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ABSTRACT
In this paper, we deal with the uncertainty of bidding for
display advertising. Similar to the financial market trad-
ing, real-time bidding (RTB) based display advertising em-
ploys an auction mechanism to automate the impression
level media buying; and running a campaign is no differ-
ent than an investment of acquiring new customers in re-
turn for obtaining additional converted sales. Thus, how
to optimally bid on an ad impression to drive the profit
and return-on-investment becomes essential. However, the
large randomness of the user behaviors and the cost uncer-
tainty caused by the auction competition may result in a
significant risk from the campaign performance estimation.
In this paper, we explicitly model the uncertainty of user
click-through rate estimation and auction competition to
capture the risk. We borrow an idea from finance and de-
rive the value at risk for each ad display opportunity. Our
formulation results in two risk-aware bidding strategies that
penalize risky ad impressions and focus more on the ones
with higher expected return and lower risk. The empirical
study on real-world data demonstrates the effectiveness of
our proposed risk-aware bidding strategies: yielding profit
gains of 15.4% in offline experiments and up to 17.5% in
an online A/B test on a commercial RTB platform over the
widely applied bidding strategies.
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1. INTRODUCTION
Display advertising has become a significant battlefield

for big data. As the advertising transactions are aggre-
gated across websites in real time, the display advertising
industry has a unique opportunity to understand the inter-
net traffic, user behaviors, and online transactions. In this
paper, we have used datasets from a leading DSP (Demand
Side Platform) in China, iPinYou, which processes up to 18
billion ad impressions per day [3]. The advertising platform
ANONYM1, which has deployed our proposed algorithms
in this paper, currently handles 5 billion ad transactions
daily. Moreover, Fikisu DSP claims to process 32 billion
ad impressions daily [2]; Turn reports to handle 2.5 mil-
lion per second in the peak time [29]. To get the picture of
the scale, the New York Stock Exchange trades around 12
billion shares daily [1], while the Shanghai Stock Exchange
trades about 14 billion shares daily [4]. It is fair to say that
the transaction volume from display advertising has already
surpassed that of the financial market.

1Anonymized for blind review.

To further compare, similar to the financial market, ad
impression trades are also automated largely by auction
mechanisms — while the financial market uses a double
auction to create bid and ask quotes [6], RTB (Real-time
Bidding) display advertising adopts the second-price auc-
tion to gather bid quotes from advertisers once an impres-
sion is being generated [37, 23]. As it is possible now to
track user actions resulted from an online campaign, ad-
vertising optimization becomes more resembling to that of
the financial market trading and tends to be driven by the
marketing profit and return-on-investment (ROI). That is,
there is explicit and measurable campaign goal of acquiring
new users from the campaign in order to obtain additional
sales from the acquired users. Thus, how to properly bid an
ad impression to drive the profit and ROI becomes essential
to performance-driven campaigns [25, 38].

Bidding strategies are normally built by estimating the
utility of each ad impression, which is commonly done by
predicting the underlying user’s click-through rate (CTR)
or conversion rate (CVR) [17]. Existing solutions for pre-
dicting CTR range from linear models [13, 21, 15, 17, 26]
and gradient boosting decision trees (GBDT) [31] to factor-
ization machines [24]. All of them aim to return a predicted
CTR value of the given ad impression. However, we never
know whether such a point estimation is confident enough.
The true underlying CTR may heavily deviate from the
predicted value, given the significant uncertainty of the un-
derlying user behavior. Such utility fluctuation, along with
the cost uncertainty caused by the auction competitions [5],
results in a significant risk of the campaign profit estimation
which should not be ignored.

In this paper, we depart from conventional CTR point
estimations and explicitly model the CTR distribution to
capture the uncertainty (risk) of the utility measure for each
potential ad impression. Our idea is inspired from finance
about value at risk : a statistical technique used to measure
and quantify the level of financial risk with an investment
[19]. The value at risk of an ad display opportunity is gen-
erally defined as the lower bound of the ad impression value
guaranteed by a specific probability (risk). With the mea-
sured CTR prediction and market price risks, we propose
two practical risk-aware bidding strategies to handle the
uncertainty from both utility estimation and market com-
petition. Our methods are evaluated on two large-scale
real-world ad datasets. With campaign profit as the key
performance indicator (KPI), we find that our risk-averse
bidding strategies, which penalize the bids with high uncer-
tain CTR (or profit) and award the confident ones, yield a
15.4% profit gain over a linear bidding strategy with a con-
ventional logistic regression CTR estimator [25] and largely
outperform the risk-neutral and risk-seeking bidding.

Furthermore, we have deployed the risk-averse bidding
strategies on ANONYM’s DSP and conducted a 7-day on-



line A/B test. In the live test, our proposed risk-aware
bidding strategies bring 17.5% higher campaign profit and
61.5% higher CTR over the conventional ones by effectively
saving money on uncertain and low-value opportunities,
which verifies the practical effectiveness of our solutions of
managing advertising bidding risk.

The rest of this paper is organized as follows. We discuss
the related work in Section 2. Our CTR distribution mod-
eling is provided in Section 3. In Section 4, the concept of
value at risk and the derived risk-aware bidding strategies
are discussed. Offline and online experimental results are
provided in Sections 5 and 6, respectively. We finally con-
clude this paper and discuss our future work in Section 7.

2. RELATED WORK
User Response Prediction. Predicting the probability
of a specific user response, e.g., CTR and CVR, is a key
function for performance-driven online advertising [13, 21,
15]. The applied CTR estimation models today are mostly
linear. Logistic regression is the most widely used model,
normally trained by stochastic gradient descent (SGD) [17,
26]. The authors in [21] proposed a novel online learn-
ing algorithm called follow-the-regularized-leader (FTRL)
to train logistic regression from the streaming data. The
model successfully bypasses the learning rate update prob-
lem in SGD and it empirically works effectively. Bayesian
probit regression [13] is another linear model for online
learning where the feature weights are modeled with a dis-
tribution and the model learning is via updating the weight
posterior. Binary naive Bayes [14] is also a popular linear
model, by assuming the features are conditionally indepen-
dent.

Linear models are simple and effective in learning, but
may fail to capture the interactions between the assumed
(conditionally) independent raw features [13]. By contrast,
non-linear models are capable of learning feature interac-
tions in various ways and could potentially improve predic-
tion performance [24, 31]. Gradient boosting decision trees
(GBDT) [31, 15] are a straightforward non-linear model to
capture feature interactions. Moreover, latent factor mod-
els, particularly factorization machines (FMs) [24], map
each binary feature into a low dimensional continuous space,
and the feature interaction is automatically explored via
vector inner product.

Real-Time Bidding Strategies. The emergence of ad
exchanges for display advertising in 2009 [23] provides au-
tomatic trading mechanism for advertisers to buy media
inventory in impression level and determine the acceptable
price via second price auction [37].

The authors in [12] proposed an algorithm that made
dynamic bidding decisions to achieve an optimal delivery
with the budget constraint. In [8], the bid price from each
campaign was adjusted by the publisher or the supply-side
platform in real time and the goal was to maximize the
publisher side profit. Borrowing the idea of the optimal
truth-telling bidding in sponsored search [10], a basic bid-
ding strategy is to bid the estimated true value for each ad
impression. For performance-driven campaigns, the prede-
fined true value is normally based on the economical value
of the user actions, such as a click or a conversion. The
expected true value for a specific impression is estimated
as action value multiplied by action rate [17, 8]. However,
the truth-telling bidding strategy is optimal only when the
budget and auction volume are not considered. With the
campaign budget and lifetime auction volume constraints,
the optimal bidding strategy may not be truth-telling. Ex-
tending from the truth-telling bidding strategy, the authors

in [25] proposed the generalized bidding function with a
linear relationship to the predicted CTR for each ad im-
pression being auctioned. Compared to [25], the authors
in [39] proposed a functional optimization framework to
directly optimize the bidding function, where the derived
function showed that an optimal bidding function could
be non-linear w.r.t. predicted CTR. The non-linearity is
closely related to the distribution of market price [5]. Ex-
tending to multiple campaign bid optimization task, the
authors in [38] further devised linear and non-linear bid-
ding functions from the functional optimization framework.
Extending from previous strategies, our work introduces a
new factor, i.e. the standard deviation of predicted CTR, to
be considered by bidding function in addition to predicted
CTR.

Risk Management and Applications. Risk is a con-
sequence of action taken in spite of uncertainty [22]. The
objective of risk management is to assure uncertainty does
not to-some-extent deflect the business from its goals [9].

Modern portfolio theory (MPT) [20] originates from mod-
eling uncertainty of the return of combinations of multiple
financial assets. It presents a quantitative method to mea-
sure such uncertainty (or risk) and embeds it into the de-
cision making of investment [16]. In MPT, the variance
of the return of each asset is modeled as its risk. Then the
risk and expected return of a portfolio of invested assets are
quantified by the fund allocation, the mean return of the
assets and their covariance matrix [20, 16]. MPT utilizes
the mean-variance analysis to make an investment portfolio
for any tradeoff between the risk and the expected return,
or w.r.t. a reference investment such as bank rates [28].
With such advantages, MPT has been adopted in almost
everywhere of financial investment [11].

Recently, the ideas of risk management has been intro-
duced to information retrieval, such as document ranking in
web search [33, 34] and diversification in top-N recommen-
dation [30, 41], to improve the model robustness or catch
the users’ satisfaction on uncertainty psychologically.

Computational advertising is associated with a certain
level of deficit risk, particularly for performance-driven cam-
paign as the goal is to acquire new users and gain more sales
from them. The risk comes from the dynamics of the market
and the user online behaviors [32]. The authors in [38] pro-
posed to measure campaign-level risk and return in a spe-
cial case of arbitrage between CPM and CPA. Compared to
[38], our work focuses on single campaign optimization, and
our risk is modeled from the uncertainty of user response
and market competition at impression-level. Generally, our
work borrows the concept of value at risk from finance to
derive risk-aware bidding strategies intending to reasonably
allocate budget between uncertain impressions and confi-
dent impressions and achieve a campaign-level profit gain,
which is unlike in finance where risk control is only for
balancing return and risk at item-level (impression-level in
RTB).

3. CTR DISTRIBUTION MODELING
In this section, we explicitly model the CTR distribution

in order to deal with the uncertainty of a CTR estima-
tion. Next, in Section 4 we shall propose risk-aware bid-
ding strategies from the inferred CTR distribution and the
market price distribution.

3.1 Preliminary: Bayesian Logistic Regression
We propose to use a Bayesian logistic regression to model

the CTR distribution due to the following reasons: (i) lo-
gistic regression (LR) has been widely deployed as the CTR



prediction model in most RTB ad platforms [17, 25] and our
model is a natural extension to tackle the uncertainty of a
CTR estimation with LR; (ii) We adopt Bayesian treat-
ment to model uncertainty since it has been well studied
by previous works [40, 13] for CTR estimation; (iii) Al-
though Bayesian probit regression [40, 13] has the potential
to model the uncertainty, its probit activation function is
of no closed form, and thus is computationally low cost ef-
fectiveness in RTB.

For readability, in this section, we present a preliminary
on Bayesian logistic regression, while for details, we refer to
[7]. For a multi-dimensional feature vector x representing
the input ad display opportunity, the conventional logistic
regression estimates the CTR by:

ŷ = σ(wTx) =
1

1 + e−wTx
, (1)

where σ is the sigmoid function andw is the weight vector of
logistic regression. The likelihood of observing the correct
binary click label y given features x and weights w is

p(y|x,w) = σ(wTx)y(1− σ(wTx))(1−y). (2)

In the Bayesian version of logistic regression, w is mod-
eled as a random variable with a p.d.f. p(w). Thus the
marginal conditional probability p(y|x) is

p(y|x) =

∫
w

p(y|x,w)p(w)dw. (3)

We follow [40, 13] to adopt a Gaussian prior N(µ0, q
−1
0 I)

on w, which is a practical setting. After observing a data
instance (x, y), the posterior distribution of w becomes

p(w|x, y) =
p(y|x,w)p(w)∫

w′ p(y|x,w′)p(w′)dw′
(4)

∝σ(wTx)y(1− σ(wTx))(1−y)
∏
i

√
qold,i
2π

e−
(wi−µold,i)

2qold,i
2 ,

where µold,i and qold,i are the prior parameters of the i-th
dimension of w before observing the data instance (x, y).

Approximation of Posterior. Since the posterior Eq. (4)
is intractable, we maintain a Laplace approximation [7] to
keep it consistent with the prior. There are alternative ap-
proximate inferences such as variational inference (VI) [7].
In this paper we adopt Laplace approximation due to its
simpler implementation and lower computational cost than
VI, which involves extra variational parameters and invokes
a time-consuming EM algorithm for training. The Gaussian
approximation to the posterior distribution takes the form

q(w) = N(w|µnew,Snew), (5)

where µnew is defined by the wMAP which maximizes the
logarithmic posterior:

µnew = arg max
w

y lnσ(wTx) + (1− y) ln(1− σ(wTx))

− 1

2

∑
i

qold,i(wi − µold,i)
2 + const. (6)

The SGD updating of each dimension of µnew is

µnew,i ←µnew,i + η ·
(

(y − σ(µT
newx))xi

− qold,i(µnew,i − µold,i)
)

(7)

and Snew is given by the inverse of the matrix of second
derivatives of the negative log likelihood, which satisfies

S−1
new =−∇∇ ln p(µ|x, y) = S−1

old + σ(µTx)(1− σ(µTx))xxT .
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Figure 1: An illustration of the proposed CTR distribution
against its parameters µ and q in Eq. (12).

As we follow [40, 13] to assume each wi as independent
with each other and thus S is diagonal, we have the updat-
ing of precision parameters as

qnew,i = S−1
new,i,i = qold,i + σ(µTx)(1− σ(µTx))x2i . (8)

3.2 Predicted CTR Distribution
Equipped with a Bayesian logistic regression with a Laplace

approximation of the parameter posterior, we are ready to
propose a simple yet novel solution for modeling the CTR
distribution. Note that the CTR itself is a probability es-
timation that a click event occurs from an impression with
feature x takes the form

ŷ = P (y = 1|x) = σ(wTx), wi ∼ N(µi, q
−1
i ), (9)

where ŷ denotes the CTR random variable that generates
the binary observation y, so our goal is to estimate the
distribution of ŷ. As introduced in Section 3.1, we assume
each wi is from Gaussian i.i.d., the distribution of

∑
i wixi

also follows N(
∑

i µixi,
∑

i q
−1
i xi). Thus, we have

ŷ = σ(a), a ∼ N
(∑

i

µixi,
∑
i

q−1
i xi

)
. (10)

Consider that if random variables x and y satisfy y = g(x)
and g−1 is monotonic and differentiable, we have [36]

py(y) = px(g−1(y))
∣∣∣∂g−1(y)

∂y

∣∣∣ . (11)

In our case, σ−1(ŷ) = ln ŷ − ln(1 − ŷ) is monotonic and
differentiable within (0, 1), so we obtain the closed-form of
ŷ’s p.d.f.

pŷ(ŷ) =
1

(ŷ − ŷ2)
√

2π
∑

i q
−1
i xi

e
− (σ−1(ŷ)−

∑
i µixi)

2

2
∑
i q
−1
i

xi , (12)

which provides an explicit CTR p.d.f. To our best knowl-
edge, the above proposed solution has not been studied in
previous literature [40, 13, 35]. To understand the nature
of the model, Figure 1 plots the CTR distribution against
its parameters µ and q, where x = 110. As observed, the
p.d.f. presents a single-peak shape in [0, 1] which is similar
with the shapes of beta distributions.

It is straightforward to see from Figure 1 that µ and q
jointly determine the peak location and sharpness of the
CTR p.d.f. and specifically µ influences more on the peak
location while q influences more on the distribution sharp-
ness. To understand how it models the CTR prediction un-
certainty/confidence, from Eq. (8), we see each time a data
instance with feature xi is observed, the precision qi will
be updated with a higher value, which in turn contributes



a sharper CTR p.d.f. in Eq. (12). Therefore, for the ad
impression with frequent (similar) features, the predicted
CTR is of low uncertainty, and vice versa.

4. RISK-AWARE BIDDING STRATEGIES
With our CTR distribution model in Eq. (12), we next

investigate the conditional distribution of a utility given a
specific bid price for an input bid request. By considering a
risk-aware utility as an optimization target, we are ready to
derive the corresponding risk-aware bidding strategy. Note
that alternative CTR distribution models can also be incor-
porated in our solution framework.

Specifically, we start from the theoretic derivation of a
Bayesian truth-telling bidding strategy and provide an anal-
ysis of its risk in Section 4.1. Then we will propose two
solutions, discussed in Sections 4.2 and 4.3 respectively.

4.1 Analysis: Bayesian Truth-telling Bidding
The utility r of an ad impression could be defined based

on the advertiser’s value v on a specific user action, e.g.,
click or conversion. For example, if the value v is on each
click, given an impression with CTR ŷ distribution as in
Eq. (12), the utility r and its p.d.f. of this impression are

r = v · ŷ, pr(r) = pŷ(ŷ)/v. (13)

Moreover, the cost to win the ad impression comes from
the highest bid from other competitors, defined as market
price z [5]. The profit of winning this impression is then cal-
culated as the utility r minus the cost z, which is set as the
optimization target of performance-driven campaigns [38].

In a general setting, considering both the estimated CTR
ŷ and cost z are stochastic variables: ŷ ∼ pŷ(ŷ) and z ∼
pz(z), the bid optimization problem is to find the optimal
bid price to the auction.

Let us first consider a simple case without considering the
uncertainty of our estimation, where the goal is to maximize
the expected profit R(b) by marginalizing out ŷ and z:

b∗ = arg max
b

E[R(b)] (14)

= arg max
b

∫
ŷ

∫ b

z=0

(v · ŷ − z)pz(z)dz · pŷ(ŷ)dŷ. (15)

Taking the derivative w.r.t. b and set it to 0:

∂E[R(b)]

∂b
=

∂

∂b

∫ b

z=0

pz(z)

∫
ŷ

(v · ŷ − z)pŷ(ŷ)dŷdz (16)

= pz(b)

∫
ŷ

(v · ŷ − b)pŷ(ŷ)dŷ = 0 (17)

⇒ b∗ =

∫
ŷ

v · ŷ · pŷ(ŷ)dŷ = v · E[ŷ] = E[r], (18)

where we see that the optimal bid price is the product of ac-
tion value and the estimated CTR ŷ, which is independent
of the market price distribution. If we assume ŷ is known
and fixed, i.e., pŷ(ŷ) focuses its mass on a single point, then
the optimal bid price is v · ŷ. Note that the optimality of
truth-telling bidding is for one-shot auction. When consid-
ering campaign budget and auction volume, a coefficient φ
is commonly added to Eq. (18) as φ · E[r].

Discussion of Risk. The above classic bidding solution
is built on maximizing the expectation of the profit R(b),
regardless of its uncertainty. However, a potential problem
is that there is a chance a bid is won, but v · ŷ is less than
z, in which case R(b) will be negative. We can obtain the
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Figure 2: An example of CTR, market price and profit
distribution when bidding the expected utility value. The
profit p.d.f. on 0 is the probability of losing the auction,
resulting in a peak.

probability of such negative profit P (R(b) < 0) as

P (R(b) < 0) =

∫ 1

0

pŷ(ŷ)P (b > z > v · ŷ)dŷ

=

∫ 1

0

pŷ(ŷ)

∫ b

v·ŷ
pz(z)dzdŷ, (19)

which shows it is of risk to get negative profit whatever the
positive bid price. We illustrate our point in Figure 2 us-
ing an example. We set the CTR p.d.f. as Eq. (12) with∑

i µixi = −1,
∑

i q
−1
i xi = 1

3
; the market price distribution

is assumed to be a log-normal p.d.f. with µ = 4, σ = 0.5;
the value per click is set as 300. The expected value of
CTR is 0.283, and thus the truth-telling bidding in Eq. (18)
would give 84. From our simulation with 10,000 samples,
we plot the profit distribution given the truth-telling bid 84
with probability 16.7% the profit is negative. From Eq. (19)
we see that the down-side risk, the probability of the CTR
lower than the mean ŷ, contributes more to the probability
of negative profit; the higher standard deviation (or vari-
ance) is of ŷ, the higher probability of such negative profit
may occur in the truth-telling bidding case. Thus, such
risk of negative profit should be carefully considered and
incorporated into the bidding strategies to help campaigns
achieve satisfactory performance with controlled risk.

4.2 Bidding with Value-at-Risk Utility
The utility p.d.f. pr(r) is of high importance for risk mod-

eling. From Figure 2 we know that due to the uncertainty
of utility, bidding with the utility expectation E[r] will in-
troduce the risk of negative profit, which might be worse
than no bid. Let us examine the down-side risk.

Lemma 1 (Cantelli’s Inequality). For a random vari-
able r with mean µ and standard deviation σ, the following
inequalities hold:

P (r < µ− ασ) <
1

1 + α2
(20)

With Lemma 1 we can find a variant of value at risk (VaR)
[19, 27] for utility

r̃ = E[r]− α Std[r], (21)



which has a guarantee that the real utility is lower than r̃
with a probability smaller than 1/(1 + α2).

Using VaR r̃ as a new risk-aware utility, we set the truth-
telling bid at r̃. Taking Eq. (13) into Eq. (21) gives

bVaR(r) = r̃ = v · (E[ŷ]− α Std[ŷ]), (22)

where the p.d.f. of ŷ is given in Eq. (12).
When α > 0, the bidding strategy is risk-averse, inversely

when α < 0 it is risk-seeking; the traditional truth-telling
bidding (Eq. (18)) is now a special case of bVaR(r) with
α = 0, called risk-neutral.

Note that we derive VaR strategy based on Lemma 1
rather than the distribution of ŷ (Eq. (12)) directly for the
following reasons: (i) Lemma 1 is a general one that can be
applied to other CTR distribution models, especially those
without analytical forms; (ii) α can be simply set over all
bid requests to make the computation more efficient. The
uniform α can also be regarded as a risk control parameter.

Considering campaign budget and auction volume, a co-
efficient φ is added to Eq. (22), which is similar to truth-
telling bidding. This also applies to the strategy proposed
in Section 4.3.

Due to page limit, the detailed realization method and
efficiency analysis are provided in the supplementary2.

4.3 Bidding for Risk Management of Profit
Another way to approaching risk-aware bidding strategies

is to go back to the analysis of campaign profit R(b), which
is one of the key performance indicators (KPIs) in RTB.

Mathematically,

R(b) =

{
0 b ≤ z (lose)

v · ŷ − z b > z (win)
. (23)

As both CTR ŷ and market price z are modeled as stochas-
tic random variables with p.d.f. pŷ(ŷ) and pz(z), R(b)
can be naturally regarded as a dependent random variable.
Again, using Lemma 1, the value-at-risk of profit

R̃(b) = E[R(b)]− α Std[R(b)], (24)

which has a guarantee that the real profit is lower than R̃(b)
with a probability smaller than 1/(1 + α2).

In this setting, we propose the second risk-aware bidding
strategy that generates the bid which yields the maximum
value-at-risk of profit:

bRMP(R(b)) = arg max
b

E[R(b)]− α Std[R(b)]. (25)

Through analyzing the properties of R(b), we find that
E[R(b)] and Std[R(b)] have a non-trivial trade-off relation,
which can be balanced by b. We solve the optimal b by
importing the concept of efficient frontier from finance [16].
Detailed analysis can be found in the supplementary.

5. OFFLINE EMPIRICAL STUDY
In this section, we empirically evaluate our proposed risk-

aware bidding strategies on real-world data3.
Before presenting experimental results on real-world data,

we firstly studied the effectiveness of the risk-aware bidding
strategy on synthetic data. The results indicated that risk-
aware bidding strategy does perform better than traditional
bidding strategy in some settings. The details is provided
in the supplementary.

2Supplementary link: https://goo.gl/QHUib2
3Our experiment is repeatable and the code is given below:
https://goo.gl/Wi0lz1

5.1 Datasets
Two ad log datasets in our empirical study are:

iPinYou is the largest independent programmatic media
buying platform in China. The dataset4 was released
for research after its global competition on RTB al-
gorithms in 2013 [18]. It contains 19.50M ad impres-
sions, 14.89K clicks from 9 campaigns during 10 days
in 2013, which involve 16K Chinese Yuan (CNY) ex-
pense in total. According to the data publishers, the
last three day data of each campaign is split into test
data while the former part into training data. The
overall effective cost per click (eCPC) is 1.07 CNY
on the training data and 1.13 CNY on the test data,
which means the overall market competition did not
change dramatically during that 10 days.

ANONYM is another mainstream demand-side platform
company. This proprietary dataset is mainly used
for training the risk-aware models deployed for online
A/B testing. Details will be given in Section 6.

Both datasets are with record-per-line format. After ad
log joining, each record is formalized as a triple (x, y, z),
where x is the high dimensional feature vector for each bid
request with the corresponding ad information, y is the user
feedback on the ad impression, e.g., the binary click or con-
version actions, z is the market price for that auction, i.e.,
the lowest price to bid in order to win the auction.

5.2 Experiment Protocol
We followed [38] to set up our evaluation procedure. For

each campaign bidding strategy with a predefined budget,
the optimal parameters (µ,S) were learned on training data
and the hyperparameters (α and φ, discussed later) were
tuned on validation data, which was the early half split from
the test data. Then we replayed the historic bid records to
test the performance on the other half of test data.

For each campaign, there was a defined value v for the
user action, i.e., a click in our experiment. Following [38]
the click value is defined by a proportion of eCPC on train-
ing data to imitate the true value set by the advertisers. In
this paper, we set the proportion to 100%. Every time the
tested bidding agent received a bid request from the ad ex-
change, it generated a bid with the tested bidding strategy.
If the bid price was higher than the historic market price,
the agent won the ad impression and paid the market price
and then the historic recorded binary user feedback, i.e.,
click or not, is observed. If there was a user click, the agent
made revenue of the click value. The test ended either when
there was no more test bid request or when the campaign
budget was exhausted, if applicable.

Note that the offline experiment cannot fully simulate the
market competition because there is no observed user feed-
back and market price for historically lost auctions. Nev-
ertheless, our evaluation protocol keeps the bid requests,
displayed ads, and auction environment unchanged. We
try to answer that under the same context if the campaign
were given a different bidding strategy, whether they would
be able to get more clicks with the budget limitation.

5.3 Compared Bidding Strategies
The compared bidding strategies are as follows.

• LR - Linear Revenue Bidding: the baseline, which is
the most widely used bidding function

bLR = φ · v · ŷ, (26)

where ŷ is the predicted CTR with logistic regression
as in Eq. (1). φ is the scaling parameter tuned based

4Dataset link: http://data.computational-advertising.org

https://goo.gl/QHUib2
https://goo.gl/Wi0lz1
http://data.computational-advertising.org
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Figure 3: Profit v.s. cost of the VaR bidding.

on the market competitiveness [25]. The overall AUC
of this LR estimator on iPinYou dataset is 69%.
• VaR - Value at Risk Bidding: our first risk-aware

bidding strategy proposed in Section 4.2, which bids
the value at risk, shown in Eq. (22), where α is the
hyperparameter to be tuned on validation data.
• RMP - Risk Management of Profit based Bidding:

the second risk-aware bidding strategy proposed in
Section 4.3, which seeks the optimal bid to maximize
the expected profit with its standard deviation as risk
constraint, shown in Eq. (25), where α is the hyper-
parameter to be tuned on validation data.

The two risk-aware bidding strategies rely on the same
CTR distribution model proposed in Section 3. The initial
prior distribution of w was given that (i) µ0 was set as
the point estimation generated by logistic regression; (ii) q0
was set as constant 1. Our model achieves a comparable
AUC with standard LR model. Note that for the budgeted
bid optimization tasks in Section 5.7, there would also be
a hyperparameter φ multiplied in VaR (22) and RMP (25)
to be tuned to avoid budget under-or over-delivery.

5.4 Evaluation Measures
For a bid optimization task, the major evaluation mea-

sures are campaign profit, i.e., the earned total click value
minus the cost, and ROI, i.e., the ratio between the profit
and the cost. In addition, we also monitor other key met-
rics, such as cost per thousand impressions (CPM), auction
winning rate, CTR and eCPC to gain more insights.

In order to investigate how bidding strategies balance re-
turn against risk, we also propose an additional metric:
profit - λ cost, which is named as Cost-Penalized Profit
(CP-Profit) in this paper. Intuitively, advertisers want to
maximize the profit of their performance-driven campaign
given the budget, or minimize the advertising cost given the
profit, either of which forms a profit/cost tradeoff. Note
that this metric was mainly used for model selection, i.e.,
selecting α and φ. As we will show in Section 5.5 about
the profit/cost analysis, CP-Profit is an effective metric to
balance the profit and the cost to select an optimal model.

5.5 Profit and Cost Analysis
We analyzed the profit and cost of various bidding strate-

gies with different parameter settings. This would help us
understand the properties of the bidding strategies and help
us select optimal model hyperparameters.

Non-Budgeted Settings. Without budget constraint,
the basic LR bidding strategy is truth-telling, i.e. φ = 1.
For the risk-aware bidding strategies we varied the value of
α. Figure 3 shows the profit and cost change when setting
different α’s in VaR Eq. (22), with α > 0 as risk-averse,
α < 0 as risk-seeking and α = 0 as risk-neutral. We clearly
observed that for all tested campaigns the results gener-
ally formed a single-peak concave shape, showing strong
trade-off between the profit and cost. Risk-averse strate-
gies intended to yield lower cost than risk-seeking ones, as
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Figure 4: Profit v.s. cost of the RMP bidding.
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Figure 5: Selected model performance comparison with dif-
ferent λ’s (validation dataset), iPinYou campaign 3427 for
RMP strategy with 1/4 budget setting. The models maxi-
mizing CP-Profit with λ = 0, 0.2, 0.4 are selected, which is
highlighted with red circles. Note that LR and risk-aware
models are selected separately and then plotted together.

the risk-averse strategies would always bid lower than the
risk-neutral one, and the latter further bid lower than the
risk-seeking ones. The performance-driven campaigns pur-
sue high profit and low cost. Thus if a bidding strategy
yields higher profit and lower cost than another one, we say
the former strategy dominates the latter one. From the re-
sults we saw that almost all the risk-seeking strategies were
dominated by part of the risk-averse strategies. That is to
say, for almost every risk-seeking setting with α < 0, there
always exists one or more risk-averse setting with α > 0
that yields equal or higher profit with lower cost.

Figure 4 illustrates the profit and cost trade-off yielded
by RMP Eq. (25) with different risk settings. We also ob-
served that, similarly, the risk-averse strategies tended to
yield lower cost than the risk-seeking ones. The risk-neutral
strategy acted as a splitting point between the risk-averse
and risk-seeking ones.

Budgeted Settings. In practice, advertisers tend to set
up campaign budget constraints. With the budget con-
straint, the basic LR bidding strategy is not necessarily
truth-telling, i.e., φ 6= 1 in Eq. (26) [25]. We performed an
analysis on the profit and cost trade-off for different bud-
get constraints. For each campaign, we followed [38] to use
1/2, 1/4, . . . , 1/32 of the original total cost in the test data
as the budget. For LR we varied the value of φ while for
VaR and RMP we varied both φ and α to obtain different
profits and costs. As an example, the results of iPinYou
campaign 3427 for RMP with 1/4 budget setting are shown
in Figure 5. We saw that part of the risk-averse strategies
dominated other strategies, which was in accordance with
the ones without budget constraints.

Distinction with Lowering Bidding. The performance
of risk-averse bidding strategies was not due to lowering
bidding. As we know, for a truth-telling linear bidding, if
we lower the bid price uniformly, it would result in cost
decreasing, profit decreasing and ROI increasing. Unlike
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Figure 6: Model selection. Colored dashed lines stand for
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Figure 7: Selected model performance comparison with dif-
ferent λ’s (validation dataset).

this, our risk-averse bidding strategies lowered the bid price
of uncertain requests and raised the bid price of confident
requests, which led to higher profit and higher ROI with
invariant cost. It can be verified in Figure 5. For example,
the left circled LR model lowered the bid price of the right
circled LR model by applying a smaller φ, so it achieved
lower cost, lower profit and higher ROI. In the meantime,
the risk-averse models above the right circled LR model,
which had a positive α and a larger φ, achieved the same
cost, higher profit and higher ROI.

5.6 Bidding without Budget Constraints
In order to select different risk-aware models (i.e. the

strategies’ hyperparameter α) with various risk-return bal-
anced metrics, we used the proposed CP-Profit metric. Specif-
ically, with a fixed value of λ, the contour of a specific CP-
Profit is a straight line in the cost-profit plot. The highest
CP-Profit is achieved by the tangent point of the contour
and the cost-profit points. Figure 6 provides example tan-
gent points with different λ’s on the cost-profit plot. For a
fixed λ, we then obtained an optimal α that maximizes the
CP-Profit.

Figure 7 plots the performance of the tested bidding strate-
gies against CP-Profit metrics with various λ in validation
data. We found that: (i) The risk-aware strategies VaR and
RMP outperformed the baseline LR on all studied cam-
paigns with all λ settings. (ii) Specifically, when λ = 0,
i.e., the evaluation metric was purely the profit, VaR and
RMP outperformed LR with 50.7% and 25.1% improve-
ments. Also note that there were 89% selected models with
positive α’s, which suggested when there is a fixed volume
of bid requests and no limited budget, the risk control helps
advertisers make higher profit by spending less money on
opportunities with high risk. (iii) For metrics with λ > 0,
the performance gained of VaR and RMP over LR were
larger. As we observed that the CP-Profit curves of VaR
and RMP were convex while the ones of LR was a straight
line, which meant the risk-aware strategies provided higher
ROI when the model selection metrics became more con-
servative, i.e., with higher λ.

With the model selection on validation data, we com-
pared the strategies on test data. The overall performance
across 9 iPinYou campaigns is shown in Figure 8. We ob-
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Figure 8: Overall non-budgeted test performance.

served that: (i) Most risk-aware bidding strategies yielded
significantly higher profit than the baseline LR, which demon-
strated the effectiveness of incorporating risk modeling in
bid optimization. (ii) All VaR strategies yielded signifi-
cantly higher ROI compared to LR, which meant bidding
at risk helps advertisers avoid from wasting money on risky
opportunities. It turns out that such risky opportunities
brought little revenue so avoiding them led to a lower cost
and higher profit, and thus much higher ROI. (iii) RMP
strategies stably yielded about 10% profit more than LR
while the ROI was lower than LR. This is because RMP
seeks the bid price which directly maximizes the value at
risk of profit, which resulted in consistent profit gains. On
the other hand, RMP does not explicitly control the bid
price like VaR, thus it did not yield lower CPM or cost.
As a result, its ROI was not higher than LR. (iv) All the
risk-aware bidding strategies brought higher CTR than the
baseline LR, which might be counterintuitive. Actually,
the proposed strategies allocate the budget from the high-
uncertainty cases to low-uncertainty ones, which does not
mean the average CTR should get lower.

5.7 Bidding with Budget Constraints
To follow the previous section, we sought the tangent

points which maximized CP-Profit with different λ. The
selected models are highlighted with red circles in Figure 5.
There might be overlapped red circles as the CP-Profit with
different λ’s still selected the same model.

Figure 9 provides the overall performance over 9 iPinYou
campaigns with budget constraint (1/2 budget setting). The
baseline is LR with λ = 0, i.e., simply selecting φ yielding
the highest profit on validation dataset. We found that:
(i) For small λ settings, VaR and RMP were both better
than LR on profit, which verifies the claim that the risk-
aware bidding strategies successfully yield higher profit via
controlling the risk. Specifically, risk-aware bidding strate-
gies performed better on yielding profit for the campaigns
with poorer LR estimators. (ii) All proposed methods, i.e.,
LR with non-zero λ model selection and VaR/RMP with
various λ’s, yielded higher ROI than the baseline LR with
λ = 0. Some strategies (VaR and RMP with λ = 0, 0.2)
yielded both higher profit and higher ROI. (iii) All risk-
aware bidding strategies provided higher CTR (except for
the conservative VaR with λ = 0.4), which meant the pro-
posed algorithms filtered out the low-value cases, which
were always with high uncertainty. (iv) For CPM and win-
ning rate, VaR reduced the CPM by lowering bids on uncon-
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Figure 9: Performance with budget constraint (1/2 budget).
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Figure 10: Online results from ANONYM DSP.

fident cases and highering the bids on confident ones (via
tuning φ); RMP did not guarantee any low bid as it just
sought the bid yielding the highest value of risk-controlled
profit.

6. ONLINE DEPLOYMENT AND A/B TEST
Online Environment. We have deployed our bidding
strategies on ANONYM Platform, which is a mainstream
DSP in the global RTB market. The total daily bid re-
quest volume received by ANONYM was about 5 billion.
Among the received bid requests, about 200M (4%) met
ANONYM’s bid target rules of cost-per-click (CPC) cam-
paigns, for which ANONYM would return a valid bid. Each
of our tested strategies was allocated with 1.5% bid request
volume from 10 CPC campaigns, i.e. about 3M bid oppor-
tunities daily. For training our models, we collected the
impression and click data of 7 consecutive days just before
the A/B testing in Jan. 2016, which contained 424M ad im-
pressions, 532K clicks and 47.2K US dollars (USD) expense.
The eCPC on the training data is 0.087 USD. A 2% negative
instance down sampling was performed by ANONYM sys-
tem. The advertisers of tested CPC campaigns paid a fixed
amount for every user landing action, i.e., valid click. The
landing value v was set to be 0.054 USD, which was the
average CPC of all campaigns.

Test Setting. We tested two strategies for 7 days in Jan.
2016: (i) The baseline LR strategy. It consists of a logistic
regression whose AUC is 88% and a linear bidding func-
tion with fixed φ = 0.56 set by ANONYM operation staff.
(ii) The proposed VaR strategy. The parameter α acquired

from the training was a positive value that slightly varied
daily, which means the trained bidding strategy risk-averse.
The parameter φ was set to be greater than LR. Thus the
two parameters had opposite effects on bid price, which re-
sulted in an average bid price close to that of LR. Strategies
were tested with the same bid volume constraint. The bid
volume for each strategy was 19.5M. The whole test live
volume contained 39M auctions resulting in 3.3M impres-
sions and 7.4K user landings. VaR spent 12% more budget
than LR since φ was learned from training thus there was
no guarantee of equivalent budget spending for A/B test.

Result Discussion. The online results are presented in
Figure 10. We show the performance over six metrics. From
the results, we found that: (i) Our VaR strategy outper-
formed baseline LR on ROI by about 5%, which demon-
strated the efficacy of our risk-aware bidding strategy. (ii)
VaR achieved 17.5% higher profit than LR. Although this
was partly due to the more budget spent by VaR, the more
important fact was that VaR strategy could help adver-
tiser spend such more budget at a equivalent or even higher
ROI within the same bid request volume. Note that ad-
vertisers determine their budget usually depending on ROI
and ROI is always negative correlative with budget, thereby
if a strategy allows an additional amount of budget spent
on the same ROI, advertisers would like to increase their
budget by that amount. (iii) VaR won much fewer auc-
tions than LR. According to our setting, VaR bid higher
for confident cases and lower for risky cases. Its low win-
ning rate result indicated that the extra confident cases VaR
gained were fewer than the risky cases VaR lost. (iv) As
for CTR, VaR achieved 64.4% higher CTR than baseline
LR, which demonstrated the high efficiency of risk-aware
strategies in finding high quality ad display opportunities.
(v) VaR got higher CPM than LR. This indicated that our
strategy tended to target at impressions with higher quality
at the cost of higher price. Although VaR strategy achieved
higher CPM, it also achieved higher CTR and the co-effect
was reflected in low eCPC and high ROI, which was bene-
ficial.

7. CONCLUSION
In this paper, we presented a solution for modeling the

uncertainty of CTR estimation in RTB display advertising.
With a Bayesian logistic regression CTR estimator, we ob-
tained a closed form of CTR distribution density. On the
basis of the distributions of CTR and the market price, two
risk-aware bidding strategies are formulated: the first one
(VaR) bids the value at risk of the estimated utilities, while
the second one (RMP) seeks the optimal bids that maxi-
mizes a lower bound of profit with a controlled risk. Our
risk-return analysis and offline experiment demonstrated
15.4% profit gain over a linear optimized bidding strategy.
To test the applicability of our risk-aware bidding strategies
in a live setting, the bidding strategies have been deployed
on an operational platform. 17.5% profit gain over the base-
line was observed in a 7-day online A/B test.

For future work, we will analyze the market equilibrium
if more advertisers adopt the risk-aware bidding strategies.
We also plan to further explore applications from the pro-
posed CTR distribution model and the risk-aware bid opti-
mization framework. For an ad placement with multi-frame
dynamic creatives, a portfolio optimization [11] can be per-
formed to select the optimal creatives combination to yield
the highest profit with a controlled risk. Moreover, our
CTR distribution model is potential to be dynamically up-
dated to evaluate users’ interest on an advertised product
after repeated ad displays over time.
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