud service with other students.

 Students are able to modify the generated code from the game
directly in the TouchDevelop environment. Students can then
make use of further programming features from the TouchDevel-
op platform.

2. Design

 Figure 2: Gameplay Screen

The game screen has 3 sections. Figure 2 shows the main section
on the right showing the gameplay area with the robot, grid, ob-
stacles and goal point displayed. The top section displays all the
commands inputted by the student in a queue. The bottom dis-
plays all the controls that the user can use when creating their
solution to the level. Controls bring up prompts which the user
will have to enter parameters for. For example, using the Go
Straight function will ask for the player to enter how many
squares they want to move by.

 The game was primarily designed for touch enabled/tablet
devices. Large square buttons were used for the controls for easy
use with arcade like responses. Bright colourful prompts with
large circular buttons/input areas, together with vibrant visuals
make the game more aesthetically pleasing.

 Validation methods prevent the user from entering irrelevant
or incorrect data. This indicates to the student that they are per-
haps out of bounds and are giving an incorrect command choice.

3. Upcoming Trial Work

The game will be trialled in classroom settings with students of a
range of age groups similar to previous e-learning approaches [6].
User centred evaluations will report time to solve algorithms of
different approaches, also considering the students background
experience to programming and how they collaborate with other
students to solve the mazes. A comparison of approaches will be
suggested for improving control flow teaching with modern
devices.

Several levels and game tasks are currently being implemented
including a “Build your own level” feature to design and test a
student’s ability to create longer algorithms for solving mazes. A
planned follow up development will incorporate additional game-
play mechanics for the robot such as wait-for states for obstacles,
swapping data to teleport, and multidimensional arrays of posi-
tions in a 3D view of the gameplay.

References

[1] TouchDevelop, http://touchdevelop.com
[2] Kapp, Karl M. The gamification of learning and instruction: game-
based methods and strategies for training and education. Wiley. com,
2012.
[3] Simões, Jorge, Rebeca Díaz Redondo, and Ana Fernández Vilas. "A
social gamification framework for a K-6 learning platform." Computers in
Human Behavior (2012).
[4] Noss, Richard. "Constructing a conceptual framework for elemen- tary
algebra through Logo programming." Educational Studies in Mathe-
matics 17.4 (1986): 335-357.
[5] Resnick, Mitchel, et al. "Scratch: programming for all." Communi-
cations of the ACM 52.11 (2009): 60-67.
[6] Clements, Douglas H., and Dominic F. Gullo. "Effects of computer
programming on young children's cognition." Journal of Educational
Psychology 76.6 (1984): 1051.

