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Causal Modelling and Brain Connectivity 
in Functional Magnetic Resonance Imaging
Karl Friston

Neuroimaging studies that investigate the involvement 
of brain regions in various cognitive and perceptual 
tasks have become increasingly prevalent. Functional 

magnetic resonance imaging (fMRI) studies are especially 
popular, due to their non-invasive nature and high spatial 
resolution. With recent advances in data analysis and 
modelling, it is now possible to use fMRI data to ask not only 
which brain regions are involved in these tasks, but also how 
they communicate with one another; for example, one can 
ask, “Is attentional modulation of visually evoked responses 
mediated by top-down (task-driven) or bottom-up (stimulus-
driven) connections in the brain?” 

There are two state-of-the-art approaches for understanding 
the communication among distributed brain systems 
using neuroimaging. They reflect two distinct approaches 
to understanding connectivity. One approach—dynamic 
causal modelling (DCM)—tries to model how activity in one 
brain area is affected by activity in another (using models 
of effective connectivity), while the other—Granger causal 
modelling (GCM)—tests for the signature of these influences 
by looking for correlations in the activity of two or more 
regions (using models of functional connectivity). Previously, 
the relative accuracies of these methods, in disclosing 
patterns of communication among brain regions, were 
unknown. In a recent issue of PLoS Biology, Olivier David et 
al. compared them directly and provided evidence that may 
have a profound influence on their application [1]. Here, 
we consider the motivation behind the two techniques, their 
underlying assumptions, and the implications of David et al. 
[1] for their continued use. 

How Is the Brain Organised?

Most human brain mapping studies appeal to one of two 
principles of functional brain organisation: functional 
segregation and integration. Functional segregation posits a 
regionally specific selectivity for neuronal computations; for 
example, certain brain areas (e.g., V5 or MT) are specifically 
involved in processing visual motion. Functional integration, 
on the other hand, speaks to distributed interactions among 
functionally segregated regions. Studies of functional 
integration seek to understand how regional responses are 
mediated by connections between brain areas and how these 
connections change with experimental manipulations or 
disease. Functional integration is usually analysed in terms of 
functional or effective connectivity. fMRI provides measures 
of changes in blood supply to specific brain regions, in 
response to experimental manipulations (e.g., watching 
moving dots, relative to viewing stationary dots). Images of 
these haemodynamic responses are typically acquired every 

few seconds, producing a time-series of fMRI data at each 
point in the brain. Functional connectivity is defined as a 
statistical dependency between these regional responses over 
time (e.g., correlations in fMRI time-series or coherence in 
electromagnetic signals). Analyses of functional connectivity 
are concerned with the spatial deployment of these 
dependencies; in other words, which areas correlate with 
which other areas. On the other hand, effective connectivity 
is concerned with the directed influence one brain region 
exerts on another. This approach, unlike functional 
connectivity, tries to understand how one brain region affects 
another. To measure effective connectivity, one has to have a 
model of how this influence is mediated. Analyses of effective 
connectivity then try to quantify coupling in terms of the 
parameters of the connectivity model. In what follows, we 
will consider DCM and GCM in light of the above distinction 
between functional and effective connectivity. 

Causality and Coupling

In 2003, two techniques were introduced that addressed 
temporal dependencies and directed influences among 
distributed brain responses. These were DCM [2] and GCM 
[3,4]; both appeal to causality and rest on time-series models 
of fMRI data. However, beyond this, they differ radically in 
their ambitions and domains of application. We will look at 
these differences from the point of view of their underlying 
models, the inferences they afford, their implicit notion of 
causality, and their history.

How Can One Model Brain Connectivity?

The fundamental difference between DCM and GCM is 
that DCM employs an explicit forward or generative model 
of how observed data were caused. These models invoke 
hidden neuronal and biophysical states that generate data. 
In contrast, GCM rests upon a phenomenological model 
of temporal dependencies among the data themselves [5], 
without reference to how those dependencies were caused 
(see Figure 1). In this sense DCM is a model of effective 
connectivity, whereas GCM is used to infer functional 
connectivity. This distinction becomes crucial for fMRI, 
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because fMRI signals are haemodynamic convolutions of 
underlying neuronal signals. In other words, the fMRI signals 
are the products of a complicated chain of physiological 
events that are initiated by changes in neuronal activity. 
This means that the observed fMRI response to a neuronal 
activation can be delayed and dispersed by several seconds. 
The convolution or impulse response function, mapping 

from underlying neuronal activity to observed fMRI 
responses, is called a haemodynamic response function and 
typically peaks at about four seconds (see Figure 2). DCM 
assumes haemodynamic signals are caused by changes in local 
neuronal activity, mediated by experimental inputs (e.g., the 
presentation of a visual stimulus or the instruction to attend 
to motion) and the distributed neuronal interactions among 

doi:10.1371/journal.pbio.1000033.g001

Figure 1. Models of Effective Connectivity
This schematic shows the underlying equations on which dynamic (DCM) and Granger (GCM) causal models are based. In DCM for fMRI, bilinear 
differential equations describe the changes in neuronal activity x(t)

i
 in terms of linearly separable components that reflect the influence of other 

regional state variables. Known deterministic inputs u(t) elicit a change in neuronal states directly though c
i
 or increase the coupling parameters a

ij
 in 

proportion to the bilinear coupling parameters b
ij
. The neuronal states enter a region-specific haemodynamic model to produce the outputs y(t)

i
. GCM 

tries to model the ensuing dependencies among the outputs with a time-lagged linear regression of the current response on previous responses (up to 
an order denoted by p). In both models, the data contain observation noise ε(t) that is added to regional observations. The DCM is effectively a state-
space model formulated in continuous time; whereas the GCM is a vector autoregression model in discrete time. See Figure 2 for a fuller explanation of 
the haemodynamic part of the model.
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brain regions that ensue. DCM is based on a model of this 
distributed processing and is parameterised by the strength of 
coupling among the neuronal regions. This neuronal model 
is then supplemented with a haemodynamic model that 
converts the neuronal activity into predicted haemodynamic 
signals. For fMRI, the neuronal models are usually fairly 
simple and are based upon low-order approximations 
to otherwise complicated equations describing the 
evolution of neuronal states (see Figure 1). In contrast, the 
haemodynamic model is rather complicated (see Figure 2). 
Both the neuronal and haemodynamic parts of the DCM 
are specified in terms of non-linear differential equations in 
continuous time (hence dynamic). The parameters of these 
equations encode the strength of connections and how they 
change with experimental factors. It is these parameters DCM 
tries to estimate.

Conversely, the model used by GCM is formulated in 
discrete time and usually rests upon the assumption that 
any statistical dependencies among brain regions can be 
approximated by a linear mapping over time-lags (although 
more sophisticated non-linear models can be used; e.g., 
[6]). GCM has no notion of experimental inputs or evoked 
responses and assumes the fMRI signals are stationary and 
are driven by random fluctuations; see [7–9]. The parameters 
of their underlying regression models encode the degree 
of statistical dependence between regions and are simple 
regression coefficients. In summary, the models employed by 

DCM are complicated and domain-specific, in relation to the 
simple and generic models used in GCM. 

Why Are Models Important for Testing Hypotheses?

So why go to the trouble of creating realistic models of 
brain processes? Basically, because it allows one to compare 
different models or hypotheses about distributed neuronal 
computations. In DCM one fits or inverts the models by 
optimising (the distribution of) their parameters (i.e., 
connection strengths and other biophysical quantities like 
rate constants) with respect to the model’s evidence. Put 
simply, one finds the distribution of parameters that renders 
the data the most likely, under the DCM considered. This 
optimisation furnishes two things. It provides the most likely 
parameters for any given model, and the model evidence 
itself. This evidence is simply the probability of observing 
the data under a particular model. The model evidence is 
a very important quantity because it allows one to compare 
different models and adjudicate among them [10]. In other 
words, it allows one to explore model space and find the best 
model that explains the data in a parsimonious way. If one 
equates each model with a hypothesis about the neuronal 
architectures subtending observed data, the model evidence 
provides a quantitative and principled measure for evaluating 
beliefs about different hypotheses. Once the best model 
has been selected, one can then look at its parameters and 
make probabilistic statements; such as, “attention selectively 

doi:10.1371/journal.pbio.1000033.g002

Figure 2. Modelling Haemodynamics
(A) This schematic shows the architecture of a haemodynamic model for a single region. Neuronal activity induces a vasodilatory and activity-
dependent signal s that increases blood flow f. Flow causes changes in volume and deoxyhemoglobin (v and q). These two haemodynamic states enter 
an output non-linearity to give the observed fMRI signal y. (B) This transformation from neuronal states x(t)

i
 to haemodynamic response y(t)

i
 is encoded 

graphically by the boxes in the previous figure and corresponds to a convolution. The implicit convolution kernel or haemodynamic response function 
is shown in the insert for typical values of the haemodynamic model’s parameters.
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increased the top-down connection between …” Similarly, in 
GCM one compares two models with and without a directed 
mapping between brain areas. If the model with the mapping 
has more evidence than the model without, one can conclude 
that the mapping or dependency exists. This inference is 
usually the end-point of the GCM, because the parameters 
(regression coefficients) per se have no biophysical meaning. 
In summary, DCM enables model comparison over a number 
of competing hypotheses or models and inference on the 
biophysical parameters of the model selected. In GCM there 
are only two models, with and without a particular functional 
connection, and the object is to infer that this dependency 
exists. In both cases, establishing evidence for one model, 
in relation to another, allows one to declare some causal 
relationship; but is the nature of this causality the same?

What Is Causality?

Causality in GCM is used in a very colloquial fashion and 
does not mean the data from one part of the brain “cause” 
data in another part. This is why it is referred to as Granger 
causality (or G-causality). Conversely, causality in DCM is 
used in a control theory sense and means that, under the 
model, activity in one brain area causes dynamics in another, 
and that these dynamics cause the observations. Causality in 
GCM is based on temporal precedence and assumes the data 
reflect states that cause each other. Conversely, causality in 
DCM is based on the differential equations of motion, where 
activity in one brain region changes activity in another. Is 

this important? Provided one understands and qualifies the 
use of Granger causality, then probably not. However, it is 
a mistake to think that Granger causality implies a directed 
causal influence. Data cannot cause data; data are caused 
by underlying brain states. This issue is particularly acute 
for fMRI, where regional variations in the haemodynamic 
response function render the data acausal. Put simply, this 
means that neuronal activity occurring first in one area and 
then in a second may be seen in the haemodynamic responses 
in the second area before the first. This violates temporal 
precedence assumptions and could lead one to conclude that 
the neuronal target “Granger-causes” responses in the source. 
Why is this potential flaw in the temporal assumptions of 
GCM not widely appreciated?

Where Do DCM and GCM Come From?

Granger causality was developed in the social sciences and 
economics, where the complexities of real-time biophysical 
processes are not an issue. It should be noted that the 
general concept of Granger-Schweder causality [11] is 
based on martingale theory and is not tied to the specific 
linear autoregressive models in Figure 1. Martingales are 
stochastic or random processes that, in essence, have no 
memory (where their differentials are known as innovations 
[11]). Unfortunately, most random fluctuations in biological 
systems do have memory, because they are generated by 
dynamical systems. This confounds the application of GCM 
to biological time-series. The application of GCM to fMRI 
time-series coincided almost exactly with the inception of 
DCM. DCM is a newer approach to time-series data that 
was developed to overcome the limitations of conventional 
techniques (like structural equation modelling and GCM) 
and is based on systems theory. Both have enjoyed a fairly 
rapid growth in development and application (see Figure 
3); for example, there are now dynamic causal models for 
electroencephalography (EEG), magnetoencephalography 
(MEG), tracer kinetics, and even local field potentials [12]. 
The sorts of questions addressed by causal modelling are 
exemplified by the selective bibliography in Box 1; and range 
from characterisations of hierarchies in language systems to 
lateralisation in visual processing.

doi:10.1371/journal.pbio.1000033.g003

Figure 3. Comparative Citations Rates
Citations rates for dynamic (DCM) and Granger causal modelling (GCM), 
since their introduction to fMRI in 2003. These citations were identified 
by searching for “dynamic causal model*” and “Granger causal*” with 
“fMRI”. Source: Web of Science.

Box 1. The Most Cited Applications of Causal 
Modelling with fMRI
These titles were identified by searching for “dynamic causal 
model*” and “Granger causal*” with “fMRI”; only application 
papers with ten or more citations are listed. Source: Web of 
Science.

for face perception. Cereb Cortex (2007) 17: 2400-2406. 

driven lateralization. J Neurosci (2007) 27: 3512-3522.

dynamic causal modeling study. Neuroimage (2006) 30: 580-
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Netw (2006) 19: 1422-1429.

Psychiatry (2006) 59: 929-939.

during rhyming and spelling. J Neurosci (2005) 25: 5397-5403.

interactions. J Cogn Neurosci (2005) 17: 1753-1765.

dynamic causal models. Ann N Y Acad Sci (2005) 1064: 16-36.

during perception and imagery. Cereb Cortex (2004) 14: 1256-
1265.

up or top-down mediation? J Cogn Neurosci (2003) 15: 925-
934.
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An Empirical Validation of DCM and GCM

DCM was invented because of theoretical concerns about 
the application of GCM to connectivity in the brain (see 
Box 2). However, following the publication of David et al. 
[1], some of these conceptual issues are now empirical facts. 
This advance rests on an elegant study using multimodal 
techniques and a well-defined animal model of neuronal 
signal propagation and directed connections; namely a rat 
model of absence epilepsy with spontaneous spike and wave 
discharges. In brief, the authors were able to measure brain 
responses to sporadic epileptic events; both at their source 
(somatosensory cortex) and in connected brain regions. 
Critically, they measured both electrical and haemodynamic 
responses. This allowed them to infer the known connectivity 
using just the fMRI data (with DCM and GCM) and 
compare the estimates to the true connectivity based on 
electrophysiology. Furthermore, because they had a measure 
of the underlying neuronal (electrical) activity, they were able 
to assess regional variations in the haemodynamic response 
function that could confound GCM.

More specifically, David et al. recorded non-invasive EEG 
and fMRI signals during seizure activity and later recorded 
intracranial signals in the areas identified by the brain 
mapping. By recording both electrophysiological (neuronal) 
and fMRI (haemodynamic) responses, the authors were able 
to evaluate the haemodynamic response function empirically; 
in regions showing seizure-related responses. Critically, they 
found enormous differences between the haemodynamic 
response functions in different brain areas. The authors 
compared the results of DCM and GCM analyses of the fMRI 
data and showed that regional variation in the haemodynamic 
response function did indeed lead to different conclusions 
about the connectivity. They then went on to use the 
intracranial recordings to establish the face validity of the 
ensuing inferences. They did this by looking at the direction 

of neuronally mediated influences, in terms of delays and 
asymmetry in generalised synchronisation of these time-
resolved measures. They were able to show that the driver 
of spike and wave discharges was correctly located in the 
somatosensory cortex when, and only when, haemodynamic 
effects were modelled appropriately by DCM.

This study highlights a key conceptual difference between 
DCM and GCM (see Table 1): namely, that DCM has an 
explicit model of hidden states causing observed data; 
whereas GCM tries to establish dependencies among the 
observations themselves. This is fine when the brain states 
that cause each other are observed directly (EEG), but not 
when the data are some post hoc consequence of these states 
(fMRI). David et al. illustrate this point by applying GCM to 
the fMRI data and then to the implicit neuronal activity. They 
show that the inferences are very different and that only GCM 
of implicit neuronal states gives sensible results. David et al. 
were able to do this because they had direct (EEG) measures 
that enabled then to undo (deconvolve) the haemodynamic 
effects and convert the fMRI data into a surrogate for 
neuronal states (using region-specific dynamic causal models 
and spike-wave inputs). In real-world fMRI applications, 
however, this would not be possible because one does not 
know the underlying neuronal activity. This is no problem for 
DCM because it assumes hidden neuronal states and models 
the haemodynamic convolution in each region explicitly.

Conclusion

The implications of David et al. [1] are far-reaching. They 
highlight the usefulness of well-defined animal models 
and multimodal recording. This work also provides one of 
the most potent empirical validations of DCM and, more 
generally, the attempt to model neuronal dynamics explicitly, 
when trying to explain brain imaging data. From the 
perspective of data analysis, it provides a clear pointer to the 
use of DCM over GCM and substantiates recent inferences 
about the confounding variability of haemodynamics over 
brain regions based on fMRI data alone [13]. At a more 
general level, it highlights the need for a clear understanding 
(and operational model) of how one thinks data are 
generated. Whether this is a good thing or not remains to 
be seen. DCM is a generic framework but is not based on a 
specific model; its application requires one to specify the way 

Table 1. Comparing DCM and GCM

Commonalities and Differences 
between DCM and GCM

DCM GCM

Commonalities

Multivariate analysis of time-series data Yes Yes

Models directed coupling Yes Yes

Inference on models Yes Yes

Differences

Causality based on temporal precedence No Yes

Causality based on control theory Yes No

Requires known inputs Yes No

Requires orthogonal innovations No Yes

Requires stationary processes No Yes

Requires a specific biophysical model Yes No

Models hidden states Yes No

Models non-linear coupling Yes No, but see [6]

Inference on model parameters Yes No

doi:10.1371/journal.pbio.1000033.t001

Box 2. Conceptual Motivations for DCM, in 
Relation To GCM

be interpreted in terms of causal interactions among neuronal 
states. This is because variations in the haemodynamic 
response function over the brain violate temporal precedence 
assumptions.

there are reciprocal polysynaptic connections between 
all brain areas, and models without connections are not 
appropriate null models.

we already know connections are reciprocal; what we want to 
know is if the connection changes with experimental context.

mapping; whereas neuronal and haemodynamic processes are 
non-linear.

because it models data, not the states that are perturbed.

random fluctuations or martingales) are serially correlated, as 
in fMRI. This problem also confounds GCM of EEG and MEG 
data.
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in which processes generating data are structured, in terms 
of differential equations. This contrasts with the simplicity of 
GCM, which can be applied directly to almost any time-series. 
One might think that obliging people to specify hypotheses 
about the way their data are caused is a good thing; but it 
does require a lot more investment and prior knowledge. �
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