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ABSTRACT

Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize
our understanding of the Universe through their unprecedented sensitivity and resolution.
However, to realize these goals significant challenges in image and data processing need
to be overcome. The standard methods in radio interferometry for reconstructing images,
such as cLEAN, have served the community well over the last few decades and have survived
largely because they are pragmatic. However, they produce reconstructed interferometric
images that are limited in quality and scalability for big data. In this work, we apply and
evaluate alternative interferometric reconstruction methods that make use of state-of-the-art
sparse image reconstruction algorithms motivated by compressive sensing, which have been
implemented in the puRIFY software package. In particular, we implement and apply the
proximal alternating direction method of multipliers algorithm presented in a recent article.
First, we assess the impact of the interpolation kernel used to perform gridding and degridding
on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs
as well as prolate spheroidal wave functions while providing a computational saving and an
analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very
Large Array and the Australia Telescope Compact Array and find that images recovered by
PURIFY are of higher quality than those recovered by cLEaN. Thirdly, we discuss how PURIFY
reconstructions exhibit additional advantages over those recovered by cLEAN. The latest version
of pURIFY, with developments presented in this work, is made publicly available.
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1 INTRODUCTION

Radio interferometry has been critical for imaging the radio Uni-
verse at higher resolution and sensitivity than possible with a sin-
gle radio telescope. However, radio interferometers are limited by
the number of possible pairs of antennas in an array, which limits
the number of possible measurements made during an observa-
tion. Consequently, image reconstruction methods are needed to
reconstruct the true sky brightness distribution from the raw data
acquired by the telescope, which amounts to solving an ill-posed
inverse problem. Traditional methods, which are mostly variations
of the Hogbom cLEAN algorithm (Hogbom 1974), do not exploit
modern state-of-the-art image reconstruction techniques.

* E-mail: Luke.Pratley @ gmail.com

Next-generation radio interferometers, such as the LOw Fre-
quency ARray (LOFAR; van Haarlem et al. 2013), the Murchison
Widefield Array (MWA; Tingay et al. 2013), the Australian Square
Kilometre Array Pathfinder (ASKAP; Hotan et al. 2014) and the
Square Kilometre Array (SKA; Dewdney et al. 2013), must meet
the challenge of processing and imaging extremely large volumes of
data. These experiments have ambitious, high-profile science goals,
including detecting the Epoch of Re-ionization (EoR) (Koopmans
et al. 2015), mapping large-scale structure (Maartens et al. 2015)
and investigating cosmic magnetism (Johnston-Hollitt et al. 2015).
If these science goals are to be realized, state-of-the-art methods in
image reconstruction are needed to process big data and to recon-
struct images with high fidelity.

Compressive sensing is a robust framework for signal reconstruc-
tion. The theoretical framework of compressive sensing motivates
sparse regularization approaches for solving inverse problems, like
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those encountered in radio interferometry. The framework of com-
pressive sensing was first applied to radio interferometry in the
study of Wiaux et al. (2009a), in the synthesis framework, where it
was shown that compressive sensing approaches can produce higher
quality reconstructed images than standard interferometric imaging
methods. In Carrillo, McEwen & Wiaux (2012), the analysis frame-
work was considered and the sparsity averaging reweighted analysis
(SARA) algorithm was developed and applied to radio interferomet-
ric imaging, demonstrating excellent performance (see also Carrillo
et al. 2013). It has also been shown that the compressive sens-
ing framework can be applied to wide-field-of-view observations
(McEwen & Wiaux 2011) and can correct for directional depen-
dent effects, such as non-coplanar baselines (Wiaux et al. 2009b;
Wolz et al. 2013). In Carrillo, McEwen & Wiaux (2014), state-of-
the-art convex optimization algorithms that scale to very large data
sets were developed to solve sparse regularization problems, such
as the SARA problem. These algorithms were implemented in the
first release of the purIFY software package (Carrillo et al. 2014)
for solving radio interferometric imaging problems by sparse reg-
ularization. Recently, new algorithms for solving these problems
were developed by Onose et al. (2016), including proximal alter-
nating direction method of multipliers (P-ADMM) and primal dual
algorithms, paving the way to image the large radio interferometric
data sets that will characterize the SKA era. Alternative compres-
sive sensing approaches have also be applied to aperture synthesis
(Li, Cornwell & de Hoog 2011b; Dabbech et al. 2015; Garsden
et al. 2015) and rotation measure synthesis (Li et al. 2011a; Sun
et al. 2015).

In this work, we implement the P-ADMM algorithm developed
by Onose et al. (2016) in the purIFY software package, which has
been entirely redesigned and re-implemented in C++, and apply it
to observational data from the Very Large Array (VLA) and the
Australia Telescope Compact Array (ATCA). In addition, we dis-
cuss conceptual differences between the restored cLEAN image and
the reconstructed puriry model. The previous version of PURIFY sup-
ported only simple models of the measurement operator modelling
the telescope. PURIFY now supports a wider range of more accu-
rate measurement operator models, including a number of different
convolutional interpolation kernels (for gridding and degridding).
Moreover, we study how the choice of kernel can affect the quality
of sparse image reconstruction.

The remaining sections of the paper are structured as follows.
Section 2 reviews the basics of aperture synthesis and radio inter-
ferometry. Section 3 discusses radio interferometric imaging in the
context of compressive sensing and sparse image reconstruction.
Section 4 discusses convolutional interpolation and the different
kernels considered. These interpolation kernels are then tested and
compared using simulations in Section 5. Section 6 discusses the
similarities and differences between images recovered by CLEAN and
PURIFY and also considerations in applying PURIFY to real observa-
tional data. The reconstruction of images from observations made
by the VLA and ATCA are presented in Section 7. Section 8 states
the final conclusions.

2 APERTURE SYNTHESIS AND RADIO
INTERFEROMETRY

The principles of aperture synthesis date back as far as the work
of McCready, Pawsey & Payne-Scott (1947). However, Ryle &
Hewish (1960) first described how aperture synthesis could be used
to construct a large-scale radio interferometric telescope. Thus, the
limit in resolution of single dish radio telescopes could be overcome

by radio interferometric telescopes, improving our ability to observe
and therefore understand the radio sky.

In aperture synthesis, an array of antennas are collectively used to
image the sky at higher resolution than possible with a single dish,
hence synthesizing a larger aperture. Each pair of antennas measures
a phase and amplitude of a Fourier component of the brightness
distribution across the sky. It is through the measurement of these
Fourier components that the sky is effectively imaged. However,
due to a limited number of antennas, not all Fourier components
can be measured in an observation. An ill-posed inverse problem
must be solved to reconstruct the true sky brightness distribution.
How this ill-posed inverse problem is solved has a significant impact
on the fidelity of the reconstructed image.

Each antenna in an array measures an incoming electric field
across its field of view. The electric fields are then cross-correlated
between pairs of antennas, using a correlator, in order to calculate
the visibility

Vb =a, —a)) = (Ea, 1)E(az, 1)) ar, (D

where £ is the electric field, a; and a, are the spatial positions
of the two antenna, ¢ is the time, and At is the time interval over
which the expected value, denoted by (-), is taken, which is longer
than the time-scale of the radio wave observed (Thompson 1999;
Thompson, Moran & Swenson 2008). The difference between the
positions of the antennas b = a, — a; is called the baseline.

It is well known that a visibility contains spatial information
about the brightness distribution across the sky. While there have
been more general measurement equations developed for radio
interferometry (McEwen & Scaife 2008; Carozzi & Woan 2009;
Smirnov 2011; Price & Smirnov 2015), the van Cittert-Zernike the-
orem (Zernike 1938) states that the visibility V is related to the sky
brightness distribution Z;, at wavelength A, by

V(b) = / A(0) T, (0)e 20 4Q, )
SZ

where A is the primary beam of the telescope, b is the baseline
separating the two antennas, and & denotes a location on the celestial
sphere S? with area element dS2. When the baselines in an array are
co-planar and the field of view is narrow, equation (2) reduces to a
Fourier relation:

Vu,v) = | Al m)L, (1, m)e ™+ didm, A3)
RZ

where (I, m) are the coordinates of the plane of the sky, centred
on the pointing direction of the telescope and u = (u, v) are the
corresponding Fourier coordinates defined by the baseline: u =
b/A. In this context, a visibility measures a Fourier component of
the sky brightness distribution in the plane of the sky, centred on
the pointing direction of the telescope (Thompson 1999; Thompson
et al. 2008).

The Fourier transform relation of equation (3) cannot be inverted
directly to obtain an accurate estimate of Z,(/, m), since V(u, v)
cannot be measured for all Fourier coordinates. The missing samples
of V(u, v) leave equation (3) as an ill-posed inverse problem, which
has an infinite number of possible solutions. To recover a suitable,
unique solution, regularization is used to inject prior information
regarding the underlying signal.

The most common techniques used to solve for the true sky
brightness distribution are cLEAN (e.g. Hogbom 1974) and the max-
imum entropy method (MEM) (e.g. Cornwell & Evans 1985). The
basic cLEAN algorithm was developed in the 1970s (Hogbom 1974).
CcLEAN implicitly imposes a sparse prior in a point source
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(Dirac) basis (Marsh & Richardson 1987) and is essentially
a matching pursuit algorithm (Mallat & Zhang 1993). Varia-
tions of cLEAN have also been developed for resolved and ex-
tended structures, multifrequency synthesis and polarized sources
(Clark 1980; Schwab 1984b; Steer, Dewdney & Ito 1984; Sault,
Staveley-Smith & Brouw 1996; Cornwell 2008; Offringa et al. 2014;
Pratley & Johnston-Hollitt 2016). The MEM algorithm regularizes
the ill-posed radio interferometric inverse problem through an en-
tropic prior, maximizing an objective function comprised of an
entropy term and a data fidelity term (in practice an additional flux
constraint is typically imposed in radio interferometric applications
of MEM; Cornwell & Evans 1985). In practice, CLEAN often strug-
gles to image diffuse structure, while MEM struggles to resolve
point sources. CLEAN, and its variants, are of widespread use in ra-
dio interferometric imaging today, while MEM has not experienced
such widespread adoption.

3 COMPRESSIVE SENSING FOR RADIO
INTERFEROMETRIC IMAGING

In its fundamental form, compressive sensing provides a frame-
work for recovering signals from small numbers of measurements
and considers the efficient design of the signal measurement pro-
cess (Candes, Romberg & Tao 2006a,b; Donoho 2006; Candes &
Wakin 2008). In radio interferometry, there is little control over
the measurement process since the baseline configurations are typi-
cally limited by the interferometer (nevertheless, there may be scope
for telescope optimization; Wiaux et al. 2009b; Wolz et al. 2013).
The compressive sensing framework, however, motivates a robust
method of reconstructing images from the visibilities measured by
a telescope through sparse regularization. Sparse regularization ex-
ploits the fact that many natural signals — such as astronomical
images — are sparse or compressible; that is, for a suitable represen-
tation (e.g. wavelet basis) most of the coefficients for the ground
truth image are zero or close to zero, respectively. In this section,
we review sparse regularization and how it is applied to radio inter-
ferometric imaging.

3.1 Sparse regularization

Consider the ill-posed inverse problem of estimating the image
x € RY from measurements y € C”, where the measurements
are acquired by the process y = ®x + n, where the operator
® ¢ CM*N models the acquisition system and n € C¥ represents
noise. This problem accurately models interferometric imaging,
as discussed in more detail in the subsequent sections. For now,
we consider sparse regularization approaches to solve this general
problem.

Sparse regularization techniques promote sparse solutions when
solving ill-posed inverse problems. Typically, natural signals are
sparse in a suitable basis (e.g. a Dirac, Fourier or wavelet basis)
or, more generally, in a sparsifying dictionary. The atoms (cf. basis
functions) of the dictionary (Rubinstein, Bruckstein & Elad 2010)
can be represented by columns of the operator ¥ € CV*?, where
N is the number of pixels in the image and D is the number of
coefficients of the sparse representation, i.e. @ € C”. The image
can then be decomposed into its sparse representation by x = Wa.

A sparse solution to the inverse problem described above can
be promoted by imposing a penalty on the number of non-zero
coefficients of the sparse representation o through the £y-norm,
where the {y-norm |||, is defined as the number of non-zero
coefficients of «. In principle, the inverse problem can then be

solved by minimizing the £y-norm of the sparse coefficients, subject
to a data fidelity constraint:

miI[l) lleelly, subjectto [y — @We|,, <e. (@]
acC -

Given the solution to this problem, denoted «*, a recovered image
can be synthesized by x* = Wa*. The solution to this minimization
problem is given by a model that matches the measurements, within
error € € R, while being constructed from a minimal number of
coefficients in the sparse representation. However, this problem
cannot be solved in a high dimensional setting because the £y-norm
is non-differentiable and the minimization problem is non-convex:
it is considered an NP hard problem.
The closest convex relaxation of the £, problem is the £; problem:

mil}) lleelly, subjectto [y — ®We|,, <ce, (@)
acC -

where the £,-norm is defined by |Ir|l,, = (3, |r,-|”)% (hence the
£;-norm is the sum of the absolute value of the components of
a vector and the £,-norm is the usual Euclidean norm). This £;
minimization problem also promotes sparsity and in some cases
exhibits the same solution as the £, problem (Candes et al. 2006a;
Donoho 2006). Furthermore, since the £; minimization problem is a
convex problem it can be solved using efficient convex optimization
algorithms (e.g. Combettes & Pesquet 2011).

The problem defined by equation (5) is proposed in the stan-
dard synthesis setting, where one recovers the coefficients & and
synthesizes the recovered image by x = Wa. Alternatively, we can
propose the problem in the analysis setting using the adjoint wavelet
transform W1:

min H‘I’Ttz,

subject to
xeRN

ly - ®xll,, <e, ©)
where one recovers the image x directly, while still imposing spar-
sity in some sparse representation. When the sparsifying operator
W is an orthogonal basis the solutions of the synthesis and analysis
problems are identical. However, for an overcomplete dictionary
the solutions are very different and the analysis setting has been
shown to perform very well in practice (e.g. Carrillo et al. 2012;
Carrillo et al. 2013). Moreover, reweighted schemes to better ap-
proximate the solution of the ¢, problem by solving a sequence of
£, problems can also be considered (Candes, Wakin & Boyd 2008;
Carrillo et al. 2012; Carrillo et al. 2013). While these approaches
can further improve the quality of the reconstructed image, we do
not consider them further here.

Additionally, sparse regularization problems allow extra con-
straints to be imposed, such as a real and positive valued image,
which is the case for total intensity (Stokes I) radio interferometric
observations. However, the positivity and real-valued image con-
straints may be removed for polarimetric imaging, such as linear
polarization or the Stokes parameters. Complex valued linear po-
larization reconstructions of P = Q + iU can also be performed
in principle and will be rotationally invariant for rotations in P
(Pratley & Johnston-Hollitt 2016).

3.2 Radio interferometric measurement operator

In solving sparse regularization problems, the measurement op-
erator is required to compare how close the reconstructed model
matches the measured data. How close the measurement opera-
tor matches the true measurement process will have an impact on
reconstruction quality.
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In the context of radio astronomy, the measurement process is
given by equation (3). We assume co-planar baselines and a small
wide-field of view here; we do not consider direction-dependent
effects in the measurement operator, although they can nevertheless
be modelled in the framework presented (Wiaux et al. 2009b; Wolz
et al. 2013). In the compressive sensing setting, the measurements
y € CM denote the visibilities y; = V(u;, v;) and the image x € RV
denotes the sky brightness distribution x, = Z,(l,, m,) (fori =1,
...,Mand p =1, ..., N). The measurement operator ® € C**V
specifies a discrete representation of equation (3). Ideally, ® would
represent a direct Fourier transform from the N pixels of the image
to the M non-uniformly spaced visibilities. However, this would re-
quire O (M N) computations. Consequently, a direct Fourier trans-
form of the visibilities is not possible for the settings experienced in
practice, where a single observation may be comprised of very large
numbers of visibilities and high-resolution reconstructed images are
required.

Alternatively, it is possible to approximate a direct Fourier trans-
form. One can first interpolate the visibilities on to a regularly
spaced grid, which requires order O(M) operations. Then, it is pos-
sible to take advantage of the fast Fourier transform (FFT), which
requires order O (N log N) operations. This approach requires con-
siderably fewer computations than the direct Fourier transform
(Briggs, Schwab & Sramek 1999), rendering a non-uniform Fourier
transform computationally feasible for very large observational data
sets, but it is an approximation. This approximation is the standard
approach considered in radio astronomy.

The standard radio interferometric measurement operator ® can
be written as a series of linear operators:

& = WGFZDB, @)

where B € C¥* is the primary beam of telescope, D € C¥*¥ is a
gridding correction operator that scales the image to correct for the
interpolation convolution kernel, Z € C¥N*N jsq zero-padding op-
erator that provides oversampling by factor « in each dimension of
the Fourier domain, F € C**V*¢*N i5 a FFT operator, G € CMx@*N
is a convolutional interpolation operator that uses a convolution ker-
nel to interpolate visibilities from Fourier coefficients on a regular
grid to Fourier components in the continuous Fourier plane, and
W € CM*M weights the measurements according to their error. Al-
ternatively, it is possible to include the weighting W by weighting
the £,-norm directly. A diagram of the process of applying the mea-
surement operator ® and its adjoint @ is shown in Fig. 1. Since
the weights are applied in the measurement operator, it is necessary
to also weight the measurements, i.e. y — Wy.

3.3 Radio interferometric imaging with PURIFY

To apply compressive sensing techniques to radio interferometry,
one needs to pose the sparse regularization problems in Section 3.1
and then solve them using the measurement operator of Section 3.2.
The software package pURIFY has been designed and written for this
purpose.

The first public version of pUrIFY was written in C and solved the
problems described in Carrillo et al. (2014), where it was shown
on simulations to produce higher fidelity reconstructed images than
standard radio interferometric imaging methods. To solve £; min-
imization problems, PURIFY calls the Sparse OPTimisation (SOPT)
software package (Carrillo et al. 2012; Carrillo et al. 2013). This
first version of PURIFY used the simultaneous-direction method of
multipliers (SDMM) algorithm (Carrillo et al. 2014). Recently,
new algorithms have been developed for radio interferometry

Figure 1. Representation of the application of the forward and adjoint mea-
surement operator. The labels (a)—(e) represent the process of the forward
measurement operator, while numbers (1)—(5) represent the process of the
adjoint operator. The measurement operator consists of the following steps:
(a) observed image; (b) image is corrected for degridding; (c) image is
zero-padded to twice the field of view; (d) image is Fourier transformed;
(e) Fourier coefficients are convolved to continuous points off of the grid.
The adjoint measurement operator consists of the following steps: (1) Fourier
coefficients in a continuous plane; (2) Fourier coefficients are gridded on to
an oversampled grid; (3) image from the transformed Fourier coefficients;
(4) image cut-out; (5) image corrected for the gridding.

imaging by Onose et al. (2016), including the proximal alternat-
ing direction method of multipliers (P-ADMM) and primal dual
algorithms, which have numerous advantages for the analysis of
very large data sets (see Onose et al. 2016 for further discussion).
New versions of pURIFY and soPT have been released to coincide
with the current article. Both puriFy and sopt have been completely
redesigned and rewritten in C++11 to work on Linux and Mac
operating systems. The EIGen' library is used for matrix and array

!http://eigen.tuxfamily.org
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manipulation (Guennebaud et al. 2010), and casacore? is used to
read observational data in the form of measurement sets (McMullin
etal. 2007). sopt is not only useful for interferometric imaging: itis a
general purpose code for solving sparse regularization problems and
can be used to solve a variety of problems. The first version of PURIFY
was limited to measurement operators based on Gaussian kernels
for convolutional gridding. The new version of PURIFY, however,
supports numerous kernels, including the state-of-the-art kernels
discussed in the literature (e.g. Fessler & Sutton 2003), as described
in Section 4. Additionally, the P-~ADMM algorithm of Onose et al.
(2016) has been implemented in PURIFY and sopT. Implementation of
the primal dual algorithm of Onose et al. (2016) into PURIFY and SOPT
is part of future work. The primal dual algorithm achieves greater
flexibility, in terms of memory requirements and computational
burden per iteration, by using full splitting and randomized updates.
All results presented in this article are obtained with the P~ ADMM
algorithm, solving the analysis problem of equation (6), with an
additional positivity constraint (however, it is possible to remove
the positivity or reality constraints). While the development of fully
distributed implementations of the algorithms supported by PURIFY
and sopT is ongoing, current versions are parallelized with oPENMP, sO
that the gridding, degridding and FFT calculations can be performed
efficiently. The latest versions of PURIFY® and sopT* are now publicly
available.

4 CONVOLUTIONAL GRIDDING AND
DEGRIDDING

The fidelity of reconstructed radio interferometric images depends
not only on the technique used to solve the resulting inverse problem
but also on the accuracy with which the measurement operator
models the measurement process. Ideally, the measurement operator
would match the measurement process exactly. However, this is
not possible due to the computational time required for a direct
Fourier transform. We are forced to use a measurement operator that
interpolates the visibilities on to and off of a regular grid through
the operator G, so that we may apply an FFT F to regularly spaced
data. Interpolation is typically performed by convolution with a
suitable kernel, which then determines the convolutional degridding
operator G. Several interpolating convolutional kernels have been
suggested in the literature; we introduce a subset of these kernels
in this section. The choice of convolution kernel affects the quality
of the image, through aliasing error, and total computation time,
through the support size of the kernel. Ideally, a convolution kernel
will have minimal support while maximally suppressing aliasing
error, allowing high-quality images to be reconstructed in minimal
computation time.

4.1 Degridding

To replicate the measurement process, Fourier coefficients need to
be interpolated off of the FFT grid, i.e. they need to be degridded.
An ideal interpolation that does not change the content of an image
is the well known (Shannon) Sinc interpolation (Whittaker 1915;
Shannon 1949), where a continuous band-limited image can be
exactly reconstructed from the discrete Nyquist sampled signal. Sinc
interpolation can also be considered in the context of interpolating

2 http://casacore.github.io/casacore
3 http://basp-group.github.io/purify
4 http://basp-group.github.io/sopt

the Fourier domain, which is exact for a space-limited image. In
practice, Sinc interpolation in this context can be performed by zero-
padding the image domain, which up-samples the Fourier domain
via Sinc interpolation.

In the context of degridding, a Sinc interpolation kernel preserves
the image and frequency content of the signal when the image has
a limited field of view. However, Sinc interpolation is computation-
ally expensive because the Sinc kernel does not have finite support
in harmonic space. A computationally inexpensive method, due to
its small support, is to interpolate in the Fourier domain using the
nearest neighbour grid point. Nearest neighbour interpolation in
the Fourier domain corresponds to convolving with a Box kernel,
which corresponds to multiplying with a Sinc function in the image
domain. Since the Sinc function has infinite support in the image do-
main, this introduces artefacts known as aliasing error. The Sinc and
nearest-neighbour approaches to interpolating visibilities represent
the two extreme cases.

We require kernels with small support in harmonic space (so they
are computationally efficient) and small support in image space (to
suppress aliasing error). However, the uncertainty principle means
there is a fundamental limit on how localized a function can be in
both harmonic space and image space. In practice, we seek a trade-
off between the two extremes, so that the support of the kernel in
harmonic space is not so large as to be computationally expensive,
while the support in image space is also well-localized to suppress
aliasing error.

Since the interpolation is performed by a convolution, it is nec-
essary to correct for this operation, which can be achieved by mul-
tiplication in the image domain with an appropriate window. Fur-
thermore, interpolation accuracy can be increased by zero-padding
in the image domain to up-sample the Fourier domain. The process
of degridding therefore starts by scaling the image by the diagonal
operator D, which preemptively corrects for the interpolation ker-
nel of G. This correction is calculated from the reciprocal of the
inverse Fourier transform of the interpolation kernel. The image is
then zero-padded using the zero-padding operator Z that up-samples
harmonic space. An FFT is applied to obtain an up-sampled Fourier
grid using the operator F. The model measurements are then inter-
polated off of the grid using the circular convolution operator G.
The explicit construction of G is discussed in Section 4.4.

4.2 Gridding

Most image reconstruction algorithms in radio astronomy require
going both backward and forward between the image and measure-
ment domain. Typically, mapping from the measurement domain to
the image domain is performed by the adjoint of the measurement
operator, since the measurement operator does not have a defined
inverse, given by

o' = BID'Z'F'GIW!. @)

Gridding can be considered the reverse process of degridding. Math-
ematically, the gridding operator is the adjoint of the degridding
operator and is performed by application of G'. The full adjoint
measurement operator consists of the following operations. First,
the weighting WT = W is applied, before the visibilities are inter-
polated on to an up-sampled Fourier grid using G'. Then an inverse
FFT is performed by F to produce an image. The image is cropped
to the desired field of view using ZT, and the convolution is corrected
by DT. Lastly, the adjoint of the primary beam B is applied.

A consequence of interpolating the visibilities on to a grid is
that the signal is now represented via a Fourier series rather than
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a Fourier transform. This means the imaged region has periodic
boundary conditions. In the case of a radio interferometer, the vis-
ibilities can contain information over the entire sky, and the signal
may not end at the boundaries of the imaged region. In this case, the
interpolation kernel is used to apodize aliasing error, where struc-
ture from outside the boundaries of the imaged region is folded back
in (Briggs et al. 1999).

4.3 Aliasing error

In the case where the convolution kernel does not sufficiently at-
tenuate the image outside the imaged region, the periodicity of the
image will cause features from outside the imaged region to fold
into the image. Two ways to minimize aliasing error are to either im-
age a wider field of view, so that the primary beam of the telescope
naturally attenuates structures outside the field of view, or to choose
a convolution kernel that attenuates the aliasing error sufficiently.

An ideal convolution kernel would set the image to zero outside
the imaged field of view, which would eliminate aliasing error. This
can be done with a Sinc convolution kernel, which is computation-
ally expensive. An inexpensive kernel, like a Box kernel, is highly
delocalized in the image domain, so does not suppress structure
outside the imaged field of view from being folded back in.

To increase image quality and computational performance, a con-
volution kernel needs a minimal support in harmonic space while
attenuating the image outside the field of view. Any attenuation
within the imaged field of view is corrected for by D, calculated
from the Fourier transform of the gridding kernel.

If the gridding kernel apodizes the image domain strongly within
the gridded field of view, correcting by D will induce numerical
errors (Schwab 1980). This means that while the suppression due
to the gridding kernel can reduce aliasing error, correcting for it has
the potential to cause numerical error.

4.4 Interpolation kernels

Next, we introduce the convolution kernels used in this work. The
width (support) of the gridding kernel J is given in units of grid
cells. The oversampling ratio in each dimension is denoted by «.

The degridding matrix is a circular convolution matrix that inter-
polates the measurements off of the discrete Fourier grid on to the
continuous Fourier plane. The convolution can be seen as a weighted
average of the nearest neighbour grid points. The interpolation ker-
nel determines the weighting of each grid point. Weighting is max-
imum at the location of the measurement and typically decreases
in value when the grid points are further from the measurement
location.

In 1D Fourier space, the degridding matrix G is constructed from
a kernel d(u) by (Fessler & Sutton 2003)

Gi vy =dw; — (ki + ), )

where i is the index of the measurement y;, k; is the closest integer to
visibility coordinate u; — J/2 (in units of pixels) and j = 1...J are
the possible non-zero entries of the kernel. The modulo-K function
isdenoted by {- }x, where K = a+/ N is the dimension of the Fourier
grid in 1D (for notational sake, the 2D Fourier grid is comprised of
N =+/N x /N samples).

The diagonal convolution correction operator D can be calculated
in a similar way:

i 1
Di;=s (? - E) ’ (10)

where s(x) is the reciprocal of the inverse Fourier transform of d(u).
In practice, D can be computed numerically from G or analytically if
the inverse Fourier transform of the convolution kernel is tractable.

4.4.1 Sinc

The Sinc convolution kernel is ideal when its infinite support is con-
sidered. This convolution kernel can be written as (Schwab 1978;
Greisen 1979)

d(u) = (%)qsin (%) (11

The convolution correction is

if x| < &

1
—_JI N 2
s() = {O, otherwise * (12)

The advantage of the Sinc convolution kernel is that it corresponds
to multiplication by a Box function in the image domain, which
bounds the signal at the edges of the imaged region. Consequently,
there is close to no aliasing error.

4.4.2 Box

The Box function is fast to compute since it is localized in harmonic
space, but it does not suppress aliasing error effectively. This kernel
has the form (Schwab 1978; Greisen 1979):

L ifjul <4
_ )7 =3
d(u) = {0, otherwise (13)

The Fourier transform of the Box function is the Sinc function, so
the convolution correction reads
sin (xJTc)} !

xJT 14

s(x) = {

The Sinc function is not bounded by the edges of the image, and the
sidelobes of the Sinc function can cause large aliasing error. This is
why the Box function is far from ideal, even if it is fast to compute.

4.4.3 Gaussian

The Gaussian kernel is moderately well-localized in both image and
Fourier space and takes the form:

d) = e 37 (15)

The gridding correction is calculated by the Fourier transform and
also takes the form of a Gaussian:

T2 50
s@=|505] e (16)
An optimal choice for o as a function of the support size J was
found in the work of Fessler & Sutton (2003), where it was shown
that o = 0.31J%2 works better than using the typical value o = 1.
In the early years of radio astronomy, in the 1970s, the Gaussian
kernel was used for convolutional gridding (Thompson et al. 2008).

4.4.4 Prolate spheroidal wavefunction

Prolate spheroidal wavefunctions (PSWFs) do not have an ex-
plicit analytic form, but there are several ways of character-
izing them (Stratton 1935; Slepian & Pollak 1961; Landau &
Pollak 1961, 1962). The most useful way to characterize PSWFs
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is in terms of energy concentration. PSWFs are bandlimited func-
tions that maximize the energy concentration in a given interval, by
finding the function f that maximizes the ratio

[ 1 f0)Pdr
o1 f@Pde

for an interval [—7, t]. For a convolution kernel, this is an ideal
property since we want the convolution kernel to have minimal
support in the Fourier domain and to have a maximal amount of
energy concentrated over the imaged region in the image domain.
This allows one to have minimal support in the Fourier domain
while maximally suppressing aliasing error in the image domain.
The standard choice of PSWFs in radio astronomy are a modified
version, where more energy is weighted towards the centre of the
image, since typically this is the scientific region of interest. The
standard choice of weighted PSWFs are described in the work of
Schwab (1984a, 1980). The convolution kernel is given by

dw) = |1 = > @)Y (10J /2, n(w)), (18)

where n(u) = 2u/J, k is a parameter that varies the weighting, and
V¥, is a zero-order PSWF that can be calculated using a rational
approximation:

an

Do Pr(1* = )

Yo 4 = nd)F

where the p; and g, polynomial coefficients are specified in Schwab
(1980, 1984a). The case of k =0 reduces to an unweighted PSWF. In
this work, we use the polynomial coefficients for a support of J = 6
and ¥ = 1, the standard used in the radio interferometric imaging
packages MIRIAD® (Sault, Teuben & Wright 1995) and Astronomical

Image Processing System (AIPS; Greisen 1998).° The correction is
provided by Schwab (1984a):

|
T Yo /2, 2x)

Vie(mtd /2, m) = 19

s(x) (20)

4.4.5 Kaiser-Bessel

Kaiser-Bessel functions are another useful form of convolution ker-
nel. The zeroth-order Kaiser-Bessel function can be expressed as

(8- (3)7)
W=—""7m @b

where J is the support, I, is the zeroth-order modified Bessel func-
tion of the first kind, and B determines the spread of the Kaiser-
Bessel function (Jackson et al. 1991; Fessler & Sutton 2003). The
gridding correction is calculated from the Fourier transform, yield-
ing (Jackson et al. 1991; Fessler & Sutton 2003):

sin (y/nzxzjz — ﬂ2>
/2x2J% — B2

An optimal choice for B as a function of the support size J was

found in the work of Fessler & Sutton (2003), where it was shown

that for 8 = 2.34J the Kaiser-Bessel kernel performs similarly to the
optimal min-max kernel considered in Fessler & Sutton (2003). In

s(x) =

(22)

3 http://www.atnf.csiro.au/computing/software/miriad/
6 http://www.aips.nrao.edu/index.shtml

Greisen (1979), it is suggested that the zeroth-order Kaiser-Bessel
functions perform similarly to the zeroth-order PSWFs, which is
consistent with the results of Jackson et al. (1991). Kaiser-Bessel
functions, however, have the advantage that they have an analytic
expression that can be evaluated easily and accurately. Note that
Kaiser-Bessel functions are the standard choice of interpolation
kernel in the interferometric imaging package wscLEaN’ (Offringa
et al. 2014).

5 SIMULATIONS

In the previous section, we described how the measurement operator
@ approximates a direct Fourier transform. If this approximation is
inaccurate, it will introduce error when recovering interferometric
images. The choice of the interpolation kernel will therefore have an
impact on reconstruction quality. In this section, we perform simu-
lations to assess the performance of different convolution kernels,
using the P-ADMM algorithm (Onose et al. 2016) implemented in
the latest release of PURIFY to recover images in the analysis frame-
work, with an additional positivity constraint.

5.1 Simulations

To assess the impact that the interpolation kernel has on image re-
construction with purIFY, we perform quality tests using simulated
measurements. We compare the signal-to-noise ratio (SNR) of the
reconstructed image with the ground truth image, reconstructing
with different uv-coverages and different interpolation kernels. Note
that we cannot replicate all of the complexities of the real observa-
tional setting with simple simulations. For example, our simulated
observations do not include contributes from sources outside the
field of view. Nevertheless, simulations where the ground truth im-
age is known are useful for a partial assessment of the performance
of different convolution kernels.

To ensure the simulated measurements do not limit the recon-
struction quality, a high-quality ‘ground truth’ measurement op-
erator is applied to test images of Hu emission of M31 and of
30 Doradus (30Dor). The Kaiser-Bessel kernel with a support of
8 x 8 pixels and an oversampling ratio of « = 2 is used for
the ground truth measurement operator. The Kaiser-Bessel ker-
nel typically requires only a small support, so choosing a sup-
port of 8 x 8 provides an accurate measurement model (Fessler &
Sutton 2003).

We calculate the average SNR for reconstructing M31 and 30Dor
from M visibilities, in a way that does not depend on a specific uv-
coverage. The uv-coverages are randomly generated to follow a
Gaussian variable sampling density with a standard deviation of
+7/3 in the uv-plane, where the uv-plane has been normalized
to a maximum height and width of +7t. Ten sample uv-coverages
were generated using M visibilities. The average SNR of a re-
construction from M visibilities was calculated using the ten sam-
ple uv-coverages. The standard deviation is used to estimate the
spread of the SNRs of the reconstructed images. The test im-
ages of M31 and 30Dor and a sample uv-coverage are shown in
Fig. 2.

Gaussian noise was added to the simulated visibilities. The input
SNR (ISNR) of the measurements was chosen to be 30 dB. The

7 https://sourceforge.net/projects/wsclean/
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Figure 2. Ground truth images of M31 (left) and 30Dor (middle) used in simulations (of size 256 x 256). An example of a variable density visibility coverage
in the Fourier plane, normalized to a domain of 7t (right). To generate a simulated observation, the measurement operator was applied to a ground truth image.
Each simulation has added thermal noise and a random variable density coverage in the Fourier plane. The reconstruction quality was evaluated as a function
of the number of Fourier components measured. The SNR was averaged over ten random coverages, with error bar given by the standard deviation (see Fig. 3).

ISNR can be used to calculate the standard deviation of the Gaussian
distribution of noise (Carrillo et al. 2014):

__ISNR
20

llyoll,
o, S x 10 s
where y, are the ground truth visibilities, M is the number of visi-
bilities and ISNR is measured in dB.
The noise is assumed to be Gaussian and independently and
identically distributed, which allows the use of the x? distribution
to estimate the bound ¢ for the £,-norm (Carrillo et al. 2014):

(23)

2
& =QM+ 2«/4M)%, (24)

where for these tests we set € to two standard deviations above the
mean of the x? distribution. Following the work of Carrillo et al.
(2014), we calculate the SNR from the relation

e, } 7 25)

SNR = 20 loglo [m

where x is the ground truth image and x* is the reconstructed image.
We solve the £, problem in the analysis setting (equation 6), using
P-ADMM. For the P-ADMM step size y, we use the fixed value of

y = BIv ey, (26)

with 8 = 1073, as recommended in Carrillo et al. (2014) and Onose
etal. (2016), where || W ®Ty,||,  returns the maximum coefficient
of the measurements in the wavelet representation. The reconstruc-
tions were solved by assuming sparsity in the SARA wavelet dictio-
nary, which includes a Dirac (i.e. point source) basis and Daubechies
wavelets 1-8 (Carrillo et al. 2012; Carrillo et al. 2013). Note that
reweighting is not considered. In these simulations, P-ADMM is
stopped when the data fidelity constraint is satisfied and the relative
difference in the model image between iterations is less than 1073,
Each reconstruction was run for a maximum of 100 iterations.

5.2 Results

The SNR of the reconstructed images as a function of number of
visibilities M/N is shown in Fig. 3 for both M31 and 30Dor. Simula-
tions were performed using five of the different interpolation kernels
described in Section 4, including Kaiser-Bessel (J = 4, 8 = 2.34J),

40 : : ‘ ‘

30t 1

20t 1

SNR (dB)

10} 1

0 0.5 1.0 1.5 2.0

- Kaiser Bessel (KB)

35| H pswr

- Gaussian (optimal o)
Gaussian (typical o)

I Box 1

5 ‘ ‘ ‘ ‘

0 0.5 ]\j/ON 1.5 2.0
Figure 3. The top and bottom plots of the SNR of the reconstructions of
M31 and 30Dor, respectively, with an input SNR of 30 dB. M/N is the ratio
of measurements to pixels. Kaiser-Bessel and optimized Gaussian kernels
can perform as well as the PSWF. Furthermore, choosing a bad choice of
kernel, like a Box function or a Gaussian kernel with a typical o, limits the
possible quality of the reconstruction.
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Figure 4. (M31) Left column shows ground truth (top) and dirty image (bottom). Middle column shows reconstructed image (top) and error (bottom) with
Kaiser-Bessel kernel. Right column shows reconstructed image (top) and error (bottom) with Box kernel. For these simulations, M = 2N visibilities were
used, with an input SNR of 30 dB. The error image shows that the Box kernel reconstruction has artefacts, which explains why the SNR is lower than the
Kaiser-Bessel reconstruction. The Box kernel reconstruction did not converge within 100 iterations (based on the convergence criteria described in the text),

while the Kaiser-Bessel kernel reconstruction did.

PSWF (J =6, k = 1), Box function (J = 1), Gaussian with a typical
o (J=4,0 = 1) and optimized o (J/ = 4, 0 = 0.31J°52). An
oversampling ratio of « = 2 was used for all cases.

Similar SNR results were found for reconstructions using the
SARA dictionary for both the M31 and 30Dor images. The Kaiser-
Bessel, PSWF and Gaussian kernels with an optimized o were
found to provide reconstructions of the same level of quality. The
tests for these kernels converged within 100 iterations.

However, the Gaussian kernel with a typical o and the Box func-
tion provide reconstructions that have an SNR that is 5-10 dB below
the other kernels in these tests. Furthermore, for the Box kernel, the
reconstructions had often not converged within 100 iterations, while
for the Gaussian with a typical o the majority of tests converged.

To illustrate the difference between reconstructions using the
Kaiser-Bessel and Box interpolation kernels, Figs 4 and 5 show
example reconstructions for M = 2N. Error images are also shown,
defined as the difference between the reconstructed and ground truth
image. The structure in the Kaiser-Bessel kernel error images looks
close to Gaussian error. The structure in the Box kernel error images
shows artefacts, which spread throughout the reconstructed image,
explaining the lower SNR.

Tests were also performed using only a Dirac basis as the sparsify-
ing dictionary, which provides a proxy for the cLEAN algorithm. The
results obtained were consistent with those found with the SARA
wavelet dictionary. This suggests that these results found here are
likely to apply also to cLEAN and other similar algorithms.

Additional tests were performed at an ISNR of 10 dB, where
it was found that there was minimal difference between the recon-
structed SNR with different interpolation kernels. This suggests that
the choice of interpolation kernel will limit the reconstruction SNR

when the level of artefacts is comparable or greater than the noise
level. Consequently, for high dynamic range imaging the choice of
kernel is important.

5.3 Discussion

Many calibration and imaging techniques depend on gridding and
degridding methods to approximate the Fourier transform. While it
has been understood that gridding methods in radio astronomy can
impact image quality (Schwab 1978; Greisen 1979; Schwab 1980;
Briggs et al. 1999), the current study confirms that gridding with
poor kernels reduces the quality of images that can be recovered
by sparse regularization approaches, such as those implemented in
PURIFY, and also those that can be recovered by cLEaN. The mag-
nitude of the impact depends on the quality of the measurements.
For high-quality measurements with high ISNR, the use of poor
interpolation kernels will limit the SNR of the reconstruction. At
low measurement ISNR, noise dominates the limit imposed by the
interpolation kernel.

In particular, we have found that the Gaussian kernel with an
optimal o and the Kaiser-Bessel kernel can both perform as well
as the PSWF, while using a smaller support. Moreover, both of the
former have analytic forms that can be easily evaluated, which is not
the case for the PSWF, where approximations are typically made
and look-up-tables used. This suggests that the Kaiser-Bessel kernel
is just as good as the PSWF for sparse image reconstruction, and
computationally less expensive with a smaller support. These find-
ing are consistent with previous works, suggesting that the Kaiser-
Bessel kernel is on par with optimal kernels (Greisen 1979; Jackson
et al. 1991; Fessler & Sutton 2003).

Downl oaded MM}%A§S47/33CL9§§E.I%8c(x%QJn%)as/ article-abstract/473/1/1038/ 4110295

by UCL (University Col | ege London) user
on 04 January 2018



Sparse imaging of interferometric observations 1047

40.08 0.08

4008 0.06

40.04 0.04

-0.1 -0.1

Figure 5. (30Dor) Left column shows ground truth (top) and dirty image (bottom). Middle column shows reconstructed image (top) and error (bottom) with
Kaiser-Bessel kernel. Right column shows reconstructed image (top) and error (bottom) with Box kernel. For these simulations, M = 2N visibilities were
used, with an input SNR of 30 dB. The error image shows that the Box kernel reconstruction has artefacts, which explains why the SNR is lower than the
Kaiser-Bessel reconstruction. The Box kernel reconstruction did not converge within 100 iterations (based on the convergence criteria described in the text),

while the Kaiser-Bessel kernel reconstruction did.

6 APPLYING PURIFY TO OBSERVATIONS

The application of compressive sensing to radio interferometry is
a relatively new development and to date most of the exploration
of compressive sensing has been via simulated observations. Sim-
ulations are useful for testing the performance of reconstructions
because the ground truth and noise level is known, and appropriate
algorithm parameters can be estimated accurately. However, this is
not the case when reconstructing images from real observations.

In the next section (Section 7), we demonstrate that PURIFY can
perform high-quality image reconstruction on real observations and
compare reconstructed images with those recovered by the CLEAN
algorithm. However, to compare PURIFY and CLEAN reconstructions,
we need to make clear the fundamental differences between the
final outputs produced by each approach. In this section, we discuss
CLEAN in the context of sparse image reconstruction and clarify
where the differences lie. In addition, we describe how to apply
PURIFY to real observations, including how to set the pixel size,
weighting and other parameters of the algorithm.

6.1 CLEAN comparison

Variations of cLEAN, such as Clark and Cotton-Schwab CLEAN
(Clark 1980; Schwab 1984b), work by iteratively building a model
of the sky in major and minor cycles. This can be expressed in terms
of iterations (Onose et al. 2016)

x0=x"V 4+ T (@ (y— exV)), 27

where x) represents the solution after ¢ iterations and 7 represents
the process of deconvolving the brightest sources in the residuals
' (y — oxV).

CLEAN operates in minor and major cycles, and the minor cy-
cles 7 are performed after the calculation of a major cycle
@' (y — ®x"~"). The minor cycles iteratively subtract the bright-
est sources from the image using an approximate PSF, which allows
the location of the peaks of multiple sources to be found quickly.
The major cycle performs an accurate subtraction of sources located
in the minor cycle to generate the residuals for the next round of
minor cycles.

CLEAN is essentially a matching pursuit algorithm (Marsh &
Richardson 1987), with a threshold constraint as suggested by
Hogbom (1974), where the algorithm stops when the peak pixel of
the residual image is below € threshold» “ q>T (y - (I)x) “lgc = €threshold-
Most variations of CLEAN impose the prior that the sky is sparse
in a Dirac representation (CLEAN components/point sources), while
multiscale and adaptive scale pixel decomposition CLEAN consider
atoms with wider support to better model a sky containing ex-
tended sources (Bhatnagar & Cornwell 2004; Cornwell 2008; Zhang
et al. 2016). The solution obtained by the cLEAN algorithm x is typ-
ically called a CLEAN component image.

6.1.1 CLEAN restoration

In the case that the cLEAN components x could accurately model
the entire sky, there would be nothing but noise remaining in the
residuals. However, often it is not possible for cCLEAN components
to model diffuse structures that cannot be represented efficiently by
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point sources. For this reason, a final restored image is constructed
to include structures not deconvolved by cLEaN. The final restored
image is found by convolving the cLEAN components with a Gaussian
and then adding the residual image:

xrestored =Px + (I)T (y — ®x), 28)

where P is a post-processing operator that convolves x with a Gaus-
sian of the same full width at half-maximum as the dirty beam. The
final restored image is expressed in units of Jy Beam~'. These mod-
ifications mean the process of constructing a final restored image
is not consistent with finding a solution that best fits the data for a
given prior, even if the motivations are pragmatic.

The cLEAN residuals are therefore not a true representation of how
well the restored image models the true sky. Rather, the residuals
®' (y — ®x) of a reconstructed cLEAN image are due to the CLEAN
components x, not the final restored image x4,

An additional systematic that can occur with the cLEAN method
is that the dirty beam may not be well approximated by a Gaus-
sian, which is assumed in constructing the restored image (Oberoi,
Attridge & Doeleman 2003). This could impact studies that require
accurate characterization of point sources, such as weak lensing
(Patel et al. 2015). Additionally, in low-frequency imaging the iono-
spheric distortion on short time-scales can produce a non-Gaussian
dirty beam. For low-frequency radio astronomy this is a serious
issue, as discussed in Hurley-Walker et al. (2017).

6.2 PURIFY

PURIFY adopts the prior that the sky has a sparse representation.
This can include a representation as a collection of point sources
and/or single or multiple wavelet dictionaries. This allows more
flexibility when modelling both point sources and extended sources
simultaneously, providing more accurate deconvolution of complex
structure. As a result, diffuse structures are not expected in the
residual image; hence, there is no need to combine the model with
the residuals as is done with the cLEAN algorithm. PURIFY provides a
final image that is completely deconvolved, eliminating the need to
convolve the model with a Gaussian beam.

PURIFY therefore provides several advantages over CLEAN (in addi-
tion to improved image quality and the ability to scale to big data).
First, it means the residuals correspond to the final image used
for scientific analysis, such that the final image is the model that
minimizes the error (this is not true for the CLEAN restored image).
Secondly, the final model image recovered has units of Jy Pixel ™!,
rather than Jy Beam™'. This provides an advantage when comput-
ing statistics on an image and for general scientific interpretation,
because there is no need to include Gaussian and dirty beam depen-
dence.

6.3 Choice of pixel size

The final image recovered by PURIFY is sampled at discrete pixel
values; hence, there is a choice in the size of a pixel of the discrete
image representing the sky brightness. The size and number of
pixels can be determined by the resolution and field of view of the
telescope. The size of the pixel can be estimated from the resolving
power of the longest baseline and number of pixels determined by
the field-of-view imaged (by the Nyquist relation).

However, radio astronomy packages such as Common Astron-
omy Software Applications (casA) or MIRIAD typically assume
between 3 and 5pixels across the full width at half-maximum
(FWHM) of the synthesized beam, found by least-squares fitting a

Gaussian to the main lobe of the synthesized beam (Sault et al. 1995;
McMullin et al. 2007; Offringa et al. 2014).

Ideally, the size of the image should include all of the bright
sources within the telescope’s field of view. When bright sources
are outside the imaged field of view they cannot be modelled but may
be aliased into the imaged region, which can limit image fidelity.

PURIFY is flexible with regard to the pixel sampling rate and size
and these parameters can be set by the user. However, the default
approach to setting the pixel size is to adopt Nyquist sampling
since the resolution of the model is fundamentally limited by the
uv-sampling pattern.

6.4 Weighting

Inradio interferometry, it is standard practice to weight the measure-
ments according to natural, uniform or robust weighting schemes,
which are described in detail in Briggs (1995). The visibilities are
weighted by the natural weighting scheme to optimize the sensitivity
of an observation. However, for observations containing extended
emission, the sidelobes in the image domain due to natural weight-
ing can dominate the synthesized beam. In this case, CLEAN can per-
form badly, so the visibilities are uniformly weighted to minimize
sidelobes. We concisely review different weighting schemes, in-
cluding the standard natural, uniform and robust weighting schemes
used in radio interferometry. PURIFY supports all of these schemes.

6.4.1 Natural

Natural weighting maximizes the sensitivity of the observation,
with weights set to W W — 5~ where o, is the standard devi-
ation of the error for visibility y;. Note that here we consider the
weighting operator as a component of the measurement operator
following equation (7); hence, its entries are given by crfl, rather
than a scaling of the visibilities only, in which case the weights are
given by o, 2. Natural weighting is also known as whitening: each
measurement has the same (unit) variance after weighting (Carrillo
et al. 2014). Whitening is a standard weighting approach in statisti-
cal data analysis and image processing. Using natural weighting for
interferometric imaging allows one to use a x? distribution when
comparing how well the model visibilities fit the data, which can be
used for a statistical interpretation of the bound on the £,-norm.

6.4.2 Uniform

Uniform weighting minimizes the amplitude of sidelobes over a
given field of view, which is achieved by calculating an average
weighting from the nearest neighbours of a visibility. Explicitly, an
average weight is calculated by

Wfl;-ldd(:d — ﬁz (WZ?/tuml)z, (29)
"kes;

where S; denotes the set of visibility indices that are included in the

grid cell corresponding to visibility i, and |S;| denotes the number

of elements in S;. The uniform weights are then calculated by

normalizing the natural weights:

natural
miform ii
Wi = yyEidded (0)
It is possible to control the field of view at which the synthesized
beam sidelobe suppression due to weighting occurs by changing the
resolution of the grid cells. As the grid resolution increases, the field

Downl oaded MM}%A§S47I33CL9§§E.I%.8c(t%er)as/ article-abstract/473/1/1038/ 4110295

by UCL (University Col | ege London) user
on 04 January 2018



Sparse imaging of interferometric observations 1049

of view for dirty beam sidelobe suppression increases, although the
suppression level is reduced. As the field of view for suppression
increases, the weighting tends to natural weighting.

6.4.3 Robust

Robust weighting allows one to vary a robustness parameter R to
continuously move between natural and uniform weighting:

robust W?-;}mml
Wiehust — , , @31

1+p (W,‘gr‘idded)z

where
natural \ 2
0= Zk (Wk,'k ) - x 10—2R+]0gm(25)‘ (32)
S (W)

6.5 Parameter choice

The parameters of PURIFY are set automatically, following the rec-
ommendations of Carrillo et al. (2014) and Onose et al. (2016). We
also consider some minor modifications of these schemes that can
be useful when analysing real observations, where, for example, the
errors on the visibilities that are provided (i.e. weights) may not be
accurate. Two parameters that need to be set carefully are the bound
on the data fidelity error bound € and the step size of the algorithm
y. We suggest a method to estimate € using the Stokes V visibilities
and to adaptively estimate the step size y during the first steps of
the algorithm.

6.5.1 Choosing the error bound €

The parameter € determines the error on how closely the model
visibilities are required to match the measured visibilities. If € is
too small the model will start to fit to noise and if € is too large the
model will not model structures accurately.

In the case of natural weighting, € can be estimated by (Carrillo
et al. 2014)

2
& =0M+ q\/4M)07”, 33)

where € is set to ¢ standard deviations above the mean of the x>
distribution. However, for typical observations 2M >> /4 M so this
interpretation is less useful (due to the concentration of measure in
high dimensions). For real observations with large M, we simply
estimate € from the mean of the x? distribution and allow a scaling:

€ = nman, (34)

where 1 allows one to vary € to include non-thermal noise contribu-
tions, such as instrumental errors and radio frequency interference
(RFI). When using this latter approach to set € we explicitly denote
the n dependence by ¢,,.

In principle, standard calibration and self-calibration methods
can be applied with puriFy, but to date these have not yet been
tested. Such an approach may be considered by choosing a high
error bound for € to generate a sky model of the brightest sources,
applying a calibration algorithm to recover calibration parameters,
before iterating.

In the case that the source of noise in the visibilities is thermal, the
weights should be accurate. However, if the weights are not accurate

it is possible to use Stokes V to estimate the noise level and thus
€. This is because Stokes V rarely contains astrophysical sources
and so is dominated by thermal noise. To estimate the noise on a
measurement, we use the median absolute deviation (MAD) method
(Rousseeuw & Croux 1993; Hoaglin, Mosteller & Tukey 2000)

’

Median(Real(Wyv)) 2 Median(Imag(Wyy)) 2
On =
0.67449 0.67449

(35)

where Wyy is the weighted Stokes V visibilities. The MAD method
provides a robust way to estimate o, given Gaussian noise, and
should be reliable when Stokes V is dominated by thermal noise.

Furthermore, if the weights are only proportional to the standard
deviation of noise, they will be incorrect by a scaling factor. The
MAD method can be used to determine the standard deviation of
the noise from a sample distribution. While using the MAD method
to estimate o, is intended to work for thermal noise contributions,
it might not be accurate when there are polarimetric, amplitude and
phase calibration errors or RFI.

6.5.2 Adapting the step size y

In Carrillo et al. (2014), it is suggested that the algorithm step size
y can be set by

y = BI¥xO,, (36)

where x@ is an initial estimate of the image. Typically, the initial
estimate is chosen as x¥ = ®Ty (i.e. the dirty image). While the
choice of y should not affect the final result of the algorithm, it does
affect the rate of convergence.

We adapt this approach and allow y to be re-estimated as the
algorithm progresses, before settling on a fixed value of y to guar-
antee convergence. In this case, a candidate adaptive step size for
the ith iteration can be calculated 7 = B||Wix?|,_ . If the current
candidate for the step size changes by a small amount only, there is
no need to change the step size used. In this case, a general rule for
adapting the step size can be set:

~ e VimViel
Vi if Vi1 > 8adapl
— H Yi—Vi-1
Yi=§VYi-1 if ’}/i—ll = Sadapl s (37
Yi—1, if i > iadapta

where 8,4qp; is the minimum relative difference needed for adapting
the step size and i,qqp is the number of iterations after which the
step size will not be adapted and will remain fixed.

6.6 Input parameters of PURIFY

As described already, the parameters of PURIFY are set automatically
and so PURIFY can be run simply by providing the filename of an
input measurement set and the output filename of the image to be
recovered. The user does not need to set any parameters. However,
the default settings can be overridden.

The main parameters of interest that a user may want to overwrite
are specified in Table 1. These include the n value in setting €,,
the B parameter in setting y, the 8qap and iygep parameters that
control adapting y, the relative variation of the solution criteria &,
the residual norm convergence criteria £, and the maximum number
of iterations i,y.

In analysing the observations considered in the next section, the
value of n varies from 1.4 to 7 and depends on the quality of the data
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Table 1. Description of main user parameters for using PURIFY to reconstruct an observation. All parameters are set automatically but can be overwritten.

Parameter  PURIFY option Description Value
n --12_bound Parametrization of the fidelity constraint: €, = n«/ﬁan n = 1.4 (default); n € [1, 10]
(typical)
B --beta Parametrization of the step size of the algorithm: B = 1073 (default)
7i = Bl x @, (default). One can also fix y = B[ wix@ |,
Sadapt --relative_gamma_adapt Relative difference criteria for adapting y; Sadapt = 0.01 (default)
iadapt --adapt_iter Number of iterations to consider adapting the step size y; (should  iagape = 100 (default)
be before convergence)
) --relative_variation Relative difference convergence criteria on the £,-norm of the 8§ =5 x 1073 (default)
solution: M <34
x@le,
& --residual_convergence Convergence criteria on the £, residual norm: ||y — ®x|l,, < &€, & =1 (default); require & > 1
imax --niters Maximum number of iterations imax = 00 (default)

set, such as how free it is from calibration error and RFI. The iygqp
parameter is set to a fraction of the maximum number of iterations.
It is important to et iyqqpt sSuch that the step size y stops adapting
before convergence. The relative variation criteria of the objective
function was chosen to be § = 5 x 1073, The choice of residual
norm convergence criteria £ also depends on the quality of the data
set.

7 PURIFY RECONSTRUCTION OF
OBSERVATIONS

In this section, we compare the use of puriFy and Cotton-Schwab
cLEAN for reconstructing total intensity (Stokes I) observations made
by the VLA and the ATCA. In particular, we consider observations
of the radio galaxies 3C129, Cygnus A, PKS J0334-39 and PKS
JO116-473. To perform the Cotton-Schwab cLEAN algorithm, we
use WSCLEAN (Offringa et al. 2014). WsCLEAN is a standard choice
for imaging in several MWA (Tingay et al. 2013) science pipelines
including continuum, transients, EoR and polarization modes (Mur-
phy et al. 2015; Wayth et al. 2015; Jacobs et al. 2016; Lenc
et al. 2016; Offringa et al. 2016). For puriFY, we present results
using the P~ADMM algorithm (Onose et al. 2016), in the analysis
setting, with a positivity constraint and the SARA wavelet dictionary
(Carrillo et al. 2012), without reweighting. Results with alternative
algorithms that are being implemented in PURIFY (e.g. the primal
dual algorithm; Onose et al. 2016) will be presented in future work.

7.1 Observations

In this section, we discuss the details of the observations considered.
The sampling patterns in the uv-plane for each observation are
shown in Fig. 6.

7.1.1 3CI129

The observation of the bent tailed radio galaxy 3C129 has a phase
centre of RA = 04"45™313695, Dec. = +44°55'19795 (J2000), and
was obtained from the NRAO archive. It was performed using the
VLA with the project code AT0166, with two 50 MHz channels
centred at 4.59 and 4.89 GHz. The observations were performed on
1994 July 25 in configuration B and on 1994 November 3 in con-
figuration C, respectively. The total integration time was 79.7 min
in configuration B and 15.8 min in configuration C. The calibra-
tion and flagging of RFI was performed using casa, following the

standard procedure found in the casa manual. The gains were cali-
brated using sources 0420+417, 0518+165 and 01344329 to solve
for the instrumental and source polarization. Source 0420+417 was
observed alternately to solve the polarimetric calibration solutions
with paralactic angle coverage.

7.1.2 Cygnus A

The VLA observation and reduction of Cygnus A in the X band
(central frequency of 8.953 GHz, and 92 MHz bandwidth) was per-
formed by Rick Perley® (PI: Perley, project code 14B-336 (legacy:
AP658)). Cygnus A was observed in 2014 between November 3
(18:39:44.0 UTC) to November 4 (04:28:12.0 UTC), using config-
uration C. The pointing centre was located at RA = 19"59™283356,
Dec. = +40°44'027075 (J2000). The data were reduced and cali-
brated using AIPS, following standard procedure that can be found
in the AIPS Cookbook.’

7.1.3 PKS J0334-39

The observation of PKS J0334-39 was first presented in the work
of Pratley et al. (2013), where the tailed radio galaxy’s polametric
structure was used to probe the environment of the galaxy clus-
ter Abell 3135. The observation was also reprocessed using self-
calibration in Pratley & Johnston-Hollitt (2016), where it was used
as an example of applying Generalized Complex cLEaN (Pratley &
Johnston-Hollitt 2016) to an observation. The observation was per-
formed using the ATCA (with the pre-CABB correlator) in 2001
is centred on RA = 03"34™07:18, Dec. = —39°00'03719 (J2000),
at a central frequency of 1.384 GHz. There are 12 channels, each
with a width of 8 MHz. The observation was performed in con-
figuration 6A for 59 min, 1.5A for 76 min, 750A for 79.7 min, 375
for 75.4min. A detailed description of the calibration procedure,
performed using MIRIAD, can be found in Pratley et al. (2013).

7.1.4 PKS J0116-473

The observation of PKS J0116-473 used in this work was first pre-
sented in Saripalli, Subrahmanyan & Shankar (2002). The total
intensity, polametric structure and morphology of PKS J0116-473

8 Private communication.
9 http://www.aips.nrao.edu/cook.html
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Figure 6. Plots showing the uv-coverage of the observations of 3C129 (top left), Cygnus A (top right), PKS J0334-39 (bottom left) and PKS J0116-473

(bottom right). Units of u and v are kilo-wavelengths (kilo-1).

have been studied in detail at 12 and 22 cm emission. The ATCA
observations of PKS J0116-473 used in this work were extracted
from the archive (PI: Shankar, project code C770), then calibrated
and flagged following a standard ATCA data reduction procedure
found in the MiRiaDp manual.'® The phase centre is located at RA
= 14"59™15%75, Dec. = —36°55'47/87 (J2000) and the central ob-
servation frequency is 1.384 GHz. After flagging and removing
channels due to cross-channel interference, there are 12 channels
each with 8 MHz channel width. The observations were performed
in 1999 on January 10 and 12 (configuration 375, 1115 min inte-
gration), on February 7 (750C, 1088.3 min), on February 20 (6C,
1109.3 min), and on April 24 and 25 (1.5C, 1112 min). Sources PKS
B1934-638 and PKS B0823-500 were used to set the flux density
scale at 1.384 GHz. The time variations in complex antenna gains
and bandpass were calibrated using alternating observations of the
unresolved source PKS B0153-410.

10 http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.
html

7.2 Reconstructions

In this section, we present the reconstructions from real observa-
tions. We show the reconstructed model image, alongside the resid-
uvals. For the CLEAN reconstructions, we show the post-processed
restored image (see Section 6.1.1), while for purIFy, there is no
need for post-processing so there is no restored image but only a
reconstructed model image (see Section 6.1.1). For PURIFY recon-
structions, we use natural weighting, and for cLEAN, we use both
natural and uniform weightings.!!

The cLEAN thresholds and FWHM of the restoring beams can be
found in Table 2. The cLEAN components are restricted to be positive
valued. cLEAN has not been restricted to regions around the source.
CLEAN was run until the residual peak reached the cut-off flux value.
We are careful to make the distinction between the restored image
and the reconstructed image for cLEAN (see Section 6.1.1), since the
restored image is not used to generate the residuals. When we refer

1 Rather than using measurement sets for the ATCA data sets, the tables
were read with PURIFY from uvfits files. In all other cases, the observations
were read from measurement sets.

MNRAS 473, 1038-1058 (2018)
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Table 2. Table listing details of settings used to recover CLEAN images.

Observation Weighting Beam size Cut-off

3C129 Natural 2.07” x 1.88",158° 0.0025 Jy
Uniform 1.30” x 1.06", 33°

Cygnus A Natural 3.48” x 2.81”, 105° 0.1y
Uniform 2.25" x 1.99”7,97.4°

PKS J0334-39 Natural 45.6" x 36.8",171° 0.001 Jy
Uniform 8.6” x 43", 17°

PKS JO116-473 Natural 40.0” x 24.6",158° 0.001 Jy
Uniform 6.33" x 4.72", 3°

to the reconstructed image, we are referring to the CLEAN component
image.

For purIFy, the error constraint in the model is set using €,. The
P-ADMM step size was set adaptively as described in Section 6.5.2.
PURIFY images have a resolution set by the longest baseline in the
observation.

Images recovered by cLEAN and PURIFY, and auxiliary plots, are
shown in Figs 7-10. Reconstructions of the source 3C129 are shown
in Fig. 7 for a pixel width and height of 0.4 arcsec. The pURIFY recon-
struction was performed using a value of n = 0.9 and £ = 1, and ran
for 75 iterations. The step size was adapted for the first iygop = 20
iterations. Fig. 8 contains the reconstructions of Cygnus A for a
pixel width and height of 0.5 arcsec. The PURIFY reconstruction was
performed using n = 2.14 and £ = 7.07, and ran for 183 iterations.
The step size was adapted for the first iyqep; = 100 iterations. Re-
constructions of the source PKS J0334-39 are shown in Fig. 9 for
a pixel width and height of 2 arcsec. The PURIFY reconstruction was
performed using n = 1 and £ = 2, and ran for 372 iterations. The
step size was adapted for the first i,y = 200 iterations. Recon-
structions of the source PKS J0116-473 are shown in Fig. 10 for a
pixel width and height of 2.4 arcsec. The PURIFY reconstruction was
performed using n = 1 and £ = 2.3, and ran for 707 iterations. The
step size was adapted for the first iyqqp = 500 iterations.

The run times for these reconstructions range from an hour to sev-
eral hours using a high-performance desktop computer to produces
images of sizes 1024 x 1024 and 2048 x 2048 pixels. Currently,
a large factor in the computational cost and run time for PURIFY is
computing wavelet transforms for a number of dictionaries. In the
case that only a Dirac basis is used and no wavelet transforms are
performed, the run time is reduced considerably for large image
sizes. However, this greatly reduces the quality of the reconstructed
image, because a Dirac basis is not an efficient representation of ex-
tended structures. As discussed, highly distributed and parallelized
algorithms will be implemented in future work to reduce the run-
time significantly (Onose et al. 2016). While cLEAN methods appear
computationally efficient, this comes at a significant cost to recon-
struction quality and with additional restrictions on the ability for
distribution.

In all cases, PURIFY provides more complete reconstructions than
CLEAN. When comparing with the CLEAN component images, the
CLEAN component images are not smooth and do not reconstruct the
diffuse emission well (due to the point source model of CLEAN), while
the PURIFY recovered images model diffuse emission. After post-
processing the CLEAN component image to yield the CLEAN restored
image and comparing with PURIFY, it is also clear that PURIFY provides
higher quality reconstructions.

The dirty and residual images of pUrIFY are shown in Jy Beam™
for comparison. To convert from units of Jy Pixel ! to Jy Beam™',
the image is divided by the peak of the point spread function (PSF)
® W1, where 1 denotes a vector of ones. This allows direct com-

1

parisons of the residual images between CLEAN and PURIFY, since
they will have the same units without arbitrary scaling. To compare
the residuals the scale of the colour axis has been set to a common
scale, using three times the median root-mean-square (rms) values
between the residual images in Table 4. The histograms show the
full range of pixel values in the residuals, determined by the peak
of the absolute residuals, to allow one to inspect outliers.

For all observations, pURIFY can model faint extended structure
while also modelling the bright compact sources. Additionally, the
PURIFY model has left little structure in the residuals. This is also
clear from the histogram of the residual pixel brightness, which
shows the residuals are dominated by Gaussian noise. The CLEAN
reconstruction leaves visible diffuse structure in the residuals. The
histogram of the residual images show large peaks below the cLEAN
cut-off.

The primary difference that natural and uniform weightings have
on CLEAN is that uniform weighting suppresses the synthesized beam
sidelobes. While this lowers the sensitivity of the observation, CLEAN
then performs better at modelling fine structure with CLEAN com-
ponents, with diffuse structure left in the residuals, which are then
added back in the CLEAN restored image.

The dynamic range is used to assess the quality of reconstructions
quantitatively and is calculated by

VN|®|?

) Qp— ke
@7 (y — @x) ¢,

max{x;}, (38)
i.e. the ratio of the peak of the recovered image to the rms of the
residuals (for a normalized measurement operator). The weights
are assumed to be in the measurement operator. The norm of the
measurement operator is included so that the dynamic range does
not scale arbitrarily under the choice of the normalization of the
measurement operator. For cLEAN, we follow the standard approach
and use the peak of the restored image, divided by the rms of the
residual image. The dynamic ranges of the images recovered by
cLEAN and PURIFY can be found in Table 3, where PURIFY consistently
recovers images with higher dynamic range. The rms of the residuals
around the scientific region of interest (see Table 4) show that PURIFY
consistently fits the measurements better than CLEAN.

Table 4 compares the rms of the residual images with in the
regions shown in Figs 7—10. Other than 3C129, puriry shows a con-
sistent order of magnitude improvement in the rms of the residuals.

7.3 Discussion

From a scientific standpoint, the pURIFY models show more structure
than those recovered by cLEaN. This is clear when looking at the
surface brightness variation of the jets of 3C129 and Cygnus A. For
3C129 and Cygnus A, unlike the cLEAN restored images, the surface
brightness structure is well resolved in the images recovered by
PURIFY.

The cLEAN restored images of PKS J0334-39 and PKS JO116-
473 with uniform weighting show an improvement over natural
weighting for deconvolving the fine structure, as well as containing
diffuse structure. However, uniform weighting is known to suppress
large-scale structure and lowers the sensitivity of the observation (as
discussed in Hindson et al. 2014). However, PURIFY has the ability
to reconstruct the fine details of PKS J0334-39 and PKS J0116-473
without uniform weighting. This demonstrates that puriFY has the
potential to reconstruct observations that can be used to perform
a more detailed analysis of morphology and structure of diffuse
sources. The reconstruction of Cygnus A shows that it is possible
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Figure 7. puriFy and cLEAN reconstructions of 3C129. Each pixel is 0.4 arcsec, and the images are 1024 x 1024 pixels. The pixels within [400, 900] x [400,
900] are shown in the images and histogram of this figure. Left column shows a PURIFY reconstruction with natural weighting. Middle and right columns show
CLEAN reconstructions with natural and uniform weightings, respectively. From the top to bottom row: synthesized (i.e. dirty) image, model image, restored
image, residual image and a histogram of residual image. PURIFY does not require any post-processing and so does not produce a restored image.
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Figure 10. puriry and cLEAN reconstructions of PKS JO116-473. Each pixel is 2.4 arcsec, and the images are 2048 x 2048 pixels. The pixels within [800,
1200] x [800, 1200] are shown in the images and histogram of this figure. Left column shows a PURIFY reconstruction with natural weighting. Middle and right
columns show CLEAN reconstructions with natural and uniform weightings, respectively. From the top to bottom row: synthesized (i.e. dirty) image, model
image, restored image, residual image and a histogram of residual image. pURIFY does not require any post-processing and so does not produce a restored image.
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Table 3. Table listing the dynamic range of each reconstruction. When
computing the dynamic range for PURIFY reconstructions the calculation in-
cludes the norm of the measurement operator, so the dynamic range does not
scale arbitrarily under the choice of the norm of the measurement operator.
For cLEAN, we follow the standard approach and use the peak of the restored
image, divided by the rms of the residual image.

Observation PURIFY CLEAN CLEAN
(natural) (uniform)
3C129 72444 220 495
Cygnus A 312928 372 472
PKS J0334-39 1701050 208 263
PKS J0116-473 1185700 153 361

Table 4. Table listing the rms of each reconstruction (units are in
mJy Beam™!).

Observation PURIFY CLEAN CLEAN
(natural) (uniform)
3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36
PKS J0334-39 0.052 1.00 0.37
PKS JO116-473 0.054 0.88 0.24

to accurately reconstruct diffuse bright structures in the presence of
compact bright sources.

Modellingextended structure accurately is particularly impor-
tant for understanding the underlying physics of radio sources and
their environment. Bent tailed radio galaxies, such as 3C129, are
an example of where this is important (Miley et al. 1972). The
morphology of bent tailed radio galaxies can be used as a probe
of their local cluster environment (Gunn & Gott 1972; Freeland,
Cardoso & Wilcots 2008; Douglass et al. 2011; Pfrommer &
Jones 2011; Pratley et al. 2013, 2015).

Additionally, an important class of diffuse, low surface bright-
ness radio sources are cluster relics and haloes (e.g. Brunetti
et al. 2008; Hindson et al. 2014; Martinez Aviles et al. 2016;
Shakouri, Johnston-Hollitt & Pratt 2016), which are believed to
be caused by shocks and turbulence in the outskirts of galaxy clus-
ters (Cassano et al. 2013, 2015). Radio haloes and relics are not well
understood, and they are prime examples of sources with diffuse
low surface brightness structure that relates to the physics within
the intra-cluster medium and merging galaxy clusters. However,
galaxy clusters often contain bright compact sources, providing a
challenge in deconvolving low surface brightness sources. PURIFY’S
ability to accurately model extended structure and reconstruct im-
ages with high dynamic range has the potential to improve scientific
interpretations of many radio interferometric observations.

8 CONCLUSIONS

In this work, we have further developed the pURIFY software package
so that it can be easily applied to observational data from radio inter-
ferometric telescopes. PURIFY has been completely redesigned and
reimplemented in C++ and now supports the P-ADMM algorithm
developed recently by Onose et al. (2016). Furthermore, the capa-
bilities of convolutional degridding in the measurement operator
have been expanded.

Using simulations, we studied the impact of a number of different
interpolation kernels on the quality of images recovered by sparse
reconstruction approaches to interferometric imaging. The Kaiser-
Bessel kernel was found to perform very well — as well as other

optimal kernels — while requiring a smaller support size, thereby
reducing computation cost, and having an analytic expression that
can be evaluated easily and efficiently.

PURIFY was applied to observational data from the VLA and ATCA
telescopes, recovering high-quality interferometric images superior
to those recovered by cLEAN. First, the PURIFY residuals contain less
extended structure and are more Gaussian with a lower rms. Sec-
ondly, the model images recovered by PURIFY are of sufficient quality
that there is no need to perform any post-processing as is done for
CLEAN (such as restoring the image). Thirdly, all images recovered
by pURIFY show an increase in dynamic range when compared to
those recovered by CLEAN, in some cases in excess of an order of
magnitude. On visual inspection, the images recovered by PURIFY
reveal extended structure in greater detail. For example, in recon-
structed images of 3C129, the internal structure of the radio jets
is much more apparent (Fig. 7). Such an improvement in recon-
struction quality can be important in facilitating a better scientific
understanding of astrophysical processes.

While the current version of PURIFY can be readily used to recover
high-fidelity images from observations made by radio interferomet-
ric telescopes, numerous extensions and improvements are planning
for future releases. In future, we will implement the primal dual al-
gorithm of Onose et al. (2016), highly distribute and parallelize the
algorithms supported following the strategies outlined in Carrillo
et al. (2014) and Onose et al. (2016), and add support for direction-
dependent effects following the approach outlined in Wolz et al.
(2013), for example.
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