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Abstract

Subjects typically choose to be presented with stimuli that predict the existence of future reinforcements. This so-called
‘observing behavior’ is evident in many species under various experimental conditions, including if the choice is expensive,
or if there is nothing that subjects can do to improve their lot with the information gained. A recent study showed that the
activities of putative midbrain dopamine neurons reflect this preference for observation in a way that appears to challenge
the common prediction-error interpretation of these neurons. In this paper, we provide an alternative account according to
which observing behavior arises from a small, possibly Pavlovian, bias associated with the operation of working memory.
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Introduction

Animal behavior all too rarely follows the precepts of simple

theories such as normatively optimal choice. Prominent

examples of this arise in the florid fancies of Breland &

Breland’s animal actors [1], or in the complexities of negative

automaintenance or omission schedules [2–4]. Such failures and

irrationalities have been important sources of theory revision

and refinement, for instance leading to suggestions about

the competition and cooperation of multiple systems of control

[5–7], some instrumental and adaptive; others Pavlovian and

hard-wired.

In this paper, we study one apparent departure from optimality,

namely a type of ‘observing behavior’ [8,9], which has been the

subject of a recent important electrophysiological study [10]. In

brief, subjects are programmed to receive either a large or small

reward, with its size being determined stochastically. When faced

with the choice of finding out (by being presented with a suitably

distinctive cue) sooner rather than later which of the two rewards

they will ultimately receive, subjects prefer to know sooner. A lack

of indifference despite the equality of the outcomes has been found

to be widely true even if the knowledge cannot influence the

outcome, and, at least in other experiments, even if this choice is

expensive [8,9,11–13]. In economics, the same anomaly is referred

to in terms of ‘‘temporal resolution of uncertainty’’ [14], explained

by such notions as savoring [15–17], with subjects enjoying the

anticipation of good things to come.

The correct interpretation of this form of observing behavior

has been the subject of substantial debate (see, e.g. [9]).

Superficially attractive theories, such as a desire to gain Shannon

information [18] have been dealt fatal blows, for instance with

animals preferring to observe more even when the number of bits

they receive by doing so is less (e.g., as the probability of getting the

large reward becomes smaller than 0:5, [12]).

A recent study on observing behavior in macaques [10] has

offered a new perspective on the problem. These authors recorded

from putative dopamine neurons in the midbrain whilst monkeys

chose to observe. According to a common theory, these neurons

report a temporal difference error in predictions of future reward

[19,20] as in reinforcement learning accounts of optimal

instrumental choice [21]. Bromberg-Martin and Hikosaka [10]

showed that: (a) the macaques did observe; and furthermore (b) the

activity of dopamine neurons was associated with the choice they

make. However, although the behavior and activity are mutually

consistent, observing behavior offers no instrumental benefit and

therefore it should also not be associated with any prediction

errors. Bromberg-Martin and Hikosaka suggested that this means

that the dopamine cells are reporting on some aspects of the

benefit of information gathering in addition to aspects of reward.

In this paper, we examine the extent to which this form of

observing behavior can be explained by temporal difference

learning, coupled with the same mechanism that provides an

account of a wide range of departures from normative choice,

namely a Pavlovian influence over instrumental actions [4]. In

particular, we assume that subjects only make associative

predictions when they are appropriately engaged in the task. If

the level of this engagement is influenced by the size of the

predictions (the putatively Pavlovian effect), then stimuli predicting

certain or deterministic large future rewards (one outcome of an

observing choice) will lead to more engagement than stimuli that

leave uncertain the magnitude of the future rewards. This idea can

be seen as a realization of the suggestion made by Dinsmoor [9]

that the predictions of future reward associated with stimuli

influence the attention paid to them. We show that occasional

failures of engagement, modeled as a breakdown in the working

memory for the representational state, can lead directly to both the

preference for observing and the apparently anomalous dopamine

activity, without need for any reference to ‘information’. We also
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examine the various factors that control the strength of observing

in this model.

Results

Bromberg-Martin and Hikosaka’s experiment (see Methods and

Figure 1) involved the most precise conditions for establishing

observing behavior. On each trial, thirsty subjects had a 50%

chance of receiving a small or large volume of water directly into

their mouths. There were three sorts of trials: forced-information,

forced-random and free choice. On forced-information trials, the

subjects were presented with a single target (CD; just an orange

square in the figure) and, after looking at it, would receive one of

two cues (Sz; an orange ‘+’, or S{; an orange ‘{’) according to

the volume they were to receive in a couple of seconds. On forced-

random trials, looking at the single target (CND; green square) led

again to one of two cues (SND1; green ‘*’, or SND2; green ‘o’).

However, either of these could be followed by either small or large

rewards; and thus they provided no discriminative information

about the forthcoming reward. Finally, on free choice trials, both

orange and green targets were provided, and the subjects could

choose whether to receive the discriminative (orange) or non-

discriminative (green) cues.

Figures 2a;b show primary behavioral results from the study for

two subjects – both gradually expressed a bias towards the

discriminative (orange) option in the free-choice trials. As

Bromberg-Martin and Hikosaka stressed, under a standard

associative learning or temporal difference scheme, there is no

difference between the expected reward for the discriminating and

non-discriminating option, and so no reason to expect this strong

and enduring preference.

We built a model of this which, with one critical exception that

we discuss below, involves a standard temporal difference learning

algorithm [21,22]. Forced-choice and free-choice trials permit

learning about the future expected rewards associated with the

various targets and stimuli, training the values of the states. Then,

on free-choice trials, the selection depends on the relative values,

via a softmax function (see methods). Figure 2c;d shows the results

from simulations of our model, with parameters chosen to match

Bromberg-Martin and Hikosaka’s two subjects. The model closely

matches qualitative features of the monkeys’ performances.

In standard models such as this, in which there is a delay

between the presentation of cues and the rewards that they

predict, an assumption has to be made about the way that the

subjects maintain knowledge about their state in the task, and

indeed keep time. Many different possibilities have been explored,

from delay lines to complex patterns of activity evolving in

dynamical recurrent networks (e.g., [23–28]). All of these amount

to forms of working memory – and so present the minimal

requirement that the subjects continue to be engaged in the task

throughout the delay in sufficiently intense a manner as to

maintain this ongoing memory. Thus the critical exception to

conventional temporal difference learning in our model is to

assume that this maintained engagement is influenced by the

current predicted value. That is, if the value is high, then

engagement is readily maintained; if the value is low, then

engagement can be weakened or lost.

Losing engagement is detrimental to the subject in the context

of the present task; by analogy with a similarly detrimental effect in

negative automaintenance, we consider it a form of Pavlovian

misbehavior [4]. Pavlovian responses are typically elicited in an

automatic manner based on appetitive or aversive predictions, and

can exert benign or malign influences over the achievement of

subjects’ apparent goals. Normally, such responses are overt

behaviors; here, along with several recent studies [29,30], we

consider internal responses, associated with the operation of

working memory. Mechanistically, these could come, for instance,

from the influence dopamine itself exerts on the processes

concerned [31].

In the model, we consider engagement to be lost completely on

some trials as a stochastic function of the evolving predicted value.

Such losses have the effect of decreasing the subjective value of

cues and states associated with lower values below their objective

worth; in particular exerting a negative bias on the non-

discriminative cues (SND1; SND2) compared with the discriminative

cue associated with the large reward (Sz), which will more rarely

experience such losses. Figure 3 shows the effective probability of

disengagement at different timepoints as well as showing the effect

this has on the expected reward. Disengagement associated with

S{ is benign, since the outcome on those trials is modelled as

Figure 1. Experimental setup for a free-choice trial, similar to
Bromberg-Martin and Hikosaka [10]. The monkey performs its
choice (CD or CND) according to color, and the discriminating/random
stimulus is presented. At the end of the trial either a large (1 ml) or tiny
(0.04 ml) amount of water is delivered.
doi:10.1371/journal.pcbi.1000903.g001

Author Summary

The theory of Reinforcement Learning (RL) has been
influential in explaining basic learning and behavior in
humans and other animals, and in accounting for key
features of the activity of dopamine neurons. However,
perhaps due to this very success, paradigms that challenge
RL are at a premium. One case concerns so-called
‘observing behavior’, in which, at least in some versions,
animals elect to observe cues that are predictive of future
rewarding outcomes, although the observations them-
selves have no direct behavioral relevance. In a recent
experiment on observing, the activity of monkey dopami-
nergic neurons was also found to be incompatible with
classic RL. However, as is often the case, this was a task
that allowed for potential interactions from a secondary
behavioral system in which responses are directly trig-
gered by values. In this paper we show that a model
incorporating a next order of refinement associated with
such Pavlovian interactions can explain this type of
observing behavior.

‘Observing Behavior’
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being close to 0 in any case. Altogether, this creates a bias towards

choosing the discriminative option on free-choice trials, as is

evident in Figure 2c;d.

The difference between the parameters for Figures 2c;d is in the

parameter b governing the strength of the competition in the

softmax (b~50 and b~20 for Figure 2c;d respectively). Monkey

V’s results are consistent with a larger value of b than monkey Z;

smaller b leads to more stochasticity and a lower overall degree of

preference. The asymptotic preference for observing is monotonic

in b.

Bromberg-Martin and Hikosaka [10] also recorded the activity

of putative midbrain dopaminergic cells during the performance of

the task. Figure 4a shows the activity of an example neuron in the

various conditions. The population response is similar (Figure 4 of

[10]) albeit, as has often been seen, with an initial brief activation

to the forced choice non-discriminative case, likely because of

generalization [32]. Firing at the time of the discriminative or non-

discriminative cues (marked ‘cue’) and the delivery or non-delivery

of reward (‘reward’) is just as expected from the standard

interpretation of these neurons, i.e., that they report the temporal

difference prediction error in the delivery of future reward [19,20].

However, it is their activity at the time of the targets indicating

the forced-informative or forced-random trials (marked ‘target’)

that is revealing about observing. The target indicating a forced-

informative trial was associated with a small but significant phasic

increase in activity; whereas that indicating the random cues was

followed by a small decrease in the firing rate. Under the temporal

difference interpretation of the neurons, this is consistent with the

preference exhibited by the monkeys, but not with the objective

value of the options.

Figure 4b shows modelled dopamine activity in the variable

engagement temporal difference model (here, negative prediction

errors have been compressed compared with positive ones, see

methods; [33,34]). This shows exactly the same pattern shown in

the monkey data. Note that, once the subject has learned the

associations and learned the preference for choosing the

discriminative option in the free choice trials, these trials will

overall be more frequent than the forced-random trials, and so the

negative prediction error associated with the latter will be larger

than the positive prediction error associated with the former.

Figure 5 decomposes the modelled responses in the cases that

there is successful and failed engagement between cues and reward

or non-reward. The most significant effect of the complete failure

to engage given an non-discriminative cue, is that if the large

reward is provided, then there is a greater response than expected

from a 50% prediction. The possibility of using this to test the

theory is discussed below.

In a version of the task that involved choice between immediate

or delayed information about upcoming rewards, Bromberg-

Martin and Hikosaka [10] further showed that switching the colors

of the cues without warning led to a slow reversal of the observing

choice (Figure 6a;b). Figure 6c;d shows the same for the model

using identical softmax parameters to those in Figure 2c;d. The

switch in preference evolves at a similarly glacial pace.

Various other features of observing can be examined through

the medium of the model. Figure 7a;b show the consequence of

Figure 2. Comparing observing in monkeys and the model. a–b) Observing in two monkeys performing the task, from Bromberg-Martin and
Hikosaka [10]. The dotted lines correspond to the Clopper-Pearson 95 percent confidence interval. c–d) Two examples of observing produced by the
model. The parameters for the two plots differ only by the parameter b, the inverse temperature in the softmax. Each session is 480 trials in the
simulations (160 choice trials).
doi:10.1371/journal.pcbi.1000903.g002

‘Observing Behavior’
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the reinforcing outcome being aversive (e.g., an electric shock)

rather than appetitive. One key question in this case is whether

failure to engage is controlled more by salience or valence.

Figure 7a shows the former case, for which a prediction of a large

punishment also protects engagement (symmetrically with reward;

inset plot). In this case, subjects prefer the random to the

discriminative cues, since disengagement leads to subjective

preference. Such preference for random cues might also come

from adding a fixed value to all the potential rewards, thus

allowing the moderately large disengagement in S{ to have a

subtractive value on its expected values (Bromberg-Martin,

personal communication, 2010). However such an effect would

likely be small.

Figure 7b shows the case in which valence (from appetitive to

aversive) determines disengagement, with predictions of punish-

ments leading to more failures of engagement than small rewards.

This again supports observing behavior. Unfortunately, experi-

mental tests of the case involving punishment [35] have not

enjoyed the precision of the paradigm adopted by Bromberg-

Martin and Hikosaka, leaving open the question as to which of

these patterns arises.

Another important experimental manipulation has been to vary

the probability Prew of the larger versus the smaller reward. As

Prew decreases from 1 towards 0.5 there is an increase in the

observing bias (i.e., a greater tendency to choose the discriminative

option). Below this, the nature of the bias depends on the

assumption about how the choices are generated. A choice rule

that depends on the difference in expected values (VD{VND)

leads to a bias that ultimately decreases towards 0 as these values

themselves decrease towards 0. However, the bias is asymmetric

about Prew~0:5 (black curve in Figure 7c). If, instead, the choices

are based on the ratio of the values (VD=VND), the choice bias can

continue to increase as Prew approaches 0 (red curve). Just such an

increase in observing was shown by Roper and Zentall [12] as

reward schedules thinned. While some studies have also

manipulated the size of the reward [36–38], our model does not

make any direct predictions about this. It is possible that

adaptation would scale the response to the overall sizes of

available rewards (as indeed found for phasic dopamine activity in

[39]), and the metrics of this would have to be known in order to

make predictions about disengagement.

One extra factor that is important for analysing behavior is that

the biases inherent in disengagement are small and develop over a

long time-scale, consistent with the stately progress evident in

Figure 2. However, this means that the initial course of learning

can be subject to significant influence from the initial values

ascribed to the different options, leading to biases that are

incommensurate with the final, long term, state. Figure 7d shows

an example. For the blue curve, the initial values of all states are

low (0), but the probability of a reward is high (0:75); for the red

curve, the initial values are high (1), but the probability of a reward

is low (0:25). In the former case, there is substantial initial over-

observation; in the latter, initial under-observation.

Discussion

We have provided an account of ‘observing behavior’ that

shows how it can arise from a small Pavlovian bias over

instrumental behavior associated with disengagement from a task,

rather than any aspect of information seeking. Pavlovian biases are

rife in decision-making; and accommodating them does not

necessitate any further change to the standard underlying theory

of the activity of dopaminergic neurons that has not already been

suggested to accommodate other data. What we have done here is

specify the shape of such an interaction based on disengagement in

the task. We intended specifically to capture [10] experiment on

macaques. However our results do touch upon other, but

emphatically not all, instances of observing in the literature.

Experiments such as [10] into observing are designed to

maximize the effects of what is a relatively small anomaly in

Figure 3. The mechanics of the model. a) The probability of
disengagement at different timepoints for the task in Figure 1
(conditional on having not disengaged at prior timesteps). Similar
color convention as in Figure 1. Orange traces are for discriminative
trials; green for non-discriminative ones; solid lines for the larger reward
or one of the two non-discriminative cues; dashed lines for the smaller
reward. b) The total probability of having disengaged by the time of
reaching state s. c) The expected reward, V, at different timepoints for
the TD model with disengagement. For comparison, the expected
reward for a traditional TD model without disengagement is shown in
transparent colors. Notice that although the chance of disengagement
is high for S{, it has little effect due to the already low value of this
state. By contrast, the moderate engagement for SND1 and SND2 has a
larger effect due to their higher associated value.
doi:10.1371/journal.pcbi.1000903.g003

‘Observing Behavior’

PLoS Computational Biology | www.ploscompbiol.org 4 September 2010 | Volume 6 | Issue 9 | e1000903



decision making (compared, for instance, with the more extreme

misbehavior evident in negative automaintenance [2] or the

schedule task [40]). Indeed, in this case, the subjects did not have

to pay a penalty for observing. Thus, under standard decision-

making conditions, we may expect the net effect of disengagement

to be modest, leaving near-optimal behavior within the scope of

the model.

Dinsmoor [9] suggested an account of the phenomenon based

on his observation of ‘selective observing’, i.e., that the subjects

would preferentially focus on stimuli associated with higher

probabilities of reward. This idea met some resistance (some of

which is contained in the commentary to [9]), partly based on

experimental tests in which the subjects were not able to avoid the

low value predictive cues. Our account can be seen as a form of

selective observing, but involving internal actions associated with

the allocation of engagement and attention, rather than external

actions involving preferential looking. It might seem that these

accounts are close to Mackintosh’s [41] suggestion that attention is

preferentially paid to stimuli that are strong predictors of

affectively important outcomes. However, in Mackintosh’s ac-

count, attention particularly influences the speed of learning (the

associability of the stimulus) rather than the fact of it (at least in the

absence of competing predictors), and so would not have the

asymptotic effect that is apparent in the experiments we have

discussed.

Another interesting account of observing is Daly and Daly’s

DMOD [42], which learns predictions associated with frustration

(when reward is expected, but does not arrive), and courage (when

reward is actually delivered during a state of frustration). These

extra predictions warp the net expected values associated with the

different cases in observing, favoring observing responses. The

theory underlying DMOD is the original Rescorla-Wagner [43]

version of the delta rule [44], whose substantial modification by

Sutton and Barto [45] to account for secondary conditioning led to

the original prediction error treatment of the activity of dopamine

neurons in appetitive conditioning [19]. It would be necessary to

extend DMOD in a similar way, and to make an assumption

about which of its three prediction errors (or other quantities) are

reflected in the activity of dopamine neurons, in order to

determine its match to the neurophysiological data. The failure

of TD models to capture behavioral aspects of frustration is,

however, notable.

To some tastes, the most theoretically appealing accounts of

observing start from the notion that animals seek to acquire

information about the world [46]. However, formal informational

theories have difficulty with the results of reducing the probability of

reward (Figure 7c; [12]), which reduce the uncertainty and the

information gained, but increase observing. More informal theories,

such as that suggested by [10] require more precise specification to

be tested against accounts such as the one here. The sloth of initial

learning and reversal apparent in Figure 6 (taking 1200–2400

choice trials, 3000–7000 trials overall) might be considered

suggestive evidence against an informational account, since it

implies at the very least a nugatory value for the information.

Figure 4. Comparison of neuronal firing and the modeled TD signal. a) An example of the firing rate of a single dopamine neuron during
forced trials, based on data from [10]. The various trial types are marked on the plot; briefly orange traces are for discriminative trials; green for non-
discriminative ones; solid lines for the larger reward, when known (or one of the two non-discriminative cues); dashed lines for the smaller reward (or
the other non-discriminative cue). b) The modeled average TD signal at different time points in a trial using the same conventions as in (a). In order to
facilitate the visual comparison of model and data in this figure, we truncated the negative part of the modeled TD signal at 25% of the maximal
positive response of the neuron.
doi:10.1371/journal.pcbi.1000903.g004
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In terms of our account, there are various routes by which

predicted values could influence persistent engagement. Failure to

engage can be seen as the same sort of malign Pavlovian influence

over behavior that is implicated in the poor performance of

monkeys in tasks in which they know themselves to be several steps

away from reward [40,47]. In that paradigm, it is an explicitly

informative cue that the reward is disappointingly far away that

leads to disengagement; this parallels the disappointment associ-

ated with the non-discriminative cue in observing. The most

obvious mechanism associated with engagement is the influence of

dopamine itself over working memory [31]; however, whether this

is the phasic dopamine signal associated with prediction errors for

reward [19] or a more tonic dopamine signal associated with a

longer term average reward rate [48,49] is not clear. Alternatively,

some theories suggest that working memory is controlled by a

gating process [29,30] associated with the basal ganglia, treating

internally- and externally directed action in a uniform manner.

Dopamine certainly influences the vigor associated with external

actions [48–50]; it is therefore reasonable to assume that it might

also influence internal engagement.

We specialized our description of the model to the particulars of

the experiment conducted by Bromberg-Martin and Hikosaka

[10]. The most important question for other cases concerns the

conditions under which re-engagement occurs. Since disengage-

ment is seemingly rather rare, it is hard to get many hints from this

experiment, and we might assume that it is reward delivery itself

that causes re-engagement. However in a more general setup (e.g.

without reward delivery at fixed time points), a mechanism for re-

engagement is necessary. One possible way to do that would be by

stochastically re-engaging based on either the reward prediction

error or expected value. Such a mechanism of re-engagement

could happen at any time point but would be extremely likely to

happen at the delivery of reward, as well as for the initiation of a

new trial. To be fully generalizable we also need to specify the case

for disengagement at the time of an action selection. While in a

disengaged state we envision the animal not performing an explicit

choice, thus potentially not responding within an allocated time. If

a choice is required to progress in the behavioral setup it would

happen after an eventual re-engagement.

The model raises some further questions. First, we assumed that

the probability of disengagement is a function of the actual

prediction. However, it is possible that this function scales with the

overall magnitude or scale of possible rewards, making the degree

of observing relative rather than absolute. There is a report that

phasic dopamine itself scales in an adaptive manner [39,51], and

this would be a natural substrate.

A second issue is whether disengagement is occasioned by the

change in predictions associated with the phasic dopamine

activity, or the level of the prediction itself. If the former, then

in tasks such as the one studied by Bromberg-Martin and

Hikosaka [10], where substantial prediction errors only happen

with phasic targets and cues, the state could, for instance, just be

poorly established in working memory at the outset, because of a

weak dopamine signal, and this could lead to a subsequent chance

of disengagement. We adopted the simpler scheme in which it is

the ongoing predictive value that controls the chance of

disengagement. One experiment that hints in the direction of

change is that of Spetch et al. [52] (for a more recent study see

[53]). In this, pigeons were given the choice between a certain

(100%) or uncertain (50%, but observed) reward. Surprisingly, the

level of engagement to the latter (measured by the number of pecks

to the illuminated key) was many times to that of the former, and

the pigeons duly made the suboptimal choice. The model

presented in this paper does tie engagement to choice in a similar

way, but we would be unable to explain such a strong effect. A

variant of the model for which engagement is governed by

prediction errors rather than predictions would show some

contrast effect that could favor the uncertain, but observed,

reward. However, it would be hard to explain such a stark

contrast.

A third issue is whether disengagement is complete (and

stochastic), or partial (and, at least possibly, deterministic). We

considered the former case, and indeed, this leads to a

straightforward prediction that the histogram of the dopamine

response at the time of a delivered reward in the non-

discriminative case might have two peaks; one associated with

continuing engagement to the point of reward; the other, which

would be roughly twice as high, associated with prior disengage-

ment. However, it is also possible that less dramatic changes in

engagement occur during the interval between cues and reward. If

many individual neural elements are involved in the engagement

(for instance in working memory circuits devoted to timing), then

some could disengage before others. This might even lead to a

non-uniform behavior among different dopamine cells. Unfortu-

Figure 5. An illustrative example of the modeled temporal
difference signal for each of the four conditions. The coloured
line indicates the regular temporal difference term, with the following
color convention: orange represents a discriminating choice, green is
the non-discriminating option, while the complete line is for a
rewarding trial, the dotted line for a non rewarding trial. The vertically
off-set black line represents the temporal difference signal for a failure
after the time of the revealing (indicated by the black dotted line) of the
stimulus due to Pavlovian dis-engagement. Notice that the dis-
engagement is an unlikely event that relatively rarely elicits a dip in
the TD signal, whereas, e.g., the delivery of an unexpected reward elicits
the typically robust response.
doi:10.1371/journal.pcbi.1000903.g005

‘Observing Behavior’
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nately, the low firing rates of these cells make it hard to

discriminate between these various possibilities.

Finally, the question arises as to the computational rationale for

value-dependent disengagement. Other instances of Pavlovian

misbehavior, such as withdrawal from cues associated with

predictions of low values, can find plausible justifications in terms

of evolutionary optimality. Disengagement might be seen in the

same way, as a Pavlovian spur to exploration [54] in the face of

poor expected returns.

From the perspective of conditioned reinforcement, our account

suggests that the issue that is often studied is not really the one that

is critical. Various investigators (see, for instance, the ample

discussion in Lieberman et al. 1997 [55] about the differences

between their findings and those of Fantino and Case 1983 [56])

have considered whether stimuli like Sz are conditioned

reinforcers because of their association with the reward. For us,

Sz and SND1 and SND2 are all conditioned reinforcers. The key

question for observing behavior is instead an apparent concavity:

the average worth of two different stimuli associated determinis-

tically with small and large rewards is greater than the worth of a

single stimulus associated stochastically with the same outcome

statistics (see [57]). It is this non-linearity that demands

explanation, and not merely the fact, for instance, of savoring or

anticipation of the future reward, which could quite reasonably

also be purely linear. Some accounts put the weight of the non-

linearity onto the stimulus associated surely with the large reward.

By comparison, our account places this emphasis onto the non-

discriminative stimuli, suggesting that they are more likely to lead

to disengagement. The same is true of other sources of non-

linearity, for instance a mechanism that accumulates distress from

the prolonged variance/uncertainty in the non-discriminative

pathway.

Various versions of the ‘observing task’ have also been tested

on humans [55,56,58]. These studies have shown consistent

observing behavior, but, partly because of the different reading of

the issue of conditioned reinforcement to the one discussed

above, have often focused on different questions and methods

from those in Bromberg-Martin and Hikosaka [10]. For instance,

one question has been whether subjects would observe if they

only ever found out S{ and never Sz – the idea being that

conditioned reinforcement could support observing of the latter

but not the former. Unfortunately, the answers have been

confusing [55], perhaps partly because of issues about how

cognitive effects (e.g., expectations of controllability) influence the

results. Note, in particular, that we have only modeled observing

behavior associated with repeated experience and learning, and

not the sort of single-instance decisions that are often used in

human cases.

In conclusion we have shown that the often observed effect of

‘observing’, preferring a behaviorally irrelevant discriminating

stimulus cue, can readily be explained by a bias caused by

Pavlovian misbehavior, putting it in the same category as a range

of other suboptimalities. Informational accounts, however seduc-

tive, are not necessary.

Figure 6. Comparison of observing in monkeys and the model for a delayed task. a–b) The biases of two monkeys performing a version of
the observing task in which they were given the choice of receiving immediate or delayed discriminating stimuli, from Bromberg-Martin and
Hikosaka. The colors of the choices switched in the session number indicated in the graph. The dotted lines correspond to the Clopper-Pearson 95
percent confidence interval. c–d) Two examples of biasing in switching, similar to Bromberg-Martin and Hikosaka. The parameters for the two plots
differ only by the b in the softmax (same values as in Figure 2c;d).
doi:10.1371/journal.pcbi.1000903.g006
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Methods

We model value learning using a modified version of a standard

temporal difference model [21,22]. We assume the task can be

specified as a Markov process, where the participant estimates the

expected long run future reward (value) of each state s as V (s),
updating it according to

V (s)/V (s)zadV ð1Þ

where a is the learning rate, and dV is the change in expected

value given by:

dV~rzcV (s’){V (s) ð2Þ

where r is the delivered reward, and s’ is the state that follows s.

Learning proceeds for all three sorts of trials (forced disc., forced

non-disc. and choice trials). The modelled dopamine signal for

Figures 4 and 5 is dV .

The only deviation from the standard TD model is in assuming

that the correct updating of this system is dependent on

maintaining engagement, for instance in working memory. We

assume the probability of disengagement of the course of state s to

be

~ 0exp({V (s)y) ð3Þ

per unit of time (in seconds). Hence, for a given state t the

probability of a correct updating is given by 1{Pfail~(1{ )t,

where t is the amount of time spent in the state (see Figure 1). 0

and y are fixed parameters. We assume the consequence of

disengagement to be the transition to a specific fixed (non-

updating) state s0 of value V (s0)~0 and hence the updating signal

for V (s) is

dV~rzcV (s0){V (s)~{V (s): ð4Þ

The system stays in this state, until a reward is delivered at the

end of the trial. At this point the system is ‘re-engaged’ creating a

TD error relative to the fixed state V (s0) (see Figure 5). We assume

that any potential disengagement in the intertrial interval is

negated by the initiation of a new trial.

Choice is only possible at one state C, between progressing to

either state CD and state CN D. Given the learned values, we

assume the subject performs choice D based on the Softmax or

Luce choice rule [59]

P(D)~
exp(bV (CD))

exp(bV (CN D))zexp(bV (CD))
: ð5Þ

Note that it is straightforward to see that this version of softmax

is dependent on the difference in values (V (CN D){V (CD)),
whereas using the logarithm of the value (as in Figure 7c) causes

the function to be dependent on the ratio of values

(V (CN D)=V (CD)).

Figure 7. Effect of varying parameters in the model. a–b) For aversive stimuli (punishment) the shape of the memory retention as a function of
the expected value has a large effect on the bias towards observing. A symmetric function (a) leads to less observing, an asymmetric function (b)
leads to more observing. The dotted lines indicates the Clopper-Pearson 95 percent confidence interval. c) Given appetitive stimuli, the rate of reward
Prew can have different effects on the tendency to choose the discriminating option, based on the version of softmax used. The iterative solution to
the self-consistency requirement (6) using the softmax from Eq. 5 (black) is plotted, as well as the iterative solution for choices based on the logarithm
of the learned value (red). Mean choice bias for Monte carlo simulations (with STD) are overlaid for Prew~1=4; 1=3; 1=2; 2=3; 3=4. d) Given initial
starting conditions far from the correct values, initial learning can lead to too strong or weak effects (single runs; initial values of all states are 0 and 1
and Prew~0:75; 0:25 for the blue and red curves respectively).
doi:10.1371/journal.pcbi.1000903.g007
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In the limit without any failures in updating the learned values

would approach the true value V�(s)~rzcE½V�(s’)�, where the

expectation is taken over states s’. However with a chance of

failure Pfail(V
�(s)) dependent on the value, the iterative solution

in Figure 7c can be given by solving

V�(s)~rzcE½V�(s’) � (1{Pfail(V
�(s)))�: ð6Þ

numerically.

For all figures we assumed a~0:005 and c~1. For Figs. 2 and 6

we used parameters, b~½50, 20�, 0~0:3 and y~3. For the

aversive stimuli in Figure 7a–b we assumed negative reward

values. For Figure 7a the parameters were b~50, 0~0:3, y~3.

For Figure 7b the parameters were b~40, 0~0:2, y~2. For

Figure 7d the parameters were b~20, 0~0:3, y~3. To mimic

the fact that dopamine neurons have less dynamic range for

increases than decreases in firing rate, for Figure 4 we truncated

the negative responses at 225 percent of the maximal positive

response of the neuron.
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