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Abstract

Inertial navigation is always available as a base for multisensor navigation systems on,

because it requires no external signals. However, measurement errors persist and grow with

time so accurate calibration is crucial.

Large systematic errors are present in the micro-electro-mechanical sensors (MEMS)

whose low cost brings inertial navigation to many new applications. Using factory-calibrated

MEMS another navigation technology can calibrate these errors with in-run estimation using

a Kalman filter (KF). However, the raw systematic errors of low-cost MEMS are often too

large for stable performance.

This thesis contributes to knowledge in three areas.

First, it takes a simple GNSS-inertial KF and examines the levels of the various sys-

tematic errors which cause the integration to fail. This allows the user to know how well

calibrated the sensors need to be to use in-run calibration.

Second, the thesis examines how the end-user could conduct a calibration: it analyses

one method in detail showing how imperfections in the procedure a↵ect the results and

comparing calculation methods. This is important as frequently calibration methods are

only validated by demonstrating consistent results for one particular sensor. These two are

primarily accomplished using statistical Monte Carlo simulations.

Third, techniques are examined by which an array of inertial sensors could be used to

produce an output which is better than the simple array average. This includes methods

that reduce the array’s sensitivity to environmental conditions, this is important because

the sensors’ calibration typically depends strongly on temperature.

Also included in the thesis are descriptions of experimental hardware and experiments

which have been carried to support and unify the other parts of the thesis.

Overall, this thesis’ contributions will help make low-cost inertial navigation systems

more accurate and will allow system designers to concentrate e↵ort where it will make the

most di↵erence.
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Chapter 1

Introduction

In the last two decades, the development of cheap user-equipment for global navigation

satellite systems (GNSS) has led to many new uses for positioning technology. These in-

clude: route-finding and other location-based services on mobile devices; low-cost unmanned

aerial vehicles (UAVs); asset tracking; performance monitoring for sports; automatic con-

trol systems; and enhanced situational awareness for military or emergency response team

commanders. Consumers now expect to be able to know their position at any time and to

within a few metres. However, GNSS is not reliable everywhere, particularly in and around

tall buildings. An inexpensive solution is needed which can extend the good navigation

performance of GNSS systems in open areas to more challenging reception environments,

without being vulnerable to jamming, interference and spoofing like GNSS.

This demand for universally available positioning cannot be met by a single technology, at

least not without great cost. However, an integrated system of several di↵erent navigation

technologies can provide a cost-e↵ective navigation system with good performance in a

variety of environments [1].

Inertial navigation systems (INS) provide a navigation solution at all times based on de-

termining changes of velocity (acceleration) and changes of angular position (angular rate)

using an inertial measurement unit (IMU). This navigation technique relies on tracking the

previous position, velocity and attitude and using the measured changes to update their

values. Thus at any moment in time the positioning solution depends on all the previous

measurements as well as the most recent one, so errors increase with time. However, as it

does not rely on external signals it is always available and it can provide a basis for use

when other technologies are not available. INS errors can be estimated when more accurate

information is available and integration of an INS can even improve the performance of

those other techniques [2, 3].

IMUs consisting of micro-electro-mechanical-systems (MEMS) can be inexpensive, and are

also small and lightweight, making them suitable for many applications. However, these

inexpensive sensors are not supplied calibrated, which means that they have errors so large

that they are unsuitable for inertial navigation for more than a few of seconds [1,4]. For opti-

mal performance calibration is required for fixed, time-varying and temperature-dependent

systematic errors as well as characterisation of stochastic (random) errors. The latter is

typically achieved by examining samples of static data using tools such as Allan variance

analysis [5], although the former represents the low-hanging fruit for performance improve-

ment of low-cost IMUs.

13



14 Chapter 1. Introduction

There are four main methods which can improve the navigation performance of low-cost

MEMS IMUs. These are: improving MEMS sensor technology; IMU calibration prior to

use; integration with another navigation technology to calibrate the sensors during use;

and using arrays of IMUs to measure the inertial forces more accurately by averaging.

Improving MEMS sensor technology requires di↵erent expertise to the other three, and so

is not considered within the scope of this thesis.

1.1 Research objectives

The aim of this thesis is to improve the navigation performance of low-cost MEMS inertial

sensors, particularly in the context of an integrated navigation system. The Kalman filter

(KF) is the standard technique for integrating an INS with other navigation sensors. How-

ever, it can become unstable when used with low-cost sensors, due to the magnitude of their

errors. There is a need to establish where the limits of KF stability are.

The first objective of this thesis is to determine how well calibrated an IMU must be to

allow a stable multi-sensor integration, using only a basic Kalman filter.

Pre-calibrating the IMU can significantly improve navigation performance. However, lab-

oratory calibration techniques vastly increase the cost (from <£5 to >£1,000). To reduce

the unit cost, there is a need to investigate whether the end-user could calibrate the sensors

themselves, without any specialist equipment. Thus, the second objective of this thesis is

to assess what level of calibration accuracy can be achieved with various user-conducted

calibration manoeuvres.

The third objective of this thesis is to investigate ways of getting better performance from

MEMS using arrays of sensors. Specifically arrays that outperform a simple average of the

sensors’ output, by exploiting characteristics of the sensors’ design, such as error correlation

between sensors of the same model.

1.2 The main contributions of this thesis

The main contributions of this thesis are as follows:

• Development of an integration filter stability testing method, where a convenient con-

sistency test has been implemented for Kalman filter INS/GNSS integration. This

could easily be extended to other types of integration filter. This testing method has

been used to determine the limits, in terms of IMU errors, within which a basic KF

INS/GNSS integration remains stable.

• Determination of the estimation accuracy for existing and improved manoeuvres and

algorithms for user-conducted calibration. The e↵ect of factors such as the system

casing orthogonality, table levelling and the accuracy with which the human conducts

the manoeuvres have been investigated.
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• Proposing new manoeuvres and algorithms that have been shown to improve the

accuracy of the calibration. The user-calibration techniques calibration estimates are

shown to be repeatable with real IMUs and to improve their navigation performance.

• Three methods for improving the calibration performance by using sensor arrays have

been examined. These are anti-parallel arrays, mixed measurement range arrays, and

asymmetric arrays. The first of these has been shown to improve the performance of

real MEMS IMUs.

1.3 Publications arising from this research project

The research that is presented in this thesis has resulted in several publications.

The research on Kalman filter stability limits (Chapter 3) has been published in:

Martin, H. F. S., Groves, P. D., and Newman, M. The limits of in-run calibration of MEMS

inertial sensors and sensor arrays. NAVIGATION, Journal of the ION, 2016, 63(2), p.127–

139.

A preliminary version of which was presented at:

Martin, H. F. S., Groves, P. D., and Newman, M. The limits of in-run calibration of MEMS

and the e↵ect of new techniques. In Proc. ION GNSS (September 2014).

The presentation of this paper at ION GNSS+ 2014 was awarded with a “Best presentation

in session” prize.

A preliminary version of the examination into array techniques (Chapter 6) was published

in:

Martin, H. F. S., Groves, P. D., Newman, M., and Faragher, R. A new approach to better

low-cost MEMS IMU performance using sensor arrays. In Proc. ION GNSS (September

2013).

A journal submission will also be prepared on the user-conducted calibration research pre-

sented in Chapter 4.

The author has also been a co-author on work not presented in this thesis but in related

areas:

Groves, P. D., Wang, L., Walter, D., Martin, H. F. S., Voutsis, K., and Jiang, Z. The four

key challenges of advanced multisensor navigation and positioning. In IEEE/ION PLANS

(Monterey, CA, May 2014).

Groves, P. D., Martin, H., Voutsis, K., Walter, D., and Wang, L. Context detection, catego-

rization and connectivity for advanced adaptive integrated navigation. In Proc. ION GNSS+

(Nashville, Tennessee, 2013).

Groves, P. D., Wang, L., Walter, D., Martin, H., and Voutsis, K. Toward a unified PNT,

part 1: Complexity and context: Key challenges of multisensor positioning. GPS World 25,

10 (2014).
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1.4 Thesis structure

Chapter 2 examines existing approaches to improving the performance of low-cost inertial

navigation. This begins with background on inertial navigation, GNSS, navigation sensor

integration and other possible sensors that could be included in an integrated navigation

system. Then di↵erent algorithms that could be used to integrate the data from multiple

navigation systems are introduced. The existing work on user-calibration is examined,

revealing a wide range of di↵erent definitions and approaches to the problem. Then, the

state-of-the-art in relation to using arrays of low-cost sensors is presented. Finally, the topics

that require further investigation are discussed.

Chapter 3 presents research on the limits of stability of Kalman filter integration of INS

with another positioning technology. First the question of, at what point a filter has become

unstable, is examined and criteria for filter failure are presented. Next, an approach is

presented to simulate INS/GNSS integration and thus determine for what IMU specifications

the KF remains stable. The results of these simulations are then presented both for motion

representing a road vehicle and for a quadcopter.

Chapter 4 presents user-conducted calibration procedures and simulations to assess their

e↵ectiveness. It begins by outlining the principle of the calibration procedure, followed by

defining the reference frames needed for the simulations. Then, the IMU error model used

is described in detail, followed by the way that these error parameters are estimated from

the sensor outputs. The simulation method is presented next, followed by the assessment

criteria. Then the simulation results are presented and discussed.

Chapter 5 presents experiments carried out with custom-developed hardware. These exper-

iments are used to characterise the sensor’s errors, and demonstrate that the calibration

procedure introduced in Chapter 4 provides repeatable results. These results are used to

validate the simulation-predicted accuracy and repeatability.

Chapter 6 presents and examines three possible techniques for optimising the performance

of arrays of low-cost IMUs, compared to simply averaging the output of an array of parallel

IMUs. These are: orienting similar IMUs so that their sensitive axes are parallel but in

opposite directions to remove the e↵ect of common-mode errors; combining sensors with

di↵erent measurement ranges to improve low-dynamics performance while maintaining the

ability to measure high-dynamics; and optimising the asymmetric performance of the IMUs

in the array to the asymmetry of the application. The performance of these techniques are

compared to that of simply averaging an array of parallel IMUs

Chapter 7 presents the conclusions of the thesis, and discusses their implications on low-cost

inertial navigation. It also proposes possible future extensions to this work and follow-on

research opportunities.

Appendix A describes the bespoke hardware that was designed for this project’s experiments.

Details are provided of both a less sophisticated version used at the start of the project and

in [8], and a fully custom design used for the final experiments.



Chapter 2

Background and Literature Review

This thesis has the title Overcoming the challenges of low-cost inertial navigation. This

chapter begins by explaining what is meant by navigation and some related terminology in

Section 2.1. In Section 2.2, the basics of inertial navigation are explained. This includes the

sensors needed, their errors and what is meant in this project by low-cost inertial navigation.

Then more detail on the challenges presented by inertial navigation with low cost sensors

are discussed. Inertial navigation, particularly low-cost inertial navigation, works best as

part of an integrated navigation system. Many di↵erent sensors could be included in an

integrated navigation system, see Section 2.3. An integration algorithm is used to combine

the outputs of multiple sensors. However, the simplest and most commonly used algorithms

become unstable when used with low-cost inertial sensors, requiring more complex and

computationally expensive algorithms, see Section 2.4. Section 2.5 reviews other methods

of obtaining better navigation performance from inertial sensors, including pre-calibration

and using arrays of IMUs.

The key challenges that must be overcome are summarised in Section 2.6.

2.1 Navigation and navigation systems

The term navigation is commonly used in two di↵erent ways [1, 12]. In this project nav-

igation refers to finding one’s current location relative to some local or global frame of

reference. This is sometimes also called localisation or positioning, although the latter can

include determining the position of others. The other commonly used meaning of the term

navigation is the method or skill of finding one’s way from A to B. This is sometimes called

route-finding, and is not the concern of the research in this thesis, hereafter only the first

definition is used.

The other important distinction for this project is that it concerns navigation in, or very

close to, real time. Positioning a user or device where a delay of tens of seconds or minutes is

not important is a di↵erent problem, which is sometimes referred to as tracking [1], c.f. parcel

tracking or asset tracking. Aside from the storage of data, tracking is at least no harder than

real-time navigation. Tracking is also sometimes used to mean estimating the position of

an object based on remote measurements, rather from sensors attached to the object being

positioned [13], c.f. target tracking.
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Also note that the navigation systems considered here are automatic electronic ones, rather

than anything manually operated.

When in this thesis a navigation solution is referred to, this means a navigation system’s

estimate of position, velocity and attitude, relative to a particular reference frame [1]. The

attitude of a body or navigation system is the rotation between its axes and those of the

reference frame. It can be calculated in terms of a co-ordinate transformation matrix, and

is primarily done so in this project. It can also be expressed in quaternions or Euler angles

of roll, pitch and yaw [14].

Navigation performance can include several di↵erent metrics. Accuracy is the amount by

which, on average, the estimated position velocity and attitude (PVA) solution deviates from

the true PVA. Availability is the proportion of the time that a position (or PVA) solution

is available. Continuity measures the probability that a position (or PVA) solution will

be available without interruption during a specified period. Integrity performance criteria

measure the ability to maintain a PVA solution within certain bounds during operation and

correctly report when the error exceeds these bounds. When this thesis refers to navigation

performance it refers to the accuracy of the position, velocity and attitude solution, unless

otherwise specified. Note that for many users the position is the most important, although,

for example attitude may the most important for a UAV autopilot.

Navigation systems have a wide range of applications with varying performance requirements

and correspondingly di↵erent price tags [1]. On the high performance end, these can be

bespoke, highly accurate systems with high integrity requirements for submarines, surface

ships, aircraft and missiles [15, 16]. When aimed for the mass market, a navigation system

will not have such high requirements in order to reduce its cost. Bridging these, are devices

with high accuracy requirements but not such high integrity requirements, for applications

such as surveying [1].

Some applications will require good navigation performance on a global scale, whereas others

may only require good accuracy relative to a nearby base-station. An example of the latter is

precision farming, where agricultural machinery can be positioned relative to static beacons

placed in or near the same field [17]. An accurate position relative to a local base-station

can be easier to achieve, particularly for radio positioning systems [1].

A navigation technology can be used to provide or improve upon a position, velocity and

attitude (PVA) navigation solution, or a subset of it. Both the navigation solution and the

navigation system’s measurements are valid at a specific instant in time, which is known

as an epoch. Those navigation technologies that can provide a full navigation solution are

either position fixing or dead reckoning.

Position fixing technologies use range, proximity or bearing (e.g. angle-of-arrival) measure-

ments to position the user relative to a network or beacons or landmarks [1]. A com-

monly used example of this is GPS, where the GPS user equipment calculates ranges to

several members of a network of satellites whose orbits are known (see Section 2.3.1). Typ-

ically, position fixing technologies will need to calculate measurements from several bea-

cons/landmarks to calculate a full navigation solution, e.g. 4 satellites in the case of GPS.
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However, often a reduced number of measurements can still aid a navigation solution calcu-

lated by other means.

In the case of dead reckoning1 technologies, the measurements provided are changes in

position, velocity and/or attitude, over the period of time since the last measurement [1, 4,

12]. This is sometimes known as delta-position, delta-velocity and/or delta-attitude. These

are also sometimes called increments, e.g. an attitude increment. The measured change

in position, velocity and attitude is added to the position velocity and attitude at the

previous epoch. If you know where you are at the start of the period of navigation, you

can calculate where you have been and thus where you are now. The crucial point is that

the navigation solution at a particular epoch always depends on that of the previous epoch.

For this reason, errors in the navigation solution will always grow with time, as an error

introduced at a particular epoch persists in future epochs [1]. Historically, the most well-

known example of this type of navigation was nautical navigation by means of a compass

and the ship’s log, providing a measurement of speed and heading. This method is still used

in nautical navigation, and its accuracy has been enhanced by more accurate gyrocompasses

and logs based on di↵erent technologies. Other examples include foot travellers navigating

in poor visibility, a featureless environment or unmapped area by counting paces and using

a compass, the modern electronic version of which is called pedestrian dead reckoning (see

Section 2.3.2.3). Both of the preceding two examples are essentially two-dimensional dead

reckoning. However, the focus of this thesis is on inertial navigation which is a three-

dimensional dead reckoning technology, described in Section 2.2.

Navigation technologies can produce many di↵erent types of measurements. For position-

fixing technologies these are primarily either ranges and/or range-rates (rate of change of

range), bearings to beacons/landmarks whose position is known (giving lines-of-position) or

proximity measurements [1]. Other navigation technologies produce some subset of measures

of position, velocity and/or attitude, or their rate of change (e.g. acceleration or angular-

rate). For example, a compass measurement can be used to derive heading, one component

of the attitude and a barometer can be used to derive height, one component of position

(see Sections 2.3.2.1 and 2.3.2.2).

Navigation solutions and (nearly all) navigation technologies’ measurements are vector quan-

tities so must be defined relative to a reference frame. An inertial reference frame is a ref-

erence frame that does not accelerate or rotate relative to the rest of the universe [1]. This

is particularly important for inertial navigation as it provides measurements relative to an

inertial reference frame. The most commonly used inertial reference frame for navigation

is Earth centred inertial (ECI). The origin of this frame is at the centre of the Earth, the

z-axis towards true north and the y-axis is 90� ahead of the x-axis in the Earth’s rotation

(so the rotation is positive). While this is not strictly an inertial frame, the rotation of the

Earth around the sun (⇡ 1.14 ⇥ 10�5 �/s) and the sun around the centre of the galaxy are

small enough to ignore for navigation applications [1]. Several conventions exist for defining

the directions of the x- and y-axes relative to the stars (see [1]). This thesis assumes that it

coincides with the Earth centred Earth fixed frame at the start of the period of navigation.

The Earth centred Earth fixed (ECEF) frame has its origin at the centre of the Earth, its

1A corruption of ded-reckoning for deduced reckoning [12]
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x-axis points to the intersection of the Greenwich meridian and the equator and y-axis to

90� E longitude [1]. This frame is frequently used to describe the position of beacons in

position fixing technologies.

A local tangent frame is used in this thesis, particularly the simulations in Chapter 4 and

the dynamic tests in Chapters 5 and 6. This describes a Cartesian frame, centred at the

starting position (relative to the earth) of the navigation system, with the z-axis coincident

with the local gravity vector (normal to the geoid) pointing away from the Earth, y-axis the

projected direction of the north pole, the x-axis points in towards local East (this convention

is known as ENU) and does not rotate relative to ECEF.

The body frame of a vehicle is the frame is centred on a particular point fixed to the

vehicle, often the position of its centre-of-mass or navigation system. Its axes are defined

relative to the vehicle and rotate with it, this thesis uses forward, left and up for x, y and z,

respectively. If a vehicle has several sensors fixed to it at di↵erent positions, to di↵erentiate

the sensor’s body frame from that of the vehicle, sensor frame is used to describe the former.

The position and orientation of these sensor frames are usually assumed to be fixed in the

body frame. Sensor measurements can be transformed from the sensor frame to the body

frame using a lever-arm transformation (p77–78 [1]).

There are several other reference frames used in navigation and alternative conventions,

which are not used in this thesis.

More information about all of the subjects covered in this section can be found in books

such as [1, 4, 18, 19]. This thesis follows the naming conventions used in [1], except where

noted.

2.2 Inertial navigation

Inertial navigation is a dead-reckoning navigation technology that uses measurements from

accelerometers and gyroscopes to perform the navigation solution updates [1, 4, 20]. A

(strapdown) inertial navigation system (INS) consists of an inertial measurement unit (IMU)

and a processing unit. The term inertial sensors is used in this thesis to refer generically to

both accelerometers and gyroscopes, usually collectively.

The IMU consists of at least 3 accelerometers and 3 gyroscopes, each of which are sensitive

to motion in a particular direction — their sensitive axis2. For each type of sensor, its

three sensitive axes must be non-coplanar, to allow sensitivity in all directions. Typically

these triples are arranged so their sensitive axes are orthogonal, which gives equally good

sensitivity in all directions. This project is concerned with microchip-scale micro-electro-

mechanical-systems (MEMS) technology which can be used to miniaturise the inertial sen-

sors, also vastly reducing their weight and power consumption [20]. A MEMS IMU can

2It is possible, in some circumstances, to track two-dimensional position using a lower number of inertial

sensors, a so-called “reduced IMU” [21, 22], typically 2 accelerometers and 1 gyroscope. However 2 dimen-

sional navigation is only relevant to a small number of applications and so shall not be a major concern of

this project.
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be inside a first level package (FLP), i.e. single electrical component, as small as 3⇥ 3 ⇥ 1

mm [23].

The IMU also powers the sensors, digitises their outputs, and sends this data via a communi-

cations protocol to the systems’ processor. An IMU may apply corrections from a calibration

to the measurements, and many also contain a temperature sensor, e.g. [23, 24]. A MEMS

IMU component may also contain other navigation sensors, such as magnetometers and

sometimes barometers (see Sections 2.3.2.1 and 2.3.2.2, respectively).

A single component containing three orthogonally sensitive inertial sensors is sometimes

referred to as a 3-axis sensor. Similarly if a single component contains both a 3-axis ac-

celerometer and gyroscope, i.e. a complete IMU, it can be referred to as a 6-axis sensor. If

a 3-axis magnetometer is also included, it may be referred to as a 9-axis sensor (e.g. [25]),

and adding a barometer to that makes a “10-axis MEMS IMU” according to [26], these are

marketing terms but widely used in the field.

It is important to note that the manufacturing techniques used for low-cost MEMS sen-

sors, e.g. surface micromachining, remove material from a wafer of silicon [20]. Thus, the

structures created in low-cost MEMS are inherently 2D. This is not because 3D construc-

tion cannot be done, rather it is because it is far cheaper to build planar structures partly

because techniques and machinery from the microprocessor construction industry can be

used [20]. This means a 1D accelerometer must have a di↵erent design if it is to operate

out-of-plane (Z-axis) than if it operates in-plane. In order to create 3-axis sensors which

have nearly orthogonal sensitive axes, all 3 sensors can be constructed on the same piece

of silicon, or even all three gyroscopes and all three accelerometers. There are two possible

ways to accomplish this: a parallel implementation and/or multi-DOF sensing elements.

In a parallel implementation the sensors are separate 1D sensors positioned side-by-side,

e.g. [27]. In multi-DOF configuration, a single proof mass is allowed to move in several

directions and the strain in the springs restraining it is measured. This allows the forces

to be inferred from assumptions about the deformation of these under load, e.g. from finite

element analysis (FEA). For example, in [28] a single proof mass accelerometer is restrained

by 4 leaf springs in a cross formation whose deformation is predicted by FEA. [20] notes

that this sensor design is capable of sensing specific force/moments in all 6 DOF, although

the authors themselves do not mention this.

2.2.1 Accelerometers

Accelerometers, despite their name, do not actually measure acceleration. Instead, they

measure specific force, which is non-gravitational force per unit mass. This is, in simple

terms, the reaction force exerted on the accelerometer to counter acceleration due to gravity

(for instance, by the ground) in addition to any acceleration [4,29]. Accelerometers’ specific

force measurements are of the body frame relative to inertial space [1]. The symbol used in

this thesis is f . Sensor specifications often describe specific force measurements in terms of

g (⇡ 9.8ms�2), rather than the metric ms�2, e.g. [23], presumably this is to make the spec-

ifications equally accessible in the US and the rest of the world. This is because conversions

of g-force are common when using either metric or imperial measurement systems.
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Proof mass

Piezoresistive elements

Capacitive plate

Thin vibrating beams

Figure 2.1: Three possible methods for measuring deflection in a (z-axis) pendulous ac-

celerometer. Only one would be used in a real sensor. Adapted from several figures in [20].

There are a number of ways in which an accelerometer can operate but it can be most

simply visualised as a mass, known as the proof-mass, inside a box, which is free to move

in one particular direction but restrained by a spring. The displacement in MEMS sensors

is read by a transducer which can be piezoelectric, piezoresistive or capacitative and may

exploit the change in natural frequency of a bar under tension or compression [20]. One

possibility is that this mass can be allowed to displace from the central (zero-force) position

and this displacement measured, for example by proximity to a capacitative plate; this is

called “open loop”. The other possibility, known as closed loop, is that a sensitive pickup is

placed at the end of the lever arm, where small displacements are read and a control loop

electronically exerts a force, e.g. through an electromagnet, to hold the proof mass in the

central position. The measurement in this case is proportional to the force required to hold

the proof mass in the centre.

The proof-mass must be attached sti✏y in five out of the six possible degrees of freedom

(DOF) (3 linear and 3 angular), and compliantly in its sensitive direction [20]. In practice

this cannot be done perfectly and can be a source of cross-coupling errors (see Section 2.2.5).

For example, a simple cantilevered beam will be sensitive to moments about its hinge.

However, more complex spring-mass system designs can isolate the proof mass better.

In general closed-loop accelerometers are superior to open loop ones, this is because the

proof-mass displacement is kept small, which reduces stresses and fatigue on the springs

also they can be more compliant reducing hysteresis losses, also the reduced displacement

can reduce sensitivity to cross-coupling errors [20].

Closed-loop MEMS accelerometers are available [30]. Although they are only used (p.149

[31]) in high precision applications [32] almost all automotive-grade sensors are open-loop

[1, 20].

It is possible to have angular accelerometers which are sensitive to angular accelerations,

rather than linear ones [33]. These exist commercially [34] and are used for applications

such as detecting angular shocks in hard discs [35]. It would be possible to conduct 3D dead

reckoning with 3 linear and 3 angular accelerometers. However, in practice this is not done

as MEMS gyroscopes give a superior attitude solution [20].
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2.2.2 Gyroscopes

The gyroscopes that this project is concerned with measure angular rate, sometimes they

are called rate-gyroscopes for this reason. This distinction is mostly historical as many

20th-century gyroscope designs used gyroscopes that had at their heart a spinning mass

suspended within (at least) three rings (gimbals) linked by bearings which start 90� apart.

This allowed direct reading of the craft’s attitude at the gimbals’ bearings, as the spinning

mass’ attitude remained fixed and the craft moved around it. However, these designs had a

number of problems including many expensive high precision moving parts and gimbal lock

could occur where one degree of freedom of the gyroscope could be lost by two of the rings

lining up. This kind of gimballed gyroscope is now only used in high-cost high-performance

applications, which are outside the scope of this project. All further references to gyroscopes

refer to rate-gyroscopes.

Some authors use the term strap-down inertial navigation system (SDINS or SINS) to refer

specifically to those INSs with rate-gyroscopes, e.g. [4]. This report will use INS on the

assumption that the reader understands that a SDINS is being referred to.

There are many di↵erent types of gyroscope design in current use, including ring-laser

gyroscopes (RLG) [36], fibre-optic gyroscopes (FOG) [37] and hemispherical resonator gy-

roscopes (HRG) [38]. However, these designs are not used for current low-cost MEMS

gyroscopes [1]. These gyroscopes are usually vibratory gyroscopes, based on either a tuning

fork principle [39] or by vibrating a single proof mass, with either a translational (e.g. [40])

or rotational oscillation [20].

Vibratory gyroscopes measure Coriolis forces [1, 4, 20]. A Coriolis force is not an actual

force, rather it is a consequence of a rotating reference frame. A centrifugal force acts on

all objects in a rotating reference frame. In addition to this, when an object is moving

with constant velocity with respect to a rotating reference frame (and not parallel to the

rotation axis), it is moving in a curve with respect to inertial space. Thus to maintain

this apparently constant velocity, a force orthogonal to the velocity and the rotation axis is

required to create the curve [1].

In order for a vibratory gyroscope to work, it must have both a drive axis and a sensing axis.

It will be sensitive to rotations about the axis orthogonal to these (input- or sensitive-axis).

The proof mass will be vibrated along the drive-axis and, if the gyroscope is rotating about

the input-axis, this motion will create a Coriolis force in the sensing-axis (also vibratory),

where it will be picked up by what is e↵ectively an accelerometer (measuring specific Coriolis

force) [20]. One possible design is shown in Figure 2.2. This means that a gyroscope

is fundamentally sensitive to accelerations in its sensing direction, and its design must

compensate for this. One option is to have a pair of masses which vibrate out-of-phase,

e.g. a tuning fork [39], then the phase di↵erence on the two mass’ sensing axes can be used

to infer angular rate. Another option is to have both driving and sensing axes be rotational,

which isolates the sensor from linear accelerations. Note that, the Coriolis vibrations that

need to be sensed are orders of magnitude smaller than the driving vibrations [20], and also

that the need to drive the gyroscope means that vibratory gyroscopes are inherently higher

power consumption than accelerometers.
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Figure 2.2: One possible operating principle for a z-axis vibratory gyroscope. Grey and

black parts are fixed to the body of the gyroscope. Adapted from [20].

This also means that an open-loop gyroscope under a high angular rate will have its vibratory

axis shift, due to the deformation of the springs in the sensing axis, potentially changing

the sensitive axis (depending on the design). It is also worth noting that a 3-axis gyroscope

with a parallel implementation (3 proof masses) must have su�ciently di↵erent driving

frequencies for each mass to avoid cross-talk, which is one source of cross-coupling error.

Due to the vibratory nature of the motion, most of the e↵ect of the accelerations on a

gyroscope can be removed by a low-pass filter, if the filter’s characteristic frequency is con-

siderably lower than the driving frequency. However, in the presence of external vibration

(e.g. from a vehicle’s engine) similar to the driving frequency of the gyroscope, sensor per-

formance can become extremely poor. Sensors intended for the automotive industry are

frequently designed with this in mind [20]. Low-cost UAVs (e.g. quadcopters), frequently

have general-use sensors not designed for high-vibration environments, so engine vibration

interfering with the gyroscopes can be a significant problem, leading researchers to test

alternatives techniques to aid the attitude solution [41].

2.2.3 Inertial navigation equations

At the start of its use the INS is first initialised with a starting position, velocity and

attitude. Then the inertial navigation equations are run at every epoch to update the navi-

gation solution with specific force and angular rate measurements from the IMU. The usual

assumption is that these measurements represent the average of the quantity in question

over the period since the last measurement [1].

First, the old attitude solution must be updated with the angular rate measurements. The

angular rates can be used to calculate the angular increment (change in angle) over the time

period since the last measurement. If these angular increments are not very small, problems

can arise related to the non-commutativity of rotations. This is one reason why the update

rate should be kept high, to keep angular increments small [1].
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In order to derive acceleration from the specific force measurement, the component due to

the gravitational attraction of the Earth must be added to remove its e↵ect. This relies on

the attitude estimate. Thus if there has been significant attitude drift, then the reaction

to gravity correction will be made in the wrong direction and so spurious accelerations will

be derived. Simple trigonometry shows that an attitude error in pitch or roll of 5.9� gives

an incorrect acceleration of 1 ms�2 horizontally and 0.05 ms�2 vertically, and 0.59� gives

0.1 ms�2 horizontally and 0.0005 ms�2 vertically. The acceleration is used to update the

estimate of velocity and then this estimate of velocity must be used to update the estimate of

position. As such an instantaneous error in the acceleration measurement causes a constant

error in the velocity estimate and thus an increasing error in the position estimate. This

double integration makes the position deteriorate quickly when there are errors in the specific

force measurement or attitude solution.

There are several variants of the inertial navigation equations, these depend on, for example

which frame the results are relative to (e.g. Earth centred inertial (ECI), Earth centred

Earth fixed (ECEF) or local navigation frame) [1, 4, 19].

2.2.4 Grades of INS performance

As any inaccuracies in specific force or angular rate persist in the INS’s estimates of position,

velocity and attitude accurate measurements of angular rate and acceleration are essential.

If very high-performance (so called ‘marine grade’) sensors are used, then the accuracy can

be good enough to navigate with these sensors alone for hours (1.8km navigation solution

drift per day according to [1]). However, these high performance sensors cost many hundreds

of thousands of pounds, and are typically used in military ships and submarines.

Lower performance and (therefore) lower cost sensors are available at several di↵erent grades

[1]. Aeronautical grade sensors have around 1.5km drift in the first hour, and are typically

used in military aircraft and commercial airliners. Intermediate grade IMUs are used for

smaller aircraft, and still cost tens of thousands of pounds and have around 10⇥ worse

performance than Aeronautical grade sensors. Tactical grade sensors are can refer to a

wide range of performance with prices ranging from £1,500 to around £10,000. Typical

applications of tactical grade sensors are guided weapons and unmanned aerial vehicles

(UAVs). The lowest grade of IMUs are consumer or automotive-grade. These are typically

supplied without individual calibration. These were originally developed for applications

other than navigation, such as airbags and ABS systems. Consumer grade inertial sensors,

or at least the accelerometers, are included in every smartphone, originally to determine

the direction of gravity for automatic screen rotation, but many other uses, such as gesture

detection, activity monitoring and gaming, have been added since.

It should be noted that e↵ective use a higher-grade IMU requires a more complex error model

than that of a lower-grade IMU. A marine-grade IMU would benefit from, for example, a

very high quality model of how the value of g varies over the surface of the Earth and with

height [42]. When using a tactical-grade IMU this would be of little benefit relative to a

simple one-parameter (latitude) model.
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It is generally accepted that tactical is the lowest grade that can realistically be used for

standard inertial navigation [1,4]. This is not to say that automotive-grade sensors cannot be

used for navigation, rather that they cannot be used unconstrained without calibration. For

examples of how quickly a consumer-grade INS drifts from the truth, the reader is referred

to Chapter 5, particularly Figures 5.21 and 5.25. Common applications of consumer-grade

IMUs in navigation include motion classification, pedestrian dead-reckoning and foot-pod

mounted IMUs (see Section 2.3.2.3 and 2.3.3)

The precise point between tactical and consumer-grade IMUs where inertial navigation

becomes a reasonable possibility is an open research question which shall be addressed in

Chapter 3.

2.2.5 IMU Errors

Real accelerometers and gyroscopes do not measure specific force and angular rate perfectly.

The di↵erence between the output that a sensor produces and the true input is its error.

These can be split into stochastic and systematic errors. This section focusses on the errors

relevant to low-cost MEMS IMUs.

The stochastic errors, also called random errors, are noise-like errors and are not predictable

and cannot be calibrated away. The noise on an inertial sensor is typically composed mainly

of white noise, plus other sources such as Markov processes or flicker noise (see e.g. [43,44]).

Accurate measurement of their stochastic properties (see Section 2.5.1.1) can help sensor

integration (see Section 2.4). The total output noise is caused by a combination of electronic

noise, from the electronic measurement of the sensor deformation and amplification of the

signal, and Brownian noise, from the impact of gas molecules on the proof-mass [20]. How-

ever, other physical error sources are often included in the stochastic model. These include

the quantisation error, which is the error from rounding the output to an integer to output.

Quantisation residuals (the truncated part) in high performance sensors are typically added

to the next measurement, although in many low-cost sensors they are discarded [1]. The

most frequent noise characteristics specified for low-cost IMUs are root mean squared (RMS)

total noise and noise root power spectral density (PSD). Typical specified values for root-

PSD for current generation low-cost MEMS IMUs are 150 µg/
p
Hz [45] to 300 µg/

p
Hz [23]

(accelerometer) and 0.01 �/s/
p
Hz [23] to 0.014 �/s/

p
Hz [45] (gyroscope).

For systematic errors, past behaviour can be used to predict future behaviour. As such,

their e↵ect on navigation performance can be reduced by individual calibration, the error

remaining after calibration is termed a residual error. Systematic errors are commonly

classified by their relationship with the sensor input, thus an nth-order error depends on the

nth-power of the sensor output. A particular sensor’s errors can thus be thought of as fitting

polynomial coe�cients to a curve. However, the calibration estimates (i.e. the coe�cients)

can be a↵ected by environmental conditions such as temperature. This makes a calibration

carried out at one temperature less useful at another. To counter this e↵ect calibration

often includes under di↵erent temperatures, to allow the e↵ect of temperature on, at least

some, of the error parameters to be determined (see Section 2.5.1). The errors can also vary

slightly with time, both day-to-day and during use [1].
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Figure 2.3: Illustration of bias and scale factor errors.

The most simple systematic error is bias, also known as zero-g o↵set or zero-rate o↵set

for accelerometers and gyroscopes, respectively. The bias is added to the output of the

inertial sensor irrespective of the input, this makes it 0th order. It is usually visualised (and

measured) as the output when the input is known to be zero, e.g. when a gyroscope is static.

This thesis uses b
a

and b
g

for accelerometer and gyroscope bias, respectively. It has the

same units as the sensor to which it refers, i.e. �/s for the gyroscopes and ms�2 (or milli-g)

for the accelerometers. Typical gyroscope bias specifications for current consumer-grade

MEMS are from ±1 �/s [45] to ±5 �/s [23] although some are much higher ±25 �/s or ±75 �/s

( [46] and [24] at ±2000 �/s range). Typical accelerometer biases are ±60 mg (milli-g) [46]

to ±70 mg for [45], for the 2 – 16g ranges used for most navigation applications.

The next class of errors are first-order or linear errors. One of these is the scale factor

error where the conversion factor from sensors’ output (integer or voltage) to physical units

is incorrect [1], also known as “sensitivity tolerance” [45]. Typically, the sensor’s output

might be, for example, 98% or 103% of the input. Another 1st-order error is the cross-

coupling or cross-axis sensitivity. An example of this would be if an input force or rate

on the x-axis were picked up by the y-axis sensor. The cause of this could be physical

misalignment of the whole inertial triad, or one sensor of the triad. There are other causes,

particularly for the gyroscopes where the vibrating frequencies of the di↵erent axis sensors

may interfere with each other. In this thesis these errors are combined in one 3⇥3 (unitless)

matrix for each of the gyroscope and accelerometer, named Ag and Aa, respectively. This

error is assumed to be linear, and thus the same throughout the operating range. The

entry a
ij

2 A representing the multiple of the true specific force or angular rate of axis

j that is measured on axis i. Thus, for a perfect sensor A = I3. ±1% [45] to ±2%

[23, 25] are fairly typical cross-coupling errors for consumer-grade MEMS. Typical scale

factor specifications often include temperature variation, for example “sensitivity tolerance

±1% at 25�C ” and “±0.03%/K through operating range �40 to 85�C (gyroscope [45]) or

“±3% initial tolerance” and “‘±0.026%/�C ” (accelerometer [23]).

The operating mechanism of vibratory gyroscopes makes them inherently susceptible to

specific force [1], although they are usually designed to minimise this by, for example, having
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Figure 2.4: Illustration of accelerometer sensitive axis shifting when deflected. This is one

potential cause of scale factor non-linearity and anisoinertia errors.

a pair of sensing elements and taking the di↵erence between them [20], as was discussed in

Section 2.2.2. This may not be achieved perfectly leaving a small e↵ect of specific force on

the gyroscope. This is called g-dependent bias or g-dependent error; this thesis denotes it

by Gg. Gyroscopes can also exhibit g-dependent scale factor errors [1], caused as applied

specific forces cause the proof mass of the gyroscope to move, although these are often not

specified for consumer grade sensors, see Section 2.2.6.

Higher order errors, i.e. 2nd or greater, are only rarely given for low cost MEMS, e.g. [47].

For automotive-grade sensors, these are generally lumped into a single term called non-

linearity, or sometimes scale factor non-linearity, which is a more accurate description. This

error describes the variation in the scale factor throughout the range of output. A typical

specification sheet might read “0.5% of Full Scale Output” [23]. In general non-linearity

gets worse at the extremes of the sensor’s output range [47]. This error is discussed in more

detail in Section 2.2.6. Another higher-order error, which is frequently not specified for

low-cost MEMS is the anisoinertia error, which is the variation in cross coupling depending

on applied force and is a particular problem for open-loop pendulous accelerometers [1]. An

illustration of how might occur is in Figure 2.4.

A source of error which does not fit well into the nth-order characterisation is hysteresis.

This is arises from frictional losses in the spring elements of the sensor [20] and its e↵ect

depends on whether the specific force is increasing or decreasing [4].

Vibratory gyroscopes are also sensitive to applied angular acceleration (see Equation 4.7

of [1])

The largest amount of specific force or angular rate that an inertial sensor can measure

is described as its range, measurement range or full-scale. This is usually written as, for

example ±2g or ±250 �/s. Typically when exposed to inertial forces greater than they can

measure, the sensors output their maximum value. This is sometimes called saturating the

sensors, or as clipping because of its e↵ect of removing the peaks of the output. If the

inertial sensors signal is clipped large navigation errors can result [1].

It is important to note that for many sensors many of the error sources may be a↵ected by

the sensor’s mounting, both the heat cycling involved in soldering and the internal stresses
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applied by their multi-point (i.e. overdetermined) mounting [20], as the sensor’s FLP will

be attached to the circuit board by all its pins. Sensors error characteristics have been

shown to change markedly (e.g. bias by > 50 �/s in [48] p25–26) when the board they are

mounted on is subjected to external stress. For this reason manufacutrers recommend 3-

point attachment to housing for the PCB on which the sensor is mounted, e.g. [23]. For these

reasons, wherever possible the calibration should always be carried out after construction

and in the final IMU housing.

Further details on IMU errors can be found in books such as [1, 4, 20].

The next two sections discuss the validity of and some implications of the simple linear error

model typically used for low-cost MEMS IMUs (Section 2.2.6) and the statistical distribution

of its error coe�cients (Section 2.2.7).

2.2.6 The linear plus non-linearity IMU error model

When considering a low-cost IMU generally only a very simple error model is assumed,

where the measured specific force,

ffb

ib

= b
a

+Aaf
b

ib

+w
a

+ n (fb

ib

) (2.1)

and the measured angular rate,

g!b
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= b
g

+Ag!
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+Ggf
b
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+w
g

+ n (!b

ib

). (2.2)

Here the sensor output is a combination of a fixed bias term (b) and a term linearly depending

on the output (A) plus noise (w), and in the gyroscopes’ case linear error due to specific

force (Gg). All other error sources are lumped together into a catch-all non-linearity term,

n which is a function of the inertial input, or assumed to be small enough to be ignored.

None of the other error sources from Section 2.2.5 are mentioned on the datasheets of many

consumer-grade MEMS sensors, including [23–25, 45, 46, 49–52]. In addition, many of the

gyroscope specifications do not mention Gg, e.g. [23–25]. Exceptions where sensor manu-

facturers specify Gg include: [45] which gives it as “maximum 0.1 �/s/g”, where maximum

“represents 3� values”; [53] which gives “typical 0.1 �/s/g” without defining typical; and [54]

which gives it as “0.075 �/s/g any axis 1�”.

There are two ways to interpret this linear-plus-deviation-from-linear error model used in

the specifications. First, optimistically, that this provides an adequate model and other

types errors have an insignificant e↵ect. Second, cynically, that these error sources are the

easiest ones for the customer to verify. The important question is whether this linear model

is a good fit to the input-to-output relationship.

Often b and (the diagonal elements of) A have a specification of their variation with temper-

ature. This is sometimes specified as a range over the whole operating temperature range,

e.g. ±1.7% accelerometer sensitivity (i.e. scale factor) variation over temperature -40 �C

to +85 �C [51], or as a linear function of temperature, e.g. ±0.015 �/s/K gyroscope bias

change [45]. When the temperature sensitivity is given as an apparently linear function,

there is an optimistic way to interpret it, namely the temperature response is almost linear
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Figure 2.5: Two ways to interpret non-linearity specifications.

with a fixed but unknown coe�cient, and a pessimistic one, namely that the change from one

degree to the next is not more than 0.015 �/s (in this example) but the amount is not fixed.

Where experimental evidence exists, e.g. Section 6.6.2 of this thesis or [48,55], the truth lies

somewhere in the middle; temperature response generally being shown to be a continuous

curve but not completely linear. One might consider a less optimistic interpretation likely

in cases where only the variation over operating temperature range is given.

The catch-all non-linearity term is usually given as a percentage of full-scale output. For

example, “best fit straight line ±0.05 % FS” [45]. Although it is occasionally given in

physical units. For example, the Bosch SMI130 [51], gives non-linearity as ±1 �/s and ±25mg

(milli-g). Given that the scale factor terms are typically specified to vary by as much as

2% over the measurement range, it would be reasonable to expect the non-linearity (i.e. the

goodness of fit of this linear scale factor term) to also vary significantly with temperature.

This is shown to be the case for at least one type of low-cost MEMS sensor in [56], where the

error goes from positive to negative. One issue with this way of specifying the error is how

to interpret the result. One way would be to interpret it as an amount by which, throughout

the range, the sensor will repeatedly report incorrectly by, with the same input, this might

be thought of as a band-like error. This is a reasonable explanation for the physical units

case above. Another way might be to interpret the number as the amount by which it

may be wrong at the extreme ends of its measurement range, assuming the linearity error

to be lower for lower inputs. Almost equivalently it might be considered as the range of

error in the slope of the input-to-output function. These are both a kind of bow-tie shaped

error on the input-to-output function. Sometimes it is reported as “best fit straight line”

(e.g. in [52]), in which case the former of the two explanations is more reasonable. Both a

band and a bow-tie error are illustrated in Figure 2.5, note that the band specification is

more generous and thus may be more likely.

The evaluation of higher order errors is rarely reported for low-cost MEMS sensors. It is

more frequently reported for higher performance sensors. For example, [57] reports a high-

performance open-loop accelerometer and states it has a very close to linear response with

non-linearity of < 10µg/g2. Similarly [47] reports linearity error in terms of input squared

and cubed.
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However, in one example of a low-cost sensor’s non-linearity from [56], it appears to be

closer to piecewise linear than quadratic in response. This means it has an almost linear

response but with a di↵erent slope for the lower magnitude responses than the higher mag-

nitude. However, without conducting independent tests, there is not an alternative way to

characterise the errors.

It is important to consider that there are di↵erent ways to fit this error model given to

an input-output curve. The standard definition for bias implies that it is the y-intercept,

however, if the response is not completely linear then the best-fit line will not, in general,

intersect this point, unless forced to. Additionally even where the non-linearity (and thus

the scale factor error) is defined as “best fit straight line” (e.g. [23]), the actual straight

line will depend on the finite number of input values tested and also on the fitting objective

function (e.g. least squares or magnitude of residuals). This has implications which will be

discussed further, in Section 6.6.1.

2.2.7 IMU error model coe�cient distributions

If this error model introduced in Equations 2.1 and 2.2 is assumed, then to use it there must

be coe�cients for the terms in it. That is, there must be values for b
g

, Ag etc. Over the

population of sensors these coe�cients must have some distribution, which may di↵er from

one particular production batch of sensors compared to the overall population of sensors.

Note that the manufacturers’ specifications are written to cover the whole population of

sensors.

In terms of noise for low-cost sensors, there is usually only a single number specified to

describe the noise. For example, a rate noise spectral density of 0.01 �/s/
p
Hz. This single

parameter specification of noise means that realistically the manufacturers are expecting

users to use a simple white-noise-only stochastic model. For higher performance IMUs,

other stochastic terms might be mentioned, e.g. “In-Run Bias Stability” is specified by [58]

at < 10�/hr, but for low-cost IMUs these terms are generally not specified. In a similar

way nearly every IMU systematic error is only specified by a single number, and frequently

only typical values are given. One such as scale-factor might be expressed as e.g. sensitivity

minimum 230, typical 256 and maximum 282 LSB/g (from [49]), “typically” 4096 ± 1.5%

LSB/g (same characteristic from [52]) or “typical” sensitivity scale factor tolerance of ±3%

[23].

The meaning of these terms are usually as follows: “Min/Max values represent 3-sigma

values. Typical values are not guaranteed.” [52]. Although sometimes on or both of these

terms are not explicitly defined.

As only a single number describes each error term, the most simple model is to assume either

a uniform distribution or a zero-mean Gaussian. The latter is the general assumption in this

thesis, particularly in Chapter 3 and 4, and additionally it is assumed typical and min/max

refer to 1� and 3� values, where 1� refers to 1 standard deviation. A symmetric distribution

is implied by the datasheet using only a single value, and without conducting one’s own

testing there little choice but to assume one of these is the case. If the manufacturers are
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testing and either rejecting significant numbers of sensors or selling the better ones as a

higher grade, i.e. ‘cherry-picking’, then other error types of distributions are more likely.

One example when the manufacturer assumes a normal distribution is [50], where they also

use the definition of typical and min/max as above.

The real stochastic model may be more complex, see [43, 44, 54, 55] although higher order

terms are frequently not modelled in integration filters (see Section 2.4.1) for low cost sensors,

replaced by exaggerating (overmodelling) the amount of noise [1].

While it is assumed, particularly in Chapters 3 and 4 that this error model is a viable as-

sumption and the coe�cients are distributed with zero-mean Gaussian distributions, there

is no way of verifying this without large-scale tests which are beyond the means of this

project. In Chapter 6 ideas will be presented which can improve the performance of IMU

arrays when this simple symmetric distribution of coe�cients is not the case, and experi-

ments test whether a particular sensor model has a simple symmetric error distribution.

2.3 The INS as part of a multi-sensor navigation system

In the previous sections, inertial navigation has been introduced. The problems of inertial

navigation have been discussed, primarily solution drift with time caused by the accumula-

tion of IMU errors [1].

All navigation technologies have both strengths and weaknesses. There may be situations

where a particular technology does not work at all (e.g. GNSS in a tunnel), or suddenly

becomes unreliable for a few seconds (e.g. compasses/magnetometers near concentrations

of ferrous metal) [59]. However, by combining several navigation technologies into a multi-

sensor navigation system, the strengths of one technique can ameliorate the weaknesses of

another. When done correctly this can lead to better navigation performance than any of

the systems can achieve alone.

In general, an integrated navigation system has better performance the more complemen-

tary navigation technologies are added to it. Even technologies which only measure one part

of the navigation solution, such as a speed-sensor, magnetometer or barometer, can aid an

integrated navigation system and increase overall performance. However, if no new measure-

ments are given to a navigation system it typically just coasts, assuming the user continues

to move with their last known velocity. Thus, a navigation system will benefit greatly from

including at least one system that is available at all times. Most dead-reckoning technologies

can work well in this role. In vehicle applications a vehicle speed sensor (e.g. odometer or

ship’s log) and heading from a compass, yaw-gyroscope or gyrocompass can provide con-

tinuous two-dimensional position. Similarly pedestrian dead reckoning (see Section 2.3.2.3)

with a heading sensor can achieve better performance than than standard inertial naviga-

tion [60], particularly if uncalibrated low-cost IMUs are used. However, in general, inertial

navigation is an excellent fit for this application for several reasons: it provides a 3D PVA

navigation solution; this solution is updated frequently (50–1000Hz); its availability does

not depend on the operating environment; and, it can be used in virtually any navigation
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Figure 2.6: The navigation system processing chain. The positions in which di↵erent tech-

niques to improve navigation performance fit are underneath.

application, provided suitable sensors are chosen.

One common integrated navigation system architecture is for one technology, in this case

INS, to be at the heart of the system, providing a solution which is updated by the other

sensors when a new measurement becomes available via some kind of integration algorithm

(see Section 2.4). The process by which an INS-based integrated navigation system works

is illustrated in Figure 2.6. It shows how the various techniques used to improve navigation

performance fit into the chain. For example, the integration of GNSS (Section 2.3.1) or

other sensors (Section 2.3.2) fits in between the IMU derived estimates of (changes in) user

position and, by way of an integration algorithm, the information from the other sensors is

used to come up with a combined estimate of position [1]. Motion constraints are discussed

in Section 2.3.3 and map matching in Section 2.3.4. The sensor level techniques to improve

IMU performance, IMU calibration and using arrays of IMUs, will be discussed in Section

2.5.

This section starts by considering integrating di↵erent sensor types into a navigation system.

In evaluating any technology for inclusion in such a system there are a number of factors to

consider. The main concern is whether an addition to the navigation system will provide

enough improvement in performance to be worth the increase in size, weight, cost and

computational complexity. Essentially an additional navigation technology must provide an

increase in accuracy, an increase in availability or measure a new physical quantity. If the

new sensor is measures the same thing more accurately and is more available (in all senses

of these words), it might be a better choice to have it replace the previous technology rather

than add to it.

The accuracy of the technique is often the simplest to understand. If two techniques measure

the same thing, their accuracies can at least be quantified. For example, eLoran, which

could provide positions accurate to 8–20 metres [61], is more accurate than the obsolete

Loran-C which had an absolute accuracy from 0.1 NM (nautical miles) to 0.25 NM (165 –

463 metres) [62]. Note that the actual accuracy of any technique may vary between ideal

conditions and what is actually achieved in use.

The availability part of the evaluation is more complicated, as there are di↵erent kinds of
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availability. One type of availability is similar to bandwidth, i.e. how frequently is a new

position available. For some applications, such as automatic guidance systems or auto-pilots,

new PVA navigation solutions need to be available at high frequencies. A navigation system

for this type of application, might well include a combination of a low-performance high-

update-rate system, which could be corrected by an accurate but less frequently updating

system, to create an accurate but high bandwidth system. It is important to note that some

systems may be able to output measurements more quickly than their true bandwidth,

for example the errors on sequential measurements may be significantly correlated. The

frequency of truly new information is what is important for the navigation system.

Availability may also depend on operating environment, e.g. GNSS unavailable or degraded

inside a building or urban canyon [63], or might depend on the motion, e.g. zero-velocity-

updates (ZVUs), or perhaps both. If several technologies are to be combined to improve IMU

performance, then the combination of their availabilities should be considered, e.g. WiFi and

cell ID (GSM) positioning might not cover all possible operating environments. It is also

likely that if, for example, several radio-positioning technologies are used the situations

in which they are unavailable might well coincide. Another important consideration with

some intermittently available technologies is, how reliably one can detect that it is available.

For example, compasses/magnetometers can provide a heading measurement all the time.

However, in the presence of strong magnetic fields or concentrations of metal, the derived

heading is unreliable. Thus their usefulness to the navigation system relies on these instances

being filtered out.

The other major consideration is the type of measurement provided by a particular technol-

ogy or technique, and the frame of reference this is in respect to. A MEMS IMU measures

angular rates and accelerations in a body reference frame. Many other dead-reckoning tech-

nologies also use the body reference frame, e.g. odometry. This means that the attitude

must also be known to calculate a navigation solution in a global reference frame. For many

position-fixing technologies the measurements are with reference to the position of the bea-

cons, which are defined in a global reference frame, e.g. GNSS with relation to the network

of satellites.

Generally speaking, the closer measurements are to the most important part of the naviga-

tion solution (often position) the better. If one cares about position then the fact than an

INS drifts away from the truth (see Section 2.2.3) makes the INS less useful than a position

fixing technology in the long term. On the other hand, if one wishes to calibrate an IMU,

then measurements from sensors such as odometry and magnetometers, which provide speed

(in the body frame) and heading, may make it easier to observe the IMU parameters than

indirectly estimating them based on a sequence of positions in a global reference frame.

Although even better than this for calibrating an IMU would be a higher-performance IMU

to provide a higher accuracy version of the same measurements at all times. This might

be in a laboratory calibration (see Section 2.5.1). However, note that while the low-quality

IMUs errors could be estimated, there would be no performance improvement from includ-

ing both in an integrated system. This is because the low-quality IMU would produce only

a lower-quality measurement of the same quantity and so no useful new information, unless

the intention is to use the lower-quality IMU independently after the calibration.
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The next few sections present some of the sensors that can be added to a multi-sensor

integrated navigation system, which is based on an INS. These sections concentrate on

low-cost applications to remain relevant to this thesis. INSs are characterised by low short-

term noise but a deviation from the true position, or drift, that increases through time.

Combining an INS with another positioning technology whose errors behave di↵erently can

be very e↵ective in increasing the performance of the overall system.

2.3.1 Global Navigation Satellite Systems (GNSS)

Global Navigation Satellite Systems [1, 64] refers collectively to several di↵erent satellite

navigation systems: the US Global Positioning System (GPS), the Russian GLONASS

system, the Chinese Beidou system and the European Union’s Galileo system. While these

systems are not identical, fundamentally, they operate in a similar manner:

A number of satellites, typically 20–30 per constellation, orbit the globe at medium Earth

orbit (MEO, ⇡ 20,000 km). Each satellite contains radio receivers (for receiving messages

from the control stations), very accurate atomic clocks and powerful broadcast radio equip-

ment, in addition to the necessary power and guidance systems. These satellites’ positions

and orbits are monitored by a network of reference stations whose positions are accurately

surveyed. This includes the control segment which uploads the broadcast message to the

satellites (space segment). The satellites then each broadcast a message down to the Earth,

where it can be received by user-equipment. This message contains the current time and

information about the satellite’s orbital path.

The users of the GNSS system each have a relatively cheap radio receiver and clock, this

radio receiver de-codes the message that the satellite has broadcast. The message contains

both a ranging code and information about the satellite’s orbital path. Then the receiver

can work out where the satellite was at the time that the message was broadcast and thus

knowing the time that the message was received and the speed-of-light-in-a-vacuum works

out a pseudorange to the satellite. This pseudorange is corrected for a number of factors

including the delay added by travelling through the atmosphere to make an estimate of

range to the satellite.

If the receiver’s clock was perfect, the range to three satellites would be su�cient to fix the

user’s position. A range to one known point gives the position as being somewhere on the

surface of a sphere, two known points gives the intersection of two spheres: a circle, and a

third range locks the position to two points (one of which can usually be eliminated as being

in space or deep inside the Earth). However the receivers usually use cheap and inaccurate

crystal oscillators. This means that there is a further unknown: the receiver-clock-o↵set.

This must be determined by a fourth ranging measurement. As there are four unknowns,

four measurements are required to determine them.

The quality of the position-fix from GNSS is improved by more ranging measurements

(i.e. receiving signals from more satellites) and a↵ected by many factors including the an-

tenna used, the local environment, the weather and the quality of the orbit model that the

satellite broadcasts. However, it is always possible (assuming at least 4 satellite signals
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can be received) to calculate a position based only on the instantaneous measurements, this

means that while the short-term position uncertainty may be several metres, this does not

increase with time. In this way, GNSS positioning is very di↵erent to a dead-reckoning

technique such as inertial navigation.

There are a number of factors which influence GNSS performance including: signal en-

vironment; antenna design; filter algorithm design (in standalone GNSS use); and signal

geometry [64]. Poor signal geometry is when the signals the user receives are distributed

unevenly, such as mostly from one direction or azimuth, this poor geometry creates an un-

even distribution of position uncertainty in three-dimensional space. For example, GNSS is

always, except in orbit, less accurate in height than in latitude and longitude because all

the satellites that can be received are above the horizon.

It should be noted that GNSS can have much worse performance in urban areas where

signals may be blocked, reflected or refracted, and the signal geometry may well be less

than ideal [63]. In addition the signals are quite weak which makes GNSS vulnerable to

accidental interference or deliberate jamming [65, 66], and it has also been shown to be

vulnerable to spoofing [67].

Advanced GNSS positioning techniques can exploit corrections calculated from a network of

reference stations, which are then transmitted to the user via radio signals or the internet.

The density of the reference station network determines, to a large extent, the accuracy of

the corrections [1]. Delay from the signal passing though the Ionosphere can be corrected by

exploiting the di↵erent propagation characteristics of GNSS signals at di↵erent frequencies,

these can be used by dual-frequency GNSS receivers to create an isonosphere-free observable.

The GNSS carrier phase can be used to smooth the range measurements. However, these

provide an ambiguous ranging measurement, which must be resolved by ambiguity resolution

techniques (e.g. [68]). These can be used for high precision static positioning, see e.g. [69],

but that is out of the scope of this thesis. They can also be combined for accurate kinematic

positioning [70,71]. These advanced GNSS positioning techniques are not considered in this

thesis, mostly because consumer-grade GNSS user equipment is single frequency.

In general, GNSS provides measurements of the user’s velocity and position relative to a

global reference frame. However, it is possible to use a multiple-antenna GNSS receiver to

calculate di↵erences in arrival times of GNSS signals at the di↵erent antennae. From this

measurement, a fairly noisy but non-drifting attitude solution can be calculated. Three

antennae are needed for a full attitude solution but a two antennae system would still be

able to aid a navigation system. This can be used for INS calibration as in [72]. It is

important to note that while a full GNSS position fix requires signals from 4 satellites, a

GNSS attitude fix requires only two satellites, although more signals improve its accuracy.

Higher precision can be obtained by increasing the antenna separation but this is limited

by how far apart the antenna can be while remaining su�ciently rigid. GNSS attitude can

be used to compare the measured angle of arrival of GNSS signals with that expected from

the approximate position and the satellite orbits. This has been demonstrated as a spoofing

countermeasure [73], and could also be used for detecting non-line-of-sight (NLOS) signals.
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GNSS is frequently integrated with inertial navigation as it is an e↵ective complemen-

tary system to an INS. This means that even intermittent GNSS position fixes can greatly

improve the longer term navigation performance by removing accumulated position drift.

There are di↵erent ways in which the GNSS data can be fused with the IMU data for an in-

tegrated solution. In most cases, the earlier in the processing chain the integration happens

the greater the potential benefits but the more complex the scheme is to design and more

computationally expensive to run. Methods use to combine GNSS and INS measurements

are classified (here) according the domain in which the measurements of the two systems

are combined following the naming conventions of [1].

In a loosely-coupled integration scheme the data is fused in the position-velocity domain.

This means that without using the IMU data, the GNSS receiver determines a position fix

at each epoch. This is then compared to the position calculated by an integration of all

the IMU data compiled since the epoch of the previous GNSS position fix. This scheme

is the simplest to design and the most modular, so if there are several di↵erent navigation

technologies which might be turned o↵ and on, integrating these di↵erent technologies is

easier. It is also the only suitable option if one has limited access to the measurements made

by the GNSS chip (for example if pseudoranges are not output), as it can run using only

the position data. However a disadvantage of this scheme is that if less than four satellites

can be received, then GNSS cannot generally be used to aid the navigation.

One of the alternative integration schemes is the tightly-coupled integration scheme. In

this scheme the measurements from di↵erent position fixing beacons are considered sep-

arately, for example as ranges or lines of position. This means that GNSS pseudorange

and pseudorange-rate measurements from each satellite are combined with the IMU mea-

surements before the GNSS measurements are used to compute positions. This is more

complicated to program but has greater potential performance, as even with a reduced

number of satellites, corrections can still to be made to the INS solution, albeit less e↵ec-

tively than when there are the minimum number for a single epoch position fix (that is, 4).

It also allows in-homogeneity in the position uncertainty from GNSS (e.g. from poor signal

geometry) to be reflected in the integrated position uncertainty.

Another possibility is deeply-coupled integration. In this case the INS integration and the

signal tracking are performed by the same algorithm. This has a much more complicated

system architecture because it works with the GNSS signal correlator outputs instead of

with pseudoranges [74]. The advantage of deep integration is that the sensitivity of the

tracking loop can be increased to allow operation in poorer reception environments without

losing the ability to respond to movement. It can also help signal reacquisition [75], as the

INS helps compensate for the dynamics of the antenna. Potential disadvantages of deep-

coupling include this not being possible with most low-cost commercial GNSS chipsets and

being even more complex design than tightly-coupled integration. Also, without careful

algorithm design, poor IMU performance (e.g. from vibration conditions) could potentially

cause poor GNSS signal tracking.

The actual algorithm used to integrate the di↵erent sets of measurements is usually a Kalman

filter variant. This shall be described in Section 2.4.
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2.3.2 Integration of other sensors

While INS/GNSS is a classic example of a multi-sensor integrated navigation system, there

are many other navigation technologies that could be used.

There is an inherent trade-o↵ with integrating other sensors. Each sensor that is added to

the package adds some size, weight, power consumption and cost. There is an additional

processing load to integrate all the information, and most sensor technologies will require

some sort of calibration. Therefore the type of sensors worth including in a given system,

depends on the performance improvement they can provide in the specific application.

2.3.2.1 Magnetometer integration

A magnetometer is a sensor which detects magnetic fields. In navigation it is usually used to

detect the Earth’s magnetic field (which has a strength of 0.5–0.6 Gauss according to [76]),

a 3-axis sensor is required in nearly all cases. As they can be used to determine heading,

from the Earth’s magnetic field, they are sometimes called electronic compasses. MEMS-

scale 3-axis magnetometers are available at a low cost, both standalone [77], and as part of

so-called 9-axis IMUs [23,25,45].

Integrating a magnetometer with an inertial navigation system is helpful because it provides

a non-drifting measure of heading, unlike a rate-gyroscope which keeps track of attitude

by dead-reckoning and therefore accumulates errors during operation. In the short-term

a typical magnetometer-derived heading is more noisy than that from a typical MEMS

gyroscope, thus in combination they are complementary: the magnetometer can correct the

drift of the gyroscope.

In order to use a magnetometer is necessary to tilt-compensate it. During tilt compensation

the 3-axis readings from a 3-axis magnetometer are converted into readings in the horizontal

plane. This means that at least an approximate value for the pitch and roll parts of the

attitude solution is needed. As the direction of the local vertical is approximately observable

from the specific force output of a 3-axis accelerometer. MEMS accelerometers are often

used for this, and so the two are sometimes available as a single component [78]. However,

if accelerometers are used then large accelerations can corrupt the calculated heading.

Additionally, magnetometers are subject to biases caused by ferrous metals or current flows

in the IMU and its housing. Although these can be compensated for by a method detailed

in [76], where they are split into hard-iron (fixed o↵sets) and soft-iron (heading dependent

o↵sets). This calibration need only be carried out once, and is simple enough to be done

by the user (for a hand-held device), as it only requires that the magnetometer be rotated

a full 360 degrees.

More significantly, large ferrous metal objects (such as filing cabinets or lampposts) can

cause significant distortion of the Earth’s magnetic field nearby (1 to 5 metres). Therefore

when using a magnetometer for heading determination, it is always necessary to run an

algorithm to determine if there is a magnetic anomaly. At times the magnetometer heading
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will be unusable (when an error is detected) and even when available, it will not always be

completely reliable (when an anomaly is missed by the detection algorithm).

An Attitude and Heading Reference System (AHRS) is similar to an INS combined with a

magnetometer. However it only keeps track of attitude, rather than attitude, position and

velocity, and as such only needs to carry out the first attitude-update part of the inertial

navigation equations. It still needs the accelerometers to tilt-compensate the magnetome-

ters. These have existed for several decades in nautical and aeronautical use and can also

be used for correcting gyroscope drift in an INS as in [79].

2.3.2.2 Integration of Barometric Altimeter

Barometers measure air pressure, from this measurement height can be inferred. However,

this exhibits a weather-dependent bias (and scale factor error). This bias can either be

calibrated with reference to, for example online weather reports, or it can be used as a

measure of change in height. Barometer-derived height measurements also exhibit short

term noise (at around ±1m)in addition to the bias described above and this needs to be

accounted for in the integration filter.

A further problem with using barometers is that, because the estimated height is also

a↵ected by temperature and humidity, in applications when they might travel from indoors

to outdoors and back (especially in winter), the behaviour of the altimeter becomes erratic

[80]. It would be possible to store two (or more) sets of barometer calibration parameters

which could be switched between, if a change of operating environment was detected by an

algorithm. This would allow a rapid return to stable values if the user is moving between,

say indoors and outdoors, although the context detection adds additional complexity [10].

Barometers are also built into many pedestrian navigation systems and activity monitors

(pedometers), where they are used for detecting floor changes. They are also used in sports

GPS watches, e.g. Suunto Ambit3 vertical [81], where they are used to smooth the higher

vertical position uncertainty of GNSS.

2.3.2.3 Vehicle odometry and other measures of speed

There are various kinds of sensors and techniques which can provide measures of speed or

velocity, these include vehicle odometers, ship’s logs and radio frequency (RF) techniques

which give range-rates (e.g. [82]).

There are several di↵erent kinds of measurements that might be provided such as speed

(i.e. the magnitude of total velocity), velocity in a body reference frame, velocity in an

external reference frame, or a range-rate, that is an increase or decrease in the range to a

radio beacon, which is a measure of speed towards or away from a particular point. Any of

these techniques could be 2D or 3D.

In general, a speed measurement alone is not su�cient to position a user, but if other

sensors such as an IMU provide a PVA solution at all times this is not such a concern. The

measurement of speed is in one way superior to the acceleration derived from accelerometer
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readings because it only needs to be integrated once, rather than twice, to provide position

information, and thus does not drift from the truth so quickly.

All road vehicles have an odometer in order to measure the distance travelled and current

speed of the vehicle for the driver. Aircraft have air-speed sensors, and watercraft have ship’s

logs. All of these provide similar information, and all may require some sort of calibration,

but this is, certainly in the case of road vehicles simple enough to be carried out in-run.

However, there is the additional issue for water and air-craft that the fluid medium through

which they travel is frequently itself moving, in a manner which will not be known perfectly.

Odometry combined with even only a yaw gyroscope (and/or magnetometer, see Section

2.3.2.1) has been used to run a a short term dead-reckoning navigation solution to bridge

occasional GNSS outages (e.g. bridges or tunnels) with reasonable accuracy [21,83].

There are a number of radio frequency (RF) techniques which provide measures of speed

which may be useful for calibrating or removing drift from the INS, most of which provide

similar information to GNSS (which also provides Doppler or phase-range-rate measure-

ments). For specific applications, contexts or locations some may well be superior to GNSS.

For example, Doppler-derived range-rate measurements to RF beacons may well be avail-

able significantly more often in urban or indoor locations than GNSS (e.g. [82]). However,

each needs to provide better information than GNSS, in the sense of more available or more

accurate. In general most of these will be more noisy than odometry but that only applies

to some vehicles.

An equivalent measure of speed can also be applied to pedestrian motion, step detection with

an IMU rather than (or sometimes in addition to) a full set of inertial navigation equations

[60, 84, 85]. This is sometimes known as pedestrian dead reckoning (PDR) although this

also requires a gyroscope and/or magnetometer to determine heading. This has a number

of advantages over using inertial navigation, the main one being reduced accelerometer

accuracy requirements, as the step detection algorithms are not so a↵ected by, for instance,

biases and scale factor errors. However, the step detection algorithm’s accuracy may depend

on the navigation IMU’s position on the body and the step length may vary slightly from

step-to-step, between people and between di↵erent kinds of motion, e.g. walking, running,

climbing stairs or crawling. This means that for it to be accurate also requires a context

detection algorithm [10,86,87].

2.3.2.4 Camera Integration

Combining a camera into a navigation system is an option as relatively inexpensive cameras

have improved dramatically in performance in the last few years, as they are included in

every smartphone. It is interesting to note that one of the other main applications of MEMS

gyroscopes is image stabilisation in cameras.

Existing image based navigation systems include both dead-reckoning and feature recog-

nition techniques [3]. These techniques can add considerable additional information to an

integrated navigation system.
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For dead-reckoning, the idea here is that a video feed (e↵ectively a high frequency sample

of still images) can be used to estimate the change in position of the video camera between

epochs [88]. This means that they are vulnerable to the same kinds of errors as other dead-

reckoning technologies, but the sources of their errors are not likely to be coincidental. For

a start, cameras are better at tracking angles or angle-changes than linear displacements.

This contrasts with INSs where the long-term performance is typically dominated by the

gyroscopes. Therefore an INS and camera are a complementary combination. An an INS’s

gyroscope could be calibrated in-run and could then bridge instances where useful features

cannot be seen by the camera.

There is a problem of scale-ambiguity when using only the information provided by a single

camera. There are several ways to compensate for this, which include: accurately knowing

the distance from the ground and orientation of the camera (in the body frame) which could

work for vehicle applications; recognising the size of some objects (stadiametric ranging);

and having two cameras a fixed distance apart (stereoscopic ranging) [3]. Alternatively the

ambiguities can be resolved by integration of other sensors, e.g. [89, 90].

There are two main techniques used to perform dead reckoning with cameras; these are

optical flow and feature tracking algorithms [1, 3].

Optical flow involves tracking the light intensity over a grid and trying to match this intensity

to a particular amount of movement (rotation and translation), using a correlation function,

between frames. The results of which can be interpreted as a position and attitude change

(see [91]).

Feature matching techniques detect features of each image using one of several algorithms,

these features can be lines or (ideally) corners (features which show considerable variation

both horizontally and vertically) then these features can be tracked across several frames to

determine relative movement between frames.

Optical flow algorithms are in general less computationally intensive and less robust. How-

ever the reduced computational load allows the images to be processed more frequently (for

a given computational resource) and so the movement between frames will be smaller, which

slightly reduces the robustness penalty. However, for any given algorithm there is a trade-o↵

between the robustness (i.e. sensitivity to false readings) and the computational load. This

can be reduced by good compensation for camera e↵ects (such as flare).

There is potential to reduce long term INS attitude drift by using line recognition algorithms

and exploiting the fact that in the (especially indoor) environment most lines are horizontal

or vertical. [3] noted that considerable improvement can be made to optical dead reckoning

systems through sensor fusion with a low-cost MEMS IMU because the approximate position

change reduces the number of possible combinations that need to be searched in either optical

flow or feature-matching algorithms, in a tightly coupled system, and reduces the ambiguity

problem.

Camera integration can also be used to recognise landmarks, providing a way to correct a

drifted position, see [92, 93]. A camera can be used to build up a simultaneous localisa-

tion and mapping (SLAM) database of particularly distinctive optical features matched to
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locations. This map can then be used to correct the position drift of any dead-reckoning

navigation system by loop-closures, that is by recognising when the user has returned to a

previously visited location. Clearly, this is only useful in applications where the user returns

to previously mapped locations.

However, there are two main performance limitations using cameras.

The first is hardware. The camera has a finite number of pixels, this (in combination with

the focal length) determines the smallest angle that can be read (angular resolution). A

longer (e↵ective) focal length allows finer angle resolution but a smaller field-of-view, and

thus less potential to find features. There are optical limits as well whether the quality of

the lens (and the autofocus) can reduce the ability to determine individual pixels.

The second is data. A video stream is a lot of data, certainly relative to the output produced

by virtually any other navigation technology. Moving, processing and analysing that much

data can a serious computational challenge. This leads to much higher power consumption

and potentially more expensive computational hardware. For taking photos and recording

video streams, application specific integrated circuits (ASICs) exist. That is, dedicated

computational hardware which reduces the power consumption and computational overheads

for those specific tasks. They do not exist for camera navigation techniques. In addition to

any navigation algorithm there is a lot of processing that needs to be done to create a good

video stream, such as compensating for changing light conditions.

It should be noted that camera integration is not available all the time. There must be

su�cient light and visual variation in the camera’s field-of-view. Thus it is best used as part

of an integrated navigation system.

2.3.2.5 Other radio frequency technologies

There are several ways other radio-positioning technologies can be used for multi-sensor

integrated navigation systems. Most of these fall into a few groups. There are positioning

technologies that exist to provide a terrestrial-based back-up to GNSS in safety critical

applications, such as eLoran [61] or DME [94]. These technologies generally provide a less

accurate position than GNSS but may be available in situations where GNSS is not. However

the user-equipment to position using one of these technologies is often prohibitively large

for applications that use low-cost MEMS IMUs.

There are positioning techniques that use signals broadcast for purposes other than naviga-

tion, these can be collectively described as signals of opportunity. There are some of these

from which the user can be positioned, such as AM-radio [95] and airliners’ beacons that

broadcast their position [96].

There are also techniques based on short-range beacons such as bluetooth, RFID or WiFi

[97, 98]. The most common implementation is a simple proximity measurement compared

to a database of beacon locations although received signal strength may also be used. Fun-

damentally these methods give a position measurement, rather than velocity. This makes

them not particularly suited to calibrating IMUs in-run, although they will clearly aid an

INS if other better positioning technologies (i.e. GNSS) are unavailable.



Chapter 2. Background and Literature Review 43

2.3.3 Motion constraints

Motion constraints are application-specific restrictions on the way the navigation solution

can change, based on knowledge of how the user or vehicle is capable of moving. The

intention of these is to reduce navigation solution drift by removing impossible motion.

Motion constraints typically split into two di↵erent types. The first are actual constraints

on the motion, usually for a specific vehicle, for example for a train: no upwards (body

frame) motion, and no sideways motion. The second type of motion constraints are known

as zero-velocity updates. These detect when the IMU is not moving, which can be useful

because when the IMU is not moving, any non-zero motion sensed is an error. This means

that in-run calibration can be performed of the accelerometer and gyroscope biases, as well

as correcting the navigation solution.

Consider a general-purpose set of navigation equations (or integrated solution), which are

designed to give reasonable performance in a wide variety of navigation applications. This

kind of algorithm would be included in many commercial o↵-the-shelf (COTS) products such

as GNSS user-equipment chips, and used in a wide variety of products such as smartphones.

For these, motion is allowed in all directions without restriction and change of attitude

solution (i.e. turning) is allowed at any speed. When the designer has no knowledge of the

application this must be allowed, although in practice many filtering techniques place some

restriction on the maximum acceleration possible.

However, if the designer knows the application, they can put in place motion constraints on

the integrated navigation solution. The designer can use knowledge of how the vehicle or sys-

tem is expected to move and so reduce the e↵ect of erroneous measurements. This includes

restraints on maximum and/or minimum velocity, speed and/or turning rate dependent on

the vehicle.

The more detailed the designer’s knowledge the better the motion constraints can be given.

Consider designing a navigation system for use in road vehicles, as an aftermarket addition,

e.g. a typical car ‘sat-nav’. In this case one knows the kind of speeds that road-vehicles can

typically reach, and one could restrict the navigation system to certain maximum speeds.

Cars cannot move quickly in a vertical direction, e.g. up hills steeper than 1 in 3. These

restraints would increase positioning accuracy particularly in the up direction, and could

detect gross errors (e.g. car moving at 500 km/h).

Gross errors can be detected by considering the minimum and maximum speeds that a

vehicle is capable of attaining. An aircraft has both a stall speed and a maximum airspeed.

In addition road vehicles cannot travel vertically and most fixed wing aircraft are limited in

the speeds that they can attain perpendicular to their direction of thrust.

However, with more specific knowledge of the application better constraints could be used.

If an INS is built into a particular vehicle and thus fixed in the vehicle’s body frame, much

more specific and e↵ective restraints can be used. For example, if it is known that the

vehicle cannot move sideways (e.g. train), any sideways motion is an error. The vertical

constraint can also be improved as now it is known that the vehicle cannot move directly in

the body frame up. If specific performance data is known then the fastest that the vehicle
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can turn (at di↵erent speeds) can be used as a restraint on the maximum yaw speed.

Another type of motion constraint is a zero-velocity update (ZVU). This has two steps.

First, the fact that the system is currently stationary must be detected, using an application-

specific detection algorithm. Then the navigation system can use the information that the

user is currently stationary. At the least, this can stop the position solution drifting further

during the stationary period. It can also be used to calibrate sensor errors, and — in the

case of an INS-based system — improve the attitude estimate.

In some applications, this can also be a zero-angular-rate update (ZARU). Returning to the

road vehicle example, in order to turn it must be moving forwards or backwards, that is they

are not capable of rotating on the spot. This means that when the IMU’s accelerometers

(and possibly the vehicle’s odometer) detect that the car is not moving forward or backward

any sensed angular rate on the gyroscope is an error, and observing this error could allow

a gyroscope bias to be filtered from the IMU’s output. These are even more e↵ective for

calibrating gyroscope biases.

ZVUs are a subset of measures of speed (see Section 2.3.2.3). However, unlike many other

speed measurements ZVUs are necessarily only available part of the time (i.e. when sta-

tionary), which may be infrequent. This means when they do occur they need to be very

accurately known to be helpful, and most of their utility (from an INS calibration point of

view) comes from the ZARU 3.

An established and very e↵ective technique for improving the performance of an IMU for

pedestrian applications is to mount an IMU in a footpod which can be attached to a user’s

shoe (see e.g. [99, 100]). This technique takes advantage of the fact that when walking,

we move one foot at a time so that for about 50% of the time the IMU is approximately

stationary. This allows a ZVU to be performed every 1–2 seconds. If implemented correctly

ZVUs can compensate for accelerometer biases and even greatly correct for a bias which

changes through time. As such, this technique is very e↵ective, and can significantly reduce

INS position drift (particularly in the direction of travel) [1, 60, 99,101].

However, there are limitations on this technique as for many applications a footpod is

not desirable. It means that at least two separate pieces of hardware must be present,

powered and communicate with each other, as to read a display mounted on a shoe would

be undesirable. For most applications it would be impractical to make this connection

a wired one, and so this would require separate batteries and a short-range radio link.

Therefore this method would be undesirable for military applications due to the RF stealth

implications and possibility for signal drop-outs. Also when mounted on the foot, a device

of this kind is more exposed to accidental damage. Aside from some specialist users such as

firefighters or runners (who often use footpods currently4, but only for speed and distance

not for navigation) a footpod is also undesirable for civilian applications also. A separate

piece of hardware which would need to be remembered, transferred from one pair of shoes

3Consider that one could drive around a sweeping corner without slowing down, but not rotate a car

while stationary.
4These commonly work with a sports watch, such as Polar’s S1 FootPod (or more recent S3 stride sensor)

Garmin’s Footpod or the Nike+ sensor (which is not strictly an IMU see [102] and [103]).
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to another, wirelessly paired with the device in use and might spoil the aesthetic of and/or

limit the choice of footwear, is not ideal.

Despite these problems, in specialist applications, the footpod mounted IMU is a practical

proposition. In applications where a map is constructed using simultaneous localisation and

mapping (SLAM) techniques (such as [104,105]), which might then be used by other users,

a footpod (or a pair) is a good way for the mapper to increase their accuracy even with

relatively low cost MEMS IMUs.

2.3.4 Map and feature matching

Once the navigation system has estimated a position, a geographically referenced database

can be used to improve the position estimate [1].

A common example of this is map matching [106,107]. For example, a typical car GPS sat-

nav will move the calculated position onto the nearest road on the digital map. This will

generally give a more useful navigation performance for the specific application, but when

used out of context map-matching can make the position misleading. Good implementations

of map-matching use the history of positions to eliminate impossible road changes (e.g. on/o↵

a flyover mid-span). However, many users have experienced this going wrong, such as

passing a motorway junction and being given directions that correspond to approaching the

roundabout that one is driving above. Map matching is often done right at the end of the

processing chain, e.g. within the sat-nav app on a phone which takes input from the phone’s

navigation module. However, integrating this into the navigation processing could be more

e↵ective, with the map-matching providing feedback to the integration algorithm.

As this technique relies on a map (i.e. database of position-referenced information) there will

always be issues relating to the accuracy of the map. In the previous street-map example,

the algorithm cannot be as simple as moving the calculated position to the nearest road,

as inevitably there are some situations when the user will not be on a road or will be on a

road not on the map, and so an o↵-road detection algorithm is required.

Techniques like map-matching can be more generally referred to as feature-matching tech-

niques. There are both a wide variety of features that could be mapped and several di↵erent

ways to construct the map (database). Note that while feature-matching can aid a naviga-

tion system, the pre-comparison position estimate needs to be reasonably accurate to reduce

the area of the map that needs to be searched, otherwise potentially ambiguous matches

can result.

There are a large number of items that could be included in a feature database for any

particular application, and several considerations in choosing them [108]. First, there must

be variation in the feature throughout the area of operation. Second, the measurement

should be easy to measure, sometimes they might be already being measured (e.g. magnetic

anomalies when using a magnetometer), or be easy to add with minimal extra hardware

(e.g. smartphones already have WiFi chips so WiFi signal strength is easy to add). The

temporal validity of the features being mapped is a major consideration, that is, how quickly

the map goes out of date.



46 Chapter 2. Background and Literature Review

Street maps have already been discussed, but if 3D city models are available then this

additional information can be used. For example, in cities the received GNSS signals can

be compared with those that the 3D model would expect to receive at nearby points, as

each satellite’s elevation and azimuth is known. This is e↵ectively creating a feature-map

of each satellite in the constellation’s availability or non-availability, and is called shadow-

matching [109,110].

Another use of a 3D city model would be to have a camera pointing upwards at an elevation

of around 45 degrees (as used in [111–113]) and match the skyline to the 3D map.

Terrain height maps (i.e. maps with contour lines) can also be used for map-matching

and are readily available, e.g. UK Ordinance Survey and NATO global databases. If one

had a good vertical position, e.g. through barometer integration, in an area of significant

height variation (e.g. canyons, mountains), then the height map could improve the horizontal

position [114]. This is terrain referenced navigation (TRN) and has been used in aircraft for

a long time [1,115,116]. In this application it is particularly e↵ective, because hardware for

measuring height above the ground, such as downward facing radar, is already available for

other reasons (i.e. landing safely), and the terrain height varies more quickly below them as

they move fast.

One possible implementation is to consider the height map as a range measurement from

the centre of the earth. This can, for example improve the signal geometry of a GNSS

positioning, and a comparison between position calculated with and without can aid iden-

tification of poor GNSS measurements. Note that, unlike TRN, this does not require there

to be significant variation in terrain height. This height aided GNSS approach has been

the subject of recent research [117–120], although the approach has been around for some

time [1].

For ships there is an equivalent system which can be made using bathymetry sensors. These

sensors can be used to measure the sea depth, and comparing it to a sea depth map [121],

although this is limited to littoral areas. Additionally, as a ship’s height above the geoid

can be accurately predicted with tide-tables, the height-aided GNSS techniques can be used

e↵ectively.

Neither of these terrain height or sea depth maps are likely to go out of date, and street-maps

and 3D city models will only change over months and years, and thus are good candidates

for being kept up to date in a crowd-sourced manner (at least the street-maps are, see [122])

and periodically downloaded by the navigation system.

However, other possible features, which may change more rapidly need to be treated dif-

ferently. For example, in a typical urban area there are a lots of signals transmitted on a

range of radio spectrum frequencies. The strength of received signals varies quite a lot over

a small distance, as signals are attenuated di↵erently by physical barriers. This means that

one potential approach for pattern-matching is to build up a map of received signal strength

over an area, on several di↵erent commonly occurring frequencies (e.g. GSM, FM or DAB

radio, television, WiFi) and then use this map to pattern-match. However, these RF sources

(“signals of opportunity”) could be moved, switched o↵, or added without warning and the

physical barriers blocking signals could easily move. This means that the signal map must
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be updated frequently to retain reliable performance. To do this a simultaneous localisation

and mapping (SLAM) approach can be used, e.g. [80], which also uses magnetic anomalies

as features. Note the use in [80] of a particle filter (see Section 2.4.4) to track multiple

hypotheses. Other filtering techniques can also be used for SLAM [123].

2.4 Integration algorithms

In a multi-sensor navigation system there will be several di↵erent sensors providing measure-

ments. Each of these sensors will have di↵erent error characteristics and may well measure

di↵erent quantities.

A naive approach would be to calculate independent (parts of) navigation solutions from

di↵erent sensors and then to use that from the sensor expected to be more accurate ignoring

the other solution. For example, when adding a barometer to a GNSS system, throw away

the (noisier) GNSS vertical position and just use the barometer’s estimate.

This approach exists in some consumer devices, e.g. sportswatches, where accurate posi-

tioning is not critical to the function of the device. For instance, in the sports file exchange

format [124], there are separate lines for “wheel speed” (from odometry) and “GPS speed”

(i.e. magnitude of GPS velocity), the assumption being that the wheel speed line will be

used when available. However, this approach is discarding data that could be used by the

system to improve its performance, e.g. to calibrate the odometer in this case.

To use all the information some kind of integration filter is needed to combine the multiple

measurements and weight them correctly. This is sometimes called sensor fusion.

This section presents some background on various di↵erent filter types, including Kalman

filters, more advanced filters related to them and briefly discusses alternatives such as the

particle filter and machine-learning approaches.

2.4.1 The Kalman filter

A Kalman filter (KF) [125] is an algorithm to estimate a time-varying series of states from a

series of measurements. Kalman filters are frequently used for sensor integration, and their

application for INS/GNSS integration is well-established [1, 18, 125, 126]. This enables the

IMU’s calibration to be frequently updated without any e↵ort by the user, whenever another

navigation technology is available. This improves performance both during integrated use

and if the INS is used to bridge short outages.

A KF estimates each estimated parameter as a state. For example, 3 states are needed

for each of position, velocity and attitude (for 3D navigation). States can also be used to

estimate calibration parameters e.g. sensor biases.

When measurements are added to the filter, first the current state estimates and covariances

are projected to the current epoch. The measurements predicted using these are compared

with the actual measurements and the combination, weighted according to the relative

uncertainty of the measurements and the predicted state estimates, is used to update the
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state estimates and covariances [1]. The filter is recursive, in that it does not store the old

measurements; rather the state estimates aggregate this information in combination with

the state error covariance matrix (the P-matrix), which represents the estimation accuracy

of the filter’s state estimates. More information about Kalman filtering can be found in

standard texts such as [127,128].

To obtain optimal performance, the best possible initial estimates of the states should be

used and the state error covariance matrix should be correctly initialised with the initial

uncertainty of each state. The filter also needs to know how much the states are expected to

change through time, and how accurate the measurements are. Choosing the correct level

for all of these settings is known as tuning, and often requires an element of trial and error.

The Kalman filter is based on the following assumptions [127]:

• the statistical distribution of errors are unimodal and can be described using only a

mean and covariances;

• the noise terms are white-noise (not correlated with time); and,

• most importantly, that the system propagation and measurements are linear combi-

nations of states.

However, real systems, such as INS and GNSS, do not obey these rules. When attempting to

calibrate larger errors, the KF-integration starts to break because linearity and small angle

approximations made within its system model are not valid. Linearising approximations

typically made include the small angle approximation and the assumption that the products

of state estimate errors are negligible. The white noise assumption inherent in Kalman

filtering can be partially circumvented by telling the filter that the noise variance is greater

than it really is (over-bounding) in order to model noise that is time correlated over a few

successive epochs [1], or by use of a shaping filter [19].

If these assumptions are not met or circumvented and/or the tuning is wrong, the Kalman

filter will not behave as expected, e.g. estimates will not converge [19]. This situation

typically causes the covariance estimates of the KF become inconsistent with the actual

covariance of the state-errors.

As Kalman filters assume that the measurements and system propagation are linear combi-

nations of the states; if the system being modelled is not linear then one common approach is

to linearise the system. An Extended Kalman filter (EKF) is a KF where the system and/or

measurement model are linearised [129]. A filter equivalent to an EKF can be formed by

feeding back corrections of some state estimates, like the bias, without significant increase

to the computational load [1]. An EKFs work well for in some circumstances, such as lin-

earising GNSS measurement models, but not in others, particularly where there are large

angular uncertainties. However, EKFs use the covariance propagation and updates as KFs,

which means that the assumption that the products of state estimation errors are negligible

still must be valid.

It has been frequently established that INS/GNSS integration is possible, and e↵ective with

tactical grade or better sensors [1]. However, with un-calibrated consumer-grade MEMS,

the errors are too large for the filter to remain stable. However, it remains an open question
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as to when they are too large. Determining the point where the combination of filter errors

is small enough for stable operation is one of the research contributions of this thesis as

described in Chapter 3.

2.4.2 Advanced Kalman filter variants

There are a number of alternatives and improvements to a standard (or extended) Kalman

filter which can outperform a KF or EKF in some navigation applications.

One of these is the Unscented Kalman filter (UKF) [130], also known as a sigma point

filter. This parametrises the state covariance in a di↵erent way, by using a small number of

sigma points. These points can then be put through non-linear system and measurement

models and the uncertainty of the transformed distribution reconstructed. It can avoid the

majority of non-linear e↵ects of the measurement and system model because it does not

linearise them [131]. The transformed distribution matches higher-order Taylor series terms

in the UKF than by the EKF, which is often more accurate and so can reduce the instability,

as less over-bounding is required. This e↵ectively removes the KFs linear-state-combination

assumption, but the noise-is-white assumption still applies.

Another alternative integration filter is adaptive filtering [132–135]. This adjusts the value of

the system (Q) and/or measurement (R) noise covariance matrices, based on either varying

R and/or Q and examining the sequence of measurement innovations (innovation adaptive

filtering, IAE) or by running a bank of multiple models and picking the best one (multiple-

model-based adaptive estimation, MMAE). These approaches primarily help in situations

where an appropriate starting values of R and/or Q are not known, for instance where the

quality of the measurements from a particular sensor are highly dependent on the environ-

mental conditions which are not known. MMAEs have also been applied to multi-modal

problems, that is there the first assumption does not apply, although particle filtering is

a more common approaches to that problem, see Section 2.4.4. It is possible to combine

adaptive and unscented filtering, e.g. [136].

Another approach to improve filter performance is to run an automatic tuning algorithm

[137]. This seeks to optimise the filter’s tuning for a particular sensor. This is particu-

larly important as the performance of di↵erent sensors of the same model can vary quite

considerably (see [8, 137] and Chapter 5).

2.4.3 Improved error models

An INS/GNSS producing stable performance depends on, in addition to the 3 points men-

tioned in Section 2.4.1, the system (INS) being adequately modelled by the system model.

In theory an INS/GNSS KF could be modelled with only position and velocity states, as

only these are measured by GNSS, but this is not practical for anything other than the best

performing INS [1]. Thus the standard method is to model the attitude and the biases,

which works with sensors down to tactical grade. This filter will have 15 states: position,

velocity, attitude, accelerometer bias and gyroscope bias all for x, y and z axes.
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A common mistake, according to [1], is to model only scale factors, rather than both scale

factor and cross coupling errors, because both are of similar magnitude for most low-cost

MEMS and thus are approximately equally significant for navigation performance. However,

as shall be presented in Chapter 5, this is not necessarily the case for post-calibration

residual errors. Scale factor-only modelling requires 3 extra states for each of the gyroscope

and accelerometer, whereas scale-factor and cross-coupling requires 9 extra states for each.

A significant amount of the computational time is spent performing matrix multiplications

and inversions both of which are approximately O(n3), where the n is the number of states5,

so keeping the number of states to the minimum needed is important.

It would be possible to include 2nd-order or higher errors in the INS model, at the cost

of further increased computational load. However, in order for an IMU error state to be

observable in the INS/GNSS integration it must have a significant impact on the navigation

solution [1], that is its e↵ect must be distinguishable from the inertial sensor noise. Which

errors have a greater impact on the solution than the noise depends on the system dynamics,

i.e. are the errors excited, as well as the magnitude of the sensor noise. The observability

of states can be tested by examining state covariance with representative recorded test

data [1]. However, due to the large numbers of additional states that would be required to

add 2nd-order errors, approaches from Section 2.4.2 such as the UKF [130], should be tested

first.

2.4.4 Alternative filters

There are potential methods that can be used for an integration algorithm that are not

based on Kalman filters.

A particle filter [140] is a form of sequential Monte Carlo filter [141]. The basic idea is that

a cloud of points (particles) represent possible values for the states being estimated, and

as new measurements are added, particles which the measurements show to be unlikely are

removed and more particles are added near those with high probabilities. Particle filters

do not require (or assume) that the states have a Gaussian distribution. So they are well-

suited to situations where a Gaussian distribution does not describe the position uncertainty

well. A classic example of when a particle filter is better than a KF-derivative filter is for

feature matching techniques [80,142]. In these situations there are typically several discrete

positions which match the map well. For example, the user may be either on one street or on

the parallel one. However, an error ellipse covering both of these scenarios would show that

the user was positioned between the two streets with a large uncertainty, whereas particles

could represent the true position distribution better.

The performance of a particle filter can be improved by using more particles, but this in-

creases the computational cost, so performance is a trade-o↵ [143]. This is a particular

problem for where a large number of states need to be modelled as the particle cloud is

distributed across more dimensions of state space, requiring more particles for reasonable

performance. This makes particle filters better suited to 2D navigation (e.g. [142]) than to

3D navigation. A particle filter also needs tuning to improve the performance for the partic-

5Matrix inversion can in fact be reduced to O(n2.807) [138] and in some cases to O(n2.376) [139].



Chapter 2. Background and Literature Review 51

ular application, including, for example, how quickly to remove low-probability particles. In

situations where a KF-derivative filter is well suited, e.g. GNSS-only positioning in an open

area, the computational cost of a particle filter is generally higher than a KF-derivative or

equivalent performance.

It is also possible to use a machine-learning approach for integrating navigation sensors.

Artificial Neural Networks (ANN) approaches have been used for GNSS/INS integration

[144], learning for example position errors [145]. These are only one class of many possible

machine-learning techniques. However, most machine-learning works in a similar way.

They begin with a learning phase during which the algorithm treats each sensor input as a

black box and tries to replicate position output by varying the weight given to connections

between inputs and outputs. The approach essentially assumes no knowledge prior to the

learning phase, although some approaches also combine this with a Bayesian estimator.

Then the ANN-derived integration algorithm can be used for normal navigation.

However, generally the performance is only good in situations similar to those included dur-

ing the learning phase. For example the response on the ANN INS algorithm to a roundabout

will not be good unless one was included in the learning phase. Thus, collecting representa-

tive training data is critical for their success. Additionally, these generally assume no prior

knowledge of sensors’ output in relation to the motion, which is unnecessarily general as

it known that the accelerometers should strongly respond to acceleration. This can make

the ANN algorithm potentially performing poorly in some situations (i.e. unfamiliar ones)

and di�cult (and computationally expensive) to set up in the first place, as relationships

between inputs and outputs which could have been predetermined are determined through

a learning process at large computational expense.

There are some hybrid approaches, such as [146], which mitigate some of the computational

problems of ANN approaches by using them in combination with Kalman filters.

All of the options, presented in Sections 2.4.2, 2.4.3 and here, come at the cost of increased

design complexity and computational load. So the question is: when are they necessary?

This is a question that shall be addressed in Chapter 3.

2.5 Improving the performance of an INS

For all the integrated navigation systems considered in this thesis, only those that include

an INS are considered. As INS measurements are available at all times and have frequent

updates, a common integration algorithm design, e.g. for INS/GNSS [1], is to run inertial

navigation equations all the time and when a measurement from another sensor becomes

available to run a KF update to correct the inertial solution and estimate INS errors. Thus

the INS provides the basis with which other sensors are integrated.

The techniques discussed so far improve performance by including other sensors, which can

estimate the position, velocity and/or attitude more accurately when they are available and

use this to calibrate the IMU ‘in-run’.
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However, there are also techniques that can improve the performance of a low-cost inertial

navigation system which do not use other sensors. These include: sensor calibration by

recording output during a procedure conducted specifically for the purpose of calibration

(Section 2.5.1) and techniques using arrays of IMUs to improve the measured signals (Section

2.5.2). These could be considered sensor-level techniques, that is, techniques which use the

sensors’ output signals to improve the estimates of specific force and angular rate, rather

than any other input. The critical di↵erence between the techniques in this section and

the in-run calibration techniques discussed earlier is that their e↵ect is earlier in the system

processing chain (Figure 2.6), before multi-sensor integration.

2.5.1 Calibration

The out-of-the-box (starting) performance of the consumer-grade MEMS sensors is so low,

that it is di�cult to estimate their values during use using a standard EKF [19]. Thus as

discussed in Section 2.4 a more complex, sensor integration algorithm is required unless the

e↵ect of these errors can be reduced. This makes it potentially beneficial to record data

specifically for the purpose of improving IMU performance. The recorded output, combined

with assumptions based on how it was collected or even measurements from other equipment

during its collection, can be used to estimate the IMUs error parameters (see Section 2.2.5)

and thus to compensate for their e↵ects.

This section will begin by discussing characterising an IMU’s stochastic errors, then dis-

cuss systematic error estimation, split into procedures which require expensive laboratory

equipment and those that do not require this equipment, or at least only require a subset

of it.

This thesis also uses the term user calibration for one carried out by the end-user of the

navigation system, contrasting with a factory calibration or laboratory calibration conducted

by experts such as the manufacturer of the sensor or of the navigation system. This thesis

assumes that the end-user will not have access to any expensive calibration equipment, such

as temperature controlled chambers or high-precision rate tables.

2.5.1.1 Stochastic error characterisation

As discussed in Section 2.2.5, the e↵ect of stochastic errors cannot be removed by calibra-

tion. However, if the stochastic behaviour is well known then its e↵ect better modelled an

integration algorithm potentially improving the algorithms performance.

Stochastic error characterisation generally involves collecting long samples of static data

to examine the noise sequence. The standard method for this is Allan variance analysis

[5,147,148]. However several other newer methods exist based on e.g. wavelet variance [43].

The output of these techniques is a set of stochastic parameters that will define the sensor

noise as, e.g. a combination of white noise and two Markov processes.

For low-cost IMUs, the white noise term will typically be the most important stochastic

error term, dominant at least over the time period of a few minutes. So for many simple
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KF integrations higher order noise terms are not included in the system model. This thesis

concentrates on calibration of the systematic errors.

2.5.1.2 Laboratory calibration

IMU systematic error calibration is most accurately conducted using specialist equipment

[20]. Example of the various procedures that can be used to perform a laboratory calibration

on a MEMS IMU are outlined in [149]. At the simplest level calibration may be static,

which can allow the stochastic parameter estimation and gyroscope bias to be determined.

As the calibration procedure’s complexity, and thus cost, increases the testing can take

place on a one- two- or three-axis motion simulator, which might also include a temperature

controlled oven in which the IMU will be placed to allow temperature dependent terms to

be determined, see also [150]. According to [149], the motions must be measured with 5 to

10 times greater accuracy than that required of the IMUs which are to be calibrated and

that five types of test are commonly carried out. These are Hysteresis, Step Rate, Scale

Factor Linearity, Bandwidth, and Stability. Hysteresis testing measures the internal friction

in the system. The input signal is increased and then decreased and the di↵erence between

the measurements on the ‘way up’ and ‘way down’ is the hysteresis. The step rate test,

subjects the IMU to inputs signals at given step values, the time to stabilise on the new

value (settling time) and the angular rate accuracy at each step are measured. Scale Factor

Linearity testing, measures the sensor’s response to input through its whole measurement

range, the output being the deviation from a linear response. Bandwidth testing measures

the sensor’s response to input signals at various frequencies. Stability testing is the name

given in [149] to analysis of the residual noise, i.e. stochastic error characterisation. [149]

also mentions that all of these tests may be carried out at a range of di↵erent ambient

temperatures. As noted by many authors [1,4,20,55] the temperature can have a significant

e↵ect on the systematic errors of automotive-grade MEMS so this step is important.

Several production INS or GNSS/INS systems use consumer-grade MEMS IMUs, which

have near tactical grade systematic error performance, because the sensors have been factory

calibrated [58, 151]. However, they still have considerably worse noise performance than a

true tactical grade MEMS IMU, such as [152]. In some cases di↵erent prices are given for

di↵ering qualities of calibration, e.g. VectorNav [26] o↵er products with calibrations valid

at 25�C which can be upgraded to being valid from -40 to 85�C for an extra $300.

2.5.1.3 User-conducted calibration

Factory calibration adds significant cost as mentioned above so there is incentive to develop

simpler calibration procedures that can improve the calibration of the sensors, without

requiring specialist equipment, and thus could be conducted by the end-user of the device to

reduce cost. There are a variety of techniques presented in the literature for user-calibration,

and their authors also significantly di↵er on what equipment an end-user might be expected

to have access to. Some authors require a turn-table [153], some assume that it is not

high-precision [154]. Others require specially made equipment, such as a specially shaped

box [155] or a hinged surface [156] which is less expensive than full laboratory calibration
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equipment . The calibration techniques that will be presented in this thesis do not require

special equipment.

The accelerometers’ biases, scale-factors and cross coupling can be calibrated from static

tests, because a vertical specific force of approximately 9.8ms�2 will apply to the static sen-

sors, as can gyroscope biases (and g-dependent error). However, gyroscope scale factor and

cross coupling cannot be observed without rotation, so a dynamic calibration is necessary.

The static calibration is often performed by means of a six-position test. That is, by

mounting the sensors in a cuboid box and recording a sample of static data on each of the

faces of this box, allows estimates to be made of accelerometer bias, scale factor and cross

coupling, as well as gyroscope bias and g-dependent error. Many authors have published

papers including a version of this procedure [8, 153, 154, 157–159]. According to [149], in

combination with a granite table and “a precision fixture” (a cuboid), this represents the

lowest cost version of factory IMU testing. There are di↵erent ways in which the biases and

alignments can be estimated from this data, which is not always specified by the authors,

two alternatives will be described in Section 4.5.1, although others approaches are possible,

e.g. [157].

It should be noted that for some high-performance IMUs the Earth’s rotation rate can be

used to calibrate the gyroscopes as part of static six-position tests, see [160]. This thesis’

focus is on low-cost sensors which are not accurate enough to use the Earth’s rotation rate

(⇡ 0.0041 �/s) for calibration.

An interesting variation of this 6-position test is presented in [155] where instead of a cuboid

box an icosahedron (20 faces) is used for accelerometer calibration. This theoretically allows

some accelerometer non-linearity terms to be estimated, as specific forces between 0 ms�2

and 9.8ms�2 are included. Although this is not done in [155], the extra information is used

instead to relax the requirements for construction accuracy. However, a disadvantage of this

is that while a cube-based procedure can use the navigation system’s case, this requires a

separate special calibration box, which reduces its utility as a user-conducted procedure.

One strength of their method is that increasing the number of faces makes the procedure

less sensitive to one or two poorly aligned faces. They reduce the cost of constructing

this icosahedron by 3D printing it. This is not ideal as most 3D printers, particularly the

extrusion-based ones that it is clear they have used from the photographs in the paper, have

separate x- y- and z-axis motors and position-control. This means that their manufacturing

errors in the resulting 3D printed icosahedron will be correlated to the 3 axes of the printer.

This correlation removes this potential benefit of their method.

Some authors, including [161], adapt this 6-position test to 12 or 18 position test by resting

the cube on (some or all of) its edges at “approximately 45�” from the level table, although

the reason for doing this not made clear in their paper beyond stating that it is “optimal”.

It appears that they are under the mistaken impression that calibrating the 12 coe�cients

of the Aa and b
a

requires data to be recorded at 12 positions, when, due to the fact

that 3 sensor outputs are recorded at each position; the standard 6-position test is already

overdetermined. In [154] a similar statement is made. The authors note that there are 12

coe�cients which are being calibrated (the entries ofAa and b
a

in this thesis’ nomenclature).
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They then state:

“Then, through collect n (n � 12) sets of di↵erent positions measurement data (u
1

, u
2

,

. . . , u
n

), use the non-linear least squares method to determine the above twelve unknown

parameters.” (direct quotation from [154])

Generally these methods, aside from the above many-position techniques, assume that the

surface upon which the sensor box is placed is level, and also implicitly assume that the

‘box’ is exactly the shape that it is meant to be, that is, entirely without manufacturing

errors.

When it comes to dynamic calibration, there is little agreement on what equipment it is

reasonable to expect the end-user to have. Some authors describe procedures which use

rate-tables as user-calibration [153], assuming the user has access to a low-precision rate

table, perhaps intended to be a vinyl record player, where the angular rate is not known

but is assumed to be fixed [154, 162]. Some authors use a specially constructed piece of

hardware for their gyroscope calibration, e.g. the “rotation hinge” of [156]. None of these

would qualify under this thesis’ definition as user-calibration, except perhaps the last one.

There are some studies that suggest methods to calibrate the gyroscopes without using very

precisely known (or measured) rotations. [154] presents a method for calibrating an IMU

without a rate-table, this involves calibrating the accelerometers using a level surface, then

rotating the IMU on an angled surface and using the accelerometers to provide an attitude

reference by tilt-sensing (note that this only provides the roll and pitch parts of the attitude

solution).

However, their actual experimental data is collected on a high-precision turntable and they

process it twice, once through their algorithm and once using the output of the high-precision

turntable. If they had used hand rotations to test their algorithm variations of speed, slight

variations in the rotation axis and not-precisely stopping at 360� would have been tested.

This means that their procedure is flattered by comparison with how it would be conducted

in-the-field, so their test does not represent a realistic use case.

Other authors use machine learning to calibrate gyroscopes [161]. They conduct a static

calibration of the accelerometers, and use standard magnetometer calibration techniques

(see [76]). They then perform a large number of rotations, about many di↵erent rotation

axes, by hand with static periods in between, recording the gyroscope and magnetometer

output. This data is used to calibrate the gyroscope by using machine-learning to pick the

gyroscope Ag parameters that maximise the agreement of the magnetic heading with the

gyroscope-derived heading. This is not a very tractable problem for an analytic solution,

so one can see why machine-learning techniques are employed. It is not clear whether

this approach would produce superior results to a normal KF (or KF-derivative) sensor

integration which could be used for the same task, given the frequent static periods e↵ective

ZARUs could be performed. There is potential for machine-learning algorithms (in general)

to produce solutions that fit the training data, but do not work in practice [1]. A similar

approach is presented by [156], although instead of magnetometer output, they use an

accelerometer-derived tilt-angle, and their procedure seems to depend even more strongly



56 Chapter 2. Background and Literature Review

on detecting ZVUs. It does not produce very repeatable estimates, particularly of the o↵-

diagonal elements of Aa and diagonal elements Ag.

In [159] a method for gyroscope calibration using manual rotation of (in their case) an

IMU inside a “right-angle iron” which has “six surfaces that are square and parallel to each

other within 0.00200 per 600 ” [159], in other words a highly precise6 calibration fixture. In

this calibration process, biases are estimated by a six-position calibration similar to those

described above, then the IMU is “rotated by hand on a surface contact with a clean flat

bed” [159] three times with a di↵erent (mutually orthogonal) face in contact with the bed.

After this there is a single 90� rotation using a straight edge (a ruler) attached to the table.

The measurements during the 3 rotations are used to estimate the gyroscope scale factor

and cross coupling up to a scale ambiguity. This ambiguity is due to not knowing the true

values of the speed or total angle of the rotations. The final 90� rotation is used to solve

this ambiguity. Note that while the actual manoeuvres conducted are similar to those that

will be presented in Chapter 4, there are important di↵erences and the calculation method

is not the same.

It is not clear how much the technique presented in [159] depends on the high degree of

angular accuracy of their calibration fixture, however as all the scale factors depend on

the final 90� rotation, it is likely that the accuracy of this rotation has a large impact

on the accuracy of the error estimation. If the estimates’ dependence on the accuracy

of the calibration fixture was low, then this would be a workable calibration procedure.

They present the results of calibrating a real set of gyroscopes, but no information on the

accuracy of this estimate other than their (least-squares) parameter-fitting residuals. They

also present a simulation, but this does not apparently contain errors other than IMU sensor

noise, which judging by the order of magnitude smaller parameter-fitting residuals, may not

adequately capture all the estimate errors.

A recurring problem for these kinds of calibration procedures is how to determine the ac-

curacy of the calibration. This is a harder question to answer than one might expect at

first. The issue is that the true values of the calibration parameters for real sensors are

not known. Ideally, the calibration procedure’s estimates for the calibration parameters

would be compared with a known-good calibration procedure, such as that conducted by a

high-performance factory calibration. However, the (usually) academic groups that publish

these kind of procedures do not often have access to the equipment needed for a factory

calibration. The study [154] comes close, but they did not actually present the hand-rotated

results they claim in the abstract.

A more common approach is to simply repeat the procedure a number of times and present

information on the repeatability of its estimates. For example, [155] simply repeats their

calibration procedure ten times on the same array of 14 sensors. This demonstrates that

their procedure is insensitive to human error7 and to noise8. However, if there were a

systematic mis-shaping of their calibration icosahedron, this would create an error, but it

6Angular error of about 5.8⇥ 10�7 �, by trigonometry
7Which is not surprising given that it is based entirely on data at static positions.
8The expected error from noise on the mean value of a static dataset is readily calculable, see Equation

4.99.
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would manifest identically over the repeats, and thus would not a↵ect the repeatability. This

is just one example why repeatability is a necessary but not su�cient condition for accurate

calibration. That is not to say that it is an easy condition to meet. In [156] a gyroscope

calibration procedure is demonstrated by repeating it 4 times, as is shown in their Table

3, this their estimates of Ag matrix components have a standard deviation of up to 0.008,

i.e. just under 1%. Five years ago, when typical gyroscope scale factor errors were ±6% [53]

or worse, this might have been a useful user-conducted calibration. However, newer sensors

come from the factory with scale factors are ±1% at 25�C [45] or ±2% across the entire

operating temperature range [46], so this procedure barely represents an improvement.

One possible option is to do a semi-simulated test. This starts by recording a real calibration

procedure with a one of the near-tactical performance factory-calibrated IMUs like Xsens, or

a higher performance IMU if available, which hopefully measure the calibration procedure

with very little error. Then artificial errors (e.g. biases) can be added to the recorded inertial

output, and one can see whether these artificial parameters can be re-constructed. This kind

of approach is often done with filter-estimated parameters, e.g. in [56], but there is no reason

why it cannot be extended to deterministic or machine-learning procedures. Of course, the

initial sensor calibration has some small errors, so they may account for some of the error

in re-constructing the artificial errors.

The other option is a full simulation, as is presented in Chapter 4 of this thesis. Of course,

the challenge then is validating it.

The final option is to go fully empirical. A navigation solution can be calculated from a

period of recorded data, with and without calibration, or with di↵erently calculated cali-

bration parameters can be shown. Examples of this approach will be presented in Sections

5.6 and 6.6.3. However, this only can give an idea of the overall calibration performance,

rather than the accuracy of any individual error sources.

2.5.2 Redundant IMU configurations

One way in which the performance of the inertial navigation system can be improved is by

using more than the minimum of 3 gyroscopes and accelerometers. Di↵erent authors use

di↵erent terms for this, e.g. redundant IMU [163] 9 or multi-IMU [164] 10 but in this thesis

the term IMU array or array of IMUs will be used, from here onwards. This terminology is

also used in existing literature, such as [166].

10 years ago, a low-cost IMU would have been constructed from several separate chips,

possibly on circuit boards fixed in a frame at 90� to one-another, e.g. [157]. As single-chip

MEMS IMUs are available now, the additional expense and e↵ort to construct one from

several chips is unlikely to be worthwhile. At the most there will be a 3-axis gyroscope chip

9This unfortunately has the same acronym as reduced IMU which is rather the opposite thing.
10The choice of the term MIMU to refer to their array is poorly chosen as this is used by other authors,

e.g. [154], to refer to a single MEMS IMU, as Micro Inertial Measurement Unit (MIMU), and by Honeywell

to refer to one of their high performance inertial navigation units “miniature inertial measurement unit”

(MIMU) used on some space missions [165], although this not miniature by MEMS standards.
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and a 3-axis accelerometer chip. This means that for any given array, it will be constructed

of sets of orthogonal triads rather than by positioning individual sensors.

It is generally accepted that a larger array (i.e. more IMUs) will perform better, e.g. [164,

166], with the trade o↵ of additional size, cost and power consumption. Most authors

mention the improvement in noise performance that comes about from averaging the IMU

output

The optimal configuration for an array is an open question, and generally depends on the

application and characteristics of the sensors. Aside from the number of sensors in the array,

there are a number of other parameters that can be varied. The array can have various

physical arrangements: the sensors might be arranged with their sensitive axes pointing

in various directions, the separation between sensors might be minimised or made greater.

Additionally, the sensors within the array might be of di↵erent models or their configuration

may be varied to measure the specific force or angular rate signal with di↵erent errors. This

thesis uses the term aligned array to refer to an array where all the IMUs share the same

orientation, i.e. where they are all arranged side-by-side with each of the sensitive axes of

all the sensors pointing in the same direction.

The physical separation of sensors within an IMU is sometimes referred to as the lever-

arm. In most sensor designs, it is not possible for the sensitive axes of all the sensors in

the triad to be co-located. So, if an IMU’s measurements are considered as the motion

of a particular point in space, an angular acceleration about this reference point can be

erroneously recorded as a small linear acceleration by the IMU. If the displacement is known

this can be mathematically compensated for [1,4], if one assumes that the lever-arm is fixed,

i.e. that the mounting is arbitrarily sti↵. On a MEMS scale device, the distances involved

are likely considerably less than a millimetre, so it is possible that some (at least low-cost)

MEMS IMUs ignore the lever arm between axes. However, once an array of MEMS sensors

is being considered the distances become less trivial. Some array designs seek to place the

sensors as close together as possible which minimises this e↵ect (e.g. [164]).

However, it is possible to use this lever-arm e↵ect to measure attitude change and esti-

mate attitude using dead-reckoning [167]. Some authors suggest all accelerometer IMUs

using this e↵ect [167–170], where the attitude change is tracked by deliberately separated

accelerometers. An important point to note is that greater IMU separation increases the

sensitivity to this e↵ect, but the lever-arm must be su�ciently sti↵ that its deformation can

be assumed negligible. This would make placing IMUs on the wing-tips of an aeroplane less

e↵ective than on opposite ends of the fuselage, for example. This angular measurement from

the accelerometers could be combined with the attitude signal from a gyroscope, if desired.

For example, it can be used to reconstruct the angular rate signal when the gyroscope has

clipped [171].

Some authors arrange their IMU array so that their IMUs are skewed from each other,

e.g. [163]. The idea of this is that none of the sensors share a sensitive axis. For example,

in [163] 4 Xsens factory-calibrated IMUs are arranged with one on each face of a tetrahedron.

[163] also discusses other possible orientations, including other platonic solids and around

the sides of a cone, whose half-angle could be varied to change the vertical sensitivity, this
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arrangement might be useful for vehicles which have di↵erent performance requirements in

the vertical and horizontal, but only applies to positioning individual sensors rather than

triads.

This skewed arrangement makes sense when one considers running a fault detection and

exclusion algorithm over the whole array. Firstly, there are many more sensors that pick

up (part of) a signal in any particular direction for consistency checking, as compared to

an aligned array with the same number of sensors. Secondly, when some of the sensors

are excluded from the solution, it is not possible that two sensors sensitive in the same

direction would be removed, so the ability to measure inertial signals in all directions will

be maintained. Additionally, if there are significant performance di↵erences between the

di↵erent sensors in the triad, aligned arrays retain these di↵erences, but other arrangements

need not, see Section 6.3

The main drawbacks of 3D skewed arrangements is that they are much more complex to

construct, require more space and cannot in general be built onto a single PCB. This complex

construction makes it more likely to be calibration issues as the spatial relationship between

the sensors depends on the mounting which may well change shape with temperature and/or

be more sensitive to accidental damage, than if the sensors were all fixed to a single PCB.

The advantages of skewed arrays are highlighted by the fact that [163] uses the term “skew-

redundant IMU”, that is a skewed arrangement is good for redundancy but if all the sensors

are going to be used with equal weighting, there is little benefit to o↵set the complexity of

a three dimensional arrangement.

Another option for arranging the IMUs is what this thesis will term the anti-parallel ar-

rangement. In this arrangement the positive x-direction of one sensor is aligned with the

negative x-direction of another, similarly for y- and z-axes. It is not mathematically possible

to have two IMUs arranged to form a fully opposed direction array (in x, y and z). However,

it is possible to arrange 4 sensors so that there are two sensors in each direction. It is also

possible to arrange that the positive x is opposed by the negative y, which allows two IMUs

on a single PCB to form an anti-parallel arrangement. The output of the sensors can then

be sent through a very simple rotation matrix to get them at the same orientation before

averaging. This arrangement of sensitive axes was suggested in [55] as a way to reduce the

e↵ect of temperature-related bias drift. The observation was made that a particular gy-

roscope sensor’s bias appeared to increase with increasing temperature for several samples

of the same model. The idea of the orientation is that without actually calibrating the

temperature-related drift the majority of its e↵ect would be removed by the fact that it

caused a spurious positive rotation on one sensor, but a negative spurious rotation on the

other. This idea was proposed but not tested in [55] and it has been further tested and

slightly extended in this thesis, see Section 6.2 and in [8].

The sensors used in the an array need not necessarily all be the same. It would be possible

to have an array of sensors with di↵erent error characteristics. Sensors might have di↵erent

maximum ranges, di↵ering performance characteristics, in terms of noise, temperature sta-

bility etc. In [56], a navigation system based on two gyroscope triads and two accelerometer

triads with “dissimilar” error characteristics is constructed. They then use the four possible

gyroscope-accelerometer combinations from this for fault-detection. This is demonstrated
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by artificially adding faults to the data.

In very high performance applications, arrays have been demonstrated to allow a very high

measurement range, while keeping good precision for smaller forces. In [172] arrays are

constructed with a combination of accelerometers with 10g, 100g and 1000g ranges, with a

weighting scheme. This array is constructed on a single piece of silicon, i.e. it is an internal

design of a MEMS sensor within the first-level-package (FLP), so it is not an option for

low-cost applications. However, it is worth noting that sensor arrays are also being used for

high-performance sensors.

2.6 Topics requiring further investigation

This chapter presented the main issue for low-cost inertial navigation; that of position drift

as errors accumulate with time, made worse by the inaccurate initial calibration.

One way to improve navigation performance is to integrate another navigation technology

(Section 2.3), which can be used to remove accumulated navigation solution drift and to

simultaneously calibrate the IMU’s errors. To do this requires an integration algorithm.

In Section 2.4, these integration algorithms were introduced and their inability to reliably

integrate low-cost INS due to the size of the sensors’ errors was described. In order to know

when a more computationally expensive alternative (e.g. [130]) needs to be used the level

of error for which a standard KF remains stable needs to be established. This will be the

focus of Chapter 3 of this thesis.

Once the target specification has been established, the techniques in Section 2.5 can be used

to improve the calibration of the sensors.

Pre-calibration where output recorded during a specific set of manoeuvres is used to esti-

mate the INS’s errors is one such option (Section 2.5.1), but laboratory conducted procedures

vastly increase the navigation system’s cost. Ideally, the end-user would conducted their

own calibration reducing the unit cost considerably. Existing approaches to user-conducted

calibration di↵er on what equipment an end-user might have access to, they also very rarely

make a thorough assessment of the calibration procedure’s accuracy, in particular the e↵ect

of di↵erent errors on the overall performance. To this end in Chapter 4 a calibration pro-

cedure based on the 6-position test, but with a number of improvements that increase its

accuracy, and also a gyroscope calibration procedure, which uses only hand-rotations, are

presented. The sensitivity of these procedures to a wide range of procedural and IMU speci-

fication inaccuracies is assessed through simulation, unlike most of the procedures presented

in the literature, and the procedure is tested with physical experiments (Chapter 5).

The array techniques reviewed in Section 2.5.2 are assessed further and some are tested

experimentally in Chapter 6. The underlying assumptions for these techniques are examined

and their validity assessed for one model of MEMS IMU.



Chapter 3

Kalman Filter Stability

This chapter assesses use of the Kalman filter (KF) to integrate the navigation solution

of inertial navigation system and another positioning technology, such as GNSS, and by

doing so estimate, and hence calibrate, the systematic errors of the inertial sensors in-

run. It identifies the assumptions that need to be made and when these assumptions break

down. These assumptions are not typically valid when the inertial sensors begin with a very

poor calibration so for sensors whose initial calibration is outside a certain limit, such as

consumer-grade MEMS, the KF frequently becomes unstable.

In this chapter, the extent of these limits are established. First, some relevant parts of

the background are briefly recapped, (Section 3.1). Then, well-defined filter failure criteria

are established (Section 3.2). These are crucial for determining when the current filter is

inadequate and a more complex filter is needed.

Having established suitable failure and success criteria, Monte-Carlo simulations are per-

formed with a range of di↵erent sensor specifications in order to determine the maximum

tolerable sensor errors. The approach to computing these simulations is presented in Sec-

tion 3.3 and the results of these simulations with a car and quadcopter motion profiles are

shown in Section 3.4. The implications of this chapter’s results for the rest of the thesis are

discussed in Section 3.5.

A preliminary version of this study was presented at the 2014 Institute of Navigation (ION)

GNSS+ conference [7]. Note that the results presented here show a considerable improve-

ment from the preliminary results presented in [7] because of the improved filter tuning,

described in Section 3.3.4. The research presented in this chapter published in ION’s jour-

nal NAVIGATION [6].

3.1 Background

In Chapter 2 background was presented on inertial navigation systems and their errors

(Section 2.2). The most salient points for this chapter are that INS errors are split into

stochastic (noise-like) and systematic errors. Only the latter of these can be calibrated, and

for low-cost MEMS IMUs they contribute a significant part of the error in the navigation

solution. Thus, calibrating the systematic error sources represents low-hanging fruit for

improving low-cost INS performance.

61



62 Chapter 3. Kalman Filter Stability

This calibration could be performed in several ways. As was presented in Section 2.5.1, an

accurate result it could be achieved by a laboratory calibration procedure, but it would be

too expensive for the low-cost applications considered in this thesis. This leaves conducting

a simpler instruction-based calibration procedure that might be accomplished by the end

user, as was discussed in Section 2.5.1.3 and will be investigated further in Chapter 4, and

calibration in-run. That is where the inertial sensors are calibrated during the normal use

of the navigation system, when a second positioning technology is available.

Many di↵erent navigation technologies could be used to aid/calibrate an INS. Maximum ro-

bustness is achieved by combining many di↵erent sensors [108], but complex multisensor nav-

igation brings many challenges [9]. In this chapter, the INS is assumed to be aided/calibrated

using global satellite navigation systems (GNSS). However, the technique presented here

could be used with other aiding sources (see Section 2.3.2). GNSS is commonly used due to

the low cost of the user equipment, free to use infrastructure and fairly high accuracy and

availability. INS/GNSS integration is a well-established technique [1, 126].

3.2 Kalman filter failure

As discussed in Section 2.4.1, the Kalman filter (KF) [125] is an estimation algorithm that

is linear; if the system is not it must be linearised. In addition, correct filter tuning is very

important for the filter to operate in the manner intended by the designer.

The Kalman filter is based on the following assumptions [127]:

• the noise terms are white-noise (not correlated with time); and,

• most importantly, that the system propagation and measurements are linear combi-

nations of states.

However, real systems, such as INS/GNSS, do not obey these rules. Approximations to

allow the KF to be used for this application include the small angle approximation and

the assumption that the products of state estimate errors are negligible. The white noise

assumption inherent in Kalman filtering can be partially circumvented by telling the filter

that the noise variance is greater than it really is (over-bounding) in order to model noise

that is time correlated over a few successive epochs [1].

If the these assumptions are not met or circumvented and/or the tuning is wrong, the

Kalman filter will not behave as expected, e.g. estimates will not converge. In short, the

Kalman filter will break if the errors are too large.

To examine the limits of Kalman filter performance, criteria must be established for when

a Kalman filter is performing unacceptably, inadequately or unstably, henceforth failing.

In order to decide when a particular Kalman filter fails, it is necessary to first examine how

it should behave; so that failure can be detected when it has occurred.

A well-behaved KF should start with state uncertainties (covariance matrix entries) which

slightly exceed the true uncertainties of the state-error distribution. This is done to aid

filter stability when the true stochastic behaviour of the states diverges from the KF’s
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Figure 3.1: 5 runs of a Monte Carlo simulation illustrating typical state estimate behaviour

when an INS/GNSS KF integration is working as intended. In this example the estimation

errors of this state (X gyroscope bias) converge towards zero and their distribution is well

described by the KF’s state standard deviation.

assumptions. Then, as more aiding (e.g. GNSS) measurements are added, both the filter’s

state uncertainty and the real standard deviation (SD) of the error in the state estimates

should reduce, as is illustrated in Figure 3.1, particularly when manoeuvres (such as turns)

take place. Note that the accuracy of the estimates eventually plateaus at a level that

depends on the accuracy of the aiding measurements, the IMU noise and the time variation

of the systematic errors.

When the sensor errors are very large, the linearising assumptions, such as the small angle

approximations, break very quickly. For example, GNSS integration can normally only

correct attitude errors indirectly based on their e↵ect on the position/velocity solution. The

KF uses the o↵-diagonal elements of the P-matrix to infer the attitude and instrument errors

from the position and velocity errors. When the gyroscope biases are large, the attitude error

can grow more quickly than it can be corrected, breaching the small-angle approximation.

When the small angle approximation ceases to be valid, the P-matrix no longer models the

correlations between the states correctly, so the corrections to the state estimates from the

measurements can be applied incorrectly.

As the errors become larger, other KF assumptions, such as the product of two state-errors

being negligible even when the states are correlated, can also break down. This produces

poor position, velocity and attitude estimates. It also produces similarly erratic estimates

for the IMU error states, as shown in Figure 3.2. Clearly, if the results of a simulation are

as erratic as in that example, detecting that this is a failure is straightforward.

However, when the IMU errors are smaller, the position, attitude and velocity errors can
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Figure 3.2: 5 runs of a Monte Carlo simulation illustrating typical state estimate behaviour

when a KF integration is not working as intended. In this example the estimation errors of

this state (X gyroscope bias) do not converge to zero and vary erratically, additionally their

distribution is much greater than the KF’s state standard deviation. Note that one would

expect the SD bounds to be exceeded 35% of the time, but this illustrates 4 out of 5 being

exceeding the bounds by greater than a factor of 3 which would only be expected 1% of the

time.

remain apparently small, within a few degrees and tens of centimetres (per second), even

though the IMU error estimates produced are inconsistent with the corresponding state

uncertainties (Figure 3.3). This situation illustrates a problem when determining if a sim-

ulation has failed. For a given error distribution, sometimes the IMU errors are within the

uncertainty bounds and sometimes they are not, depending on the individual IMU samples.

The uncertainty is needed to represent the whole distribution not just individual samples.

Thus while a particular sensor may happen to have a fortuitously small starting error, with

the result that the GNSS integration works well, that is not su�cient. So, it is necessary

to run a large number of di↵erent values of the starting errors, sampled from the same dis-

tribution, as part of a Monte Carlo simulation, and thus demonstrate that the uncertainty

represents the whole distribution.

The intended use of an INS/GNSS integration KF is important when determining failure

criteria. The aim considered here is to calibrate the inertial sensors in the IMU so that

the INS can bridge a future GNSS signal outage. This means that it is required that the

errors in KF state estimates corresponding to the IMU’s errors, e.g. the accelerometer and

gyroscope biases, finish with a smaller distribution than they started. The test could be:

the simulation must end up with a smaller average magnitude of errors than it started with.

However, in the real context some short time later the filter could became unstable and the

error estimates go wildly wrong.
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Figure 3.3: 5 runs of a Monte Carlo simulation illustrating a typical state estimate when an

INS/GNSS KF integration is behaving inconsistently. In this example some of the estimation

errors of this state (Y accelerometer bias) converge to zero but others do not, this spread of

estimate errors is not well described by the KF’s state standard deviation.

Another possible approach could be empirical. A simulated signal outage could be added

and how well it is bridged by the calibrated solution could be examined. However, it is only

possible simulate a trajectory a few minutes long before the computational cost of running

the Monte Carlo simulation becomes very large. In some applications, there may be tens

of minutes or even hours between outages, so choosing an arbitrary amount of time after

which to test whether the resulting calibration is adequate is unsatisfactory. For instance,

in this chapter only three minutes of motion are simulated, and the estimates of the states

might continue to improve if the simulations was longer. Additionally, determining what

is adequate performance for bridging a GNSS outage is not straightforward. For example,

two INSs with di↵erent amounts of sensor noise would perform di↵erently even if both had

their systematic errors perfectly calibrated. Perhaps the GNSS-calibrated INS could be

compared to an INS with identical noise parameters but zero systematic errors, although

it is not clear how much worse one should expect an imperfectly calibrated INS to behave

than a perfectly calibrated one, and still be judged adequate. Therefore, a success criteria

based on this approach would be specific to the requirements of a particular application,

and thus unsuited to drawing the more general conclusions intended for this chapter.

In this chapter, a di↵erent approach is taken to deciding whether an INS/GNSS integration

Kalman filter is successful, which depends on the consistency of the filter’s state-covariance

matrix.

In general, a Kalman filter will behave consistently if all of the assumptions stated in Section

2.4.1 are valid and if the variances and covariances stored in its state error covariance matrix
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(P-matrix) are an accurate reflection of the real errors of the estimates. Fortunately, if the

former condition breaks, that latter tends to also. In a physical system, the true errors in

these state estimates are not known. However, in simulations, the truth from which the

estimates di↵er is known, which makes it possible to use criteria based on the consistency

of real estimation-errors with the estimated covariance.

A necessary but not su�cient condition for the state error covariance matrix being consistent

is that the filter is tuned correctly, as otherwise it is either wrong from the start or will

quickly become so.

The stability condition that is tested here is the relationship between that filter’s state

uncertainty for every state at each epoch (averaged across the 100 runs in the Monte Carlo

simulation) and the root-mean-squared-error (RMSE) across the set of 100 simulations of

the filter’s state estimate error. Attitude state errors are computed by comparing the true

and estimated rotation matrix to find the error, after which this attitude error rotation

matrix is converted to Euler angles. RMSE is only one of several possible techniques for

comparing the true and estimated state uncertainty. The threshold for failure is that the

worst state’s RMSE does not exceed 2� for more than 5% of the simulation time, where

�2 is the corresponding state variance from the state error covariance matrix. It should be

noted that this threshold is very generous. If the state uncertainty, �, is correct then the

RMSE over the 100 Monte Carlo runs should be very close in value to it, as the unbiased

estimator of the distribution variance, �2, is �2 = n

n�1

s2 where s2 is the sample variance

and n is the number of samples. The probability that this condition would fail by chance is

very small, because for a normal Gaussian distribution P (s > 2�|n = 100) ⇡ 3.8 ⇥ 10�37.

Thus, if this condition fails, it is reasonable to infer that the state variance is not accurately

describing the real errors.

3.3 Simulation Approach

In this section the approach taken to run simulations to determine whether a particular

IMU model is suitable for in-run calibration is described. First, the particular Kalman

filter variant used is discussed (Section 3.3.1). This is followed by details of the simulation

algorithm’s design (Section 3.3.2), the filter tuning (Section 3.3.4), the motion scenario used

(Section 3.3.3) and the GNSS parameters (Section 3.3.5). Finally, the way in which the set

of inputs were searched is outlined in Section 3.3.6.

3.3.1 Basic Kalman Filter

For the simulations discussed here the intention is to use the most basic Kalman filter that

might realistically be possible. The idea being to assess the limits of this basic filter and

then determine when more complex filters or pre-calibration are required. This basic KF is

both the most simple to program and has the lowest processing load.

The INS/GNSS integration Kalman filter is loosely-coupled, which means that the GNSS

information is given to the filter in the form of GNSS position and velocity measurements,
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rather than as, for example, GNSS-pseudoranges. This has the advantage that the results

are applicable to other sources of aiding. It is also a standard Kalman filter rather than

an extended Kalman filter (EKF) [127, 173] or unscented Kalman filter (UKF) [130]. This

means that it has linear system and measurement models. However, it has closed-loop

correction of the inertial sensor error states, which improves the stability of the filter if the

magnitude of these states were to become large. This is a linearisation approximation and

is equivalent to an EKF system propagation [1].

The states modelled by this basic Kalman filter are the minimum commonly used configu-

ration. That is position, attitude and velocity (3⇥ 3), accelerometer bias (3) and gyroscope

bias (3), a total of 15 states. Potentially better performance could be achieved by estimating

the first-order IMU errors as well. However, an additional 27 states would be required to es-

timation all components of the accelerometer and gyroscope scale factor and cross-coupling

errors and the gyroscope g-dependent errors. Modelling additional states makes the fil-

ter significantly slower as the majority of the simulation’s time is spent performing matrix

multiplications, which require computational power proportional to n3, where the n is the

number of states.This is particularly significant when dealing with the limited computational

resources available in embedded hardware.

The KF is adapted from the example software provided open-source on the CD accompany-

ing [1]. The transition (�), system noise (Q) and measurement (H) matrices used can be

found in equations 14.50, 14.82 and 14.115 of [1], respectively. These are presented below.
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where S
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, S
ra

, S
bad

and S
bgd

are the power spectral densities of the gyroscope noise, ac-

celerometer noise, gyroscope bias variation and accelerometer bias variation, respectively.
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k

(3.3)

The calculation is performed in an ECEF reference frame, the inertial sensors have an output

rate of 100 Hz and GNSS (measurement) updates occur at 2 Hz.
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Figure 3.4: Flow Diagram of the Monte Carlo simulation algorithm. Inputs in yellow and

Monte Carlo part in blue.

3.3.2 Algorithm Process

IMUs are modelled by adding errors of di↵ering magnitudes to the output of a fictional

perfect IMU to simulate IMUs of di↵erent grades. The values for each of the systematic

errors are selected randomly for each run of a Monte-Carlo simulation and kept constant

within that run. Thus, the only input needed to generate the set of systematic errors

for all the runs of a Monte-Carlo simulation is the standard deviations of each systematic

error. Noise sources are specified by their power-spectral-densities (PSDs) and assumed to

be white.

IMU sensor noise is generated independently for each run of every test. Similarly, the

GNSS measurement errors are also selected independently for each run of each Monte-Carlo

simulation.

The process through which the program runs to make a Monte Carlo simulation of a single

error distribution is shown in Figure 3.4. First the inputs listed in Table 3.1 are specified,

noting that the reason these particular ranges were chosen is discussed in Section 3.3.6.

The true motion profile is also an input, as described in Section 3.3.3, as are the GNSS

parameters described in Section 3.3.5.

Parameter Value or range used

number of runs in MC simulation 100

attitude initialisation error SD 0.5 deg (all axes)

Accel. Bias SD (b
a

) 1000 to 100,000 µg

Accel. Noise root-PSD (w
a

) 100 to 500 µg /
p
Hz

Accel. Scale factor error SD 0.06% to 3%

Accel. Cross axis sensitivity SD 0.025% to 1%

Accel. quantization level 0.01ms�2

Gyro Bias SD (b
g

) 10 �/hr to 20 �/s

Gyro Noise root-PSD (w
g

) 0.01 to 1.8 deg/
p
hour

Gyro. Scale factor error SD 0.03% to 3%

Gyro. Cross axis sensitivity SD 0.02% to 2%

Gyro. g-dependent error SD 1 to 100 deg/hour/g

Gyro. quantization level 0.0002 rad/s

Table 3.1: The inputs to the Monte Carlo simulation and their values.
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Next, values for the systematic IMU errors for each of the 100 simulation runs are chosen

randomly from a zero-mean Gaussian distribution with standard deviations set to the pa-

rameter input values. For example, 100 sets of accelerometer biases are chosen and 100 3⇥3

gyroscope g-dependent error matrices. Then the Kalman filter tuning parameters are set

using the input distribution SDs, in the manner described in Section 3.3.4.

The next step is to calculate the true specific force and angular rate measurements from the

true motion profile and then use all the systematic and stochastic errors to create simulated

IMU outputs. The measured specific force is calculated as,

ffb

ib

= b
a

+Aaf
b

ib

+w
a

(3.4)

and the measured angular rate is calculated as,

g!b

ib

= b
g

+Ag!
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+Ggf
b
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+w
g

. (3.5)

Note that this neglects the non-linearity terms of Equations 2.1 and 2.2. Note also that the

filter ignores the e↵ects of Aa, Ag and Gg, e↵ectively assuming that they are I3, I3 and

03, repectively. That is,
ffb
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= b
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+ fb
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and,
g!b

ib

= b
g

+ !b

ib

+w
g

. (3.7)

Simulated GNSS positions and velocities are also created from the true motion profile (see

Section 3.3.5). Then inertial navigation equations (see Section 2.2.3) and the basic Kalman

filter INS/GNSS integration algorithms (discussed in Section 3.3.1) are run for each of the

100 sets of simulated IMU and GNSS measurements. The results of all of the simulations

are saved.

Finally, summary statistics are calculated for all 100 simulation runs of that distribution

and comparisons between the KF’s estimation errors and the uncertainty that it calculates

for each state, as discussed in Section 3.2, are made. This gives the result of pass or fail for

the particular error distribution.

3.3.3 Simulation Motion Scenarios

In the research presented in this chapter, two truth motion profiles for the Monte Carlo

simulations are used.

The first consists of a typical car motion lasting three minutes and containing three turns.

It is shown in Figure 3.5a. This motion profile is fairly representative of the navigation

scenario that a typical consumer grade IMU might be used in. However, to avoid making

the results specific to cars or land vehicles land-vehicle motion constraints [174] are not

implemented. These would reduce the INS drift and could make the calibration of the IMU

systematic errors easier. Additionally, the relatively limited number of di↵erent manoeuvres

make it relatively di�cult to separately observe the di↵erent IMU errors in this scenario.

The second motion scenario tested simulates a quadcopter. This was chosen to provide a

contrasting example with much higher dynamics. Motion representative of a fighter aircraft
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(a) Car (b) Quadcopter

Figure 3.5: 3D projection of the two truth motion profiles used for the Monte Carlo simu-

lations.

or a missile could have been used, but neither of these are realistic applications for low-cost

IMUs. As such, motion was generated representing a small quadcopter of the type available

to hobbyists for a few hundred dollars, to carry small payloads such as video cameras.

The quadcopter simulated has a maximum speed of 10 m/s, an elevation angle dependent on

its speed and achieves high bank angles when turning. These are the advertised performance

characteristics of a market-leading model, the DJI Phantom [175]. The two minutes of 3D

motion and resulting position, velocity and attitude are illustrated in Figures 3.5b and 3.6b,

respectively. Note the frequent sharp turns and that the elevation angle depends on the

speed, because the rotors do not pivot with respect to the quadcopter body.

(a) Car (b) Quadcopter

Figure 3.6: Components of the two simulated truth motion profiles used for the Monte Carlo

simulations.

A pedestrian motion scenario has not been tested because IMUs are typically used for

pedestrian dead reckoning (PDR) using step detection, which does not require sensor cal-

ibration [60, 79]. Inertial navigation using consumer-grade sensors is generally only viable

using a foot-mounted IMU, for which zero-velocity updates (ZVUs) are used to calibrate
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the IMU, requiring a di↵erent KF design. Representative pedestrian motion is also di�cult

to generate [176]. PDR was discussed in more detail in Section 2.3.2.3.

3.3.4 Filter Tuning

As the true distribution of the sensor errors is known, the KF could be tuned with precisely

these values. However, as is standard practice, the error distributions and noise power

spectral densities are over-bounded in the KF integration [1]. This helps maintain filter

stability, as those error sources which are not estimated and the e↵ects of any system

non-linearities can appear as noise to the filter. The noise root-PSDs assumed within the

KFs are set to double the noise root-PSDs, used to simulate the inertial sensors, plus an

additional factor detailed below. Additionally, the initial position, velocity and attitude

state uncertainties are overmodelled by a factor of 2. This level of noise over-bounding

and initial state overmodelling is intended to replicate the level of compromise between

performance and stability commonly used in industry.

The tuning of the sensor bias states could be use only the stochastic parameters of the

biases themselves (as initially assumed in [7]). However, in initial tests it was observed that

particular state estimates were frequently becoming unstable due to systematic errors that a

basic 15-state Kalman filter does not directly model, such as scale factor and cross-coupling

errors. Thus, consideration of these errors was included in the filter tuning for its bias states.

The basic Kalman filter (Section 3.3.1) assumes that all the sensor errors are a combination

of bias and noise, so any other error types will manifest either in the estimates of bias or as

additional noise. The e↵ects of the higher-order errors on the bias state estimates are the

average e↵ect that the higher-order errors have on the measurements of specific force and

angular rate. This is approximately equivalent to the e↵ect of the higher-order errors on

the average specific force and angular rate applied in the simulation.

Assuming that the IMU is, on average, level during the motion, the angular rates and

horizontal specific forces average across the whole simulation to a number close to zero,

while the vertical (Z) specific force averages to about 9.8 ms�2 due to reaction to the Earth’s

gravity. For example the average true values over the whole land-vehicle motion profile is

fb

ib

= [�0.0572, 0.0731, 9.8098]T ms�2 and !b

ib

= [�0.2208,�0.3042,�0.5736]T ⇥10�4 rad/s.

Consider the scale-factor-and-cross-coupling error matrix, Aa, where, sa,i is the scale factor
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The entries in the third column are those depending on the vertical-axis specific force. As a

result these errors appear (on average) to the simplified IMU model used in the basic Kalman

filter (see Section 3.3.1) as an additional bias and noise on the accelerometer signals, whereas

the other six errors only appear as noise. In the equivalent A-matrix for the gyroscope all

9 errors must be absorbed by the system noise. However, for the gyroscope g-dependent

error matrix, which is a 3⇥3 matrix describing the e↵ect of the specific force on the angular
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rate measurements, the 3 components corresponding to the z-axis specific force appear to

produce an additional bias, and all components appear to produce additional gyroscope

noise.

In order to account for the bias in the tuning, the state uncertainties associated with the

accelerometer biases are set equal to the root sum of squares (RSS) of the accelerometer

bias SD and g times the greater of the scale factor and cross-coupling error SDs. This form

is chosen, because it allows arbitrary orientation of the IMU. Similarly, the gyroscope bias

uncertainties were set to the RSS of the gyroscope bias SD and the SD of the g-dependent

bias associated with a specific force of g.

In order to maintain filter stability it is necessary to include additional system noise (repre-

sented by the system noise covariance matrix, Q) to account for the noise-like e↵ect of the

higher-order systematic errors. The best way to tune the KF noise parameters to account

for these errors depends both on the dynamics of the motion and the magnitude of the unes-

timated errors. These error sources add a large amount of noise to the sensor outputs during

a manoeuvre and have little impact the rest of the time. In a real system it is likely that the

designer would determine the amount of extra noise empirically, using trial-and-error until

the system remains stable. Some authors also suggest using a system model that depends

on the dynamics (see [1]), where the value of Q may be varied in real time depending on

the dynamics.

The intention of the simulation in this chapter is to test the most basic KF integration

possible so a constant amount of additional system noise noise covariance is added that

is proportional to the variance of the unestimated systematic errors. This system noise is

represented by a factor related to the level of sensor noise (double the root-PSD) and an

additional factor that is proportional to the level of unestimated systematic errors (e.g. the

scale-factor and cross-coupling) and which varies according to the motion profile, i.e. the

level of dynamics expected. This second factor is intended to represent the designer adding

small amounts of additional noise on a trial-and-error basis. These levels of additional noise

were all tested numerically, prior to the full simulation. The system noise used in the KF

to represent the behaviour of the accelerometers is given by,

SKF

a

= 22SIMU

a

+ (max(�
ca ,�sa)kf )

2t
a

, (3.9)

where SKF

a

is the accelerometer noise PSD modelled within the KF, SIMU

a

is the accelerom-

eter noise PSD used to generate the IMU model, k
f

is a constant of proportionality to

account for the level of variation in the specific force during the motion and, �
ca and �

sa

are SDs of the accelerometer cross-axis sensitivity and scale factor error used to generate

the IMU model, respectively. t
a

is the smoothing time described below.

Similarly, the system noise used in the KF to represent the behaviour of the gyroscopes is

given by,
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where SKF

g

is the gyroscope noise PSD modelled within the KF, SIMU

g

is the gyroscope noise

PSD used to generate the IMU model, k
!

is a constant of proportionality to account for the

level of variation in the angular rate during the motion and, �
cg , �sg and �

Gg are SDs of the
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gyroscope cross-axis sensitivity, scale factor error and g-dependent error used to generate

the IMU model, respectively.

The constants of proportionality, k
f

and k
!

are calculated based on statistical measurements

of the true motion. These two constants have the same units as specific force and angular

rate, respectively. They are the average absolute di↵erence in specific force or angular rate

between the output smoothed over 10 GNSS epochs (5 seconds) and over 1 epoch for each

motion profile. That is,
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0.1058 ms�2, for car motion

0.2302 ms�2, for quadcopter motion
(3.11)

where fb
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is the specific force and t
u

is the KF measurement update time (0.5 seconds).

The function “m(a, t)” takes a moving average of the time series a over t seconds. “| |” is

the absolute value operator.
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where !b

ib

is the angular rate. The time constant for Equations 3.9 and 3.10 is 10 times the

GNSS (measurement) update rate (t
a

= 10t
u

), as this is the period of the moving average.

3.3.5 GNSS parameters

The GNSS simulation settings are chosen to simulate the operation of consumer-grade GNSS

user equipment in a relatively benign signal environment. A production system would also

need to include integrity checks to ensure that the GNSS positioning was of good quality

before beginning INS calibration. IMU calibration when GNSS positioning is working well

is an easier case than it would be in general. However, this is reasonable as one would only

try to use GNSS to calibrate the INS when good reception is available.

As the focus of this thesis is on the IMU calibration, a relatively crude GNSS model is

used. Bias-like GNSS errors were neglected as they only a↵ect position determination and

not the INS calibration which is the aim of this research. Additionally, as the simulation is

relatively short (3 minutes), the time variation of GNSS systematic errors has been neglected.

A constellation of 30 satellites was simulated. The e↵ect of code tracking error is simulated

by white noise with a SD of 1m and 0.02 m/s on the pseudo-range and pseudo-range-rate,

respectively. Noting that the KF update-interval exceeds the correlation time of typical

GNSS tracking errors. Positions and velocities are calculated by un-weighted iterated least

squares.

The measurements used for the Kalman filter are GNSS-like generic position and velocity

measurements, i.e. loosely-coupled integration. The associated measurement noise SD KF

tuning parameters are 2.5m and 0.1 m/s on each axis for the position and velocity, respec-

tively. These values are based on the simulations in [1], this is based on the simulated GNSS

noise adjusted to account for time-correlation. Measurement (GNSS) uncertainty that is the
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same for all axes is a slight over-bounding of the minimal case, but it is used to keep the

integration as general as possible.

3.3.6 Determining the Search Space

Manufacturer Bosch ST Invensense Xsens

Model BMA180 [52] L3G4200D [24] MPU-9150 [25] MTi-G [151]

Type accelerometer gyroscope single-chip IMU factory-calibrated IMU

Accelerometer ±0.784(x&y)

Bias ±0.588ms�2 n/a to 1.47(z) ms�2 0.02ms�2

Noise 0.00147ms�2/
p
Hz n/a 0.0039ms�2/

p
Hz 0.002 to 0.004 ms�2/

p
Hz

Scale factor ±1.5% to 3% n/a ±3% ±0.03%

Cross-coupling 1.75% n/a not specified aligned to ±0.1�

Non-Linearity 0.15 to 0.75%FS n/a 0.5%FS not specified

Gyroscope

Bias n/a ± 10 to 75 �/s ±20 �/s ±1 �/s

Noise n/a 0.03 �/s/
p
Hz 0.005 �/s/

p
Hz 0.05 to 0.1 �/s/

p
Hz

Scale factor n/a ±4% [48] ± 3% not calibrated

Cross-coupling n/a not specified ± 2% aligned to ±0.1�

Non-Linearity n/a 0.2% of FS 0.2 % FS not specified

Table 3.2: A selection of sensor error specifications derived from their datasheets, in the

units given. The Bosch, ST and Invensense are consumer-grade MEMS. The Xsens is a

factory calibrated MEMS IMU, which costs around $2500. Where a range is given this

parameter depends on the full-scale measurement range selected.

There are a large number of possible variables which could be changed to run di↵erent

Monte Carlo simulations which were listed in Table 3.1. In order to be able to run enough

simulations to properly examine the failure boundary using limited computational resources

the Monte-Carlo simulations each consist of 100 runs.

Given there are a vast number of possible combinations of the 12 possible input parameters,

some assumptions were made to reduce the number of potential combinations.

Firstly, only levels of error that exist for real sensors from tactical to consumer MEMS

grade were tested. Thus, no zero-bias or zero-noise tests are presented, nor were any sensors

simulated with unrealistically large errors. The ranges for each parameter chosen are given

in Table 3.1. Some real sensor specifications are provided in Table 3.2 to demonstrate that

the ranges tested encompass currently available sensors.

Secondly, some, but not all, of the possible inputs are varied. For instance, the sensor

quantisation and the attitude initialisation error SDs are fixed. Also, it seems very unlikely

that certain combinations of errors exist, such as high cross-coupling error with extremely

accurate scale factor. For this reason, some of the errors are varied together, with one pa-

rameter for the higher-order accelerometer unestimated errors encompassing, accelerometer

scale factor error and accelerometer cross-coupling, and a second parameter for the higher-

order gyroscope unestimated errors which combines: gyroscope scale factor error, gyroscope
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cross coupling and gyroscope g-dependent error. These two error parameter sets are split

into five levels for testing, tactical, low, medium, high and very high, which are given in

Table 3.3.

Parameter std. dev. ta
ct
ic
al

lo
w

m
ed
iu
m

h
ig
h

ve
ry

h
ig
h

Accelerometer

Scale factor error 0.06% 0.5% 1% 2% 3%

Cross axis sensitivity 0.025% 0.25% 0.5% 0.75% 1%

Gyroscope

Scale factor error 0.03% 0.3% 1% 2% 3%

Cross-axis sensitivity 0.02% 0.2% 1% 1.5% 2%

g-dependent error (�/hour/g) 1 5 10 50 100

Table 3.3: The five levels of higher-order unestimated IMU errors tested.

This leaves six di↵erent distribution parameters to test: accelerometer bias; gyroscope bias;

accelerometer noise; gyroscope noise; and the two higher-order error parameters. As the aim

is to find the border between success and failure the requirement is to find a five-dimensional

subspace of this six dimensional space, analogous with how a surface is a two-dimensional

subspace of three-dimensional space.

First, the filter behaviour over the whole the search space were determined by testing points

over a coarse grid (7 (b
a

) ⇥9 (b
g

) ⇥5 (w
a

) ⇥5 (w
g

) ⇥5 (higher-order accelerometer) ⇥5

(higher-order gyroscope)). Then having identified the general structure of the space, border

regions were re-searched on a much finer grid to find the boundary, using a strategy that

tests along one parameter (e.g. b
a

) until adjacent points are found where one is a pass and

the other a fail, then incrementing a second parameter (e.g. b
g

) and returning to varying

the first. This finer grid has a geometrical spacing, that is, the values of the points are a

geometrical progression, where each point is 110% of the value of the previous point. This

means that the grid appears equally spaced when viewed on a log scale. Therefore each

graph in Section 3.4 has more data points along the pass-fail boundary than elsewhere.

3.4 Results

Discussion of the results of the simulations is split into three parts. The first two parts

concern the road vehicle simulation: Section 3.4.1 presents results with very small (tactical)

higher-order error parameters (scale factor, cross coupling and gyroscope g-dependent error);

Section 3.4.2 presents results with higher-order errors large enough to impact performance.

Section 3.4.3 examines the results of the quadcopter simulations.

The states which diverge the fastest and thus cause failure are the heading and the z-axis

gyroscope bias, which is not particularly surprising when one considers that these are only

indirectly corrected by the GNSS positions and velocities, and also that while a error in
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pitch or roll would cause a spurious acceleration due to incorrect removal of the specific

force due to gravity, a heading error does not have this e↵ect.

As it is impractical to present 6-dimensional diagrams, in this section 3-dimensional diagrams

which show the variations in 3 parameters with the other 3 parameters fixed are presented.

3.4.1 Road vehicle results with small higher-order IMU errors

When the higher-order IMU error parameters are very small, the assumptions that were

made by using a Kalman filter (KF) with only 15 states are reasonable. That is, in relation

to these errors, the filter should be fit for purpose and, if the filter breaks, it must be for

a di↵erent reason. However, there are error distributions for which the KF fails even with

tactical unestimated errors. These are illustrated in Figures 3.7 and 3.8.

Figure 3.7: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and w
a

, fixing w
g

at 0.01�/
p
hr and both unestimated error

parameters at tactical level.

Observing the border between success and failure in these figures, it is clear that the most

important error parameter is gyroscope bias. All of the distributions tested with a gyroscope

bias standard deviation (SD) below 0.75 degrees per second ( �/s or deg/s), equivalent to

2,705 degrees per hour (deg/hr or �/hr), were successful and all those tested above 2.6 �/s

(9,400 �/hr) were failures. Note that this failure point is between the specified performance

of factory calibrated IMUs and consumer-grade MEMS gyroscopes (see Table 3.2). This

makes it clear that the accuracy of the attitude solution is key to INS/GNSS KF stability.

This is primarily due to the use of the small angle approximation (see Section 2.4.1).
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Figure 3.8: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and w
g

, fixing w
a

at 100µg/
p
Hz and both unestimated error

parameters at tactical level.

Variation of the border between success and failure according to the other IMU error param-

eters can also be observed. The accelerometer bias is most significant with the maximum

tolerable gyroscope bias SD ranging from 2705 �/hr for a 1 milli-g accelerometer bias SD

to 9337 �/hr for a 100 milli-g accelerometer bias SD. It is perhaps surprising that worse ac-

celerometer bias performance allows the filter to cope with more gyroscope bias. A possible

explanation is that the larger accelerometer bias uncertainty in the Kalman filter indirectly

results in larger attitude uncertainties, enabling it to tolerate greater divergence from the

small angle approximation. Another possible explanation is that the is that the correct

distribution of state uncertainties is less adequately described by an ellipse as the angular

uncertainty becomes larger.

The e↵ect of the IMU’s two noise parameters on the position of the boundary is even

smaller. The accelerometer noise a↵ects the maximum tolerable gyroscope bias SD by a

factor of about 1.25 (Figure 3.7), while the e↵ect of the gyroscope noise is less than a factor

of 1.1 over the range simulated (Figure 3.8), despite this range being considerably wider

than that of the accelerometer (see Table 3.1).

3.4.2 The e↵ect of the unestimated first-order IMU errors

When the parameters which are not modelled as states in the Kalman filter are varied, it

is known that the KF is only suitable if the e↵ects of these parameters are not significant.

Thus the question is: ‘what size of error is insignificant?’.
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As described in Section 3.3.6, 5 levels of higher-order errors of the gyroscopes and accelerom-

eters were tested, as shown in Table 3.3. The gyroscope and accelerometer unestimated

errors were varied separately. Both of these parameters were set to tactical (i.e. very low)

for the results discussed in Section 3.4.1. Here, the results are presented for when one or

both of the gyroscopes and accelerometers higher-order error parameters were set to low,

medium, high or very high.

Figure 3.9: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and accelerometer unestimated errors, fixing w
g

at 0.01�/
p
hr, w

a

at 100µg/
p
Hz and gyroscope unestimated errors at tactical level.

First, the e↵ect of increasing the gyroscope and accelerometer higher-order error param-

eters individually is examined. Figure 3.9 shows the e↵ect of increasing the higher-order

accelerometer error parameters through each of the five levels while holding the two noise

parameters and the gyroscope higher-order errors at tactical level. As the level of unesti-

mated error increases (vertical axis) a new unstable area forms and grows in the low-bias

corner of the graph, which combines with the pass/fail boundary discussed in Section 3.4.1,

to only leave a small stable area when the higher-order errors are very high. Figure 3.10 is

the equivalent showing the e↵ect of the gyroscope unestimated error parameter. A similar

e↵ect can be observed. However, the range of bias values, for which the KF is stable, is

smaller than for the equivalent level of accelerometer unestimated error. This leaves only

an extremely small pass area in the high-bias corner when the unestimated error parameter

reaches high and no passes at all for very high higher-order errors.

For a given level of unestimated error parameters, if the IMU’s noise parameters are higher,

the KF is stable for a greater range of bias values. Figures 3.11 and 3.12, are similar to the

Figures 3.9 and 3.10, in that they show the variation of the higher-order error parameter

of the accelerometers and gyroscopes, respectively. However, they show the part of the

subspace where the noise parameter is at the highest end of the range tested for both the
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Figure 3.10: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and gyroscope unestimated errors, fixing w
g

at 0.01�/
p
hr, w

a

at

100µg/
p
Hz and accelerometer unestimated errors at tactical level.

accelerometers and gyroscopes, rather than at the lowest end as was shown in Figures 3.9

and 3.10.

If one compares Figures 3.9 and 3.11, the range of bias values with stable KF performance

with low accelerometer higher order errors is improved to the point of being the same as very

low/tactical error, rather than only nearly the same, the range of bias values at medium and

higher levels is also improved particularly at the lower gyroscope bias end, the stable area

appears more rectangular and less v-shaped, range of stable bias values at medium higher

order error performance is only sightly worse than the low. Greater actual noise, also means

more overmodelling so the additional available noise appears to be covering the noise-like

e↵ects of the higher-order accelerometer errors better.

In a similar manner comparing Figures 3.10 and 3.12 also shows an improvement at the low

level of gyroscope higher-order errors, which makes the range of stable bias values at low

and tactical almost the same. The medium error level performance is also slightly better,

the stable area growing slightly towards the low-gyroscope-bias direction. At the high and

very high levels, the stable area is still very small and non-existent, respectively, as in Figure

3.10.

The fact that the filter’s ability to tolerate unestimated error parameters depends on the

level of noise means that, while a tactical level of higher-order error calibration is required

for an IMU with tactical-level noise, the filter is less sensitive when the noise is at the level

of a low-cost MEMS IMU. In this case only a low level of gyroscope and medium level

of accelerometer unestimated error parameters are required. Note that, the overmodelling

(exaggeration) of the noise is what is improving the stability of the filter not the noise itself,

so the KF-assumed noise could be varied to improve stability.
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Figure 3.11: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and accelerometer unestimated errors, fixing w
g

at 1.8�/
p
hr, w

a

at 500µg/
p
Hz and gyroscope unestimated errors at tactical level.

Figure 3.12: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and gyroscope unestimated errors, fixing w
g

at 1.8�/
p
hr, w

a

at

500µg/
p
Hz and accelerometer unestimated errors at tactical level.
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3.4.3 Quadcopter Results

Figure 3.13: 3D subspace of the search space showing where the quadcopter KF fails for

di↵erent values of b
a

, b
g

and w
a

, fixing w
g

at 0.01�/
p
hr and both unestimated error

parameters at tactical level.

When the higher-order errors are at a low enough level to be insignificant, e.g. at tactical

level, the filter stability is similar to that for the car motion. In Figure 3.13, which repre-

sents filter behaviour for these low levels of unestimated error, the behaviour is qualitatively

almost exactly the same as the equivalent figure for car motion, Figure 3.7. It exhibits

a maximum gyroscope bias SD beyond which the filter becomes unstable with some de-

pendence on the accelerometer bias SD, but minimal variation with the accelerometer and

gyroscope (not shown) noise levels. Numerically, the maximum possible gyroscope bias SD

has increased slightly, ranging from 3684 �/hr for a 1 milli-g accelerometer bias SD to 12430
�/hr for a 100 milli-g accelerometer bias SD. This slight increase relative to the car motion

could be due to the biases becoming more observable with the more frequent and varied

manoeuvres.

As the level of higher-order errors increase, the di↵erences in filter performance between the

car and quadcopter motion profiles become larger. Figure 3.14 illustrates the variation in

the stable area with di↵erent levels of accelerometer higher-order errors; it is the quadcopter

analogue of Figure 3.9. Therefore, the maximum gyroscope bias uncertainty boundary is

the same as in Figure 3.13, just as the boundary in Figure 3.7 was repeated in Figure 3.9.

However, the range of accelerometer biases that are stable with lower gyroscope biases are

considerably smaller with the quadcopter than the equivalent with car motion. Comparing

levels of accelerometer higher-order error above very low, between Figures 3.9 and 3.14, the

minimum acceptable accelerometer bias has reduced significantly, particularly around 100

degrees-per-hour gyroscope bias.

Figure 3.15 shows the e↵ect of di↵erent levels of gyroscope higher-order errors. The analo-

gous behaviour for car motion is shown in Figure 3.10. With very high levels of unestimated
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Figure 3.14: 3D subspace of the search space showing where the quadcopter KF fails for

di↵erent values of b
a

, b
g

and accelerometer unestimated errors, fixing w
g

at 0.01�/
p
hr, w

a

at 100µg/
p
Hz and gyroscope unestimated errors at tactical level.

Figure 3.15: 3D subspace of the search space showing where the quadcopter KF fails for

di↵erent values of b
a

, b
g

and accelerometer unestimated errors, fixing w
g

at 1.8�/
p
hr, w

a

at 500µg/
p
Hz and gyroscope unestimated errors at tactical level.



Chapter 3. Kalman Filter Stability 83

errors neither motion profile enables a stable KF. At high and medium levels of the higher

order gyroscope errors the stability regions are very small for the car motion and smaller

still for the quadcopter motion. This would make it very di�cult to achieve stability by

exaggerating the bias SDs assumed within the KF. When the unestimated errors are low the

high-gyroscope-bias side of the stability area is very similar to the car motion. However, on

the low-gyroscope-bias side, the quadcopter motion is only stable for higher levels of bias.

Thus, the assumed gyroscope bias would need to be exaggerated to achieve stability.

These results indicate that that higher dynamics have a marked additional de-stabilising

e↵ect on the filter, and this manifests as the stable area shrinking significantly, pushing

it further towards the high-bias corner. The impact of these errors on filter stability with

quadcopter motion is approximately equivalent to the impact of unestimated errors half a

level higher than on car motion.

Figure 3.16: 3D subspace of the search space showing where the quadcopter KF fails for

di↵erent values of b
a

, b
g

and accelerometer unestimated errors, fixing w
g

at 1.8�/
p
hr, w

a

at 500µg/
p
Hz and gyroscope unestimated errors at tactical level.

3.5 Discussion

Section 3.4.1 showed that when the levels of the unestimated higher-order errors were very

low the noise level for both gyroscope and accelerometer noise made only a small di↵erence

to the maximum tolerable bias SD’s. However, when the higher-order errors are larger,

higher sensor noise aids filter stability, this can be seen by comparing Figures 3.14 and 3.16,

noting the significant di↵erences in the low-accelerometer bias SD boundary that comes

about when the accelerometer and gyroscope noise parameters are at the high rather than

the low end of the range tested.
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A possible explanation for this and the other behaviour observed in the previous sections

can be made by considering two things. First, consider how the unestimated error sources

appear to the filter. As discussed in Section 3.3.4, their average e↵ect appears as bias and

the remainder must be treated as noise, which is not white, but correlated to the turns in the

trajectory. The tuning of the initial state uncertainties was adjusted to account for the bias-

like components. However, this compensation cannot be totally perfect, and the higher the

unestimated errors the more significant this is. Second, while the KF tuning adds additional

system noise to account for the noise-like behaviour, it adds it constantly throughout the

simulation, as the filter is not adaptive. This means that most of the time more system

noise is being added than necessary, while during manoeuvres, when the higher-order errors

are excited, not enough is being added.

In order to absorb the unestimated IMU error parameters without modelling them as states

there needs to be both enough overmodelling of the bias states to cover the extra bias from

the higher-order errors and enough overmodelling of the noise to cover the extra noise.

The filter tuning used here to account for biases and noise takes a constant multiple of the

actual noise and bias to configure the KF for the system noise and bias state uncertainty

(respectively). Therefore, when the noise or bias is higher, the overmodelling is also higher

in absolute terms, as it is fixed in proportion to the noise and bias. This would explain why

the filter can cope with higher unestimated errors when the biases or noise are higher.

This, and the slightly counter-intuitive results discussed in Section 3.4.1, leads to the ob-

servation that, in cases where a filter is close to the stability limits, it may be possible

to aid KF stability by exaggerating the assumed accelerometer bias uncertainty when the

unestimated error parameters are larger. It is possible that this is due to the additional ac-

celerometer bias uncertainty keeping the attitude uncertainty higher which in turn reduces

the destabilising e↵ect of departures from the small angle approximation. It would also be

possible to exaggerate the noise further during KF tuning, which may, as was discussed at

the end of Section 3.4.2, allow the filter to remain stable with greater unestimated errors.

However, exaggerating the system noise is a greater problem than exaggerating the bias

(state) uncertainty, as rather than just a↵ecting the convergence time by starting ‘further

away’, additional system noise will reduce the accuracy of the estimates after convergence.

Thus while exaggerating the system noise may avoid the filter failing the resulting filter

would produce sub-optimal performance in other ways.

The di↵erences between the motion profiles have already been discussed in Section 3.4.3.

One of the aims of this research is to enable navigation system designers to look up the

specifications of the IMU they are planning to use and determine whether a basic Kalman

filter INS/GNSS integration will be su�cient to calibrate the sensors in-run. This would

save them the time and e↵ort of designing and building the whole system only to find that

the sensors’ errors are too large for a standard KF to remain stable. In practice, there

will be some sensors for which the KF can be stabilised by exaggerating some of the errors

specified within the KF’s tuning parameters.

As an example of how the results of this simulation could be applied, the real sensor models,

whose specifications were given in Table 3.2, are plotted in Figure 3.17 as di↵erent coloured
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(a) Accelerometer higher-order errors (as Figure 3.11)

(b) Gyroscope higher-order errors (as Figure 3.12)

Figure 3.17: 3D subspace of the search space showing where the road vehicle KF fails for

di↵erent values of b
a

, b
g

and either accelerometer or gyroscope unestimated errors, fixing

w
g

at 1.8�/
p
hr, w

a

at 500µg/
p
Hz. Also shown are the specifications of selected MEMS

sensors: a tactical grade IMU (dark blue), Xsens Mti-G (yellow), Invensense MPU-9150

(light blue), and an IMU comprising a STMicrotronics L3G4200D gyroscope and a Bosch

BMA-180 accelerometer (magenta).
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circles. It is clear that the two uncalibrated automotive MEMS sensors are well outside the

KF stability limit; and the Xsens Mti-G IMU, which is factory calibrated, is right on the

boundary. It is also noteworthy that the specification of the Xsens IMU as “aligned to 0.1

degree” [151], is very close to the tactical higher-order errors tested here. As such these

results suggest that basic KF integration using it should be stable, provided the tuning is

handled carefully.

The result that a standard INS/GNSS KF is unstable when using a uncalibrated low-cost

MEMS IMU, is the result that would be expected from examining the literature (see Section

2.4.1). However, this chapter has shown that in addition to the gyroscope bias being too

high, the errors which are not being modelled, e.g. scale-factor and cross coupling errors,

are large enough that the filter would be unstable even if the biases were lower, for both the

accelerometer (Figure 3.17a) and gyroscope (Figure 3.17b).

When considering the widest implications of the research presented in this chapter first one

should consider how it is limited. First, while the two motion scenarios tested represent two

likely applications of MEMS IMUs with markedly di↵erent levels of dynamics, they do not

cover every possible use-case, rather they represent realistic extremes in terms of dynamics.

While the results between the two cases are qualitatively similar the quantitative di↵erences

show that it is important use a situation representative of the intended application.

Second, this chapter used the simplest possible INS/GNSS integration Kalman filter pos-

sible. As it is currently configured, it is not appropriate for even medium higher-order

gyroscope errors, which are relatively small in MEMS terms, although it is possible that

further relaxing the filter tuning may regain stability at the cost of convergence speed and

accuracy. We also might assume that if these unmodelled error sources were modelled then

the performance reached would, at best, be similar to when they were insignificant. Esti-

mating the higher-order errors as KF states would help mitigate their e↵ects, at the expense

of processing load. Even where these errors are di�cult to observe, their inclusion as states

provide the KF with a much more realistic system error model. However, it is very un-

likely that this would enable toleration of gyroscope biases larger than can be tolerated with

‘tactical level’ higher-order errors

Bearing these limits in mind, a couple of important points can be made. The first is

that basic KF integration can be su�cient to calibrate both accelerometer and gyroscope

biases if the gyroscope bias SD is below the level of around 1 �/s. This is the aim of the

INS/GNSS integration tested in this Chapter as laid out in Section 3.1. This means that

any pre-calibration could concentrate on the gyroscope bias, and can leave estimating the

accelerometer bias to the INS/GNSS integration, if the unestimated errors are su�ciently

small. Fortunately, gyroscope bias is also among the easiest of the IMU errors to pre-

calibrate, as it can be observed in a simple static test (see ZARUs in Section 2.3.3 and

2.5.1.3).

A major issue for calibration of all MEMS sensors is that the systematic errors vary with

temperature. For example, the L3G4200D gyroscope bias variation with temperature is

specified at 0.03 �/s/�C [24]. However, even with a 30�C operating range this is less than

1 �/s. (see also Section 6.6.2). Thus if the sensor were already calibrated before a change in
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temperature then simply increasing the state uncertainty in the KF when the temperature

changes should allow the INS/GNSS integration to compute the new bias.

3.6 Summary

The results presented in this chapter have found the boundary in terms of sensor performance

at which an in-run calibration can be carried out using a basic KF integration. While

precise boundary shape and position can vary depending on the motion profile, this is

essentially both a maximum permissible level of gyroscope bias, and higher-order errors

below the medium level for the accelerometers and the low level for the gyroscopes. As well

as providing a reference for navigation system designers, this gives a quality target for both

user-conducted calibration and array techniques, which were discussed in Sections 2.5.1.3

and 2.5.2

In the rest of this thesis, these target calibration levels will be used as part of the assessment

criteria for both user-conducted calibration (Chapter 4) and array techniques (Chapter 6).
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Chapter 4

User-conducted Calibration

This chapter concerns MEMS IMU calibration procedures which can be conducted by the

end-user of the IMU without requiring specialist equipment such as rate tables or tempera-

ture controlled chambers, described in Section 2.5.1.

The chapter begins with the motivation for this avenue of study (Section 4.1). Then the basic

principle of the calibration procedure assessed is laid out (Section 4.2). The various reference

frames used for the calibration algorithm and the simulation are introduced (Section 4.3).

Then the IMU error model assumed by the calibration algorithms and used in the simulation

is presented (Section 4.4). The calibration algorithms which estimate the IMU’s systematic

errors from the recorded data is presented in Section 4.5, several alternative approaches

are used some of which are new. Then simulation method itself is detailed in Section 4.6.

The method used to assess the performance the calibration in each Monte Carlo simulation

is presented in Section 4.7. The results of the simulation are presented and discussed in

Section 4.8. Section 4.9 summarises the this chapter and makes recommendations based its

findings.

4.1 Motivation: The purpose of user-conducted calibration

procedures

In Chapter 3 the limits of using a Kalman-filter variant to conduct in-run calibration of

IMUs were presented. The results confirmed that the levels of error present in a typical

consumer-grade MEMS IMU were too high for a basic Kalman filter INS-GNSS integration

to remain stable. One possible solution, which retains the MEMS sensors’ key advantage

of their low cost, while allowing their use with this basic integration architecture is to have

the end-user conduct a simple calibration procedure to reduce the size of the sensors’ errors

to a level where the KF remains stable.

Fortunately, the results presented in Chapter 3 show that the level of sensor accuracy re-

quired need not be as low as that of a tactical-grade IMU. However, there are certain levels

of performance that need to be achieved, and the idea of this chapter is to examine which

factors determine the level of calibration that is achieved in di↵erent circumstances and to

assess the e↵ect of some innovations to the calibration procedure.

The purpose of a calibration procedure of the type examined in this chapter is to determine

the IMU sensors’ systematic errors. The user is instructed to carry specific, but simple,

89
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manoeuvres which comprise a calibration procedure. During the procedure the measured

output of the sensors is recorded and calculations are made from this output to estimate

their actual systematic errors which can be used to calibrate/compensate their readings.

The standard way to demonstrate that a physical calibration procedure works is simply to

repeat it several times and demonstrate that it gives the same calibration values consistently,

when using the same sensors and the same calibration hardware (e.g. box and table, or rate-

table), as in [155]. However, because a set-up like this produces the same answer several

times in a row does not mean that that answer is correct, simply it demonstrates that

the procedure is not overly a↵ected by sensor noise or human-error, thus representing a

necessary, but not su�cient, condition. Neither of these are trivial but if one wishes to test

whether a calibration procedure really produces the correct results one has three alternatives.

First, one can use a laboratory calibration of the sensors as a reference. This requires expen-

sive laboratory equipment that many users have no access to, and the reference calibration

will only be valid for a particular range of temperatures as many MEMS sensors often have

errors that vary with temperature, and can also vary from day to day. Second, one can con-

duct either a static or GNSS-referenced navigation performance test, by running the inertial

navigation equations on both the raw and corrected output of the IMU. This approach can

tell you whether you have made the overall performance of the INS better or worse, and

give you some idea by how much. However, this does not tell you about each individual

type of error, only the overall e↵ect. The final possibility is to conduct a realistic simulation

of the calibration procedure. This is the approach taken here; the challenge being to make

it realistic.

The calibration procedure detailed in this chapter aims to estimate biases, scale factor

and cross-coupling errors for both the accelerometers and gyroscopes in the IMU and the

gyroscopes’ g-dependent bias (sensitivity to specific force). Also included in the simulation

but not estimated by the calibration algorithm are sensor noise, and non-linearity. These

are included because the calibration procedure assumes that their e↵ect is negligible, and

so the inclusion of them both will lead to a more realistic prediction of the quality of the

calibration procedure’s error estimates.

We work under the assumption, which is reasonable for the current generation of consumer

grade IMUs, that both the accelerometers and gyroscopes are on the same chip, this means

that the misalignments between both sets of sensitive axes are covered by their specifications

and no additional error is added in the mounting.

4.2 The principle of the calibration procedure

The calibration procedure studied in this Chapter is chosen to not require the use of any

equipment other than a flat surface (e.g. a table) and the IMU’s housing, which is assumed

to be a cuboid box. This allows the end-user to conduct the procedure, which would

dramatically reduce the unit cost of the IMU systems relative to using a procedure that

would need to be conducted in a laboratory. However, this also imposes a limitation on the

errors that can be observed.
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Accelerometers measure specific force, that is acceleration from all forces except gravity.

This means that the reaction force to the gravitational acceleration is measured when the

accelerometers are static, because of this many of the errors of an accelerometer triad can

be determined by static tests. Gyroscopes on the other hand measure angular rate, not

attitude, so only their biases can be determined by static tests, any attempt at determining

scale factor or cross coupling errors requires movement. As such, the procedure tested in

this chapter will include both static and dynamic parts.

The idea of calibrating (particularly) accelerometers by enclosing them in a cubic box and

taking readings with the box resting on each of its sides is not new. A procedure using this

idea has been suggested many times, such as for example, in [177] as a “six-position test”,

and an arguably more advanced variant using a icosahedron shaped box has been suggested

in [155]1. However, the accuracy of the estimates derived from this kind of procedure and

how it depends on the various calibration inputs have not been assessed before this thesis.

In order to determine any calibration of the gyroscopes other than simple bias (zero-rate

o↵set) we need to introduce movement. A common calibration method for low- to mid-

cost gyroscopes is to use rate tables and/or a much higher performance gyroscope and

then compare its output of that of the high-performance gyroscope [4]. However when

one considers calibration methods which might be suitable for user-conducted calibration

neither of these techniques is suitable, for reasons of cost. So the technique for calibrating

the gyroscopes’ alignment matrix, which we use in this chapter, is a version of a zero-attitude

(angular position) update (see Section 4.5.2). This meets our requirement for not requiring

any expensive equipment. However, it has the disadvantage is that its accuracy will depend

on how well the procedure is carried out by the user.

In this chapter, the accuracy of the estimates from both the static and dynamic procedures

are assessed through a simulation. There are two versions of both the static and dynamic

calibration procedure assessed: a simple version which is easy to implement (A & B), and a

more advanced version which is expected to produce better estimates (C & D). Manoeuvre

set A represents the frequently used six-position static procedure, as was discussed in Section

2.5.1.3. Set C represents a new extension to this procedure which takes 4 static readings

on each face (24 in total). The dynamic manoeuvres (sets B and D) represent an approach

that has not been assessed previously in the literature where rotate-and-replace manoeuvres

about the principle axes are used to calibrate the gyroscope by a zero attitude update. Set

B represents the minimum 3 rotations, and set D extends this to six rotations and uses the

box’s faces as a guide for more consistent rotation axes.

In Figure 4.1 the naming convention for the sides of this box or calibration cube is presented.

Each face is named after the axis which is normal to its surface, and whether the axis is

directed into (-) or out of (+) the box. This face-naming convention is used to name the

various static orientations for the box. These are named after the uppermost face, so Z-up

(ZU) has the +Z face uppermost and Y-down (YD) has the -Y face uppermost; these are

detailed further in Section 4.3.3.

1In this paper they state that a similar technique could be extended to any platonic solid, when in fact

it could be extended to any convex-sided box, whether that extension would be useful is doubtful.
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Z

X

Y

+Z

+X

+Y

Z

X

Y

-Z

-X -Y

Figure 4.1: The convention used to describe the di↵erent faces of the box. The axes shown

are those of the box frame (defined in Section 4.3.2)

Using these conventions the basic series of manoeuvres used for the calibration procedure

simulated are shown in Figures 4.2, 4.3, 4.4 and 4.5.

The calibration algorithm, which will be described in Section 4.5 assumes that calibration

procedure has been carried out precisely as expected, simply because it can have no infor-

mation about how well or badly it has been performed. This is because departures from the

expected measurements due to manoeuvring errors cannot be distinguished from the sensor

errors that the algorithm is estimating.

+Z

+X
+Y

Begin in the ‘Z up’ (ZU) orientation 
on the table (nominally aligned to 

table frame)
Pause and record static data.

Z

Y

X
Table frame

This is the viewpoint of this 
diagram

+X

-Z
+Y

...the ‘X up’ (XU) orientation on 
the table 

Pause and record static data.

-Z

-X
+Y

...the ‘Z down’ (ZD) orientation on 
the table 

Pause and record static data.

-X

+Z
+Y

...the ‘X down’ (XD) orientation on 
the table 

Pause and record static data.

Rotate cube 90 degrees 
(about Y) to ...

Y

Rotate cube 90 degrees 
(about Y) to ...

Y

Rotate cube 90 degrees 
(about Y) to ...

Y

+Y

+X
-Z

...the ‘Y up’ (YU) orientation on the 
table 

Pause and record static data.

-Y

+X
+Z

...the ‘Y down’ (YD) orientation on 
the table 

Pause and record static data.

Rotate cube 120 degrees 
about the unit vector 
(⅟√3, - ⅟√3,- ⅟√3) to ...

(1,-1,-1)

Rotate cube 180 degrees 
(about X) to ...

X

Figure 4.2: Manoeuvre set A of the user-conducted calibration procedure.

In order to understand the next sections a brief summary of the physical movements simu-

lated for the calibration procedure follows. There are 4 sets of manoeuvres: a simple static

procedure (set A), a simple dynamic procedure (set B), a more complex static procedure (set

C) and a more complex dynamic procedure (set D). One of the static procedures and one

of the dynamic procedures are needed to produce an complete set of calibration parameter

estimates.

In set A, which is the existing method and shown in Figure 4.2, the box begins in the ‘Z-up’
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orientation, remains static for a specified time which is one of the inputs (up to 45 seconds),

then is rotated onto the next face of the cube, then remains static, this is repeated until all

6 faces have had static data recorded on them.

Then it returns to the ‘Z-up’ face for the start of set B (Figure 4.3) where the cube is lifted

into the air above the table where it is rotated about (as close to) the X-axis for (close to)

360 degrees over a specified time period, then replaced on the table at (as close as possible

to) the same position and orientation. This is then repeated with the Y-axis and then the

Z-axis.
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table frame).

table

Rotate 360° about the Z axis.

Z

Y

X

+Z

+X
+Y

Return to original position and 
orientation on the table.
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(~10cm) off the table
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Figure 4.3: Manoeuvre set B of the user-conducted calibration procedure.

Set C is similar to set A but on each face there are four separate static readings taken on

each face at 90 degrees heading di↵erence (Figure 4.4).

In set D, the cube is positioned on each of its faces in turn and while on the surface of the

table it is rotated through 360 degrees (Figure 4.5).

In set A and C the static data is the only part of the recorded data used, all the data recorded

while moving between positions is ignored. The basic principle behind this calibration is

that the specific force from the reaction to gravity has a magnitude of g (⇡ 9.81ms�2)

and is normal (and outwards) from the face of the cube which is uppermost. The mean

of the measurements is calculated on each face to reduce the e↵ect of noise. Then in the

sum of two opposite faces the specific force should cancel out, leaving only (double) the

bias, and the di↵erence between two faces will cancel the bias, leaving, e.g.
h
0 0 2g

i
T

,

multiplied by particular components of either the Aa or Gg matrices (see Section 2.2.5) for
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Figure 4.4: Manoeuvre set C of the user-conducted calibration procedure.
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Figure 4.5: Manoeuvre set D of the user-conducted calibration procedure.

the accelerometer and gyroscope respectively, so all 3 pairs enable the whole matrix to be

determined. The procedure is sensitive to non-level tables and non-cuboid housing, but the

degree of this sensitivity depends on the algorithms and manoeuvres used.

The principle of the dynamic calibration (set B and D) is that each rotation is 360� about

a certain axis. Then if the measurements are summed or integrated and the cube has

apparently not rotated exactly 360� the amount of apparent angular movement, can be

used to determine (one column of) Ag. The improvement that comes from set D is that

the rotation axis is typically closer to the intended axis because the cube’s faces are used

as guides and the repetition of the rotation reduces (by averaging between 2 measured

rotations) the e↵ect of integrated noise and procedural errors. The former being more

important.

In a final procedure only either set A or C (static) and either set B or D (dynamic) would

be needed. However, in this chapter both are simulated for comparison.

It should be noted that with even a very poor initial IMU calibration, if the user were to

make a large mistake in the calibration procedure, for example placing the cube on the

wrong face, rotating about the wrong axis, or getting the order of manoeuvres wrong, this

could easily be flagged up by a simple error checking algorithm. This would lead to either

the user being prompted to repeat the calibration or, perhaps in the case of the incorrect

order of manoeuvres, the algorithm adapting. As such this kind of human error will not be

considered. Additionally there are well established means of stationarity detection [178–180],

which detect when the IMU is static, so we assume that identifying the start and finish times

of static periods, and the beginning and ending of manoeuvres will not be di�cult, and we

assume that this is done correctly.
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4.3 Reference frames referred to in this chapter

There are a number of coordinate reference frames which are used in this chapter to calculate

the position and alignment of the IMU’s sensors. Primarily these reference frames deal with

generating the test-bed’s trajectory during the Monte Carlo simulations of the calibration

correctly, although they are also used to describe the e↵ect of various errors on the calibration

algorithm. The main concern is attitude errors because they are the most important for all

the static readings generated, because they cause a change in the direction of the reaction

to gravity. The combination of all the reference frames will be shown in Section 4.3.8. The

matrix ‘Cy
x’ represents the rotation from frame x to frame y.

In this thesis, yaw ( ), pitch (✓) and roll (�) (that order) Euler angles need to be trans-

formed to the coordinate transformation matrices, in which all calculations are conducted,

particularly during these frame transformations. There are several di↵erent conventions in

used for this conversion, this thesis uses (after Equation 2.22 of [1])

C =

0

B@
1 0 0

0 cos(�) sin(�)

0 � sin(�) cos(�)

1

CA

0

B@
cos(✓) 0 � sin(✓)

0 1 0

sin(✓) 0 cos(✓)

1

CA

0

B@
cos( ) sin( ) 0

� sin( ) cos( ) 0

0 0 1

1

CA

=

0

B@
cos(✓) cos( ) cos(✓) sin( ) � sin(✓)

� cos(�) sin( )+sin(�) sin(✓) cos( ) cos(�) cos( )+sin(�) sin(✓) sin( ) sin(�) cos(✓)

sin(�) sin( )+cos(�) sin(✓) cos( ) � sin(�) cos( )+cos(�) sin(✓) sin( ) cos(�) cos(✓)

1

CA (4.1)

4.3.1 IMU or Sensor frame

The sensor frame describes the orientation of the IMU’s package outline. This is, in the case

of the MEMS single-chip IMU sensors we are considering in this chapter, the orientation

that the manufacturer’s specifications are defined relative to. For example, manufacturers’

define the sensors’ alignment (cross-coupling) errors relative to this package outline. This

frame is denoted by ‘s’ and shown in Figure 4.6.

IMU chip

PCB

X

Y
Z

Figure 4.6: The IMU or sensor frame.

4.3.2 Body or box frame

The box frame is the frame describing the nominal position of the box in which the IMU is

placed. As the box is not a perfect cube (see Section 4.3.4) the box frame is orientated to

the box-average frame. That is, the orthogonal frame where a cube defined by it best fits

the calibration cube.
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The angular o↵set between the sensor, s, and box-average, b, frames is described by the

coordinate transformation matrix Cb
s , and is generated by the various IMU mounting errors

(see Section 4.6.1). This is shown in Figure 4.7. Note that this matrix will contain any

alignments that intentionally di↵er from that of the axes of the box, such as those used for

array techniques in Chapter 6, in these situations it could be considered an array-average

frame.

Z (box)

Y (box)

X (box)Z (IMU)

Y (IMU) X (IMU)

Figure 4.7: The relationship between the IMU or sensor frame and the box frame described

by Cb
s

It is important to note that while the specific force and angular rate are measured in the

sensor frame, the user actually cares about the motion of the box frame, that is any in-

tentional or unintentional misalignments between the IMU and its box should be removed.

Additionally, the calibration must take place relative to an orthogonal frame, there is no

way to separate Cb
s from the sensors’ cross-coupling errors as e↵ectively we are looking at

misalignments within the IMU package and of the package in the box. Thus the frame we

aim to have our calibration relative to is this box-average frame, and this is what the results

will be compared to (see Section 4.7).

As a result of this the true trajectory is in the box frame, and the transformation into the

IMU frame (Cb
s ) is considered part of the IMU error model (as described in Section 4.4.1).

4.3.3 The nominal orientation frame (“which face is on top?”)

The nominal orientation frame simplistically describes which face of the cube is resting on

the table. There are six nominal orientations,

CZU
b = I3, CZD

b =

0

B@
�1 0 0

0 1 0

0 0 �1

1

CA , CYU
b =

0

B@
1 0 0

0 0 �1

0 1 0

1

CA ,

CYD
b =

0

B@
1 0 0

0 0 1

0 �1 0

1

CA , CXU
b =

0

B@
0 0 �1

0 1 0

1 0 0

1

CA , CXD
b =

0

B@
0 0 1

0 1 0

�1 0 0

1

CA (4.2)

According to the part of the calibration manoeuvres that is being generated, the relevant

nominal orientation is chosen. To refer to these nominal orientation frames as a general

group “NO” is used in place of, for example, “XD” or “ZU”.
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Z    Z’
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Manufacturing imperfections will cause the cube not to sit perfectly flat on a flat surface. 
There is a roll and pitch component of this error.

Y’

X’
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Intended 
face of 
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‘Pitch’ error

‘Roll Error’

Figure 4.8: The face frame which describes the manufacturing imperfections of the calibra-

tion cube

The choice of these six nominal orientations is not arbitrary, they are chosen to represent

the easiest way to conducting the set A static procedure. However, they are certainly not an

optimal choice of 6 orientations. There are the 24 that could have chosen that are have only

-1, 0 and 1 in their rotation matrix. This choice of orientations in fact slightly exacerbates

the sensitivity to levelling error (see the results in Section 4.8.1.3), but the user will be more

likely to conduct the easy option than the optimal one, so that is what is simulated.

Other static positions on a given face are simulated by using the heading transformation in

Section 4.3.5.

4.3.4 Cube face frames

Any calibration cube that could really be constructed would not be a perfectly cubic. This

imperfection is described by a rotation for each face of the frame which describes its angular

error about the two perpendicular axes which span that face, these become a roll and a

pitch error when the cube is on a flat surface. These errors are generated by the ‘cube face

error’ parameter (see Section 4.6.1). This error is illustrated in Figure 4.8.

For each of the six faces there is a separate but fixed (for each Monte Carlo run) pitch

and roll (relative to the table, when placed on that face) error namely, CZUface

ZU , CZDface

ZD ,

CYUface

YU , CYDface

YD , CXUface

XU andCXDface

XD . Each of these matrices are derived from two random

normally-distributed parameters, representing pitch and roll errors, the simulation assumes

that the six of each of these are independently distributed, although whether this assumption

would hold true for a real system would be dependent on the manufacturing methods used

for the box.

It should be noted that this error depends on manufacturing imperfections of the face

that is in contact with the table. For example, the CXUface

XU depends on the manufacturing

imperfections in the -X face.

Practically, because every time the cube is placed on a particular face the same face error will

apply this transformation is combined with that from the previous section for all practical

purposes. So,

CZUface

b = CZUface

ZU CZU
b , CZDface

b = CZDface

ZD CZD
b , . . . etc. (4.3)

are used because they are fixed for each run.
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Figure 4.9: The relationship between the table and replacement heading frames (Ct
NOface

).

4.3.5 Heading-on-table frame

This frame describes the heading of the box with respect to the table (Ct
NOface

). This error

is only in heading (i.e. about the table z-axis), and the angle between the table frame x-axis

and the NOface frame x-axis is the ‘heading angle’. This is shown in Figure 4.9.

This heading angle describes both deliberate and accidental yaw rotations. Deliberate ro-

tations include the four di↵erent positions of manoeuvre set C.

Each time the cube is placed on the table there will be a di↵erent small error as the user

places it at a slightly di↵erent heading angle than intended. This di↵erence between the

heading expected by the calibration algorithm and the actual heading is the replacement

error. In the simulation this separately generated for each time the cube is placed on the

table, as opposed to once per Monte Carlo run for the face errors in Section 4.3.4.

Note that, this frame needs to be ‘after’ the cube errors so the cube errors will rotate around

fixed to the ‘nominal orientation’, rather than fixed to the table’s axes.

4.3.6 Table frame

The table frame (t) describes how the table upon which the calibration procedure takes

place di↵ers from level (perpendicular to the gravity vector), it has the same origin as the

local tangent frame (Section 4.3.7) but di↵ers from it by two (roll and pitch) table angles, ↵

and �, respectively. These are fixed for a particular run of a Monte-Carlo simulation. This

relationship is shown in Figure 4.10

The table frame is almost completely aligned to East (X) and North (Y), di↵ering only by

the table angles from which the table deviates from level. As the table is being considered

as a plane and the position of its edges is irrelevant to the calibration the simulation of a

yaw error is unnecessary. This does not mean that the table need be aligned to East and

North, as its edges are not used, rather the frame is defined to be (nearly) co-incident.

Additionally, any real table is unlikely to be perfectly planar. However, if one replaces the

box very close (< 2mm) to the same place on the table this e↵ect will be small, and dwarfed

by other errors in the procedure, as such this is not considered in this simulation.
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Figure 4.10: The relationship between the local tangent frame and the table frame (Cl
t).

4.3.7 Local tangent frame

The local tangent frame is the reference frame in which the test-bed’s motion is considered.

This frame, denoted by l, has its origin fixed, relative to the surface of the Earth, at a point

on the surface of the table. The X-direction is towards the local East, the Y-direction to the

local North and the Z-direction in the opposite direction to that of the local gravity vector

(i.e. ‘up’).

Note that, the origin of this local tangent frame is at the latitude and longitude of UCL’s

main campus in London, although this makes only a very marginal di↵erence because the

rotation speed of the Earth is slow in comparison to size the gyroscope errors we are dealing

with. Despite this, the rotation of the local tangent frame in inertial space is still simulated

correctly.

The calibration procedure does not take into account the rotation of the local calibration

frame because it makes only a very small di↵erence and requires that the heading be known.

4.3.8 Relationship between the frames

The following equation describes the chain of rotations needed to describe the attitude of

the IMU’s sensors in the local tangent frame when the cube is positioned on the table

Cl
s = Cl

tC
t
NOface

CNOface

NO CNO
b Cb

s (4.4)

The matrix ‘Cy
x’ represents the rotation from frame x to frame y. ‘l’ is the local navigation

frame. ‘t’ is the table frame. ‘NOface’ is the frame describing the true misalignment of

the specific face the box is resting upon. ‘NO’ is the nominal (box-average) orientation of

the cube (ZU, XD etc.). ‘b’ is the box frame. ‘s’ is the sensor frame. These frames were

explained in Sections 4.3.1 to 4.3.7.

All these frames are used in the simulation of the calibration procedure. However, only

some of them are known to the calibration algorithm. The algorithm assumes that the box

is perfectly cuboid, thus assumes CNOface

NO = I3. The procedure using manoeuvre set A (but

not set C) assumes that the table is level, i.e. Cl
t = I3. For other frame transformations

such as the ‘heading on the table’ (Ct
NOface

) and the ‘IMUs mounting orientation inside the
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box’ (Cb
s ) the calibration algorithm assumes these have particular intended values. The

simulation adds a slightly deviation from these intended values.

The calibration algorithm cannot distinguish the mis-mounting of the entire IMU in the

box (Cb
s ), from the mis-mounting of individual sensors within the IMU (part of Aa or Ag).

However, this does not matter because the corrected IMU output relative to the mounting

is what the user requires for navigation so the calibration includes transforming the IMU

measurements from the sensor frame to the box frame. This will be discussed further in

Section 4.4.

4.4 The IMU error model used for in this chapter

This section describes the IMU error models being used in the simulations in this chapter.

The purpose of the IMU error model is to convert the true angular rate and specific force,

denoted by column vectors fb

ib

and !b

ib

, that is those that would be measured by a perfect

IMU, into measured angular rate and measured specific force, ffs

is

and g!s

is

, as would be

measured by a realistic IMU with measurement and mounting errors. This is detailed in

Section 4.4.1. The calibration procedure then aims to correct these measured quantities to

create corrected or compensated angular rate and specific force, cfb

ib

and d!b

ib

, which have

had the estimates of the systematic errors removed in the manner presented in Section 4.4.2.

It should be noted that this is a more complex model than that in Chapter 3, as simulation

of sensor non-linearity is added for this chapter. The reason that a higher order model is

used is because, in this chapter, more error sources are being calibrated. It is the author’s

opinion that it is important to include errors one-order higher than are being estimated in

the error model. Thus, as in this chapter sensor scale factor and alignment are estimated

(first-order), as such the IMU error model (Equations 4.5 and 4.6), includes quadratic non-

linearity terms (second order) which is not included in the equivalent Equations 3.4 and 3.5

in Chapter 3. This allows the higher order errors to a↵ect the estimates, and improves the

realism of the simulation.

4.4.1 The IMU error model

A simplified version of the IMU model used in this chapter is

ffs

is

= b
a

+As
af

s

is

+w
a

+ n(l
a

,fs

is

) (4.5)

g!s

is

= b
g

+Ag!
s

is

+Ggf
s

is

+w
g

+ n(l
g

,!s

is

) (4.6)

in the special case that the IMU was strictly lined up with the box-frame. The full model

used in this chapter, which including the mounting errors of the IMU within the box, is:

ffs

is

= b
a

+As
a(C

s
bf

b

ib

) +w
a

+ n(l
a

, (Cs
bf

b

ib

)) (4.7)

g!s

is

= b
g

+As
g(C

s
b!

b

ib

) +Gs
g(C

s
bf

b

ib

) +w
g

+ n(l
g

, (Cs
b!

b

ib

)) (4.8)

The function ‘n’ applies a di↵erent coe�cient from the 3 ⇥ 2 coe�cient matrix (l) to the

entrywise square of the 3⇥ 1 vector v depending on the sign of each entry of v, where the
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ith component is denoted by v(i).

a = n(l,v) where for i = 1 . . . 3, a(i) =

8
<

:
l(i, 1)⇥ v(i)2, when v(i) � 0

l(i, 2)⇥ v(i)2, otherwise
(4.9)

There are a number of ways of interpreting the non-linearity as discussed in Section 2.2.6.

Here a quadratic non-linearity, with separate positive and negative coe�cients, is assumed on

the basis that where both quadratic and cubic coe�cients are given (e.g. [47]) the quadratic

typically dominates, and the seperate coe�cients to capture the fact that the response is

not always symmetrical about zero (e.g. [56]). There is no continuity problem because when

x = 0, ax2 = bx2 8 a, b

The symbols in the above equations are defined as:

f is the specific force on each sensitive axis (3⇥ 1 column vector).

b
a

is the vector of the accelerometer biases (3⇥ 1).

Aa is the matrix containing the accelerometer scale-factor and cross-coupling errors (3⇥3).

l
a

is a 3⇥2 matrix containing the coe�cients for the non-linearity model for the accelerom-

eters, as can be seen in Equation 4.9, the assumption is that the non-linearity is quadratic

in nature, there are two coe�cients for each axis, a di↵erent (independent) one for positive

and one for negative specific force.

w
a

is the vector containing the (white) sensor noise on each accelerometer axis (3⇥1). It is

generated independently for each epoch from the specified noise performance. Sensor noise

being white is a modelling simplification.

! is the angular rate on each sensitive axis (3⇥ 1 column vector).

b
g

is the vector of the gyroscope biases (3⇥ 1);

Ag is the alignment matrix containing the gyroscope scale-factor and cross-coupling errors

(3⇥ 3).

Gg is the matrix containing the gyroscope g-dependent errors. This is the e↵ect where

applied specific force is erroneously interpreted as angular rate (3⇥ 3).

l
g

is a 3⇥ 2 matrix containing the coe�cients for the non-linearity model for the gyroscope,

as can be seen in Equation 4.9, the assumption is that the non-linearity is quadratic in

nature, there are two coe�cients for each axis, a di↵erent (independent) one for positive

and one for negative angular rate.

w
g

is the vector containing the (white) sensor noise on each gyroscope axis (3 ⇥ 1). It is

generated independently for each epoch from the specified noise performance. Sensor noise

being white is a modelling simplification.

Cs
b refers to the coordinate transformation matrix from the nominal box frame to the IMU

/ sensor frame. It thus represents the mis-mounting of the IMU inside the perfect box. It

does not contain the errors from what the box should be to the actual position of its sides.

Note that because this is a rotation matrix

Cb
s = (Cs

b)
T .

The superscripts, for Gg, Aa and Ag, refer to the frame to which the error applies, s for

the sensor frame and b for the box frame.

Entries with the diacritic ‘f’ are the measured values. Entries with the diacritic ‘c’ are
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the estimated values (or compensated output for bf and b!). Entries with neither are the

true values. So for example cb
a

means ‘estimated accelerometer bias’ and Gs
g means ‘true

gyroscope g-dependent matrix with respect to the sensor frame’.

It should be noted that fb

ib

and cfb

ib

are in the nominal box frame, whereas the measured

outputs ffs

is

are in the IMU/sensor frame (similarly for !b

ib

, d!b

ib

and g!s

is

). This complicates

the estimates which are needed to compensate for the sensor errors, as shall be presented

in Section 4.4.2.

4.4.2 The error compensation

The aim of the procedures tested in this chapter is to estimate systematic errors, giving
cb
a

, cb
g

, cAb
a ,

cAb
g and dGb

g , in order that the e↵ect of those errors can be removed from the

measured IMU readings, ffs

is

and g!s

is

. Comparing Equations 4.5 and 4.6 with Equations 4.7

and 4.8 one can see that

Ab
a = As

aC
s
b, Ab

g = As
gC

s
b and Gb

g = Gs
gC

s
b. (4.10)

The point of calibrating these errors is so their e↵ect can be removed from the IMU read-

ings to create a compensated The method by which these compensated or calibrated IMU

readings are calculated are as follows.

cfb

ib

= cAb
a

�1

(ffs

is

� cb
a

) (4.11)

d!b

ib

= cAb
g

�1

(g!s

is

�cb
g

�dGb
g
cfb

ib

) (4.12)

These should remove the e↵ects of these systematic errors, leaving only the true measure-

ment, sensor noise and non-linearity. The main assumptions are that the systematic errors

have been estimated correctly. The rest of this section will show that this is the case.

First, substituting Equations 4.7 and 4.8 into these

cfb

ib

= cAb
a

�1

((b
a

+As
a(C

s
bf

b

ib

) +w
a

+ n(l
a

, (Cs
bf

b

ib

)))� cb
a

) (4.13)

d!b

ib

= cAb
g

�1

((b
g

+As
g(C

s
b!

b

ib

) +Gs
g(C

s
bf

b

ib

) +w
g

+ n(l
g

, (Cs
b!

b

ib

)))�cb
g

�dGb
g
cfb

ib

) (4.14)

Re-arranging these equations makes

cfb

ib

= cAb
a

�1

h
b
a

� cb
a

i
+ cAb

a

�1

h
As

a(C
s
bf

b

ib

)
i
+ cAb

a

�1

[w
a

] + cAb
a

�1

h
n(l

a

, (Cs
bf

b

ib

))
i

(4.15)

d!b

ib

= cAb
g

�1

h
b
g

�cb
g

i
+ cAb

g

�1

h
As

g(C
s
b!

b

ib

)
i
+ cAb

g

�1

h
Gs

g(C
s
bf

b

ib

)�dGb
g
cfb

ib

i

+ cAb
g

�1

[w
g

] + cAb
g

�1

h
n(l

g

, (Cs
b!

b

ib

))
i

(4.16)

Consider the specific force first. If we allow that

cb
a

⇡ b
a

(4.17)
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Then Equation 4.15 becomes

cfb

ib

= cAb
a

�1


⇠⇠⇠⇠⇠:⇡ 0
b
a

� cb
a

�
+ cAb

a

�1

h
As

a(C
s
bf

b

ib

)
i
+ cAb

a

�1

[w
a

] + cAb
a

�1

h
n(l

a

, (Cs
bf

b

ib

))
i

(4.18)

⇡ cAb
a

�1

h
As

a(C
s
bf

b

ib

)
i

| {z }
part including Aa

+ cAb
a

�1

[w
a

]| {z }
noise

+ cAb
a

�1

h
n(l

a

, (Cs
bf

b

ib

))
i

| {z }
non-linearity

(4.19)

In order for the ‘part including Aa’ to cancel, if it is assumed that

cAb
a ⇡ As

aC
s
b (4.20)

=) cAb
af

b

ib

⇡ As
aC

s
bf

b

ib

(4.21)

=) fb

ib

⇡ cAb
a

�1

h
As

a(C
s
bf

b

ib

)
i

(4.22)

Thus Equation 4.18 becomes

cfb

ib

⇡ fb

ib|{z}
true specific force

+ cAb
a

�1

[w
a

]| {z }
noise

+ cAb
a

�1

h
n(l

a

, (Cs
bf

b

ib

))
i

| {z }
non-linearity

(4.23)

Now consider the angular rate. If in a similar manner we assume that

cb
g

⇡ b
g

(4.24)

and
cAb
g ⇡ As

gC
s
b (4.25)

=) cAb
g!

b

ib

⇡ As
gC

s
b!

b

ib

(4.26)

=) !b

ib

⇡ cAb
g

�1

h
As

g(C
s
b!

b

ib

)
i

(4.27)

In exactly the same way that Equation 4.15 could use the analogous assumptions to make

Equation 4.23, these assumptions can be used to simplify Equation 4.16. Thus,

d!b

ib

= cAb
g

�1

"

�����*⇡ 0
b
g

�cb
g

#
+

"

⇠⇠⇠⇠⇠⇠⇠:⇡ I3
cAb
g

�1

As
gC

s
b !b

ib

#
+ cAb

g

�1

h
Gs

g(C
s
bf

b

ib

)�dGb
g
cfb

ib

i

+ cAb
g

�1

[w
g

] + cAb
g

�1

h
n(l

g

, (Cs
b!

b

ib

))
i

(4.28)

That is,

d!b

ib

⇡ !b

ib

+ cAb
g

�1

h
Gs

g(C
s
bf

b

ib

)�dGb
g
cfb

ib

i

| {z }
part including Gg

+cAb
g

�1

[w
g

] + cAb
g

�1

h
n(l

g

, (Cs
b!

b

ib

))
i

(4.29)

However, in order to cancel the ‘part including Gg’ we must make two assumptions. First,

that
dGb

g ⇡ Gs
gC

s
b (4.30)

=) 0 ⇡ Gs
gC

s
b �dGb

g (4.31)

=) 0 ⇡ Gs
gC

s
bf

b

ib

�dGb
gf

b

ib

(4.32)
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If it is additionally assumed,
cfb

ib

⇡ fb

ib

(4.33)

which is reasonable given Equation 4.23, then Equation 4.29 becomes

d!b

ib

⇡ !b

ib

+cAb
g

�1

2

4
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:⇡ 0

Gs
g(C

s
bf

b

ib

)�dGb
g
cfb

ib

3

5+cAb
g

�1

[w
g

]+cAb
g

�1

h
n(l

g

, (Cs
b!

b

ib

))
i
(4.34)

which gives
d!b

ib

⇡ !b

ib|{z}
true angular rate

+ cAb
g

�1

[w
g

]
| {z }

noise

+ cAb
g

�1

h
n(l

g

, (Cs
b!

b

ib

))
i

| {z }
non-linearity

. (4.35)

4.5 Determination of sensor errors from calibration proce-

dure output

This section presents the method by which the sensors’ errors are estimated. As mentioned in

Section 4.2, the accelerometers’ errors can be calibrated using only static readings. However,

the gyroscopes require motion so that their errors can be estimated. As such this section is

split into two parts: the ‘static’ part (Section 4.5.1) and the dynamic part (Section 4.5.2).

The actual manoeuvres that characterise these parts are described in Section 4.2, where set

A or C (Figures 4.2 and 4.4) comprise the static and set B or D (Figures 4.3 and 4.5) the

dynamic. Note that the dynamic calibration depends on the results of the static part, and

inaccuracies from the static part of the procedure will increase the errors in the dynamic

part.

4.5.1 The static part of the calibration procedure

The static part of the calibration procedure is based on taking measurements on all six

faces of a cuboid box or calibration cube containing the IMU, and averaging the recorded

data over a static period of a few seconds to reduce the e↵ect of the sensors’ random errors.

However, no real physical box would ever be perfectly cuboid, and whatever surface it is

placed on might not be exactly perpendicular to the local gravity vector (not level). Here we

aim to test how great an e↵ect these and other errors will have on the resulting calibration.

The readings on each face are simply the mean over time of the measurements from each

sensor in each of the two triads. In the case of the more advanced procedure (set C)

measurements are taken at several headings and then the reading of each face is the average

of the reading at each of the di↵erent headings.

Procedures which use no equipment other than the box and a flat surface on which to rest

it can still vary in their complexity. Two variations are examined: both a simple (set A)

and more complex (set C) physical movements. These procedures were presented in more

detail in Section 4.2. The simpler version is a single static reading on each side of the box

without regarding the heading of the box on the table (set A), the 6 heading orientations

are intentionally not optimally chosen, see Sections 4.3.3 and 4.8.1.3. The more complex
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version also relies on some kind of straight edge or corner on the table to allow the box to

be lined up (for more details on this see Section 4.5.2). In this version, four static readings

are taken on each face of the box at headings di↵ering by 90 degrees. This allows the table’s

deviation from level to be measured and its e↵ect to be (at least partially) compensated for,

as follows.

4.5.1.1 Table angle estimation

Calculations using manoeuvre set A assume that the table is level, but if manoeuvre set C

is used instead the ‘angles by which the table deviates from level’, henceforth table angles,

can be estimated.

The basic assumption is that for a level table the true reading of the specific force should

be g (⇡ 9.8 ms�2) in the vertical direction and zero in the other directions, that is,

f l

il

=

2

64
0

0

g

3

75 (4.36)

and that the angular rate should be zero. When the table is not level in the table frame

gravity does not apply directly on the table-frame z-axis so,

f t

it

=

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75 (4.37)

where ↵ and � are the two table angles, see Figure 4.10.

Consider two sets of static accelerometer readings, fh

ih

+

, which is aligned to the table frame

and fh

ih

�
which is rotated through a heading of 180 degrees on the table. Thus their

di↵erence is,

fh

ih

+ � fh

ih

� ⇡ f t

it

�

2

64
�1 0 0

0 �1 0

0 0 1

3

75f t

it

=

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75�

2

64
� sin(↵) cos(�)g

� cos(↵) sin(�)g

cos(↵) cos(�)g

3

75

=

2

64
2 sin(↵) cos(�)g

2 cos(↵) sin(�)g

0

3

75 . (4.38)

Take the first two components (x & y) of this, namely

⇣
fh

ih

+ � fh

ih

�⌘

x

= 2 sin(↵) cos(�)g and
⇣
fh

ih

+ � fh

ih

�⌘

y

= 2 cos(↵) sin(�)g, (4.39)

and use these to define

P =
1

2g

⇣
fh

ih

+ � fh

ih

�⌘

x

and Q =
1

2g

⇣
fh

ih

+ � fh

ih

�⌘

y

(4.40)

Thus,

P = sin(↵) cos(�) and Q = cos(↵) sin(�). (4.41)
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This can be used to determine ↵ and �, as

P 2 = sin2(↵) cos2(�) = sin2(↵)�sin2(↵) sin2(�) =) sin2(↵) = P 2+sin2(↵) sin2(�) (4.42)

=) sin2(↵) = P 2 + sin2(↵)

✓
Q

cos(↵)

◆
2

= P 2 +Q2 tan2(↵) (4.43)

This can be used to determine ↵ by a simple iterative process where the small angle ap-

proximation with Equation 4.41, gives P = sin(↵) cos(�) ⇡ ↵ so the initial step is

↵
1

= P (4.44)

and the iterative step is

↵
n+1

= sin�1(sign(↵
n

)
p
(P 2 +Q2 ⇥ (tan↵

n

)2)) (4.45)

stopping when ↵
n+1

= ↵
n

, which takes about three iterations to reach the numerical preci-

sion limit in MATLAB, which is far higher than the expected accuracy.

� can be solved using an equivalent iterative process with �
1

= Q and the iterative step,

�
n+1

= sin�1(sign(�
n

)
p
(Q2 + P 2 ⇥ (tan�

n

)2)). (4.46)

These estimates of ↵ and � are only used in the rest of the estimation process in the term

“cos(↵) cos(�)g”, as an improved estimate of the specific force in the table z-direction, which

resolves a consistent underestimate of the accelerometer scale factor when the table is not

level.

It is also important to note that a the true specific forces of fh

ih

+ � fh

ih

�
is not available

to determine P and Q, only the measured values are available. What is used instead is the

average of all 12 possible 180� heading pairs from manoeuvre set C of the measured specific

force. As this is a di↵erence between two measurement the sensors’ biases have no e↵ect,

see Section 4.5.1.2, however the other sensor errors and the cube’s imperfections still a↵ect

the result.

It would be possible to extend the six-position test (set A) to a seven-position test where

there are two readings on only one of the faces at 180� heading di↵erence. This would still

allow an estimate of ↵ and �, albeit a less accurate one. However, this would not have

the advantage of cancelling out the e↵ect of non-zero table angles on the two ‘horizontal’

measurements that is achieved by taking the mean of all four readings from each of the faces

(see Equation 4.56), which turns out to be the more significant e↵ect, the results of this are

presented in Section 4.8 as the 7-position method.

4.5.1.2 Pairwise sums and di↵erences

The actual method of calculating the estimates of the sensor errors from the static estimates

is very simple, given the three main assumptions that the table is level, the box is cubic

and the e↵ect of the noise on the time-averaged static measurements is small enough to

be neglected by the calibration algorithm. All 3 of these assumptions are tested in the

simulation. Thus, the main experimental parameters which might be expected to a↵ect
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the outcome of the calibration are essentially how accurate these assumptions are, which is

characterised (in the simulation) by the SD of the angle by which the first two are wrong,

and how long the sample of data collected on each side is, with a longer sample reducing

the e↵ect of sensor noise.

The simple procedures implemented here only use the (time-)average of each of the six sen-

sor readings during the static period on each cube face. These orientations were defined in

Section 4.3.3. For example, ‘ZU’ refers to the ‘Z-up’ orientation and is considered the stan-

dard orientation in this thesis, and ‘XD’ is the ‘X-down’ orientation. A general orientation

is referred to as ‘NO’.

In the simple procedure (set A) these are the averages over a single time-period and in the

advanced procedure (set C) these are further averaged over each of the four headings with

equal weighting2.

The sensor readings at each orientation can be denoted by a ‘given that’ operator, for

example, ‘fb

ib

|
ZU

’ for ‘true specific force when in the ZU orientation’. However for reasons

of brevity the notation is shortened to ‘fZU ’. Similarly the notation for angular rate is

!b

ib

|
ZU

= !ZU . For the respective measured quantities ffs

is

|
ZU

= gfZU and g!s

is

|
ZU

= g!ZU

Also note that this procedure ignores the e↵ect of the non-linearity terms from Section 4.4.

Thus Equations 4.7 and 4.8 become,

ffs

is

⇡ b
a

+As
a(C

s
bf

b

ib

) +w
a

(4.47)

g!s

is

⇡ b
g

+As
g(C

s
b!

b

ib

) +Gs
g(C

s
bf

b

ib

) +w
g

(4.48)

If we further assume that time averaging, when conducted over a su�cient period, will make

the w
a

and w
g

insignificant, then

ffs

is

⇡ b
a

+As
aC

s
bf

b

ib

(4.49)

g!s

is

⇡ b
g

+As
gC

s
b!

b

ib

+Gs
gC

s
bf

b

ib

(4.50)

If assumptions of a cubic box and a flat table are valid. This makes the expected values for

the true angular rate and specific force in the ‘Z-up’ orientation under static conditions,

fZU =

2

64
fZU

x

fZU

y

fZU

z

3

75 =

2

64
0

0

g

3

75 (4.51)

!ZU =

2

64
!ZU

x

!ZU

y

!ZU

z

3

75 =

2

64
0

0

0

3

75 (4.52)

This gives,

gfZU = b
a

+As
aC

s
b

2

64
0

0

g

3

75 (4.53)

2Although an average of 2 headings at 180� heading apart would have provided most of the benefit.
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g!ZU = b
g

+

�
�
�
�

��✓
0

As
gC

s
b

2

64
0

0

0

3

75 +Gs
gC

s
b

2

64
0

0

g

3

75 (4.54)

This illustrates why a dynamic procedure is required to observe As
gC

s
b. When we do not

assume that the table is level (set C) the true specific forces (like in Equation 4.37) for each

of the four 90�-separated headings of set C (see Figure 4.4), that is a heading angle (see

Section 4.3.5) of 0�, 90�, 180� and 270�, become

fZU1 =

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75 , fZU2 =

2

64
� cos(↵) sin(�)g

sin(↵) cos(�)g

cos(↵) cos(�)g

3

75 ,

fZU3 =

2

64
� sin(↵) cos(�)g

� cos(↵) sin(�)g

cos(↵) cos(�)g

3

75 , fZU4 =

2

64
cos(↵) sin(�)g

� sin(↵) cos(�)g

cos(↵) cos(�)g

3

75 (4.55)

Thus the set C equivalent of Equation 4.49 is

gfZU =
1

4

✓
f̂ZU1 + f̂ZU2 + f̂ZU3 + f̂ZU4

◆

=
1

4

�
b
a

+As
aC

s
bf

ZU1 + b
a

+As
aC

s
bf

ZU2 + b
a

+As
aC

s
bf

ZU3 + b
a

+As
aC

s
bf

ZU4
�

= b
a

+As
aC

s
b

0

B@
1

4

0

B@

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75+

2

64
� cos(↵) sin(�)g

sin(↵) cos(�)g

cos(↵) cos(�)g

3

75

+

2

64
� sin(↵) cos(�)g

� cos(↵) sin(�)g

cos(↵) cos(�)g

3

75+

2

64
cos(↵) sin(�)g

� sin(↵) cos(�)g

cos(↵) cos(�)g

3

75

1

CA

1

CA

= b
a

+As
aC

s
b

2

64
0

0

cos(↵) cos(�)g

3

75 (4.56)

By a similar process of substitution the equivalent of Equation 4.50 is

g!ZU =
1

4

✓
!̂ZU1 + !̂ZU2 + !̂ZU3 + !̂ZU4

◆
= b

g

+Gs
gC

s
b

2

64
0

0

cos(↵) cos(�)g

3

75 (4.57)

The fact that the components of f̂ZU1 to f̂ZU4 only appear in the sum✓
f̂ZU1 + f̂ZU2 + f̂ZU3 + f̂ZU4

◆
means that Equation 4.56 is not sensitive to the order

or identification of the set C rotations (and Equation 4.57 for the same reason). This has

implications which will be discussed in Section 4.5.3.

If we now consider pairs of gyroscope or accelerometer readings taken on opposite faces,

for example ‘ZU’ and ‘ZD’, now for both the true angular rate would be zero and the true

specific force would be of equal magnitude but apply in the opposite direction. So if we take
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the sum of two, the component due to specific force should cancel (assuming a level table)

gfZU+ gfZD = b
a

+As
aC

s
b

2

64
0

0

g

3

75+b
a

+As
aC

s
b

2

64
0

0

�g

3

75 = 2b
a

+

������������*0

As
aC

s
b

0

B@

2

64
0

0

g

3

75+

2

64
0

0

�g

3

75

1

CA (4.58)

and for the di↵erence the bias cancels

gfZU� gfZD = b
a

+As
aC

s
b

2

64
0

0

g

3

75�b
a

�As
aC

s
b

2

64
0

0

�g

3

75 = As
aC

s
b

0

B@

2

64
0

0

g

3

75�

2

64
0

0

�g

3

75

1

CA = As
aC

s
b

2

64
0

0

2g

3

75 .

(4.59)

Note that, if using the set C measurements without assuming a level table, these equations

become

gfXU � gfXD = As
aC

s
b

2

64
2 cos(↵) cos(�)g

0

0

3

75 , (4.60)

gfYU � gfYD = As
aC

s
b

2

64
0

2 cos(↵) cos(�)g

0

3

75 , (4.61)

gfZU � gfZD = As
aC

s
b

2

64
0

0

2 cos(↵) cos(�)g

3

75 . (4.62)

These equations motivate the error estimation methods presented below.

4.5.1.3 Bias estimation

Two alternative algorithms are implemented to estimate the sensor biases from the static

measurements, both can use either set A or C manoeuvres.

In the first technique, henceforth Technique 1, the accelerometer bias is estimated by sum-

ming all six faces, this reduces errors by increasing the e↵ective averaging time, reducing the

e↵ect of noise. Although two faces are su�cient to get a more coarse estimate, see Equation

4.67.

cb
a

=
1

6

✓
gfXU + gfXD + gfYU + gfYD + gfZU + gfZD

◆
. (4.63)

If the box was perfectly cuboid (and placed precisely as expected), then we can use Equation

4.58

cb
a

=
1

6
(2b

a

+ 2b
a

+ 2b
a

) = b
a

, (4.64)

which is the target value in Equation 4.17.

The gyroscope bias estimate is conducted in an analogous way, namely,

cb
g

=
1

6

✓
g!XU + g!XD + g!YU + g!YD + g!ZU + g!ZD

◆
(4.65)
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It can be seen that by, for example the similarity between Equations 4.53 and 4.54, under

the perfect cube assumption, these will cancel in the same pairwise fashion as in Equation

4.63.

cb
g

=
1

6
(2b

g

+ 2b
g

+ 2b
g

) = b
g

(4.66)

which is the target value in Equation 4.24.

There is reason to believe (see Section 4.8 specifically Equation 4.83) that an alternative

algorithm for estimating the accelerometer and gyroscope biases may be less sensitive to

cube and/or table alignment errors, although more sensitive to some other error sources

(e.g. sensor noise). The following alternative algorithm is implemented in the simulation,

described as Technique 2,

cb
a

=

2

64

cb
ax

cb
ay

cb
az

3

75 =
1

2

2

6664

gfXU

x

+ gfXD

x

gfYU

y

+ gfYD

y

gfZU

z

+ gfZD

z

3

7775
. (4.67)

Where the final x, y or z subscripts and non-bold script signify that this refers to a single

component of the vector (similarly in Equation 4.69). This is justified by the same pairwise

elimination of other errors as Equation 4.63. As follows, taking only the third row of

Equation 4.58 gives

gfZU + gfZD = 2b
a

=) gfZU

z

+ gfZD

z

= 2cb
az

(4.68)

Which is the third row of Equation 4.67, the other 2 rows follow by similarity. Note that

this can be calculated with manoeuvre set A or C.

If the IMU is not nominally lined up with the box-frame, then the face-pairs would need

to be re-arranged (rather than the lower-case ‘x’, ‘y’ and ‘z’). The equivalent Technique 2

method for cb
g

is,

cb
g

=

2

64

cb
gx

cb
gy

cb
gz

3

75 =
1

2

2

6664

g!XU

x

+ g!XD

x

g!YU

y

+ g!YD

y

g!ZU

z

+ g!ZD

z

3

7775
. (4.69)

This Technique 2 calibration algorithm is also calculated and presented in the results of this

chapter (Section 4.8), so that the two possibilities can be compared.

4.5.1.4 Aa and Gg estimation

While the average of single pair of opposite face readings would have been su�cient for

the bias estimation, in order to observe all the entries in cAa and cGg all six readings are

required. cAa is estimated as follows.

cAb
a =

1

2 cos(↵) cos(�)g

✓
gfXU � gfXD

◆
,

✓
gfYU � gfYD

◆
,

✓
gfZU � gfZD

◆�
(4.70)
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Using Equations 4.60, 4.61 and 4.62 this becomes

cAb
a ⇡ 1

2 cos(↵) cos(�)g

2
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0

B@As
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s
b

2

64
2 cos(↵) cos(�)g
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0

3
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0
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0

0
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3

75

1

CA
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75
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s
b

2
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2

64
1

0

0

3

75 ,

2

64
0

1

0

3

75 ,

2

64
0

0

1

3

75

3

75 = As
aC

s
b (4.71)

which is the target value in Equation 4.20.

If using set A measurements, then replace “2 cos(↵) cos(�)g” with “2g”, and use equations

of the form of Equation 4.59 to prove this in the same manner as Equation 4.71, assuming

a level table.

dGb
g is estimated as follows.

dGb
g =

1

2 cos(↵) cos(�)g

✓
g!XU � g!XD

◆
,

✓
g!YU � g!YD

◆
,

✓
g!ZU � g!ZD

◆�
(4.72)

Which gives dGb
g ⇡ Gs

gC
s
b, as required for Equation 4.30. This is justified by exactly the

same method as Equation 4.70.

4.5.2 The dynamic part of the calibration procedure

This section presents the procedure for estimating the gyroscopes’ alignment matrix, Ag,

which, as presented in Section 2.2.5, contains the scale-factor and cross-coupling gyroscope

errors. As gyroscopes measure angular rate, an estimate of Ag cannot be made from static

data, there needs to be movement3. As was discussed in Section 2.5.1, the normal cali-

bration method is to mount the gyroscope on a rate table and/or rigidly to a much higher

performance gyroscope and then compare the output of the two [4]. This allows an accurate

angular rate signal to be compared with the gyroscopes actual angular rate output, which

makes estimation of both bias andAg relatively straightforward, and, if di↵erent magnitudes

of angular rate are included, allows non-linearity terms to be estimated also. However, when

one considers calibration methods which might be suitable for user-conducted calibration,

neither of these techniques is suitable, for reasons of cost.

Some authors present “low-cost” calibration methods using a single-axis turntable as e.g. [153,

162], or some other specially constructed calibration apparatus (e.g. [156]). There are other

3Some authors have used the rotation of the Earth to calibrate their sensors, e.g. [160], while ‘static’ but

consumer-grade MEMS are not accurate enough to use that as a signal.
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authors who use hand rotations, but these either involve a very complex procedure, where

the required operating precision is very high [159] or high computational costs and/or ref-

erence to additional sensors (e.g. machine learning to integrate magnetometers in [161]).

In this chapter, the technique for calibrating the gyroscopes’ alignment matrix uses the 360�

rotations of either manoeuvre set B or D, and it requires only a flat surface4 and a ‘corner’

to calibrate the IMU within its housing. Its chief advantage is that it requires no expensive

external equipment and its main disadvantage is that the accuracy of the results will depend

on how well the procedure is carried out by the user. There are two further disadvantages.

First, that the accuracy depends on the other systematic errors of the gyroscope, and to

a lesser extent the accelerometers via the g-dependent error5, being estimated accurately

and calibrated out. Second, that gyroscope noise reduces the accuracy, as it conducts dead-

reckoning over the time interval in question (t) . This is because the measurements are

integrated, which makes the e↵ect of noise / p
t, rather than averaged (as was the case in

Section 4.5.1), which makes the e↵ect of noise / 1p
t

[1]. This means that conducting the

rotation quickly will (in general) make the calibration more accurate, unless it is so fast that

the sensors exceed their measurement range (clipping the output).

This technique relies on the IMU returning to its original orientation, integrating the output

while moving; as such, it is a zero attitude update.

A realistic method for conducting a fairly accurate zero-attitude update is to begin by lining

up the box in a corner of a flat surface (e.g. the edge and back of a shelf on a book-shelf).

Two examples of such a corner are shown in Figure 4.11. This lined-up position is used to

force the orientation (attitude) to be the same before and after a manoeuvre. If the IMU is

lined up before a manoeuvre, if afterwards it is returned to the same corner and positioned

on the same face of the box and at the same orientation. If conducted in this way the total

change in orientation should be very close to zero. This is because the relative orientation

change solution is una↵ected by angular errors of the cube’s construction (as it returns to

the same face), and the tables deviation from level, and additionally because the di↵erence

in table-frame heading between the ‘before’ and ‘after’ orientations will be very small, due

to the ‘corner’.

In this dynamic part of the calibration, the only error term that is estimated is cAb
g . This

is a 3x3 matrix containing the gyroscopes’ scale factor and cross-coupling errors as well as

describing its mounting angle within the cube (see Equation 4.25). It is needed (Equation

4.12) to transform the measured angular rate g!b

ib

into an estimated angular rate d!b

ib

.

In a perfectly aligned and error-free IMU this estimated cAb
g would be a 3x3 identity matrix

I3. However, as was noted in Equation 4.25, this matrix is should be a combination of a

rotation matrix, representing the IMU’s alignment with the box-frame, and another matrix

(As
g) representing the scale-factor and cross-coupling errors, cAb

g ⇡ As
gC

s
b. This As

g being

4It does not need it to be level.
5This is because the Equation 4.12 that calculates d!b

ib uses the value of cfb
ib from Equation 4.11 under

the assumption that cfb
ib = fb

ib, that is that the errors have been corrected. Note that wa 6= 0, as there is no

time averaging, so even if the accelerometer systematic errors are estimated perfectly then cfb
ib ⇡ fb

ib +wa

and so accelerometer noise has a direct e↵ect on d!b
ib and this the technique relies on this being small due to

the small numerical values of Gg.



114 Chapter 4. User-conducted Calibration

Figure 4.11: The calibration box in a corner. The ‘corner’ used for the experiments in

Chapter 5 (left), and another possible example (right)

e↵ectively an identity matrix with a small (up to ±3%) perturbation on all 9 entries. This

combination means that it does not have the simplifying properties of a rotation matrix

which only has 3 degrees of freedom. So cAb
g has the full nine degrees of freedom of a generic

3⇥ 3 matrix.

In order to observe cAb
g , we must assume that the (post-compensation) e↵ect of the other

systematic errors is small. That is,

cfs

is

⇡ fb

ib

+w
a

(4.73)

d!s

is

� ⇡ As
gC

s
b!

b

ib

+w
g

= cAb
g

�
!b

ib

+w
g

(4.74)

where,d!s

is

�
denotes the corrected angular rate without the correct estimate ofAb

g included6.

Even with these simplifications, at least 3 separate rotation manoeuvres about non-coplanar

axes are required to estimate As
gC

s
b. It is assumed that, after the 360� rotation, the net

angular-position change is zero (i.e. the rotation matrix representing the rotation from start

to end positions is I3). Under this assumption, any overall measured attitude change (inte-

grated from d!b

is

�
) over the interval is an attitude-error. Note that this can be represented

by a 3 ⇥ 3 matrix, but this is a rotation matrix so only contains 3 independent pieces of

information. This is not enough to estimate the 9 unknowns. Consider this example; there

is a an attitude-error about the x-axis. Is this error due to the x-sensor scale factor, or

either y- or z-axis motion being incorrectly interpreted as x-axis motion (cross-coupling),

or even some combination of these? That is, it could come from any of the elements in the

first row of cAb
g .

The minimum number of separate rotation-and-replacement sets that make it possible for

determination of all the elements of cAb
g is three, provided that the rotation axes are non-

coplanar. To increase the chance that this the procedure makes cAb
g observable the three

manoeuvres should be as di↵erent as possible. The two examples tested in this chapter,as

6The algorithms require some pre-estimate of Ab
g , denoted by cAb

g

�
. One example might be cAb

g

�
= I3,

assuming that the b and s frames are nominally aligned, alternative starting estimates will be covered in

Section 4.5.2.1.
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mentioned in Section 4.2, are: to pick up and rotate the IMU about each of the cardinal

axes one by one (replacing it in between) (set B); and to keep the box in contact with the

table while rotating 360� for each face, one-by-one (set D).

These rotations about the cardinal axes are primarily selected because they are the easiest

for the user to perform without specialist equipment. However, they also can be used to

form a relatively simple analytical solution. If the rotation is perfectly about the intended

axis the true angular rate will be only about that axis, so any error resulting from the

rotation about the x-axis will only be due to the first column of the cAb
g matrix, the y-axis

rotation will only be a↵ected by the second column, and the z-axis rotation the third.

This simplification is not valid when the actual axis of rotation is a few degrees o↵ from the

intended cardinal axis. However, this chapter investigates how accurate the rotations need

to be to provide an improvement on no calibration.

It is also important to note that the accuracy of the estimated cAb
g obtained by any technique

using measured IMU outputs depends on how well corrected the other error sources are and

how significant the un-calibrated errors (e.g. noise and non-linearity) are, as we are assuming

that the other sources of error have been removed. As can be seen from Equation 4.16 the

corrected angular rate also uses the corrected specific force (for g-dependant bias correction),

so errors in the corrected specific force still have a (very) small e↵ect on the corrected angular

rate.

There are a number of approximations made in the calculation of cAb
g , which rely on cor-

rections being small, such as small angle approximations. For this reason and to feed back

the more accurate estimates into Equation 4.74, the calibration algorithms tested here are

iterative processes.

4.5.2.1 An initial estimate

Any iterative process to estimate cAb
g needs to be initialised, which must begin by using the

best current estimate of cAb
g and the statically-determined estimates to correct the measured

angular rate, using Equation 4.74.

One possibility is to use the nominal orientation of the IMU, if the sensor and box-average

frames are nominally aligned7 this is I3.

Another possible initial value for cAb
g is to use the (static test derived) estimate of cAb

a .

This is because in a typical case the alignment error between the IMU and the box will

be greater than the cross-coupling error within the IMU. A typical cross-coupling error of

±2% corresponds to approximately 1 degree of alignment error which makes cAb
a a good

first estimate of cAb
g whenever the mounting error is significantly greater than 2 degrees (1

degree of cross-coupling from the accelerometer plus 1 degree from the gyroscope). That is,

cAb
g ⇡ cAb

a =) Cs
bA

s
g ⇡ Cs

bA
s
a (4.75)

7This is considered to be the case for the simulations in this chapter, but is not for the physical experiments

in Chapter 5, for which the nominal orientations are given in Figure A.4.
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However, it should be noted that this method makes cannot correct for any gyroscope scale

factor, in fact it presumes that the accelerometer scale factor and gyroscope scale factor are

equal, thus it is potentially better to use 1 for the diagonal entries.

4.5.2.2 Method 1 - sum of angular increments

This method is called the sum method because it uses the sum of angular increments as

a proxy for integration. This method relies on an iterative process to estimate cAg. This

has a number of steps that must be repeated until convergence. The estimation process

could have been initialised with cAg
(1)

= I3 but, as it will in general be better, the results

presented here use cAg
(1)

= cAa. This method relies on the three rotations being carried out

around the sensor cardinal axes, and deviation from the sensors’ cardinal axes will decrease

its reliability. It uses the assumption that the motion has taken place around a box-frame

cardinal axis, and the resulting error in cAb
g is heavily dependent on this assumption being

true.

First the measured sensor output must be corrected with the current best estimates of the

sensor errors, including the current estimate of cAg
(i)

.

The sum is taken of all of the angular increments during each of the rotation periods. This

is taken as a (computationally fast) proxy for actual integration of the full angular rate

solution, it is not a correct solution because it neglects the non-commutativity of rotations,

although when the axis-error angles are small enough it may be su�cient. It is also more

stable (as seen in Section 4.8).

cAg
(i+1)

=

0

B@

2

64

P
d!
xX

P
d!
xY

P
d!
xZP

d!
yX

P
d!
yY

P
d!
yZP

d!
zX

P
d!
zY

P
d!
zZ

3

75÷ (2⇡R)

1

CA cAg
(i)

(4.76)

Where R is the output data rate (in Hertz), needed to turn the angular rate into angular

increments, and
P

d!
wK

refers to the sum over the period of the rotation about the ‘K’ axis

of the ‘w’ axis gyroscope measurements (rad/s) corrected using Equation 4.12. The ‘2⇡’ is

the total rotation (radians) expected by the algorithm.

If the rotation takes place perfectly about a single axis and the sensors are already perfectly

calibrated the bracketed expression in Equation 4.76 would equal the identity matrix this

correction may get smaller between successive runs, although the approximations made will

mean that it requires several iterations.

4.5.2.3 Method 2 - integrating method

This method is similar to the sum method, in that the solution is initialised an estimate

such as cAg
(0)

= cAa and successive cAg
(i)

estimates are solved for iteratively.

First the full navigation equations (see Section 2.2.3) are run over the three periods of

motion in question leading to calculated attitude changes of CXstart
Xend , CYstart

Yend and CZstart
Zend

for the motion about the X-, Y- and Z-axes, respectively.
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This attitude change is then converted to column-vectors of Euler angles e
X

, e
Y

and e
Z

,

e.g.

CXstart
Xend = e

X

=

2

64
�
X

✓
X

 
X

3

75 (4.77)

where the attitude change of the X-axis rotation is denoted in terms of yaw ( 
X

), pitch

(✓
X

) and roll (�
X

) These Euler angles are then divided by the total rotation (2⇡), gives a

normalised error for each axis which can be combined (by the assumption that each rotation

is perfectly about an axis) into a correction matrix. Then the iterative process is,

cAg
(i+1)

= cAg
(i)

+
⇣h

e
X

e
Y

e
Z

i
÷ (2⇡)

⌘
(4.78)

Note that, the assumption that the Euler angle formulation of the total attitude error (e
X

,

e
Y

and e
Z

) is equivalent to the errors induced on a single axis is an approximation that

relies on the corrections being small. As will be shown in Section 4.8, this makes this method

sensitive more sensitive to the initialisation errors. However, this method is less sensitive to

the errors in the rotation axis than the sum method.

An alternative formulation for the iterative step is,

cAg
(i+1)

= cAg
(i)

⇣
1 +

⇣h
e
X

e
Y

e
Z

i
÷ (2⇡)

⌘⌘
. (4.79)

This proved to be less stable than Equation 4.78 in preliminary tests so was not implemented

in the final simulation.

4.5.2.4 Method 3 - the hybrid method

This method is a combination of the initial estimate and the sum method. Here the sum

method is carried out, to give cAg
⌃

but only the diagonal entries are used. The o↵-diagonal

entries in the estimate are derived from cAa as in the initial estimate. That is,

cAg
hyb

=

2

64
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g

⌃ 1,1

cA
a

1,2
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a

1,3
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a

2,1

cA
g

⌃ 2,2
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cA
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3,1

cA
a

3,2

cA
g

⌃ 3,3

3

75 (4.80)

It might be reasonably expected that this method will perform well when the mounting

error is large in comparison to the accelerometer and gyroscope cross-coupling error, that

is, when Equation 4.75 applies.

4.5.2.5 The di↵erence between using manoeuvre set B and D

Two separate sets of manoeuvres are tested in this Chapter; the minimum 3 rotations shown

in Figure 4.3 (set B) and a set of 6 rotations, one on each face of the cube, as shown in

Figure 4.5 (set D).

The set D measurements di↵er from the set B in two important ways, they take place with

the box remaining in contact with the table, secondly, they take place on all six faces so

there are 6 measurements available rather than 3.
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Both the sum and hybrid methods were used are calculated using the set D measurements,

and the correction at each step of the iterative process averaged between the ‘up’ and ‘down’

faces of the box.

Using the face as a guide makes rotating the box about a particular cardinal axis depend

on the accuracy of the box’s construction rather than the skill of the user. The user-related

variation that remains after the rotation axis is fixed, that is, the degree of variation in

rotation speed is not relevant to the calibration procedure provided it is not so fast that the

gyroscope saturates. This will generally make the rotation much closer to the intended axis

as is reflected by the default settings (see Section 4.6.1) of 1� for the box SD and 5� for the

part B rotation axis error. Second, the fact that there are two measurements taking place for

each cardinal axis means that the e↵ect of the noise is averaged between the two (reducing

its e↵ect by a factor of
p
2). Additionally because these two measurements are on opposite

faces, specific force applies in the opposite direction to each thus (nearly) removing the e↵ect

of residual g-dependent error8. Finally because the rotations are in the same direction in

the table frame (and from the point of view of the user), they are in opposite directions in

the box frame, this removes part of the e↵ect of residual gyroscope bias. Finally, because in

our model the faces’ deviations from cubic are independent, the axis error of each rotation

is independent, so averaging the two e↵ectively makes this error’s e↵ect on the results
p
2

smaller.

4.5.2.6 Alternative numerical solutions

There are alternatives to coming up with an analytic solution to calculate cAg. There are

various numerical techniques that can determine minima of output functions using methods

without any specific knowledge of the underlying structure, these can be referred to generally

as global optimisation techniques. Some authors have already applied machine learning

algorithms to IMU calibration, such as in for example [161] see Section 2.5.1.3.

Note that, one reason why analytic solutions are preferable is that many applications for

low-cost inertial navigation would use low-cost embedded hardware and thus processing

power will be limited by battery life and the cost of high-performance processors. For this

type of platform, running machine learning algorithms every time the calibration procedure

is run becomes highly impractical, particularly if this means there is a significant delay

needed to calculate the estimates from the procedure.

A preliminary experiment was run using the simulated annealing method [181], which

demonstrated the limitations of this approach. The objective function which compensates

the IMU readings with the new estimates and re-integrates the dynamic part of the proce-

dure took around 3 seconds, and, as this is a nine-dimensional optimisation, this resulted

in it taking very long time to produce a final estimate. This makes it impractical for most

low-cost applications, and thus it is not presented here.

8This is only ‘nearly’ removed because the cube is not perfect.
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4.5.3 Sensitivity to user error

As the user calibration methods presented in this chapter rely on the user to carry out a

specific set of manoeuvres, it is reasonable to expect that these manoeuvres be simple enough

that they take no particular degree of skill to accomplish. It should also be expected that

the kind of errors that an average user is likely to make can either be compensated for or

detected so that the procedure can be repeated.

As mentioned in Section 4.2, some types of gross-user errors are not considered in the

simulation. However in the experiments presented in Chapter 5, both automatic detection

of the static periods, and manoeuvre error detection were implemented.

The nature of the rotations depicted in Figures 4.2 to 4.5, in combination with a ‘corner’

as in Figure 4.11 make certain types of procedural mistakes very unlikely, e.g. rotating the

box 330� in one of the manoeuvres in set D. The following possible mistakes are much more

likely, based on the author’s experience performing at least 50 of each of manoeuvre sets A,

B, C and D for experiments including those presented in Chapter 5.

The user collects the data from the faces in the ‘wrong order’ or forgets one.

Given that the one of the main current uses for low-cost MEMS accelerometers is tilt sensing

and the box is known to be cuboid, detecting ‘which face is down’ is trivially easy, as even

uncalibrated consumer-grade accelerometers can be used to estimate pitch and roll to within

10�. Production software could use this to fix data collected in the wrong order, although

the prototype software only flags these for manual fixing. If one of the face’s static data is

forgotten or invalid, it is still possible to compute (less accurate) estimates of b
a

, b
g

, Aa

and Gg. Equation 4.58 shows that measurements from a single pair of opposite faces is

su�cient to estimate b
a

(or b
g

), so if for example the orientation ‘XD’ were forgotten then

Equation 4.63 could be adapted to be cb
a

= 1

4

✓
gfYU + gfYD + gfZU + gfZD

◆
. Using this

cb
a

then the term,

✓
gfXU � gfXD

◆
in Equation 4.70, can be replaced by

✓
2

✓
gfXU �cb

a

◆◆
.

This can be shown by subtracting cb
a

from both sides of Equation 4.53, and comparing it

to Equation 4.62. This could actually be extended to two missing measurements making 4

the minimum set of measurements needed, as long as there was at least one from each pair

of opposite faces. An equivalent method can be used to estimate b
g

and Gg from less than

6 measurements. Forgetting one of the rotations for set B cannot be fixed, but the user can

easily be prompted to repeat that axis’ rotation. Set D also requires at least one rotation

around each axis, but as there are two of each in the manoeuvre set, a reduced accuracy

estimate can be made with some of measurements missing (or invalid).

The user gets the ‘nominal orientation’ wrong.

The specific ‘nominal orientations’ given in Section 4.3.3 are used in the simulation, but are

not needed by the algorithm. So getting it ‘wrong’ is actually impossible, all that matters

is having the correct face upwards. The algorithm using the set A measurements does not

use the heading of the box at all. Set C likewise requires that the 4 headings are 90� apart,

but does not need these all to be precisely lined up with the table frame. The dynamic

manoeuvre sets B and D only require the same orientation at the start and the end of the
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manoeuvres what that orientation is is irrelevant.

During set C, the user accidentally collects 3 or 5 di↵erent headings rather than 4, or rotates

in the wrong direction collecting them in the ‘wrong order’

This is surprisingly easy to do. Marking one corner of each face makes it less likely. Integrat-

ing the gyroscope output (or simply summing angular increments) between the end of one

static period and the start of the next makes it simple to distinguish 90� heading changes

from knocks on the table (< 5� computed attitude change) or 360� (e.g. set D) manoeuvres

this can in turn be used to detect extra measurements, which can be ignored, or whether

there are missing ones. The average of four 90� separated measurements in Equation 4.57

can be replaced by the average of two 180� ones if one of the four is missing, e.g. average of

f̂ZU1 and f̂ZU3 can be used if f̂ZU4 is missing without significantly a↵ecting the results.

Also, in Equation 4.56 and 4.57 it does not matter if the rotations are in the ‘wrong order’

because the heading rotations were conducted in the other direction.

During set B or D, the user rotates the cube in the ‘wrong direction’ or by the wrong amount

e.g. 270�.

This is very easy to fix if the sum of angular increments over the manoeuvre is approximately

-360� when 360� was expected then, rather than dividing by ‘2⇡’ in Equations 4.76 and/or

4.78, divide by ‘�2⇡’. Similarly the user is unlikely to accidentally replace the cube in the

corner between 90� orientations, so if the sum of angular increments about the rotation axis

can be rounded to the nearest ⇡

2

radians and that used instead of the 2⇡ in Equations 4.76

and/or 4.78. The initial IMU calibration should be good enough that the nearest 90� should

be the correct amount.

During set B or D, the user rotates the test-bed too fast.

If the box is rotated too quickly the sensor output will be clipped. This is easy to detect

but cannot be fixed. The manoeuvre could be marked as invalid, and the user prompted to

repeat it.

Accidentally triggering the static detection while holding the IMU in ones hands. This is

virtually impossible with proper thresholds in the stationarity detection algorithms.

The main remaining user-related error is failing to return the box to exactly the same

heading, i.e. getting it a few degrees wrong by failing to press the box back into the ‘corner’

properly. This is one of the errors included in the simulation, and as the results in Sections

4.8.1.3 and 4.8.1.5 show, this has only a small e↵ect on the calibration accuracy.

4.6 Simulation overview

This chapter uses Monte Carlo simulations to examine the di↵erence between the true cal-

ibration conditions and those assumed by the calibration algorithm on the accuracy of the

resulting calibration. This will answer questions like “How does the angular accuracy of the

box in which the sensors are mounted a↵ect the estimate of the accelerometer scale factor

and cross-coupling matrix?” or “How does the amount of time for which the sensors remain

static on each face of the cube e↵ect the accuracy of the gyroscope bias estimate?”. Some of
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these questions, like for instance the second of those posed above can be answered analyti-

cally. However, for some errors, particularly those that can only be determined dynamically,

there is no simple analytic formulation, so results of the Monte Carlo simulations will be

particularly instructive.

This section outlines the way in which the Monte Carlo simulation tests a particular set

of input parameters. Many sets of input parameters were tested in order to determine the

e↵ect of each parameter and how the di↵erent calibration algorithms and manoeuvre sets

compare to each other.

4.6.1 Input parameters

The calibration simulation’s input parameters are divided into those which a↵ect how well

the manoeuvres are carried out (how precisely, how accurately, over how much time), in

‘TESTspec’, and the raw performance of the IMU before calibration ‘IMUspec’. Some of

these specify a fixed value but most are used to generate the various randomly determined

errors that are described in the later sections and these input parameters are the standard

deviations (SDs) used to determine the various errors used in the simulation. Note, that the

default values referred to in the following list are those chosen as a starting point to which

the other errors are fixed as the inputs are varied one-by-one.

The file ‘TESTspec’ comprises the following information:

1. ‘ODR’ - the output data rate at which the inertial sensors are being sampled for the

procedure (default: 100Hz)

2. ‘WaitTime’ - The amount of time for which the IMU is left static on each face of the

cube during sets A and C (default: 10 sec)

3. ‘cube face error’ - the SD used to generate the angle by which each face of the cube

deviates (in both pitch and roll) from a perfect cube. See Figure 4.8 and Section 4.3.4.

4. ‘cube half length’ and ‘cube half length error’ the distance each face of the cube is

from the centre of the cube and by how much this varies (default: 0.05m ± 0.001m -

i.e. a 10cm cube with length errors of SD 1mm each end)

5. ‘table angle’ - The SD of the (two) angles by which the table deviates from perfectly

level (around East and North) (default: 1�), see Section 4.3.6.

6. ‘replacementHeadErrorSetA’, ‘replacementHeadErrorSetB’ , ‘replacementHeadErrorSetC’

and‘replacementHeadErrorSetD’- the SD used to generate the angle by which the

testbed is rotated from the heading it was intended to be replaced at each time it

replaced on the table. (defaults: 10� for set A, 0.5� for B, C and D, all converted to

radians). See Figure 4.9 and Section 4.3.5.

7. ‘setA position’, ‘setB position’, ‘setC position’ , ‘setD position’- the SD of the position

(in table frame) (x and y, the z is from ‘cubehalflengtherror’ and is fixed) error each

time the testbed is replaced on the table (defaults 20mm for set A 1mm for sets B, C

and D)

8. ‘TransTime’ - the time over which the sensors move to a new orientation during sets

A and C (default: 2 sec); this has no e↵ect on the results.
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9. ‘setB waittime’ - the time for which the testbed is held static between rotations in set

B (default: 2 sec); this has no e↵ect on the results.

10. ‘setB rotation time’ - the time taken for each rotation in set B and D (default: 10

sec). Note that too short a rotation time will cause the sensors to ‘clip’ as they exceed

their measurement range.

11. ‘setB midair position Error’ - the SD of the position error (in all 3 dimensions) from

the target point 10cm above the origin point at the start of each rotation (default:

1cm).

12. ‘setB midair start Att Error’ - the SD of the attitude error (in all 3 dimensions) from

the target orientation at the start of each rotation (default: 10�).

13. ‘setB midair axisError’ - the SD of the angular error (in elevation and azimuth) from

the target axis for each rotation (default: 5�).

14. ‘setB midair spinError’ - the SD of the angle by which the rotation over- or under-

shoots 360� (default: 10�).

The file ‘IMUspec’ comprises the following information:

1. ‘gyro range’ - The maximum output which the gyroscope can sense. Any measured

gyroscope output in excess of this is clipped, i.e. set to the maximum positive or

negative value (default: 250 �/s ⇡ 4.4 rad/s).

2. ‘gyro adcword’, ‘gyro sensitivity’, ‘gyro precision’ - These can all equivalently deter-

mine the quantization level, or the smallest amount of angular rate that can be sensed.

They are all defined as di↵erent sensors may specify di↵erent equivalent formulations

(default: word 16-bit, precision 1.3⇥ 10�4 rad/s).

3. ‘gyro biasSD’ - the SD used to generate the gyroscopes’ bias for each axis (default

5 �/s ⇡ 0.087 rad/s).

4. ‘gyro scalefactorSD’ - the SD used to generate the gyroscopes’ scale factor error on

each axis (default: 0.03 unitless).

5. ‘gyro crossaxisSD’ - the SD used to generate the gyroscopes’ cross coupling error on

each axis (default: 0.02 unitless).

6. ‘gyro nonlinearity’ - the SD used to generate the gyroscopes’ six non-linearity error

constants, two for each axis to separately apply to positive and negative angular rates

(default: 0.001 of full scale output). The error is assumed to be quadratic, so these

are the quadratic coe�cients.

7. ‘gyro gdepSD’ - the SD used to generate the gyroscopes’ g-dependent bias error on

each axis (0.1 �/s/g ⇡ 1.78e-04radm s�1).

8. ‘gyro noisepsd’ - the gyroscope sensor noise root-PSD. (default: 0.01 �/s/
p
Hz ⇡ 1.75⇥

10�4 rad/s /
p
Hz)

9. ‘accel range’ - The maximum output which the accelerometer can sense. Any measured

output in excess of this is clipped, i.e. set to the maximum positive or negative value.

(Default: 2g ⇡ 19.6ms�2)

10. ‘accel adcword’, ‘accel sensitivity’, ‘accel precision’ - These can all equivalently deter-

mine the quantization level, or the smallest amount of specific force that can be sensed.

They are all defined as di↵erent sensors may specify di↵erent equivalent formulations

(default: word 16-bit, precision 5.99⇥ 10�4 ms�2).
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11. ‘accel scalefactorSD’ - the SD used to generate the accelerometers’ scale factor error

on each axis (default: 0.03 unitless).

12. ‘accel nonlinearity’ - the SD used to generate the accelerometers’ six non-linearity

error constants, two for each axis to separately apply to positive and negative specific

forces (default: 0.005 of full scale output). The error is assumed to be quadratic, so

these are the quadratic coe�cients.

13. ‘accel crossaxisSD’ - the SD used to generate the accelerometers’ cross axis error on

each axis (default: 0.02 unitless).

14. ‘accel biasSDxy’ ‘accel biasSDz’ - the SD used to generate the accelerometers’ bias for

each axis (default: 60 milli-g ⇡ 0.588 ms�2). The Z-axis can be specified separately

as sometimes the IMU specifications di↵er between the axes.

15. ‘accel noisepsd’ - the accelerometer sensor noise root-PSD.

(default: 300 micro-g/
p
Hz ⇡ 0.0029ms�2/

p
Hz)

16. ‘orientationerrorSD pr’ ‘orientationerrorSD y’ ‘PCBorientationerrorSD pr’ ‘PCBorien-

tationerrorSD y’ these mounting errors determine the angle between the nominal box

frame and the actual IMU frame (Cs
b, see Sections 4.3.2 and 4.4.1). There are two

separate errors to allow arrays of IMUs to be modelled. See Figure 4.7 and Section

4.3.2 (defaults: 5�, 2�, 1� and 1�, respectively).

Note that, the calibration procedure assumes that all the errors generated from each SDs

are independent identically distributed random variables (IIDRVs) and are Gaussian.

4.6.2 Simulation process

The simulation process is presented in Figure 4.12. The accuracy with which the procedure

is carried out and specifications of the IMU are the simulation’s inputs (TESTspec and

IMUspec from Section 4.6.1). First, 500 full sets of errors are generated from the input

SDs for the simulation trajectory (TESTerrors) and the IMU (IMUerrors). The IMUerrors

parameter contains all the fixed, but unknown to the procedure, values which are used in

the IMU model both those that are estimated directly, e.g. b
g

, or indirectly, e.g. Cs
b, and

those that are not estimated, e.g. non-linearity parameters. The random errors, i.e. w
a

and w
g

, are not stored in IMUerrors but generated randomly when the measured IMU

readings are generated. The TESTerrors parameter contains all the true values for the

trajectory generation, e.g. the table angles and each heading replacement error, this stores

all the information required to generate the true trajectory, and thus also all the information

needed to generate the true inertial readings, fb

ib

and !b

ib

. Then the Monte Carlo part of the

procedure starts, in the case of the results presented here there are 500 repetitions carried

out.

This repeating part begins by using the ith set of TESTerrors to generate the trajectory

of an imperfectly carried out calibration procedure. This trajectory includes an imperfect

version of the set A, B, C and D manoeuvres. This trajectory is used to determine what

the output of a perfect IMU would be if it underwent this trajectory. Then the ith set of

IMUerrors are used to generate the output that the particular IMU being calibrated would

use, using the error models in Section 4.4.1. This static part of this measured IMU output
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TESTspec IMUspec

Generate 500 sets 
of TESTerrors

Generate 500 sets 
of IMUerrors

Generate true 
trajectory

Generate true IMU 
readings

Generate measured 
IMU readings

Estimate IMU errors 
with static calibration

Estimate Ag with 
dynamic calibration

Save Error estimates 
in IMUerrorEST

Compare IMUerrors 
with IMUerrorEST

Repeat

Have 500 
iterations been 

completed?

Yes

No

Figure 4.12: Flow Diagram of the Monte Carlo simulation algorithm. Inputs in yellow and

Monte Carlo part in blue.

is then used by the algorithms described in Section 4.5.1, to calculate a cb
a

, cb
g

, cAa and
cGg estimate. Then the output of the advanced (set C) static procedure is used to correct

the IMU output, using the method described in Section 4.4.2. This corrected output is

then used in the dynamic part of output using the algorithms described in Section 4.5.2 to

calculate various estimates of cAg. This is then saved as the ith entry of IMUerrorEST.

Once this has been repeated 500 times, the estimates stored in IMUerrorEST are compared

with the true values of the estimated IMU errors which are stored in IMUerrors in the

manner which will be described in Section 4.7 to calculate the accuracy of each of the

various techniques for calibration. The results of this comparison are the output of the

simulation.

4.7 Calculation of calibration accuracy

In order to determine the accuracy of the calibration consistently with di↵erent input values

a comparison method is needed. The metrics that matter for post-calibration navigation

performance are the errors remaining after calibration, also known as residual errors. In a

physical test these values cannot be known, but the purpose of running simulations is so

that these true values are known.
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Most navigation applications of low-cost IMUs would involve integrating them in a Kalman

filter architecture and because a KF describes the errors only in terms of second moments

(variances), then higher order statistics concerning the residual error from the calibration

process are not relevant. This is how the KF based experiments presented in Chapter

3 considered the sensors, so this is the level on which a comparison with those results

need to be made, and thus information on third or fourth statistical moments in will not

be presented the results in this chapter, noting that the simulation generates errors from

Gaussian distributions.

For each run in the Monte Carlo simulation the ideal, or target, outputs of the calibration

are described by Equations 4.17, 4.20, 4.24, 4.30 and 4.25, including, where applicable,

compensating for the mounting error of the sensors within the box (Cs
b). Then the simplest

comparison we can make is the di↵erence between the calibration value (for each particular

error and repeat) and the target value. Then the root-mean-squared (RMS) is taken over

each axis or matrix element and over all the Monte Carlo repeats as a measure of how

e↵ective the calibration is. Mean values were also computed for debugging purposes, but

are not presented here. RMS is used because it takes into account any systematic over- or

under-estimation of the calibration procedure which would not be reflected in the SD.

It is possible that there might be a di↵erence in the accuracy of the calibration for, e.g. the

biases on the various axes, this was checked for during debugging but is not presented as it

is not present. In a real system, di↵erences in the noise density for the sensor axes would

result in slightly di↵erent levels of accuracy, but in the simulation presented here there is no

di↵erence, and as the procedure is entirely symmetric there is no reason for any asymmetric

results. So, rather than examining X- Y- and Z- axis results as 3 separate lines on the

figures each the RMS over 500 data points, we examine the RMS over all 3 axes together

so the RMS is calculated over 1500 data points, as the procedure and inputs are symmetric

there is no reason to expect that any additional insight will be gained by examining them

separately, so a single less-noisy line is shown for each bias-estimation technique. The axes

are homogeneous as all the procedure uses the same number of measurements with each

axis vertical, thus the estimates of each axis are equally a↵ected by gravity.

The quality of the estimates for the cAb
a ,
cAb
g anddGb

g matrices were measured as follows. In

an analogous way to that of the bias, the residual errors (i.e. the di↵erence between target

and estimated values) for every Monte Carlo run and all nine entries (weighted equally)

were used to calculate one RMS over the 4500 points (9 entries ⇥ 500 runs). This is the

simplest viable scheme, and is used to keep consistency across all the error types.

This is a sensible method of assessing cGg where all the entries are IIDRVs, and the term

which cancels the e↵ect of g-dependent error in Equation 4.29 is dGb
g �Gs

gC
s
b ⇡ 0.

For cAb
a and cAb

g the results of the diagonal and o↵-diagonal elements could have been

examined separately, particularly as they are specified separately, but in this Chapter the

overall measurement is used instead. Also note that the alignment error cancels in Equation

4.29 as cAb
g

�1

As
gC

s
b ⇡ I3 so the di↵erence (cAb

g �As
gC

s
b) is an approximation of the residual

error not the exact value.

If no calibration were carried out, the assumption would be that cb
a

andcb
g

were
h
0 0 0

i
T

,
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that cAa and cAg were I3 and the cGg matrix was 03, as these are the average (expected)

values. Thus, the starting calibration for each simulation, shown by the green line in the

figures below, was calculated by comparing these expected values with the actual errors

generated. This shows the pre-calibration RMS error in a consistent manner with the error

estimates above. The green line is not totally flat in the graphs due to it only being a finite

sample, generated from the input SD (which is illustrated by a dotted green line). This is

needed to compare the results of the various calibration procedures with no calibration in a

consistent manner, particularly cAb
g and cAb

a as mentioned above.

4.8 Simulation results

This section presents the results of the Monte Carlo simulations described in the preceding

section.

The approach that is taken is to test a set of default input parameters and vary the other

input parameters one-by-one. The default value for each input parameter is listed in Sec-

tion 4.6.1, the intention being that the default IMUspec represents a typical MEMS IMU

(represented by the Invensense MPU-9250 [23]) and the ‘testSPEC’ defaults a realistic level

of precision in the calibration procedure.

It is important to note that this approach can only give a snapshot of the e↵ect of each

error, in the sense that varying a single particular input parameter will only show its relative

significance relative to when the others are at default level. However, if reducing the error

tested below default level results in an improvement in accuracy that input is a significant

source of error. Conversely, if the error has to be raised by an order of magnitude or more

to have a visible e↵ect on the calibration accuracy then that error is not a significant source

of error at default level.

When considering the results of this chapter, it is important to note that the simulation and

the theoretical idea of pre-calibrating the sensors are based on some modelling assumptions.

The calibration procedure estimates constant and first-order errors, and some second order

errors are also included in the simulation’s model, but real sensors exhibit even higher order

errors even though these are relatively small in relation to the 1st- and 2nd-order sources

(see Section 2.2.5). While these are small e↵ects for uncalibrated low-cost MEMS, if the

constant (bias) and linear (scale factor and cross coupling) errors are very well calibrated

then the higher-order errors will be more relatively more important. However, a more

important assumption is that the systematic error sources coe�cients are constant in time.

This implies that the coe�cient variation during the calibration and between the time of

calibration and use is small enough that its e↵ect can be ignored. Despite it being known

that temperature a↵ects both biases and scale factor errors, and that they also vary in-run.

The validity of these assumptions will depend on the size of the target residual errors. That

is, when the residual errors in the constant and linear terms become very small, limits of

the domain of validity of both these modelling assumptions are reached. This is most likely

to e↵ect cb
g

, which as will be shown in e.g. Figure 4.13b is frequently estimated to better

a tactical level of accuracy, at this level the fixed coe�cients assumption is unlikely to be
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valid, at least for more than a few minutes. Thus the validity of the modelling assumptions

for b
g

becomes the limiting factor for the accuracy of cb
g

rather than the procedure or

pre-calibration IMU errors.

The graphs presented in this section, Figures 4.13 to 4.31, represent the results in a similar

manner. Each sub-graph represents one of the sensor errors estimated in the calibration

procedure. The X-axis shows the input parameter that is being varied and the Y-axis is the

measure of the quality of the estimate, i.e. RMS of the residual error (as described in Section

4.7). The green lines represent the errors before the calibration procedure is applied, i.e. the

un-calibrated errors. The red lines represent the simpler techniques, i.e. those using the set

A or B data. The blue lines represent the more complex techniques, i.e. the set C or D data.

For cb
a

and cb
g

the Technique 1 results are represented by a solid line, and the Technique 2

results by a dotted line. In the cAb
a anddGb

g results the 7-position results are represented with

a dotted line. In the cAb
g results the di↵erent algorithms sum-method, integrated method and

hybrid method are represented by di↵erent lines, with di↵erent data-point markers allowing

them to be compared.

Note that, the default inputs, which were defined in Section 4.6.1, are shown in each of this

section’s graphs by a black vertical dotted line. The solid horizontal black lines represent

tactical IMU performance, defined as the minimum values tested in Chapter 3; see Table 3.1.

The horizontal magenta lines represent the target values that are the results of Chapter 3,

1 �/s of gyroscope bias, medium accelerometer first-order errors and low gyroscope first-order

errors, see Table 3.3.

Note that, if the experiments were run with markedly di↵erent default settings, such as

for example starting with a tactical level IMU, the relative e↵ects of the input parameters

would be di↵erent.

4.8.1 The e↵ect of the calibration procedure’s accuracy

There are a large number of ways in which the calibration procedure could deviate from the

being perfectly carried out. This section presents the e↵ect of varying the input parameters,

which describe how well the calibration procedure has been carried out, one-by-one.

4.8.1.1 Cube accuracy

The first result presented here, in Figure 4.13, is for the e↵ect of the angular precision of

manufacture of the calibration cube in which the IMU is mounted. This is one of the most

significant error sources, and a↵ects all the estimated errors, so all six are shown. This error

is simulated by the parameter cube face error (see Section 4.6.1) which is the SD used to

generate the two face errors for each face in each Monte Carlo run as described in Section

4.3.4 and Figure 4.8.

In order to examine the e↵ect of this error a wide range of angular precisions were tested

ranging from 0.01� to 10�. This range of inputs is clearly unrealistic, although they are

simulated to examine the e↵ect of taking the accuracy to extremes. A box where the sides
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(a) Accelerometer bias (b) Gyroscope bias

(c) Accelerometer alignment error (d) Gyroscope g-dependent error

(e) Gyroscope alignment error (f) Table angle estimate error

Figure 4.13: The e↵ect of the cube’s angular precision on the residual errors post-calibration.
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deviate from cubic by a SD of 10 degrees would not even look very much like a cube, more

something a 6 year old might make from cardboard and sellotape. Equally if calibration

cubes with an angular accuracy of 0.01� needed to be made for each IMU, it would probably

be cheaper just to use standard factory calibration techniques. The default level chosen of

1� SD is not a particularly challenging level of angular accuracy, and does not represent

high-cost precision manufacturing, rather the level of accuracy the IMU’s housing would

have without making any additional e↵ort to make it accurate. Also note that, while the

assumption of the simulation is that the cube deviations-from-parallel on each face are

independent identically distributed Gaussian random variables, the likelihood is that most

manufacturing techniques would create correlated cube-errors across a batch of cubes and/or

between faces on one cube.

The level of cube precision strongly a↵ects the accelerometer calibration both the bias (Fig-

ure 4.13a) and the alignment matrix (Figure 4.13c). For the simple static calibration method

(6-position set A) the proportional improvement with decreasing bias remains until the ta-

ble’s deviation from level (1� SD) becomes more significant, for the more advanced method

(24-position set C) the proportional improvement continues to hold although the improve-

ment starts to reduce and is slightly under 10⇥ between 0.1 and 0.01�. An explanation for

this phenomena is as follows, the calibration technique assumes that the cube is cubic, and

so assumes that the specific force in the nominal orientation frame (see Section 4.3.3) is
gfZU =

h
0 0 g

i
T

. This assumed value is used to estimate the accelerometer biases, b
a

,

and alignment matrix Aa, using Equations 4.70 and 4.63 (for Technique 1). However, if we

include only the error in this assumption due to the relevant face error frame (see Section

4.3.4)

fZU =

2

64
sin(�
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) cos(�
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where, �
ZU

and �
ZU

are the two angles (pitch and roll) by which the cube face ‘ZU’ deviates

from cubic. Of course, both � and � for each of the six faces are independent identically

distributed random variables (IIDRV), so for example Equation 4.63 becomes

cb
a

=
1

6

0

B@

2

64
cos(�

XU

) cos(�
XU

)g

cos(�
XU

) sin(�
XU

)g

sin(�
XU

) cos(�
XU

)g

3

75+ b
a

+

2

64
� cos(�

XD

) cos(�
XD

)g

� cos(�
XD

) sin(�
XD

)g

� sin(�
XD

) cos(�
XD

)g

3

75+ b
a

+

2

64
sin(�

YU

) cos(�
YU

)g

cos(�
YU

) cos(�
YU

)g

cos(�
YU

) sin(�
YU

)g

3

75+ b
a

+

2

64
� sin(�

YD

) cos(�
YD

)g

� cos(�
YD

) cos(�
YD

)g

� cos(�
YD

) sin(�
YD

)g

3

75+ b
a

+

2

64
sin(�

ZU

) cos(�
ZU

)g

cos(�
ZU

) sin(�
ZU

)g

cos(�
ZU

) cos(�
ZU

)g

3

75+ b
a

+

2

64
� sin(�

ZD

) cos(�
ZD

)g

� cos(�
ZD

) sin(�
ZD

)g

� cos(�
ZD

) cos(�
ZD

)g

3

75+ b
a

1

CA . (4.82)

Thus the error in the estimate of the bias, due to cube accuracy alone, becomes
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so each component of the error is a re-arrangement of the following, when each angle is re-
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placed with a numbered angle ✓
i

and the standard small-angle approximations are applied,

cba � ba =
g
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For the Technique 2 bias estimation method, using only one pair of readings to estimate

bias for each axis, this becomes,
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A comparison between Equations 4.83 and 4.84 shows the Technique 2 method of calculating
cb
a

is much less sensitive to the misalignment of the cube’s faces. This can be seen in Figure

4.13a where the Technique 2 method considerably outperforms the normal (Technique 1)

method for most of the values. However, when the cube face error SD is 0.25� or lower the

Technique 2 method performs worse. This is because it is more sensitive to most other error

sources, this will be discussed in Section 4.8.1.4.

The statically determined gyroscope errors cb
g

and dGb
g are shown in Figures 4.13b and

4.13d, respectively. The estimation of gyroscope bias is much better than the minimum

(1 �/s) standard required (magenta line) for stable Kalman filter integration (see Section

3.4.1), and for smaller cube face errors exceeds tactical performance (solid black line). cb
g

shows a direct improvement with the precision of the cube in a similar manner to that of

accelerometer bias. However, this improvement is very small in comparison with the size

of the starting error, so much that a log-scale is required to see it. This is simply because,

determining the bias requires removing the component of the angular rate output due to

specific force (i.e. Gg), which unsurprisingly is small in comparison with the size of the bias
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in a gyroscope, as the sensor is designed to minimise this e↵ect, in contrast an accelerometer

which is designed to be sensitive to specific force, so its bias is small in comparison to its

sensitivity to specific force.

In the same way as discussed previously for the accelerometer bias the improvement with

cube precision for the simpler (set A) method plateaus once the table’s error from level

(see Section 4.8.1.2) becomes more significant than that from the cube, and for the more

complex (set C) method the improvement continues but plateaus at a greater angle than

the accelerometer bias. An explanation for this is that the sensor noise for the gyroscope is

becoming the dominant source of error, this will be discussed below, for example in Equation

4.100. For a similar reason the Technique 2 bias estimation technique is less accurate than

Technique 1, due to its increased sensitivity to other sensor errors such as noise, which is a

more significant error source for the gyroscope calibration, see Section 4.8.1.4.

In the same way there is also a direct improvement with cube precision in the gyroscope

g-dependent error calibration. However, as can be seen in Figure 4.13d, the improvement

levels o↵ at a greater angular error than for the other statically determined errors. As the

magnitude of the error being determined is small, the sensor noise becomes more significant

than the error from the calibration cube imprecision at a greater cube angle, than cb
g

. This

is because the elements of dGb
g come from only two opposite faces, where the cb

g

uses all six

faces, so there is ⇡ p
3 more sensor noise on dGb

g .

It should be noted that the di↵erence between the algorithms using the six-position (set

A) and 24-position (set C) manoeuvres is mostly due to better compensation for the table

angle, see Equation 4.56 and 4.57, but there is also di↵erence in their compensation for

noise. So most of the improvement seen in Figure 4.13 is due to the compensation for the

1� SD table angle. However, the set A manoeuvres have only a single static measurement

on each face, the set C manoeuvres have four so the static averaging time is 4⇥ longer so

the remaining e↵ect of the noise on set C is half as great ( 1p
4

) as for set A.

For the dynamic part of the calibration procedure, the cube’s accuracy is also important.

Its e↵ect is shown in Figure 4.13e. For the less advanced procedure, set B, where the cube

is rotated mid-air there is no direct e↵ect on the manoeuvres’ accuracy from the cube’s

accuracy. The indirect e↵ects of the cube’s accuracy, i.e. better estimation of the gyroscope

biases and g-dependent error, do not result in substantial improvement in cAb
g . Note that

the set C advanced static method results are used in the computation of cAb
g so the indirect

improvement continues throughout the range of values tested, but its e↵ect is insignificant

in comparison with the other errors.

In contrast, in the set D advanced dynamic calibration method the cube’s accuracy has a

direct e↵ect in addition to the indirect improvement mentioned above because the accuracy

of the axis of rotation in each rotation (of the six) is determined by how accurate the cube is.

This means that the improvement continues (almost) linearly with improving cube accuracy

throughout the range tested. It can be seen that the precision required from for a stable

KF integration (see Chapter 3) of low level cAg errors (see Table 3.3) is reached at around

a cube angle of 0.25� This shows, in combination with Section 4.8.1.7, that the error in the

rotation axis is the most significant source of error at default levels.
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As can be seen in Figure 4.13e, the hybrid methods performs similarly with set A or C

manoeuvres, as it reaches the limit of its accuracy which is determined by the IMU input

parameters (see Section 4.8.2.3)

4.8.1.2 Table levelling error

In Figure 4.14 the e↵ect of varying the SD of table’s angle-from-level (hereafter table angle)

is shown. As has been presented earlier there are three techniques used in the static part of

the user calibration procedure here. These are the simple 6-position (set A), the advanced

24-position (set C) and a halfway-house 7-position, which applies only to the Aa and Gg

matrices. As can be seen by comparing Equations 4.55 and 4.81, there is considerable

similarity between the way that this table angle and the previously referred to cube angle

a↵ect the main assumption of the static calibration procedure, namely that the specific force

due to gravity acts only vertically. Note that the default settings for these two error sources

are both 1� SD, so at default level they should be approximately equally significant. Note

also, the extreme values tested do not reflect a realistic range, a table which deviates from

level by 10� SD is very clearly not level, and even a cheap spirit level should allow a surface

level to within a degree to be found.

The e↵ect of table angle on the statically determined errors is shown in Figures 4.14a, 4.14b,

4.14c and 4.14d. The simpler 6-position procedure is strongly a↵ected by the table angle,

showing a direct proportional improvement with smaller table angles until it plateaus when

the cube angle becomes more significant. The advanced 24-position procedure on other

hand appears completely una↵ected by the table angle throughout the range tested, while

the correction is not perfect it does reduce the error to much smaller than, for example, that

from the cube error.

The fact that the 7-position method is not significantly more accurate than the 6-position

method, despite the additional information, can be explained by how it di↵ers from the

24-position method.

In the 24-position method, expected (nominal orientation frame) specific force after aver-

aging over the 4 headings on each face is

2

64
0

0

cos(↵) cos(�)g

3

75, as seen in Equation 4.56. The

algorithm then uses the estimated table angles to produce,

1
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2
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0

cos(↵) cos(�)g

3

75 ⇡

2

64
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75 . (4.85)

On the other hand the 7-position method, takes one reading on each face and one pair of

measurements at 180� heading di↵erence to estimate the two table angles. This table angle

estimate is less accurate than the 24-position method, which uses 12 pairs rather than one,

but at default settings this means only that it is 95% accurate at estimating the table angle,

rather than 98%, as can be seen in Figure 4.14f as ‘1 pair’ and ‘12 pair’. Even neglecting

this estimation error and assuming b↵ = ↵, b� = �, there is only one heading recorded for
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(a) Accelerometer bias (b) Gyroscope bias

(c) Accelerometer alignment error (d) Gyroscope g-dependent error

(e) Gyroscope alignment error (f) Table angle estimate error

Figure 4.14: The e↵ect of the table’s deviation from level on the residual errors post-

calibration.



134 Chapter 4. User-conducted Calibration

each face, so the equivalent of Equation 4.85 is, without loss of generality (w.l.o.g.)
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Note also that this is almost the same as the six-position equivalent where no table angle

estimate is made
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As Equations 4.86 and 4.87 are almost equally bad approximations of
h
0 0 g

i
T

, is why

the 7 position method has essentially identical performance to the 6-position method.

The table angle has no significant e↵ect on the accuracy of the dynamic calibration can be

seen in Figure 4.14e. The dynamic procedure does not assume that the table is level (only

that it is flat) so the table becoming less level has no direct e↵ect on the dynamic calibration

procedure. Additionally because both the set B and set D procedures use the set C static

measurements, which were shown above not to be a↵ected by the table angle so there is no

indirect e↵ect on cAb
g , via the compensation for other systematic errors. This explains the

result in Figure 4.14e.

4.8.1.3 Replacement error in heading for the static part of the calibration

procedure (sets A and C)

This section presents the results for varying the accuracy with which the calibration cube

is placed on the table for each measurement taken during the static part of the calibration

procedure. This is represented by a heading error, describing an accidental extra rotation

about the table’s z-axis. This is described in Section 4.3.5. This error changes the way that

the table angles of the previous section a↵ect the IMU.

As the set A simple calibration method completely ignores the table angles it would be

surprising if this had any e↵ect. However, the set C advanced static calibration method

relies on the 90� heading di↵erences to get rid of the table angle e↵ects, one might expect

that this method would rely on the heading replacement errors being relatively small.

Figure 4.15 shows the large range of replacement error SDs tested from 0.05 to 45�, this

represents range from ‘more accurate than realistically possible’ to ‘barely paying any at-

tention’. The set A technique is unsurprisingly una↵ected, randomising the heading even

appears to slightly help cb
a

, by randomising the e↵ect of the table errors. The fact that

this is slightly helpful indicates that the choice of nominal orientations (see Section 4.3.3)

are not optimal as putting a large random heading error reduces the size of the error. The

implication is that an optimally selected set of six (of the 24 used for set C) orientations

would be better than the arbitrarily chosen six in set A.

For the more advanced techniques, as might be expected the accuracy of the table angle

estimates su↵ers with even a few degrees of heading replacement error (see Figure 4.15f and
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(a) Accelerometer bias (b) Gyroscope bias

(c) Accelerometer alignment error (d) Gyroscope g-dependent error

(e) Gyroscope alignment error (f) Table angle estimate error

Figure 4.15: The e↵ect of the accuracy of the replacement during the static part of the

calibration on the residual errors post-calibration.
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Replacement heading

error sets A & C 0.05� 45�

Accelerometer Bias ms�2

Set A T1 RMS 0.0957 0.0890

Set C T1 RMS 0.0569 0.0605

Set A T2 RMS 0.0254 0.0255

Set C T2 RMS 0.0221 0.0222

Gyroscope Bias rad/s

Set A T1 RMS 4.51e-5 4.49e-5

Set C T1 RMS 2.37e-5 2.50e-5

Set A T2 RMS 6.80e-5 7.16e-5

Set C T2 RMS 3.90e-5 4.26e-5

Gyro. G-dep. Bias �/s / g

Set A RMS 0.004479 0.004531

7 pos. RMS 0.004481 0.004532

Set C RMS 0.002987 0.003117

Accel. cAa matrix unitless

Set A RMS 0.01412 0.01403

7 pos. RMS 0.01412 0.01404

Set C RMS 0.009747 0.0108

Table angle estimate �

1-pair RMS 0.06158 0.5256

12-pairs RMS 0.03704 0.3117

Table 4.1: Selected numerical results of varying the replacement error.

Table 4.1), the 1-pair estimate used for the 7-position calibration technique, unsurprisingly

more so than the average of 12-pairs method used for the set C techniques. However,

counter-intuitively, this doesn’t appear to seriously a↵ect the accuracy of the cb
a

, cb
g

, cAb
a or

dGb
g using the set C method. The values at the extreme ends of the range tested are in Table

4.1. As can be seen the loss of accuracy is very small despite the vast range in replacement

error. In Section 4.8.1.2 the improvement from the advanced technique was stated to be due

more to the better cancellation of non-vertical measured components rather than the use of

the table angle estimates. The following paragraphs explain this and also the cancellation’s

apparent robustness to high replacement errors.

Consider the specific force measurements in the nominal box frame, that is where all the

face errors/cube angles are zero.

Consider also the 4 heading orientations of a particular side, for this example w.l.o.g. ZU.

The orientations are ZU1, ZU2, ZU3 and ZU4, see Figure 4.4. The table error angles ↵

and � make the true specific force in the table frame (see Section 4.3.6,

fZU =

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75 . (4.88)
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Additionally, if the matrix Rh represents rotation about the table-frame z-axis by h degrees,

i.e. a reduced form of Equation 4.1,

Rh = Ch
t =

2

64
cos(h) sin(h) 0

� sin(h) cos(h) 0

0 0 1

3

75 (4.89)

Then allow the IID heading replacement errors to be h
1

, . . . , h
4

, to define the measurement

used (see Equation 4.55 and 4.56), the average over the 4 set C measurements,

fZU =
1

4

�
fZU1 + fZU2 + fZU3 + fZU4

�

=
1

4

�
Rh1f

ZU1 +R
(90�

+h2)
fZU1 +R

(180�
+h3)

fZU1 +R
(270�

+h4)
fZU1

�

=
1

4

0

B@

2

64
cos(h

1

) sin(h
1

) 0

� sin(h
1

) cos(h
1

) 0

0 0 1

3

75+

2

64
cos(90� + h

2

) sin(90� + h
2

) 0

� sin(90� + h
2

) cos(90� + h
2

) 0

0 0 1

3

75 +

2

64
cos(180� + h

3

) sin(180� + h
3

) 0

� sin(180� + h
3

) cos(180� + h
3

) 0

0 0 1

3

75+

2

64
cos(270� + h

4

) sin(270� + h
4

) 0

� sin(270� + h
4

) cos(270� + h
4

) 0

0 0 1

3

75

1

CAfZU

(4.90)

As,

sin(h
1

) + sin(90� + h
2

) + sin(180� + h
3

) + sin(270� + h
4

)

=sin(h1)+sin(90

�
) cos(h2)+cos(90

�
) sin(h2)+sin(180

�
) cos(h3)+cos(180

�
) sin(h3)+sin(270

�
) cos(h4)+cos(270

�
) sin(h4)

= sin(h
1

) + cos(h
2

)� sin(h
3

)� cos(h
4

)

⇡ h
1

� h3
1

6
+ . . .+ 1� h2

2

2
+ . . .� h

3

+
h3
3

6
� . . .� 1 +

h2
4

2
� . . . ⇡ h

1

� h
3

(4.91)

cos(h
1

) + cos(90� + h
2

) + cos(180� + h
3

) + cos(270� + h
4

)

=cos(h1)+cos(90

�
) cos(h2)�sin(90

�
) sin(h2)+cos(180

�
) cos(h3)�sin(180

�
) sin(h4)+cos(270

�
) cos(h4)�sin(270

�
) sin(h4)

= cos(h
1

)� sin(h
2

)� cos(h
3

) + sin(h
4

) ⇡ h
4

� h
2

(4.92)

By substituting these into 4.90,

fZU =
1

4

2

64
cos(h1)�sin(h2)�cos(h3)+sin(h4) sin(h1)+cos(h2)�sin(h3)�cos(h4) 0

� sin(h1)�cos(h2)+sin(h3)+cos(h4) cos(h1)�sin(h2)�cos(h3)+sin(h4) 0

0 0 4

3

75

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75

⇡1

4

2

64
h
1

� h
3

h
2

� h
4

0

�h
2

+ h
4

h
1

� h
3

0

0 0 4

3

75

2

64
sin(↵) cos(�)g

cos(↵) sin(�)g

cos(↵) cos(�)g

3

75

=

2

64
0

0

cos(↵) cos(�)g

3

75

| {z }
expected result

+
1

4

2

64
h
1

� h
3

�h
2

+ h
4

0

3

75 sin(↵) cos(�)g +
1

4

2

64
h
2

� h
4

h
1

� h
3

0

3

75 cos(↵) sin(�)g

| {z }
Error due to heading replacement

(4.93)
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In the Technique 2 method only the third (‘z’) column of the ZU or ZD is used and so there

is no e↵ect of the heading replacement error on the Technique 2 bias estimation method.

For the same reason the diagonal entries of cGg and cAa are also completely una↵ected by

the heading replacement error.

The Technique 1 bias estimation method uses the mean of the six faces’ measurements.

Thus if "
ba|hi

is the error in the measurement due to the heading replacement error. That

is, the error in Equation 4.63 coming from the second part of Equation 4.93. Note that, as

there are 24 replacements, there are 24 IID h
i

’s.

"
ba|hi

=
1

6

0

B@
1

4

2

64
h
1

� h
3

+ . . . (8 terms)

�h
2

+ h
4

� . . . (8 terms)

h
5

� h
7

+ . . . (8 terms)

3

75 sin(↵) cos(�)g

+
1

4

2

64
h
2

� h
4

+ . . . (8 terms)

h
1

� h
3

+ . . . (8 terms)

h
6

� h
8

+ . . . (8 terms)

3

75 cos(↵) sin(�)g

1

CA (4.94)

So, if h
i

⇠ (0,�
h

) then for all rows,

Var
⇣
"
ba|hi

⌘
=

✓
sin(↵) cos(�)g

24

◆
2

8�
h

2 +

✓
cos(↵) sin(�)g

24

◆
2

8�
h

2

=

 
g
q

sin2(↵) cos2(�) + cos2(↵) sin2(�)

p
2

12
�
h

!
2

(4.95)

If ↵ and � are taken to be 1� ⇡ 0.0175rad (default SD so correct order of magnitude), then

SD
⇣
"
ba|hi

⌘
= g
q

sin2(↵) cos2(�) + cos2(↵) sin2(�)

p
2

12
�
h

= 0.0247
g
p
2

12
�
h

= 0.0285 �
h

ms�2 (4.96)

Note that �
h

must be expressed in radians for the above to work so for 5� ⇡ 0.0873rad, then

SD
⇣
"
ba|hi

⌘
= 0.0025ms�2, compared to the total RMS error for accelerometer bias seen in

Figure 4.15a of around 0.05ms�2; this is clearly not a significant error source.

As this error source only applies to the static part of the procedure, any e↵ect on the

dynamically determined cAb
g term is indirect, and because the e↵ect of this error is so small,

its indirect e↵ect is not visible in Figure 4.15e.

4.8.1.4 Static averaging time

Waiting longer on each face of the cube, gives a longer averaging time, which reduces the

e↵ect of the sensor noise on the eventual results, for both the specific force and angular

rate. In Figure 4.16, results with a wide range of averaging times from 0.05 to 60 seconds

are presented. However, the extreme values are not realistic because only waiting for very

small amounts of time is not practical, and very long waiting times would mean that the

modelling assumption that the systematic errors are fixed over the whole experiment may

not be valid (see Chapter 5). A more realistic range would be 1 to 10 seconds, but the

greater range is presented because this is more instructive of the error behaviour.
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(a) Accelerometer bias (b) Gyroscope bias

(c) Accelerometer alignment error (d) Gyroscope g-dependent error

(e) Gyroscope alignment error (f) Table angle estimate error

Figure 4.16: The e↵ect of the static averaging time on the residual errors post-calibration.
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The assumption that over a su�cient time interval the noise term is insignificant and may

be ignored that takes Equation 4.47 to 4.49 and 4.48 to 4.50. That is, assuming the average

of the noise over the sampling interval for both the accelerometer w
a

⇡ 0 and gyroscope

w
g

⇡ 0. This approximation can be expanded as follows. The average of the noise over the

sampling interval,

w
a

=
1

n

nX

i=1

w
a

(i) =)

E(w
a

) =
1

n

✓
n⇠⇠⇠⇠:0
E(w

a

)

◆
= 0

and E(w
a

2) =
�2
wa

n

=) w
a

⇠ N

 
0,

✓
�
wap
n

◆
2

!
(4.97)

where �
wa is the standard deviation of the noise process at each of the n epochs. Given

that these two quantities are determined from the noise PSD (S
a

), the output data rate (R,

Hz) and the averaging time (T
av

, sec). The SD of the e↵ect of the average noise (�
wa) is

�
wa =

�
wap
n

=

p
S
a

p
Rp

T
av

R
=

p
S
ap

T
av

(4.98)

For default settings, i.e. 5 second averaging, this becomes

�
wa =

p
S
ap

T
av

=
300 µg/

p
Hzp

(5 sec)
=

0.0029 ms�2/
p
Hzp

(5 sec)
= 0.0013ms�2 (4.99)

�
wg =

p
S
gp

T
av

=
0.01 �/s/

p
Hzp

(5 sec)
=

1.7⇥ 10�4 rad/
p
Hzp

(5 sec)
= 7.8⇥ 10�5 rad/s = 0.0045 �/s

(4.100)

Comparing the number from Equation 4.99 with the axes in Figures 4.16a and 4.16c it

becomes clear why the contribution of the noise these errors is insignificant.

Consider also that for the measurements of bias in set A, 6 measurements are averaged for

Technique 1 and 2 measurements in the Technique 2 algorithm, and for the set C measure-

ments each of the 3 bias estimates in Technique 1 is the average of 24 measurements or 8

for Technique 2. So the actual contribution to the bias is between
p
2 ⇡ 1.4 and

p
24 ⇡ 4.9

times smaller than calculated in Equation 4.99. For a similar reason the cAa and cGg are

also either
p
2 ⇡ 1.4 or

p
8 ⇡ 2.8 times less a↵ected by the noise than calculated. Similarly

the table angles which are estimated using accelerometer measurements are barely a↵ected

by the averaging time (Figure 4.16f).

For the gyroscope static estimates partly because the e↵ect of the cube inaccuracy is so much

(numerically) lower, the contribution to the overall error from the noise is more significant.

The value calculated in Equation 4.100 is much closer to the residual error seen in Figures

4.16b and 4.16d. Thus reducing or lengthening the averaging time has more of an e↵ect,

even considering the reduction due to averaging several measurements discussed above.

This input only e↵ects the static part of the calibration procedure, so any e↵ect on the

dynamically determined cAg is indirect. As the direct e↵ect is very small, there is no visible

indirect e↵ect in Figure 4.16e.
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4.8.1.5 Replacement heading error for the dynamic part of the calibration

procedure (sets B and D)

Figure 4.17: The e↵ect of the accuracy of the replacement during the dynamic part of the

calibration on the residual gyroscope alignment errors post-calibration.

The most fundamental assumption of the dynamic calibration method is that it is a zero-

attitude update. In other words that after each manoeuvre the IMU is replaced at the same

attitude. The position is not used, but in a real system the position of the cube before and

after must be within a few millimetres as the ‘table’ will not be a perfect plane, and so a

zero-position update is needed to make the zero-attitude update valid. However, replacing

the IMU on the table after a manoeuvre can create an angular error about the axis normal

to the table; this is described in Section 4.3.5. For brevity this will be described as a heading

error, despite it being about an axis normal to the table rather than the gravity vector (see

Section 4.3.6) In the default settings this heading error is small, with an SD of 0.5�, this is

because the assumption is that the IMU is placed in a corner in the manner described in

Section 4.5.2.

The greater the heading error, the less valid the zero-attitude update is. This can be seen

in Figure 4.17, where the heading errors in sets B and D are varied together. The set D

techniques are a↵ected much less, primarily because there are six manoeuvres in set D rather

than the 3 in set B, so the e↵ect of heading replacement errors is reduced by the fact that

there calculated correction is averaged between two manoeuvres. Additionally the e↵ect on

the hybrid method is less strong because only the 3 diagonal entries in the cAb
g matrix are

estimated from the manoeuvres, the others being taken from cAb
a .

It can be concluded that the other errors in the dynamic calibration are large enough that

diminishing returns in getting the replacement angle correct apply at around 2�.

Note that, because this error applies in the table-frame z-axis, this error e↵ects sets B and

D slightly di↵erently. Its e↵ect on set B is seen mostly in the bottom row, whereas in set

D as it applies in the direction of rotation it mostly applies to the diagonal entries of the

matrix.



142 Chapter 4. User-conducted Calibration

4.8.1.6 Rotation time

Figure 4.18: The e↵ect of the rotation time during the dynamic part of the calibration on

the residual gyroscope alignment errors post-calibration.

Figure 4.18 shows the e↵ect of the time taken to rotate the sensors during the dynamic

tests, henceforth the rotation time.

When the rotation times are less than two seconds the performance is extremely poor. This

is because the sensors are rotating at speeds in excess of the maximum that they can measure

(250 �/s), causing sensor clipping. For times longer than 2 seconds there is almost no visible

e↵ect in the graph.

Theoretically a longer rotation time should perform worse than a shorter one, in contrast

with the longer static averaging times in Section 4.8.1.4. This is because for longer integra-

tion times more sensor noise is integrated, this means the accuracy gets worse in proportion

to
p
n, rather than better by a factor of 1p

n

. However the contribution of sensor noise to

the overall error is still small in comparison to the other errors, so as can be seen in Figure

4.18 there is no dramatic improvement over the range of times that might be practical.

It is also worthwhile noting that while theoretically faster rotations result in better calibra-

tions, in reality a procedure that is carried out quickly will make it di�cult to retain the

same level of rotational accuracy, and as rotation speeds are not likely to be as uniform as

simulated, the chance of clipping is higher. Therefore a better approach would be to repeat

the calibration manoeuvres and take the eventual average, this would reduce the e↵ect of

integrated sensor noise as well as several other errors, e.g. the heading replacement (Section

4.8.1.5 and those in Section 4.8.1.7.

4.8.1.7 Other dynamic procedure errors

The procedure for set B as shown in Figure 4.3, is sensitive to other errors sources in addition

to the ‘rotation time’ and ‘heading replacement error’ it shares with set D. From its start

position it is lifted up in the air, to a orientation which is intended to be aligned with the
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(a) Axis error (b) Transition time

(c) Starting attitude error (d) Rotation overshoot error

Figure 4.19: The e↵ect of the various set B specific errors of the calibration on the residual

Gyroscope alignment error post-calibration.

local navigation frame. This could take a variable amount of time (Figure 4.19b), which

means that more noise must be integrated. The mid-air starting attitude alignment will not

be perfect (Figure 4.19c). At this point the box should be rotated about one of the cardinal

axes by 360� and then returned to the starting position, so that the data from that period

can be averaged. It is di�cult to rotate about an axis in mid-air so that will not be perfectly

achieved (Figure 4.19a) and the user may over- or under-shoot 360� (Figure 4.19d), which

means that the overshoot must be reversed during the transition back to the start, which

exacerbates the order-of-rotations problem that some of the integration methods have (see

Section 4.5.2).

As these inputs only a↵ect the set B dynamic method (red lines) there is no e↵ect on the

set D results, so only the blue lines in Figure 4.19 are only shown for comparative purposes.

The figures illustrate that the axis-error (Figure 4.19a) is the most critical of these parame-

ters. The accuracy obtained at the default level, which is already a reasonably di�cult level

of accuracy to obtain by hand, improves almost directly linearly as the axis error is reduced.

Note that, the set D equivalent of the axis error is from the cube face error, so when the

axis error is 1� they are approximately equivalent. At 1� axis error level the set B method
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is approximately 40% worse than the set D, which is about the level that might be expected

given the fact that set D has the average of two (essentially independent) measurements in

comparison with set Bs one. When the axis error gets much above 10�, the method breaks

completely, due to feedback in the iterative procedure.

The e↵ect on cAb
g of the axis error is that a correction that should be made to one entry in

the cAb
g-matrix is in fact made to another element in the same row, because motion which

was assumed to be about one of the body-frame axes was not. As cAb
g is calculated in

an iterative process, these wrongly applied corrections then feed back to the next iteration,

which makes the estimate progressively worse leading to the very poor results seen in Figure

4.19a at above 10�. It is clear that this is the dominant error source, being much greater

than the error from a poor zero-attitude update (Figure 4.17) or additional gyroscope noise

(Figures 4.18, 4.19b, 4.29c etc.). It can also be seen that the axis error required for the set

B manoeuvres to be achieve target accuracy (magenta line) is much less than 0.5�, which

is not realistically possible with mid-air rotations, but using a guide like the table’s surface

(as in set D), might make it realistic.

The rotation overshoot and transition time, appear to have little e↵ect in the presence of

the large axis error, except where the transition times are so short that clipping occurs

(left-hand-side of Figure 4.19b). However, the starting attitude error, does appear to have

some noticeable e↵ect on the integrated method particularly (labelled ‘B int’).

4.8.1.8 Other procedural errors

Other error sources, which come from the ‘TESTspec’ part of the inputs were also varied.

Some of these, such as the transition time between positions in the static part, were tested to

verify that they had no e↵ect on the results, which they should not and did not have. These

are not presented for reasons of space. The results for error specifications which generate

the mounting angle errors and thus generate each run’s Cs
b, are not presented here but in

Section 4.8.2.3 where they fit more naturally.

4.8.2 The e↵ect of the IMU specification

The IMU performance specifications which are included in the Monte Carlo simulations, are

included as part of ‘IMUspec’ (see Section 4.6.1). This includes the starting or uncalibrated

values of the systematic errors which are estimated by the calibration procedure, and also

the remaining IMU errors, including the stochastic terms and higher-order sensor errors,

which might be expected to a↵ect the accuracy of the procedure. The default values for

these inputs are based on a MPU9250 IMU’s specification [23], and are assumed to be drawn

from zero-mean Gaussian distributions.

The direct e↵ect of most of these input parameters should be fairly predictable, often a

reasonable estimate can be made by means of a simple calculation. Note that, the results

presented in this section represent the same calibration procedure being applied to IMUs of

di↵erent specification and that the procedure in question (with default ‘TESTspec’ inputs)
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Figure 4.20: The e↵ect of the pre-calibration accelerometer bias on the accelerometer bias

remaining post-calibration.

is dominated by errors representing the cube’s deviation from being cubic, as was shown in

Section 4.8.1.

As the individual e↵ects of some of these sensor errors are very small on their own, in order

to make the e↵ect of the error visible, a range of possible inputs for each one has been

tested which is, in some cases, several orders of magnitude worse than might exist in real

sensors. This can lead to some odd e↵ects, for example if a ±2g-range accelerometer’s bias

reaches 1g, the sensor will crop sensor output during static tests. Odd e↵ects should be

expected when things are taken to extremes, and these can be safely ignored when they are

far enough from the realistic range of values. It should be noted that the MPU9250 is a

consumer-grade IMU, and thus realistic range of values will generally be the default input

or lower.

This section examines the e↵ect of each of the ‘IMUspec’ inputs in turn starting with the

errors that are being calibrated.

4.8.2.1 Sensor biases

The e↵ect of varying the input accelerometer and gyroscope biases on the respective final

post-calibration residual bias is shown in Figures 4.20 and 4.21. It is shown that there is no

e↵ect from these biases being several orders of magnitude smaller or greater, at least until

the point where the bias is so large that the sensor clips under normal use (e.g. rightmost

points in Figure 4.20). As any indirect e↵ect depends on the residual sensor biases, there

is no significant e↵ect on the other calibration outputs, so they are not shown. These

results show that the starting level of the bias has no e↵ect on the accuracy of the resulting

calibration, which is instead governed by di↵erent factors such as the level of sensor noise

and the accuracy of the procedure.
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Figure 4.21: The e↵ect of the pre-calibration gyroscope bias on the gyroscope bias remaining

post-calibration.

4.8.2.2 Gyroscope g-dependent error

(a) Gyroscope g-dependent error (b) Gyroscope bias

Figure 4.22: The e↵ect of the pre-calibration gyroscope g-dependent bias on the errors

remaining post-calibration.

The e↵ect of varying the gyroscope g-dependent error is shown in Figure 4.22; note that

the levels of error shown on the right-hand-side of the graph are far greater than is realistic,

even the default level of 0.1 �/s/g is conservative (experimentally determined values were

around 10⇥ smaller, see Chapter 5). However, from Figure 4.22a it can be seen that the

algorithm reduces the g-dependent error to ⇡ 2% of the starting error or down to a particular

level (⇡ 2 ⇥ 10�3 �/s / g) whichever is the greater, for larger and smaller starting errors

respectively. It would be reasonable to propose that the proportional behaviour is due to

the angular error of the cube and/or table, and the fixed floor is due to the averaging time

and gyroscope noise level. This is supported by the fact that 2% deviation is approximately
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equivalent to 1 degree of angular misalignment9 and by Equation 4.100. The calculation of

cb
g

uses the same measurements ( g!XU , etc.) as that fordGb
g , see Equations 4.65 and 4.72. As

such it is not surprising that when there is a noticeable e↵ect ondGb
g , there is also a similar

e↵ect on cb
g

, as is shown in Figure 4.22b. Additionally, both errors remain well within the

target values (magenta line) even with 5⇥ greater than default starting error.

However, this level of increased residual gyroscope bias and g-dependent bias is still too small

to make any significant di↵erence in the dynamic calibration. The gyroscope measurements

do not e↵ect the accelerometer calibration, so these are not shown.

4.8.2.3 Accelerometer and gyroscope alignment and IMU mounting errors

(a) Accelerometer bias (b) Accelerometer alignment error

(c) Gyroscope alignment error (d) Table angle estimate error

Figure 4.23: The e↵ect of accelerometer scale factor error on the residual errors post-

calibration.

The sensor alignment matrix estimates (cAb
a and cAb

g) are unusual compared with the other

estimates made during this calibration procedure in that their target values are each de-

termined by several separate input parameters. Both As
a and As

g are determined by a

‘scale factor error SD’ parameter for their diagonal entries, and a ‘cross-coupling error SD’

parameter for their o↵-diagonal entries. Additionally the target values for their estimates

9sin(1�) = 0.0175
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(a) Accelerometer bias (b) Accelerometer alignment error

(c) Gyroscope alignment error (d) Table angle estimate error

Figure 4.24: The e↵ect of accelerometer cross coupling error on the residual errors post-

calibration.

include the attitude of the IMU within the box, Cs
b, see Equations 4.20 and 4.25. Thus the

mounting error parameters that determine Cs
b also a↵ect the uncalibrated values of cAb

a and
cAb
g simultaneously. As such when considering the e↵ect of varying each of these parameters

individually it is worth paying attention to the overall e↵ect of the three, depicted by the

solid green line in the cAb
a or cAb

g graphs.

As these error sources have certain similarities in their e↵ects, their e↵ect on the statically

determined errors will be discussed first and their e↵ect on the dynamically determined cAb
g

afterwards.

Given that the calculation methods for cAb
a and cb

a

do not involve the gyroscope readings

and similarlydGb
g andcbb

g

do not involve the accelerometer readings 10, these estimates would

not be expected to be a↵ected by those inputs. They are not, and so the graphs are not

presented for reasons of space.

Figure 4.23 and 4.24 show the e↵ect of the accelerometer scale factor and cross coupling

errors, respectively, on the residual errors in cb
a

, cAb
a ,
cAb
g and the table angle estimates.

10Except for the estimation of the table angles ↵ and �, which was shown in Section 4.8.1.2 not to be a

significant source of error.
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(a) Gyroscope bias (b) Gyroscope g-dependent error

(c) Gyroscope alignment error

Figure 4.25: The e↵ect of gyroscope scale factor error on the residual errors post-calibration.

Figure 4.25 and 4.26 show the e↵ect of the gyroscope scale factor and cross coupling errors,

respectively, on the residual errors in cb
g

, dGb
g and cAb

g . Figure 4.27 shows the e↵ect of the

mounting error parameters (which determine Cs
b) on all the estimated quantities.

The graphs presented show that the static-procedure error estimates (cb
a

, cb
g

, cAb
a and dGb

g)

are essentially una↵ected by these errors, despite the change in their uncalibrated level,

i.e. how bad these errors are before calibration. Figures 4.23a, 4.23b, 4.24a and 4.24b show

that the starting level of accelerometer scale factor or cross coupling error has virtually no

e↵ect on the accuracy of the accelerometer bias or alignment matrix estimates. Similarly,

Figures 4.25a, 4.25b, 4.26a and 4.26b show that the statically determined g-dependent error

matrix and gyroscope bias are also una↵ected by the starting level of error in As
g. As the

uncalibrated accelerometer readings are used to estimate the table angles these are slightly

a↵ected, see Figures 4.23d and 4.24d. However, even with 10% starting errors in As
a, the

residual table angle error is still 10⇥ smaller than the starting value, so this error is not

particularly significant.

Varying the mounting angle parameters, i.e. Cs
b, simultaneously changes the starting ac-

curacy of both cAb
a and cAb

g . The most notable e↵ect that can be seen in the statically

determined parts of Figure 4.27 are that the Technique 2 method for calculating cb
a

, pre-
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(a) Gyroscope bias (b) Gyroscope g-dependent error

(c) Gyroscope alignment error

Figure 4.26: The e↵ect of gyroscope cross coupling error on the residual errors post-

calibration.

sented in Equation 4.67 and discussed in Section 4.8.1.1 becomes less e↵ective, where the

Technique 1 method of Equation 4.63 is una↵ected. This is due to the vertical reading

being less co-incident with the gravity vector with greater values of Cs
b, and thus being less

e↵ective at reducing the cube-face errors. Also, as it relies on the uncalibrated readings, the

estimate of the table angles gets worse as the mounting angle error increases, but this does

not translate into a significant increase in the IMU errors that are estimated using it (cb
a

,
cb
g

, cAb
a anddGb

g). The estimation errors for two statically-determined gyroscope parameters,

cb
g

and dGb
g , remain una↵ected by the mounting angle.

The e↵ect of the scale-factor, cross-coupling and mounting errors on the dynamic part of the

calculation is more complex. For instance, as all of the estimates are made from iterative

processes, if the starting errors in the cAb
g matrix are large then the entire process can become

unstable.

The hybrid method uses the assumption that cAb
g = cAb

a for all the o↵-diagonal estimates

with only the diagonal elements of cAb
g being determined dynamically. Equation 4.75 shows

the assumption that allows the hybrid method to work, simply put the mounting error must

be significantly bigger than either the accelerometer or gyroscope cross-coupling errors. The
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(a) Accelerometer bias (b) Gyroscope bias

(c) Accelerometer alignment error (d) Gyroscope g-dependent error

(e) Gyroscope alignment error (f) Table angle estimate error

Figure 4.27: The e↵ect of IMU mounting error on the residual errors post-calibration.



152 Chapter 4. User-conducted Calibration

accelerometer’s cross coupling error, Figure 4.24c, very strongly a↵ects the hybrid methods.

Whereas, the accelerometer scale factor, Figure 4.23c, has only a very slight e↵ect on the

two hybrid methods; this supports the assumption. The other cAb
g estimation methods

are una↵ected by these two accelerometer inputs, except for the integrated method which

appears to become unstable due to the poor initialisation of cAb
g , when the starting level of

Cs
b is more than 5⇥ larger than the default.

In a similar manner, when the starting gyroscope scale factor (Figure 4.25c) and cross-

coupling (Figure 4.26c) errors become larger the hybrid method becomes less e↵ective.

However, the other methods excepting the integrated method are una↵ected scale factor

or cross coupling SDs of less than 10%. At this point, the errors is so large that the

correction method becomes unstable, and all the methods produce very poor estimates, due

to feedback in their iterative processes. The hybrid method is a↵ected by starting gyroscope

As
g levels similarly to the way it was for the starting accelerometer As

a levels.

Figure 4.27e shows the e↵ect of the mounting angle errors on the cAb
g . The mounting angle

makes virtually no di↵erence for techniques other than the hybrid method until the angle

has moved to more than double the default. When the mounting error becomes greater than

this the estimation system quickly becomes ine↵ective, leading to very inaccurate estimates.

This leads one to conclude that the mounting error must be kept below 10� for the estimation

techniques to work.

The hybrid technique’s assumption (Equation 4.75), that the diagonal elements of Ab
g and

Ab
a are highly correlated (in the box frame), is not applicable when the mounting angle error

is small. So when the mounting error is under 10⇥ the default settings, simply using I3, is

a better estimate than the hybrid method (the solid green no-calibration line is below the

hybrid method lines in Figure 4.27e)

4.8.2.4 Accelerometer and gyroscope noise

In order to examine the e↵ect of sensor noise on the calibration results a very wide range

of possible inputs were tested, ranging several orders of magnitude better and worse than

real sensors, so the results must be considered in the context of the default values which

represent a typical consumer-grade MEMS IMU and noise levels more than 1.5 to 2 ⇥ worse

than that are unrealistically high.

The sensor noise will have a direct e↵ect on both the dynamic and static calibration. We

must consider particularly for the static calibration that its e↵ect is fairly low partly because

of the long averaging times (5 sec for set A, e↵ectively 20 sec for set C).

The e↵ect on the accelerometer’s calibration is clear. Decreasing the noise root-PSD, even

by several orders of magnitude from the default 300 micro-g/
p
Hz makes no appreciable

di↵erence to the results, and in order for there to be a noticeable worsening of the results

the accelerometer’s noise parameter must be increased by more than an order of magnitude

(5000 micro-g/
p
Hz). Note that the Technique 1 method is considerably less sensitive to

noise than the Technique 2 method. This small (relative to the residual error) numerical

value calculated in Equation 4.99 explains this.
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(a) Accelerometer bias (b) Accelerometer alignment error

(c) Gyroscope alignment error (d) Table angle estimate error

Figure 4.28: The e↵ect of accelerometer noise on the residual errors post-calibration.

By contrast, the gyroscope’s statically determined errors (cb
g

and dGb
g) are improved by

reducing its noise root-PSD below the default 0.01 �/s/
p
Hz. Although no further improve-

ment is seen below 0.001 �/s/
p
Hz, note that this level is still above that of a tactical-grade

IMU. This shows that the gyroscope noise is still having a significant e↵ect even with the

5 second averaging times. At the default level, the gyroscope noise is not the completely

dominant error source, it shares that with the cube error. So the line on Figure 4.29a is not

straight (log-log scale) until well above (10⇥) the default level. Again this can be explained

by considering that the numerical value for the default settings calculated in Equation 4.100

is significant in comparison to but still smaller than the residual errors.

When we examine the accelerometer noise’s e↵ect on the dynamic calibration, aside from

the hybrid method unsurprisingly becoming less accurate as the cAa calibration worsens.

There is little e↵ect until the noise is above 50,000 micro-g/
p
Hz, which is extremely high.

The e↵ect of the gyroscope noise on the dynamic calibration is more complex. Between

the default level and about 1 �/s/
p
Hz, there is a slow worsening of the calibration accuracy,

likely the indirect e↵ect of less well compensated bias. Above that level, the solution rapidly

decreases in quality, as the bias and integrated noise become more significant than the other

errors a↵ecting cAb
g . Notably, the integrated method fails rapidly at about an order of
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(a) Gyroscope bias (b) Gyroscope g-dependent error

(c) Gyroscope alignment error

Figure 4.29: The e↵ect of gyroscope noise on the residual errors post-calibration.

magnitude lower noise than the other methods.

In addition to the other sensor specifications tested di↵erent accelerometer and gyroscope

quantisation levels were tested. The level spanned the range of 8- to 24-bit ADC-words,

compared to the default level of 16-bit. However, no variation in the accuracy of any of

the output calibrations was found. The IMU model used for this simulation keeps track of

quantisation residuals, adding them to the next epoch’s reading, and so the maximum e↵ect

on the mean value of the static readings is the quantisation level divided by the number

of epochs (e.g. 5 sec. ⇥ 100 Hz = 5000 epochs), making this an insignificant error source

(e.g. for the gyroscope at default level 1.3⇥10

�4

5000

= 2.6 ⇥ 10�8 rad/sec). The graphs are not

shown to conserve space. It has been observed (e.g. in [8]) that many low-cost sensors are

simply discarding quantisation residuals, in which case quantisation errors would generally

behave in a similar manner to the sensor noise, investigated in this section.

4.8.2.5 Sensor non-linearity

The model used to simulate sensor non-linearity is quadratic, but with a separate coe�cient

for positive and negative true values (Equation 4.9). This is expressed as part of Equations

4.7 (accelerometer) and 4.8 (gyroscope). Non-linearity is typically expressed on datasheets as
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(a) Accelerometer bias (b) Accelerometer alignment error

(c) Gyroscope alignment error (d) Table angle estimate error

Figure 4.30: The e↵ect of accelerometer non-linearity on the residual errors post-calibration.

‘% of full scale output’ (% FS) thus the default settings, which are meant to represent [23],

are 0.1% FS for the gyroscope and 0.5% FS for the accelerometer. If we ignore sensor

mounting error (so using Equations 4.5 and 4.6), a single output (here the ‘x’ output) of

the accelerometer becomes
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If X ⇠ N(a, b2) is (temporarily) abbreviated to X = a ± b. Then, noting that ‘2g’ is the

full-scale measurement range, with default settings this becomes
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(a) Gyroscope bias (b) Gyroscope g-dependent error

(c) Gyroscope alignment error

Figure 4.31: The e↵ect of the gyroscope non-linearity on the residual errors post-calibration.

The equivalent for the gyroscope’s x-output, noting that ‘250 �/s’ is the full-scale measure-

ment range, is
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This section tests an important assumption of all the calibration techniques in this Chapter,

namely that both gyroscope and accelerometer non-linearity are small enough to be ignored.

Note that, because the model’s non-linearity terms depend on the square of true input and

are related to the sensors’ range, during the static procedure, the gyroscope is barely a↵ected

by the non-linearity at all, as the true angular rate is nearly zero, but the non-linearity of

the accelerometer is considerably excited because the true specific force is approximately g

and thus 50% the default measurement range.

Accelerometer non-linearities were simulated from 0.0005% to 25% of FS. Examining the

behaviour of the table estimate (Figure 4.30d) one can see no significant e↵ect of the non-

linearity. This is because the horizontal readings that this method uses (Equation 4.45) are

close to 0 ms�2, and thus not significantly a↵ected by the non-linearity. As the accelerometer
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non-linearity does not a↵ect the gyroscope static calibration there is unsurprisingly little

e↵ect on the dynamic calibration(Figure 4.30c), except for the hybrid method, which is very

slightly a↵ected as cAa gets worse.

Reducing the level of accelerometer non-linearity does not have any significant e↵ect on the

accuracy of the cAa calibration, indicating that, at default level, it does not have a significant

e↵ect on the results. If the sensors’ non-linearity is approximately an order of magnitude

greater (⇡ 5%) then this starts to be more significant. Note that, as the level of non-linearity

rises above this then the calibration continues to worsen and the 24-position and 6-position

methods tend towards each other. This is because neither of the improvements from set

C, namely the insensitivity to table levelling and the increased static averaging time, help

to mitigate this source of error. So, as the non-linearity increases, it makes less and less

di↵erence whether set A or set C methods are used.

Figure 4.30a shows the behaviour of the accelerometer bias calibration. The convergence of

the two methods as mentioned above is also present. The Technique 1 method, is insensitive

to non-linearities below about 3% so, at the default level, the non-linearity is making vir-

tually no di↵erence. However, the Technique 2 method is more sensitive to non-linearities.

Reducing the non-linearity below the default level slightly improves the accuracy, thus there

is a significant e↵ect at default level. Increasing the non-linearity results in the error grow-

ing more quickly for the Technique 2 method than the Technique 1 method. Beyond 2%

non-linearity, it is better to use Technique 1. This behaviour can be explained as follows.

In the Technique 1 method, each result is the average of six readings, four readings with

magnitudes near zero, one around ‘+g’ and another around ‘-g’. The Technique 2 method

is just the average of the last two. Thus if the variance of non-linearity errors is, �
NL

2, then

the variance in the bias calibration due to non-linearity for the Technique 1 method is
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Similarly, for the Technique 2 method,
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These equations show why the Technique 2 method is more susceptible.

Simulations were carried out with gyroscope non-linearity from 0.0001% to 50% of FS (Fig-

ure 4.31). These values are greatly in excess of what might be considered reasonable values

(1% of FS is poor linearity even for a consumer grade sensor). However, as pointed out

above, the static calibration is insensitive to gyroscope non-linearity, so unsurprisingly there

is no visible e↵ect on cb
g

or cGg (Figures 4.31a and 4.31b). Perhaps more surprising is that

there is also no visible e↵ect on cAg (Figure 4.31c), although this may be due to the fact

that the default rotation time is a relatively slow 10 seconds, so ⇡ 36 �/s which is a fairly
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small faction of the measurement range of 250 �/s. So even the very large non-linearity is

not significantly excited until the non-linearity is above 10% of full-scale. Although, if the

rotation speed were greater, there would be more of an e↵ect.

4.9 Summary

This chapter presents a method for user-conducted calibration procedures. The motivation

for and theory behind the type of calibration procedure used are presented in Sections 4.1

and 4.2. Reference frames needed to describe and simulate the calibrations are in Section

4.3, and the model of IMU’s errors that is assumed is shown in Section 4.4.1.

A few alternative methods for calculating estimates of the IMU’s calibration parameters

from the data recorded during are presented in Section 4.5. The accelerometer errors and

some of the gyroscope errors can be estimated from static measurements (b
a

, b
g

, Aa and

Gg). However, the gyroscope scale factor and alignment matrix, Ag, requires rotation for

it to be observable. To this end there are both static and dynamic parts of the calibration

procedure.

For the static part of the calibration procedure, measurements are collected on all six sides

of the cube, either one per face (set A), the average of four per face at 90� heading rotation

(set C), or one per face and one additional measurement at 180� heading rotation for one

of the faces (7 position). In the six-position version the table is assumed to be flat, for the

other two an estimate of the table’s deviation from level is made using the 1 pair or 12 pairs

of measurements at 180� heading rotation for each face. Then the sum of the measurements

opposite faces’ measurements is used to eliminate components depending on specific force

and thus estimate the bias for both the gyroscope and the accelerometer, using either of

two possible techniques. The di↵erence between opposite faces’ measurements can be used

to estimate one column of the Aa or Gg for accelerometer and gyroscope measurements,

respectively. This estimate requires division by double the (vertical) specific force due to

the reaction to gravity, which can be corrected for the table’s deviation from level, if known.

The 6-position method has been presented before (e.g. [158]), but the 24-position method

tested here does not appear in the existing literature.

The dynamic part of the calibration procedure is based on performing three complete 360�

rotations of the IMU returning it to the same attitude (and position) between each one.

These are known as a zero-attitude-updates. In order for there to be a simple analytical

solution the algorithm the rotation each rotation must be about one of the (box-frame)

cardinal axes. Under this condition each of the rotations provides one column of the cAg-

matrix. The simulations test two versions of this, one where the required rotations are

carried out in mid-air, and another where six-rotations are carried out, one with each face

in contact with the table, and then there are two rotations to average between for each

column of the matrix. Also tested are several alternative methods to calculate cAg from

the measurements. This approach to calculating cAg has not previously been examined.

Compared to existing techniques (see Section 2.5.1.3), it is simple to carry out the necessary

manoeuvres, computationally fast and not dependent on the signals of an external sensor.
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Monte Carlo simulations of this calibration procedure were carried out in order to determine

how accurate these methods are, and which error sources are the most important for this

accuracy. The method for this is presented in Section 4.6. However, in short, randomly

generated error values, based on input values for these errors’ SDs, for each of 500 runs were

generated. These error values were used to generate imperfections in the way the procedure

was carried out and using these imperfections a true trajectory is calculated. From this

trajectory the output values that a perfect IMU would give are calculated. More of the

randomly generated error values generate the IMU’s errors. These errors are used, with the

perfect IMU output to generate an as-measured IMU output. This output is given to the

calibration algorithms and used to estimate the IMU errors. These estimates are compared

to the real values to determine the accuracy of the calibration, which is the output of the

simulation (see Figure 4.12). User calibration techniques presented in the existing literature

typically only demonstrate that repeatable results are produced (see Section 2.5.1.3), which

is a necessary but not su�cient condition. This chapter presents a detailed study of the

calibration accuracy and how the accuracy of each estimated IMU error is a↵ected by factors

ranging from the specifications of the IMU to the care with which the user conducts the

calibration. This allows di↵erent calibration algorithms and manoeuvres to be compared in

terms of their accuracy.

The results of these simulations are presented in Section 4.8. These results show that the

most important error for the accuracy of the calibration is the angular accuracy of the

calibration box. This error is so important that techniques which reduce the e↵ect of this

error on the calibration’s accuracy, even at the cost of increasing the e↵ect of the other errors,

are viable. An example of this is the Technique 2 accelerometer bias calibration method

(Equation 4.67). After this, the most significant source of error for the four statically-

determined error parameters is the gyroscope noise, or in the case of the six-position (set

A) calibration the table’s error-from-level. These are followed by the accelerometer non-

linearity.

The number of seconds of measurements recorded at each static position has a surprisingly

small e↵ect in relation to the other error sources (when they are at default level), such that

for realistic amounts of time (� 1 second) it makes little di↵erence to the accuracy of the

calibration.

In terms of the di↵erent manoeuvre sets and calibration algorithms tested the following

recommendations are made.

The set C (24-position) manoeuvres always produce better results than the set A (6-

position). There are two reasons for this. First, they virtually eliminate inaccuracy due

to the table not being level, second the total sample period for each face is e↵ectively

quadrupled which approximately halves inaccuracies due to sensor noise. This manoeuvre

set is recommended in every case where the table’s deviation from level is of a similar or

greater magnitude as the box’s deviation from being orthogonal sided. If the table is very

close to level the set C manoeuvres will perform similarly to set A with a longer static

recording on each face.
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For calculating cb
a

the Technique 2 algorithm (Equation 4.67) is recommended for box-

deviation-from-orthogonal SDs in excess of 0.25�, due to its quadratic (O(✓2)) rather than

linear (O(✓)) sensitivity to these (and table levelling) errors (✓ radians), unless the ac-

celerometer noise or non-linearity specification are significantly worse. For highly accurate

cubes of 0.25� SD and lower, the Technique 1 method is recommended instead due to its

reduced sensitivity to accelerometer noise and other errors.

Technique 1 is always recommended for cb
g

as sensor noise is a more significant error source

the cube- or table-angular errors. However, all the techniques tested can easily bring the cb
g

calibration within the level required for stability determined in Chapter 3.

For cAa and cGg the 6- and 7-position techniques perform almost identically, and both per-

form worse than the 24-position method, which is recommended. Even with the relatively

conservative 1� box-deviation-from-orthogonal SD the required medium quality of cAa cal-

ibration required for KF stability can be achieved. Similarly the low level of residual cGg

error required by Chapter 3 is easily exceeded at default levels, where the calibration is

nearly at tactical level. The definition of these levels are in Table 3.3.

For the dynamic part of the calibration procedure, the most significant is the rotation-axis

error, which is a separate input for set B and for set D is included in the cube error, this error

causes corrections for the columns of cAg to be mixed up. The next most important errors

is the replacement heading error, i.e. the accuracy with which the zero-attitude update is

carried out.

This strong dependence on the rotation axis being correct, combined with the challenging

low target residual error (see Table 3.3), means that hand-rotated set B manoeuvres will

not reach a su�cient level of accuracy for stable KF integration. The set D manoeuvres

do not need to reach such a good level of axis accuracy This is due to the repetition (i.e. 6

rotations rather than the minimum 3) and is achievable as the rotation axis is more accurate

due to the use of the face as a guide.

In Chapter 3 it was shown that for low levels of gyroscope higher-order errors (Gg and Ag)

the KF integration was stable for all or nearly all levels of bias tested, and for medium levels

it was only stable in some circumstances (see Figure 3.12). The results of the cAb
g calibration

presented in this chapter show that the calibration accuracy mostly lies between these two

levels. For example, for the cAb
g residual error for the set D manoeuvres to be below 1%

(medium level) requires a box-deviation-from-orthogonal SD of <1.25�, which is relatively

achievable, whereas for it to be below 0.3% (low level) requires it to be  0.25�. Further

tests would be needed to determine the target level more precisely.



Chapter 5

User Calibration Experiments

This chapter presents some experiments conducted with the array of MPU-9250 MEMS IMU

sensors described in Section A.2. The main purpose these experiments serve is twofold.

First the calibration procedures proposed in Section 4.5 are tested on the data recorded

during a manually conducted calibration procedure with real sensors. Second, to validate

the simulations presented in Chapter 4 by comparison of their estimated accuracy with that

calibration derived from real sensors. A secondary aim of this chapter are to characterise

the performance of the MPU9250 sensors in ways that can be used for the sensor array

techniques which will be presented in Chapter 6. The experiments presented here use data

recorded on an optical table using the hardware described in Appendix A, an illustrative

video still is shown in Figure 5.1.

In order to conduct the calibration e↵ectively this chapter begins by determining the optimal

noise settings (Section 5.1) for the MPU9250 IMUs by testing at a variety of bandwidth

settings, output rates and measurement ranges. In Section 5.2 the repeatability of the IMU

calibration parameter estimates is examined by recording 12 complete calibration procedures

with the array and comparing the estimates. In Section 5.3, in order to test the calibration

simulations, a repeatability simulation is conducted with inputs to match the experiments

precision and IMU specifications, this is compared with the repeatability in the previous

section. Next, the e↵ect of changing the IMUs measurement range setting on the IMU

systematic error parameters is examined (Section 5.4) and also how much these parameters

vary over the course of 3 calibrations several weeks apart (Section 5.5).

Experiments are run where the IMUs measurements, both with and without calibration,

are integrated with the inertial navigation equations to give a position velocity and attitude

(PVA) solution. These experiments included both static, and pedestrian motion tests and

is presented in Section 5.6. This PVA solution can provide an indirect measurement of the

calibration accuracy by comparison between sensors and/or a known truth. The chapters

findings are briefly summarised in Section 5.7.

5.1 IMU noise characterisation

Before running more sophisticated experiments some simple noise characterisation exper-

iments were carried out to determine the actual noise performance of the sensors on the

IMU array described in Section A.2, when their built in digital low pass filter (DLPF), is

161
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Figure 5.1: Still from a video of the calibration procedure.

Error Specified Value SI equivalent

Gyro. Total RMS Noise 0.1 �/s 0.0017 rad/s

with DLPFCFG=2 (92 Hz) (Typical)

Gyro. Rate Noise 0.01 �/s/
p
Hz 0.00017 rad/s /

p
Hz

Spectral Density (Typical)

Accel. Total RMS Noise with 8 milli-g 0.079 ms�2

DLPFCFG=2 (94Hz) [sic] (Maximum)

Accel. Noise Power Spectral 300µg/
p
Hz 0.0029 ms�2/

p
Hz

Density (Low noise mode) (Typical)

Table 5.1: The noise performance specifications of an Invensense MPU-9250 IMU, from [23].

Note that the DLPF config setting (DLPFCFG) of 2 defines a filter bandwidth of 92Hz for

both accelerometers and gyroscopes according to the register map [182]

used with di↵erent bandwidth settings and di↵erent output rates, and thus determine the

optimal values for these settings in the context required in this thesis.

The specified noise performance of the Invensense MPU9250 IMU according to the datasheet

[23] is given in Table 5.1. Note that the total RMS noise is only defined for one of the DLPF

settings, and the root-PSD specification does not state at what filter settings this is defined.

Several experiments were run to verify that the MPU9250 sensors behaved as would be

expected from reading the datasheet [23] and register map [182]. In these experiments

samples of static data were collected from the sensor array for at least 10 minutes and

then analysing the final 100 seconds. This allows the sensors to warm up to operating

temperature, which is important as several errors, e.g. the biases, vary with temperature.

The data is analysed by calculating the SD of the recorded data, from which the implied or

apparent root-PSD can be calculated.

apparent root-PSD =
SD of data samplep

sample rate
(5.1)

The results of these experiments are presented in Tables 5.2 to 5.6.
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Reading Rate (Hz) 1000 100 10

Nom. Output (Hz) 4000 4000 4000

Gyro bandw. (Hz) 8800 8800 8800

Gyro range ( �/s) 250 250 250

Accel bandw. (Hz) 1130 1130 1130

Accel range 2g 2g 2g

SD of sensor output

X Accel (ms�2) 0.049 0.044 0.044

Y Accel (ms�2) 0.047 0.044 0.044

Z Accel (ms�2) 0.071 0.071 0.072

X Gyro ( �/s) 1.613 1.715 1.724

Y Gyro ( �/s) 4.129 4.065 4.127

Z Gyro ( �/s) 4.704 5.035 5.016

Apparent root-PSD

X Accel (ms�2/
p
Hz) 0.0015 0.0044 0.0139

Y Accel (ms�2/
p
Hz) 0.0015 0.0044 0.0139

Z Accel (ms�2/
p
Hz) 0.0022 0.0071 0.0226

X Gyro ( �/s/
p
Hz) 0.0510 0.1715 0.5451

Y Gyro ( �/s/
p
Hz) 0.1306 0.4065 1.3051

Z Gyro ( �/s/
p
Hz) 0.1487 0.5035 1.5861

Table 5.2: Static noise tests with no low-pass filter.

The results presented in Table 5.2 show that the SD of the unfiltered output does not

(significantly) change for sampling rates of 10, 100 or 1000 Hz. This is not surprising as the

nominal output rate without the DLPF is 4000Hz. The array cannot sample faster than

1000Hz. However, if the SD were also the same at 4000Hz then the apparent root-PSD

would be roughly half that presented for 1000 Hz sampling rate, this would be well within

the specified root-PSD for the accelerometer but 5⇥ the specified noise for the gyroscope.

This experiment implies that if unfiltered data is used it should be collected at as high a

rate as possible.

There are two elements of the internal DLPF that can be set, the “nominal output” governed

by one byte and the ‘bandwidth’ setting which is determined separately for the gyroscope

and accelerometer with 8 levels each (3 bits), this is abbreviated to ‘bandw.’ in Tables 5.2

to 5.6. The nominal output rate is determined by

Nominal output rate =
1000

1 + n
Hz (5.2)

where n is the setting of a single register byte, i.e. an integer from 0 to 255. If the DLPF is

switched o↵ the nominal output rate is 4000Hz.

What is not clear without experiment is the optimal way to use these filters. This is because

changing the nominal output rate also changes the e↵ective bandwidth. Selecting a low

bandwidth filter (20Hz) and leaving the nominal output rate at maximum (1000Hz) while

reading at di↵erent rates (Table 5.3) shows that the sensor SD is not a↵ected by reading

faster than the e↵ective Nyquist frequency of the low-pass filter. However, if reading slower
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Reading Rate (Hz) 83.33 40 20 10

Nom. Output (Hz) 1000 1000 1000 1000

Gyro bandw. (Hz) 20 20 20 20

Gyro range ( �/s) 250 250 250 250

Accel bandw. (Hz) 20 20 20 20

Accel range 2g 2g 2g 2g

SD of sensor output

X Accel (ms�2) 0.008 0.010 0.009 0.010

Y Accel (ms�2) 0.008 0.010 0.008 0.009

Z Accel (ms�2) 0.013 0.016 0.014 0.015

X Gyro ( �/s) 0.064 0.063 0.064 0.065

Y Gyro ( �/s) 0.059 0.060 0.059 0.060

Z Gyro ( �/s) 0.051 0.051 0.051 0.052

Table 5.3: Static noise tests with 20Hz low-pass filter.

Reading Rate (Hz) 125 250 125 62.5 45.45

Nom. Output (Hz) 1000 125 125 125 125

Gyro bandw. (Hz) 92 92 92 92 92

Gyro range ( �/s) 250 250 250 250 250

Accel bandw. (Hz) 92 92 92 92 92

Accel range 2g 2g 2g 2g 2g

SD of sensor output

X Accel (ms�2) 0.020 0.016 0.015 0.015 0.016

Y Accel (ms�2) 0.020 0.016 0.015 0.015 0.016

Z Accel (ms�2) 0.026 0.025 0.024 0.025 0.025

X Gyro ( �/s) 0.132 0.078 0.078 0.076 0.076

Y Gyro ( �/s) 0.118 0.074 0.073 0.072 0.073

Z Gyro ( �/s) 0.105 0.065 0.063 0.064 0.065

Table 5.4: Static noise tests comparing filter output rate and actual sampling rate.

than the Nyquist frequency, e.g. Table 5.4 reading at 125Hz with at 92Hz bandwidth then

reducing the output rate to match the reading rate, does reduce the noise. Although reading

at rates other than the sensor output rate does not a↵ect the SD of the results (also Table

5.4), it was observed that reading faster does result in duplicate identical readings.

Noise characterisation results for the 8 possible bandwidth settings are shown in Table

5.5. As might be expected during this static test, the lower the bandwidth the lower the

noise SD. A more interesting result is that at the bandwidth settings that are much too

high to be readily seen by the 125Hz output and reading rate, there is still considerable

di↵erence in the resulting SD, which is consistent with smoothing reducing the noise SD. It

is clear therefore that reducing the nominal output rate of Equation 5.2 is not achieved by

taking the average of the last (n + 1) samples because in this case the bandwidth settings

above ⇡ 62Hz would have been indistinguishable. However, the di↵erence in SD between

reading at 125Hz with a nominal output of 125Hz and 1000Hz (1st and 3rd columns of Table
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Reading Rate (Hz) 125 125 125 125 125 125 125 125

Nom. Output (Hz) 125 125 125 125 125 125 125 125

Gyro bandw. (Hz) 3600 184 92 41 20 10 5 250

Gyro range ( �/s) 250 250 250 250 250 250 250 250

Accel bandw. (Hz) 1130 460 92 41 20 10 5 1130

Accel range 2g 2g 2g 2g 2g 2g 2g 2g

bandw. setting int. 0 1 2 3 4 5 6 7

SD of sensor output

X Accel (ms�2) 1.629 0.020 0.015 0.010 0.008 0.006 0.004 0.020

Y Accel (ms�2) 1.203 0.020 0.015 0.010 0.008 0.005 0.004 0.020

Z Accel (ms�2) 0.188 0.033 0.024 0.017 0.012 0.009 0.006 0.033

X Gyro ( �/s) 0.894 0.087 0.076 0.066 0.052 0.041 0.028 0.239

Y Gyro ( �/s) 3.315 0.081 0.071 0.062 0.049 0.037 0.026 0.201

Z Gyro ( �/s) 2.120 0.070 0.064 0.054 0.043 0.032 0.023 0.182

Apparent root-PSD

X Accel (ms�2/
p
Hz) 0.1457 0.0018 0.0013 0.0009 0.0007 0.0005 0.0004 0.0018

Y Accel (ms�2/
p
Hz) 0.1076 0.0018 0.0013 0.0009 0.0007 0.0005 0.0004 0.0018

Z Accel (ms�2/
p
Hz) 0.0168 0.0030 0.0021 0.0015 0.0011 0.0008 0.0006 0.0029

X Gyro ( �/s/
p
Hz) 0.0799 0.0078 0.0068 0.0059 0.0047 0.0036 0.0025 0.0214

Y Gyro ( �/s/
p
Hz) 0.2965 0.0073 0.0064 0.0056 0.0044 0.0033 0.0023 0.0180

Z Gyro ( �/s/
p
Hz) 0.1896 0.0063 0.0057 0.0048 0.0038 0.0029 0.0021 0.0163

Table 5.5: Static noise tests with the 8 possible low-pass filter bandwidth settings.

5.4), implies that it is not simply discarding the intermediate readings. The bandwidth

required from the IMU is application specific, although the inertial navigation equations

are typically run at at least 100Hz in most navigation applications to calculate the attitude

position correctly [1], implying that the filter bandwidth must be at least 50Hz. However,

it is clear from this experiment that it should be matched to an appropriate output rate to

optimise performance. For the experiments in the rest of this chapter a bandwidth of 92Hz

is used, to make it applicable to a wide range of navigation applications including pedestrian

motion.

In addition, static tests were conducted at di↵erent maximum output range settings, as

shown in Table 5.6. As can be seen, the range setting makes no significant di↵erence to

the noise, the gyroscope is surprisingly even has slightly worse SD at the lowest range. The

same 16-bit ADC is used at the di↵erent ranges to encode a higher possible range of outputs

there is a loss of sensitivity as the range increases. This theoretically increases the level of

quantisation noise. However, this e↵ect is small and does not have a significant e↵ect on this

experiment. This is because the noise SD is considerably larger than the smallest increment

of specific force/angular rate that can be measured, both of which are presented in Table

5.6. This experiment is not su�cient to determine if quantisation residuals are carried-over

or discarded, see Section 4.8.2.4, this is left for future work, although it does show that they

are insignificant.

In addition to the direct aims of the experiments presented here, several other observations

about sensor noise performance can be made. The in-plane x- and y-axis sensors must be of
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Reading Rate (Hz) 500 500 500 500

Nom. Output (Hz) 500 500 500 500

Gyro range ( �/s) 250 500 1000 2000

Gyro bandw. (Hz) 92 92 92 92

Accel range 2g 4g 8g 16g

Accel bandw. (Hz) 92 92 92 92

SD of sensor output

X Accel (ms�2) 0.0144 0.0143 0.0144 0.0145

Y Accel (ms�2) 0.0144 0.0144 0.0144 0.0145

Z Accel (ms�2) 0.0240 0.0236 0.0237 0.0237

X Gyro ( �/s) 0.1235 0.1123 0.1104 0.1112

Y Gyro ( �/s) 0.1117 0.1063 0.1045 0.1050

Z Gyro ( �/s) 0.0993 0.0976 0.0970 0.0975

Apparent root-PSD

X Accel (ms�2/
p
Hz) 0.00065 0.00064 0.00064 0.00065

Y Accel (ms�2/
p
Hz) 0.00065 0.00064 0.00065 0.00065

Z Accel (ms�2/
p
Hz) 0.00108 0.00106 0.00106 0.00106

X Gyro ( �/s/
p
Hz) 0.00552 0.00502 0.00494 0.00497

Y Gyro ( �/s/
p
Hz) 0.00500 0.00475 0.00467 0.00469

Z Gyro ( �/s/
p
Hz) 0.00444 0.00436 0.00434 0.00436

Quantisation level (calculated from [23])

Accel (ms�2/LSB) 0.0006 0.0012 0.0024 0.0048

Gyro ( �/s/LSB) 0.0076 0.0153 0.0305 0.0610

Table 5.6: Static noise tests with the 4 possible sensor range settings.

a di↵erent design to the out-of-plane z-axis sensors, this will lead to di↵erent performance

characteristics, see Section 6.3.3. It is clearly the case that the noise performance is not

the same for the di↵erent axes. The z-axis accelerometers have approximately 160% the

noise SD of the other two axes, and the z-axis gyroscopes has approximately 85% the noise

SD of the other two axes. Also the y-axis gyroscope has slightly less noise than the x-axis

gyroscope, which is more surprising.

Based on the results of this section, the IMU data, used in the rest of this chapter and

Chapter 6, are collected at 250Hz with the output rate set to match and both sensors

internal DLPF bandwidths are set to 92Hz.

5.2 Initial user-calibration experimental results

In order to test the calibration procedures described in Section 4.2 measurements several

di↵erent experiments were conducted, during which complete examples of each of the four

sets of calibration procedures, were recorded using the array of 14 MPU9250 IMUs described

in Section A.2. This data was recorded on Newport RP Reliance optical table, which is

constructed to be particularly flat (“±0.1mm over 600mm square” [183]) and was close to
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level. The ‘corner’ was constructed by attaching 3 bolts to the table which is an e↵ective

way to create a corner for the calibration cube (see Figure 4.11).

Figure 5.2: The spread of accelerometer bias estimates over 12 calibration procedures. On

this scale the results of set A and C are so close as to be almost indistinguishable.

In order to save time over manual identification of start and finish points, the epochs rep-

resenting the beginning and the end of the static periods were identified with a simple

stationarity detection algorithm. This algorithm compares the range and SD of values of

the next or previous second of data with threshold values to find the start or end of the

static period, respectively. The manoeuvres conducted could then be easily identified us-

ing the uncalibrated (raw) sensor outputs. The accelerometer output for identification of

the face, and a simple sum of angular increments over the period between the identified

static periods for discriminating between 90�, 360� and other rotations. This algorithm also

detects gross human errors (e.g. mixing up the order), these are then manually corrected,

although a future production algorithm could do this automatically. This algorithm is not

a focus of this work or its contribution, so it shall not be discussed further.

Human errors in conducting the manoeuvres (e.g. rotation in the wrong direction) or mis-

identification of manoeuvres are readily detectable in the results and even an automatic

check of the results would remove the vast majority of them. An example is diagonal entries

of cAg which are ⇡ 0.5 when ⇡ 1.0 would be expected, caused for example by mixing up the

axis of rotation.

Separate data sets were recorded a di↵erent output ranges, which will be presented in

Section 5.4, this section assesses the consistency of the estimates using data recorded for
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Figure 5.3: The spread of gyroscope bias estimates over 12 calibration procedures. On this

scale the results of set A and C are so close as to be almost indistinguishable.

12 complete calibration procedures with the accelerometers and gyroscopes set at ±2g and

±250 �/s, respectively.

12 complete sets of the calibration procedures were recorded, to examine any variation

induced by stochastic sensor errors and user or manoeuvre related errors. Figures 5.2 to

5.7 show the spread of the IMU error estimates obtained from 12 complete calibration

procedures as box-and-whisker diagrams. In these plots, the outer line represents the range,

the box the inter-quartile range and the central line the median. The x-axes show the

di↵erent sensors and the y-axes the numerical results. The di↵erent colours represent the

di↵erent errors of that type for the particular sensor, e.g. x-, y- and z-axis gyroscope bias.

Summary statistics for the experimental repeatability are presented in Table 5.7. These are

SDs across the estimation of a single IMU error parameter, rather than the statistics of the

distribution of that parameter among the 14 sensors which will be presented in Table 6.1,

and discussed in Section 6.6.

A close spread of calibration results shows that the calibration is consistent. This means that

it is not sensitive to stochastic sensor errors or how well the user conducts the procedure.

However, consistency is not the same as accuracy, as was discussed in Sections 2.5.1 and

4.1. Any biases in the calibration procedure due to the uncalibrated values of the INS’s

systematic errors, the construction accuracy of the calibration cube, or levelness of the

table will not be seen. The results of Section 4.8.2 show that the first of these will not be

significant, and Section 4.8.1 suggests that the latter two of these could be significant but
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Figure 5.4: The spread of table angle estimates over 12 calibration procedures.

the values expected on an optical table and with a precisely made box this is less likely, but

this will be examined in Section 5.3.

In Figures 5.2 and 5.3, the accelerometer and gyroscope biases are presented. The colours

red, green and blue are used for the six-position (set A) results and cyan, magenta and

black for the 24-position (set C) results, for the x- y- and z-axis sensors respectively. As can

be seen the spread of each sensor’s bias estimates is much smaller than the set of possible

biases, which is a reassuring result. The specified bias performance is ±60 milli-g (x and

y, ⇡ 0.59 ms�2) and ±80 milli-g (z, ⇡ 0.79 ms�2) for the accelerometer and ±5 �/s for the

gyroscope [23]. If one believes the result of this calibration then for this sample of 14 sensors

the accelerometers are slightly under-performing but the gyroscopes are significantly better

than specified.

As can be seen in nearly all cases, the 6-position and 24-position results are virtually iden-

tical. This in conjunction with the results of Chapter 4 (particularly Section 4.8.1.2) would

imply in that there is no significant e↵ect from the table’s deviation from level. The esti-

mates of the two table angles (deviation from level, see Section 4.3.6) from each sensor’s

readings presented in Figure 5.4 show consistently, both across the 12 calibrations and the

14 sensors that the table is indeed very close to level. The angle ↵ being represented by the

violet (12-pair) and turquoise (1-pair) being approximately 0.075� and � being represented

by the blue (12-pair) and orange (1-pair) being approximately -0.045�. It should be noted

that the table angle estimation method (see Section 4.5.1 and Equation 4.45) uses the un-

calibrated sensor outputs, so the correlation between sensors is also an indication of table

angle estimate accuracy.
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Figure 5.5: The spread of gyroscope g-dependent error estimates over 12 calibration proce-

dures.

(a) Diagonal elements (b) O↵-diagonal elements

Figure 5.6: The spread of accelerometer alignment and scale factor estimates over 12 cali-

bration procedures.
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(a) Diagonal elements, set D (b) O↵-diagonal elements, set D

(c) Diagonal elements, set B (d) O↵-diagonal elements, set B

(e) Diagonal elements, set B integ. method (f) O↵-diagonal elements, set B integ. method

Figure 5.7: The spread of gyroscope alignment and scale factor estimates over 12 calibration

procedures, using set D and B manoeuvres.
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Coe�cient Repeatability: SD over 12 experiments (averaged over 14 sensors)

X (A) Y (A) Z (A) X (C) Y (C) Z (C)

b
a

(ms�2) 0.0064 0.0080 0.0105 0.0064 0.0080 0.0106

b
g

( �/s) 0.0186 0.0305 0.0152 0.0187 0.0306 0.0151

xx xy xz yx yy yz zx zy zz

Aa (C)(⇥10�3) 0.1107 0.0892 0.1290 0.1158 0.0886 0.1392 0.1595 0.1405 0.2551

Aa (A)(⇥10�3) 0.1239 0.1023 0.1379 0.1427 0.1007 0.1395 0.1834 0.1549 0.2515

Ag (D) 0.00391 8.98e-05 6.64e-05 8.01e-05 0.00127 9.66e-05 7.53e-05 1.27e-04 0.00587

Ag (B sum) 0.0042 0.0209 0.0169 0.0161 0.0027 0.0181 0.0113 0.0259 0.0065

Ag (B int) 0.0045 0.0020 0.0021 0.0033 0.0026 0.0026 0.0029 0.0016 0.0057

Gg (C)( �/s/g) 0.0036 0.0044 0.0035 0.0032 0.0032 0.0030 0.0045 0.0050 0.0041

Gg (A)( �/s/g) 0.0044 0.0049 0.0048 0.0044 0.0042 0.0055 0.0048 0.0055 0.0047

Table 12-pair ↵ 12-pair � 1-pair ↵ 1-pair �

o↵-level (�) 0.0022 0.0019 0.0053 0.0055

Table 5.7: Summary statistics of experimental repeatability for the estimation of each IMU

error coe�cient over 12 recorded experiments. SD recorded is mean SD over the 14 sensors.

Aa and Ag scale factors in bold.

Figure 5.5 shows the results of the g-dependent error matrix estimates. This error source is

not specified on the MPU9250’s datasheet [23], so to include it in Chapter 4 it was assumed

to be the distributed with an SD of 0.1 �/s/g (⇡ 1.78e-04 rad/s / ms�2), based on the

specifications of the similarly priced Bosch BMI055 [45]. The estimates of the results are

around 0.01 - 0.02 �/s/g, so it would appear that the MPU9250s perform much better than

was assumed in the simulations of of Chapter 4.

Figure 5.6 presents the estimates of the accelerometer alignment-and-scale-factor matrix

(cAa). Note that the for the diagonal elements (Figure 5.6a) the x- and y-axis sensors (red

and green) have a much tighter distribution across the sensors, and a lower mean, than the

z-axis sensors (blue). This points to a di↵erence in design or construction as discussed in

Section 6.3.3, the slightly greater spread is likely due to the increased noise on the z-axis

sensor (see Section 5.1). The fact that all the calibrated values for the diagonal elements are

greater than one could be explained by di↵erent values of g used by the calibration procedure

(g= 9.80665 ms�2) and the true value of g in southern England, 9.811832 ms�2 [184, 185],

and the unknown g value used by the manufacturer when they quote the sensitivity in

LSB/g.

Figure 5.7 presents the estimates of the gyroscope alignment/cross-coupling and scale-factor

matrix (cAg). There are three di↵erent methods presented: set D using 6-rotations one per

face while maintaining contact with the table (Figures 5.7a and 5.7b) ; set B sum method

which uses 3 rotations (one per axis) conducted in the air by hand and uses a correction

based on sum of angular increments (Figures 5.7c and 5.7d); and set B integrated method

which uses the same 3 rotations but runs the attitude update part of the inertial navigation

equations (Figures 5.7e and 5.7f). These methods are fully detailed in Section 4.5.2. It should

be noted that all these method are estimating of the same quantities and the colouring of

the matrix components are the same to allow a direct comparison. Note also, the set D

estimate is completely independent of the other two as it uses di↵erent recorded data.
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The simulations in Chapter 4 concluded that errors in cAg were dominated by errors in the

procedure and noise, thus consistent results are likely to represent accurate results.

First consider the diagonal elements of cAg shown in Figures 5.7a, 5.7c and 5.7e. Note that

the vertical axes have the same scale and that the xx- yy- and zz-components are represented

by orange, green and blue. It can be seen that all the methods reach approximately similar

answers for the individual sensors, e.g. for sensor 7 all the methods have a mean of about

1.006 for the yy-component (green). The two set B methods behave similarly but both are

not as good as the set D method. Overall, none of the methods could be said to be markedly

better, as the true values are not known.

In the case of the o↵-diagonal elements, there are much more significant di↵erences. Note

that the vertical axis scales are not the same. The six-rotation (set D) method produces

remarkably consistent results (Figure 5.7b). The set B integrated method in Figure 5.7f

seems to produce broadly similar results to set D note the yx-component (blue) of sensor

13 at approximately 0.013 in set D and 0.015 in set B. However, this figure shows markedly

less consistent results than set D, and might only be considered a marginal improvement

on no calibration. For the set B sum method, in Figure 5.7d, the estimates are much less

consistent. Note the change of scale shows that the spread of results is around 5⇥ that

of either of the other two. The results with this method appear almost uncorrelated with

those of the other two, and the range of results so broad that the sum method for set B is

shown not to work. Also note that the hybrid method (see Section 4.5.2.4), which uses the

o↵-diagonal elements of cAa as an approximation for those of would certainly work better

than the sum method as can be seen by comparing Figure 5.6b with Figure 5.7b.

Figure 5.8: Angular rate during a simulated example of manoeuvre set B.

To understand why this di↵erence between the two set B methods was not shown in Chapter

4, it should be noted that this di↵erence arises from the non-commutativity of rotations.

Briefly, the reality of conducting a rotation in mid-air makes it very di�cult to rotate about a

single fixed axis. Even simulating that rotation axis not precisely the intended axis does not

adequately capture the complexity of a real free-hand rotation, as can be seen by comparing

the simulated Figure 5.8 with the real angular rate output in Figure 5.9. As can be seen

the proportions of the angular rates about the di↵erent axes are not fixed, which implies

the instantaneous axis of rotation is not fixed, thus it becomes very important to treat the
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Figure 5.9: Angular rate during a real example of manoeuvre set B.

Figure 5.10: Angular rate during a real example of one part (2nd) of manoeuvre set D.

rotations correctly.

In contrast, keeping the box in contact with the table, as in manoeuvre set D, produces

a very consistent rotation axis. This can be seen in Figure 5.10. This is real measured

angular rate during one of the set D manoeuvres the rotation is primarily about the x-axis

(blue) but a small rotation about y (red) can be seen at a couple of degrees per second,

roughly in proportion to the x-axis angular rate. This means that the axis of rotation is

almost fixed so the fact that only the sum-of-angular-increments method, rather than the

integrated method, is used to calculate the result does not matter.

5.3 Simulations to determine expected consistency and ac-

curacy of calibration procedure results

It is possible to test the validity of the simulations presented in Chapter 4 by comparing the

simulated results with the empirically obtained results. However, the default settings used

in Chapter 4 were chosen to represent a typical navigation system housing and a roughly

level surface (e.g. dining room table), rather than the high-precision calibration frame and

optical table used in this Chapter.
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ODR 200 Hz

Wait Time 2 sec

cube face-error 0.0438�

cube half-length 0.0375m

table angle 0.1�

replacement Head Error 1� all sets

position error 0.5mm all sets

rotation time 6 sec

part B midair start Att Error 10�

part B midair axis Error 8�

part B midair spin Error 10�

Table 5.8: The parts of ‘TESTspec’ changed from default, see Section 4.6.1.

In Chapter 4, it was shown that the initial distribution of the quantities being calibrated

had very little or no e↵ect on the accuracy with which they were estimated. However what

did have the most significant e↵ect on the accuracy was the cube’s angular accuracy followed

by the table’s levelness and the gyroscope noise. Thus to run a simulation that realistically

represents the experiments presented in this chapter these are the most important factors

to get correct.

75.09mm

75.10mm

75.04mm 75.09mm

75.17mm

75.06mm75.15mm
75.15mm

75.06mm
75.06mm

75.13mm

75.08mm

X

Y
Z

Box frame

Figure 5.11: The dimensions of the aluminium calibration frame as manufactured.

The calibration cube was precision manufactured. However, it is not perfectly cubic. In the

absence of a better technique for measuring its deviation from cubic its twelve edges were

measured with digital vernier callipers accurate to ±0.01mm. This is shown in Figure 5.11.

The edges have mean length 75.1017 mm and SD 0.0406 mm. So the di↵erence between two

lengths has SD
p
0.04062 + 0.04062 = 0.0575mm and if they are 75.1017 mm apart then the

angular SD is about arcsin( 0.0575

75.1017

) = 0.0438�.

The table angles were consistently estimated by the calibration procedure to be ↵ = 0.075�

and � = �0.045� (see Figure 5.4 and Table 5.7). These and the other values presented in

Sections 5.1 and 5.2 lead to changing some of the default settings used in Chapter 4 to the

values presented in Tables 5.8 and 5.9.

There are a number of assumptions upon which the simulation is based. Some of these are
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Gyro noise PSD 0.01 �/s/
p
Hz

Gyro bias SD 1.5 �/s

Gyro g-dep SD 1⇥ 10�5 rad / ms�2

Accel noise PSD 300 micro-g/
p
Hz ⇡ 0.0029ms�2/

p
Hz)

Accel bias SD 0.6 ms�2

Table 5.9: The parts of ‘IMUspec’ changed from default, see Section 4.6.1.

also assumptions of the calibration method. For example, the IMU model assumes that the

IMU’s systematic errors comprise a particular set of factors (see Equation 4.5 to 4.8) are

their coe�cients have a fixed value, and sensor noise is white. These assumptions are valid in

the simulation, by design, and may or may not su�ciently close to valid in reality that they

have a significant e↵ect on the results. There are also calibration algorithm assumptions,

such as non-linearity being insignificant, which may be less valid for the real data than the

simulation, for instance the variation in angular rate during the set B or D manoeuvres

is greater in the real case (see Figures 5.9 and 5.10) than in the simulation (see Figure

5.8), which excites gyroscope non-linearity more. There are also some limitations in how

well the simulated manoeuvres reflect a real calibration procedure. For example in the set

B simulation the rotation axis is e↵ectively fixed rather than instantaneously varying, see

Figures 5.8 and 5.9 and the discussion in Section 5.2, which makes the sum method behave

better in the simulation than reality. Most of these e↵ects would cause the simulation to

appear more accurate/repeatable than the real experiment.

Noting these provisos, in this section, two simulations are presented. The intention of these

simulations are: first, to validate the simulation method in Chapter 4 by comparing the

repeatability derived from a simulation with the experimental repeatability presented in

Section 5.2; second, to estimate the accuracy of the experimental calibration, under the

assumption that the simulation is valid.

In order to test the validity of the simulation by comparing simulated to experimental

repeatability, one simulation was required, where all the IMU errors (i.e. the values of the

systematic errors) were fixed and many of the test errors were also fixed (e.g. the deviation

from cubic of the calibration box, and the table levelling error), to simulate repeatedly

calibrating the same IMU in the same box. A second simulation is presented with the

normal methodology simulating many di↵erent IMUs with the same specifications being

calibrated in di↵erent boxes, to estimate the accuracy of the calibration procedure. The

latter of these is a repeat of the work in Chapter 4 with a di↵erent set of inputs.

5.3.1 Simulation estimated repeatability

The central column of Table 5.10 presents the results of a simulation were many of the

randomly generated errors were fixed to a single (randomly generated) value for all the

500 simulation runs. These comprised all the IMU’s systematic errors, the cube’s deviation

from cubic and its length error, the IMU-within-the-box mounting error, and the table’s

deviation-from-level error. This means that the di↵erences that are observed between the
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IMU error Repeatability (SD) Accuracy (RMS)
cb
g

set A T1 0.00287 �/s 0.00302 �/s
cb
g

set C T1 0.00145 �/s 0.00145 �/s
cb
g

set A T2 0.00513 �/s 0.00513 �/s
cb
g

set C T2 0.00250 �/s 0.00250 �/s

Uncalibrated b
g

� 1.49 �/s
cb
a

set A bias T1 0.00111 ms�2 0.0101 ms�2

cb
a

set C bias T1 0.000427 ms�2 0.00626 ms�2

cb
a

set A bias T2 0.00148 ms�2 0.0174 ms�2

cb
a

set C bias T2 0.00074 ms�2 0.0173 ms�2

Uncalibrated b
a

� 0.681 ms�2

cAa set A 0.000196 0.00152
cAa set C 0.0000759 0.00112
cAa 7-pos. 0.000196 0.00152

Uncalibrated Aa � 0.0661
cGg set A 0.00498 �/s/g 0.00540 �/s/g
cGg set C 0.00252 �/s/g 0.00317 �/s/g
cGg 7-position 0.00498 �/s/g 0.00540 �/s/g

Uncalibrated Gg � 0.00563 �/s/g
cAg set B sum 0.0930 0.1066
cAg set B int 0.0114 0.0291
cAg set B hyb 0.00865 0.0281
cAg set D sum 0.00105 0.00164
cAg set D hyb 0.000930 0.0232

Uncalibrated Ag � 0.0656

table angle (12-pair) 0.00693� 0.00445�

table angle (1-pair) 0.0112� 0.0104�

uncalibrated table angle � 0.0999�

Table 5.10: Simulation-derived consistency measures (standard deviations of estimates) and

accuracy measures (RMS of estimates). SD and RMS results derived from separate simula-

tions. SD or RMS for each axis or matrix entry is then averaged across the set for a single

number.

calibration runs are the result of IMU noise, and human-related inaccuracies: the heading-

replacement-error and inaccuracies in the way the dynamic rotation was carried out.

As discussed in Chapter 4, the main e↵ect of the getting the heading-replacement wrong in

the static parts of the calibration is to reduce the e↵ectiveness of the 24-position manoeuvre

set C’s calibration of the e↵ect of the table error from level. In this case this error is very

small so less accurately calibrating it has very little e↵ect. If one observes the di↵erence in

SD for each statically-determined error and estimation technique in Table 5.10 the SD is

with set C approximately half that for set A in every case due to the 4⇥ longer averaging

time, see Section 4.8.1.4, rather than any additional improvement from minimising the e↵ect

of the table angles.
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Comparing the simulation derived SDs (Table 5.10) with the consistency results presented

in Section 5.2 (Table 5.7). The simulation predicts gyroscope bias SDs at around 0.003 �/s,

the experimentally observed variation of this was more around the 0.015 to 0.03 �/s level

(Table 5.3). For the accelerometer bias the model predicted SD is around 0.001 ms�2 this

is also lower than can be observed in Figure 5.2 but not by much. The cGg SD predicted by

the model is 0.03 - 0.055 �/s/g, this is a very good match for the levels of variation shown in

Figure 5.5. Similarly the experimental results for cAa are very similar, 0.0009 - 0.00025 SD,

to the predicted 0.0001 - 0.00015 SD (unitless), see Figure 5.6. For most components except

the zz-component about half as much variability is observed. This better performance could

be attributed to the actual (x and y) noise being lower than modelled.

A possible explanation for this is that the gyroscope and accelerometer biases are not fixed

at that level for an hour and/or the unavoidable temperature variation over that time (see

Figure 5.12) lead to larger changes in the biases. Note that the internal IMUs’ internal

temperature sensors are only specifications are only given as typical values (“Sensitivity

Untrimmed 333.87 LSB/�C, Room Temp O↵set (21�C) 0 LSB” [23]) so it is probable that

the di↵erences between the outputs of the internal temperature sensors are biases. The

e↵ect of temperature on the sensors in the testbed will be examined in Section 6.6.2.

Figure 5.12: The output of the internal temperature sensors during the experiment. Note

that the first calibration procedure began at 1273 seconds to allow the sensors to heat up.

The last procedure used finished at 4281 seconds. The time during which each of the 12

calibration procedures took place are marked by coloured horizontal lines. The walking test

(see Section 5.6.2) start and finish are marked by red triangles. The sharp dip in temperature

coinciding with the walking test, may be attributed to convective cooling due to increased

airflow over the PCB while moving.

When considering the repeatability of cAg, one needs to consider the problems highlighted

above, i.e. the simulation not capturing the full complexity of the motion. However, con-

sidering the set D ‘advanced’ manoeuvres, the simulation estimates repeatability that is

very close to that demonstrated in the experiments shown in Figure 5.7, the simulation

predicted SD 0.001 (unitless) is about half the variation of the diagonal elements and more

than double that exhibited by the o↵-diagonal elements, so a very good estimate. The Ag

estimates from the set B ‘integrated’ method in the simulation are at around the 0.03 (3%
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level), Figure 5.7e and 5.7f show that the experimental variation is around the 1% level, but

the simulation is reasonable given the issues with the capturing of the complexity discussed

earlier.

Finally the simulated table angle estimate SDs come out as 1 ⇥ 10�4 or 2 ⇥ 10�4 radians,

equivalent to 0.006 to 0.012 degrees, for 1-pair and 12-pair, respectively. Comparing these

results to Figure 5.4, one can see that there is a good agreement.

5.3.2 Simulation estimated accuracy

If one takes the agreement between the results presented in Table 5.10 and the experiments

presented in Section 5.2 as enough evidence to believe the simulations, at least for the parts

of the procedure other than set B, then one can use simulations to get an idea of the accuracy

of the experiments.

One must expect any procedure to be less accurate than it is repeatable, as the accuracy

includes both the random errors from noise or human sources, and any errors introduced

from sources that are fixed when one repeats the experiments, such as deviations from cubic

in the calibration box.

In order to simulate the accuracy of the experimental calibration a second simulation was

run without the special modification used to set most of the errors to the same value. That

is, the simulation was run in exactly the same way as those in Chapter 4 the only change

being the input values in Tables 5.8 and 5.9.

The third column of Table 5.10 shows the simulation-derived RMS values for the accuracy

of the systematic error estimates produced by the calibration algorithm. The initial or

uncalibrated values are also shown, for comparison.

There are some results that are worth individually highlighting, first that the Technique 2

bias estimation methods (see Section 4.5.1 and Equation 4.67 and 4.69) are worse performing

than the Technique 1 method for both the accelerometer and gyroscope biases. This is

related to the cube angle error (deviation from orthogonal-sided), as was discussed in Section

4.8.1.1, specifically with reference to Figure 4.13a the Technique 2 method is better than

the standard method when the cube angle error exceeds 0.25�, which is not the case here.

Also note that the set B sum and hybrid methods are worse than no calibration.

If we look at the approximate level of improvement for each error under each of the di↵erent

calibration sets. The gyroscope bias improves by 3 orders of magnitude for the 24-position

set C method. The 6-position set A method has, as expected by the 4⇥ longer averaging

time, twice the RMS of the 24-position method, supporting the hypothesis that the noise

averaging is the primary factor.

Similarly the accelerometer bias is improved by about 2 orders of magnitude and the set

C performance is not twice as good as the set A performance (closer to 1.5⇥ 0.0063 vs

0.010ms�2), so there is still a small e↵ect from removing the e↵ect of the un-level table, even

though it is very close to level (0.1� SD). The cGg accuracy estimate shows the uncertainty

is very close to the actual estimated values, so the calibration is only marginally better
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than just ignoring the error (i.e. assuming that it is a matrix full of zeros). However, as

around the repeatability SD is around 80% the value of the RMS, this uncertainty is clearly

dominated by random errors (i.e. sensor noise). Thus improvements could be made by using

longer averaging times, increasing the averaging time from 2 to 50 seconds would make the

e↵ect of the noise smaller, until the cube error was the dominant source of error, at the

expense of taking a long time for the whole calibration.

The cAa is significantly improved by the calibration, and the set C method is only slightly

better than the set A method, implying that the cube error is the most a significant factor,

as the longer noise averaging time has very little e↵ect. For the cAg errors the part B

integrated method shows a small improvement on the no calibration.

The simulation results for the set D manoeuvres are very significantly better than uncali-

brated (nearly 50⇥ smaller RMS). The set D hybrid method, which uses the o↵-diagonal

elements from cAa, shows a much smaller improvement. This implies that the o↵-diagonal

elements are well estimated by the set D sum method.

5.4 E↵ect of sensor range setting on the calibration output

(a) cba (b) cbg

Figure 5.13: The e↵ect of accelerometer and gyroscope range settings on cb
a

and cb
g

, respec-

tively.

An experiment was carried out to assess the e↵ect of the sensor range settings on the cali-

bration procedure’s output. This test is intended to show if there are significant di↵erences

in the sensor calibration parameters if the range settings are changed.

Four experiments were carried out to cover the four possible range settings for the accelerom-

eter and gyroscope over a four-hour period. In each of these experiments multiple repeats

of the calibration procedure were conducted. First, 5 complete procedures were recorded

with the accelerometers set to 16g and the gyroscopes to 2000 �/s. Then, 3 procedures with

range settings of 8g and 1000 �/s followed by 4 procedures with range settings of 4g and
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Figure 5.14: The e↵ect of gyroscope range setting on g-dependent error.

(a) Diagonal elements (b) O↵-diagonal elements

Figure 5.15: The e↵ect of accelerometer range setting on alignment and scale factor.

(a) Diagonal elements (b) O↵-diagonal elements

Figure 5.16: The e↵ect of gyroscope range setting on alignment and scale factor.
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500 �/s, for the accelerometer and gyroscope respectively. Finally 12 calibration procedures

were recorded with 2g accelerometer range and 250 �/s gyroscope range.

In the results presented in Figures 5.13a to 5.16 the mean calibration output over the 3

to 12 procedures for each range setting is shown. In all cases, the results of the advanced

method (using manoeuvre set C or D) are presented. The lines refer to all the outputs of

the multiple axes across the multiple sensors. Lines of the same colour denote the same axis

(or matrix entry) outputs. In all cases red, green and blue refer to the x, y and z (or xx yy

zz) outputs, respectively.

Figure 5.13a shows that there is only a limited change in each accelerometer’s bias calibration

results at di↵erent range settings. The change that is there seems to be more pronounced

(and positive) for the z-axis sensors. In Figure 5.13b interestingly this tendency is reversed

with the x- and y-axis gyroscope biases apparently more sensitive to changes in the range

settings.

The variation in g-dependent error (Figure 5.14) is consistent with the precision of the

calibration process given in Table 5.10. Therefore there are no e↵ects that can be directly

attributed to the range settings.

For the accelerometer and gyroscope alignment matrices it makes sense to consider the

diagonal and o↵-diagonal elements of the matrices separately. This is because the underlying

causes, as well as the specifications, of these errors are di↵erent. The o↵-diagonal entries in
cAa and cAg are primarily misalignment of the sensitive axes relative to the package outline

and misalignment of the package outline inside the calibration box. In other words, this it is

a physical alignment problem. Thus one would not expect it to be a↵ected by any register

setting (e.g. range) of the sensors. Figures 5.15b and 5.16b show the o↵-diagonal elements

are virtually una↵ected by range settings, and thus support this hypothesis.

In contrast the diagonal elements of cAa, which is dominated by the accelerometer’s scale

error, is a↵ected. In Figure 5.15a there is a clear negative trend for the majority of the

z-axis accelerometers. The x- and y-axis sensors’ sensitivities are not apparently a↵ected

by the range settings. This gives more support to the idea that the performance of the

z-axis sensor is considerably di↵erent, see Section 6.3.3. Note also the much greater spread

of calibration results for the z-axis sensor than the x- and y-axis sensors.

The diagonal elements of cAg are presented in Figure 5.16a. The values for all axes of the

gyroscope scale factor are clearly a↵ected by the range setting, and not in the same way.

While no particularly obvious trend can be observed it is clear that one can not expect a

calibration conducted at one range setting to be particularly useful at another. The fact

that there is apparently no dependence on range for the o↵-diagonal elements (Figure 5.16b)

supports this being a genuine phenomenon rather a random occurrence.

The fixed nature of the o↵-diagonal elements of Ag and Aa could be used in two ways.

First, a simplified procedure could be designed to estimate only the diagonal elements, for

example a single rotation, which might be conducted more frequently. Secondly the expected

consistency of the o↵-diagonal element estimates might be used as a test that the procedure

was conducted as expected.
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5.5 Temporal validity of calibrated parameters

User calibration procedures were recorded on three separate days several weeks apart with

identical sensor settings, including measurement ranges set at 2g and 250 �/s. These oc-

casions were: 25th January 2016, when 6 procedures were recorded as preliminary data

collection for developing code; 10th February 2016, when 12 procedures were recorded as

presented in Sections 5.2 and 5.4 (on this occasion the other range experiments were also

conducted); 20th March 2016 when 4 procedures were recorded before heating the testbed;

the 2 post-heating are not included here, these will be presented in more detail in Sec-

tion 6.6.3. The IMU error estimates calculated from the manoeuvre set C and D of these

calibration procedures were averaged for each day and are presented in Figures 5.17 to 5.20.

(a) cba (b) cbg

Figure 5.17: The average bias estimates on three occasions.

Figure 5.18: The average cGg on three occasions.

Using this method of comparison, any systematic bias (e.g. from cube deviation-from-

orthogonal) would be constant across the multiple procedures and days. Therefore vari-
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(a) Diagonal elements (b) O↵-diagonal elements

Figure 5.19: The average cAa on three occasions.

(a) Diagonal elements (b) O↵-diagonal elements

Figure 5.20: The average cAg on three occasions.

ation in the calculated values is due to either random errors of the procedure and sensors,

which were shown to be small in Section 5.2 and are further reduced by the averaging across

the 4–12 procedures on each occasion, or actual change in the underlying quantity being

estimated.

The bias estimates in Figure 5.17 vary slightly day-to-day, but significantly less than the

total variation within the population. Part of this variation may be related to di↵erences

in ambient temperature on the days in question, bias variation with temperature will be

examined in Section 6.6.2. Figure 5.18 shows some correlation in estimates of cGg between

the three days, but there is also considerable variation, given the precision of the calibration

process given in Table 5.10 this is not surprising.

The alignment and scale factor matrices show more interesting behaviour. The o↵-diagonal

elements show very little variation day-to-day (both Figures 5.19b and 5.20b). This implies
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their calibration, remains valid even after several weeks. The diagonal elements show more

variation, some of which can be accounted for by the greater SD of repeatability (particularly
cAg, compare Figure 5.7a with Figure 5.20a). However, this repeatability SD, particularly

for cAa is not su�cient to account for all the variation. This implies there is a variation in

the true values of the diagonal elements of Aa and Ag between the occasions.

The variation in the IMU error estimates calculated on the three occasions in this test are

shown to be greatest for the scale factor errors (both accelerometer and gyroscope) and the

gyroscope bias. These error terms, as shown in Chapter 3, are among the most significant for

KF stability. However, the variation from day-to-day is shown to be considerably smaller

than within the population, so an old calibration may have a small enough error from

the current value to maintain stability (scale factors of 1% for accelerometer and 0.3% for

gyroscope), this is easily the case for the accelerometer as the variation seen in Figure 5.19a

is well under 1%. Further experiments are required to calculate detailed statistics on the

run-to-run variation, as three occasions is only su�cient for an approximate insight.

5.6 Empirical tests of calibration accuracy

In order to experimentally evaluate the accuracy of the calibration algorithm, as opposed

to its consistency, additional measurements were recorded during the experiment presented

in Section 5.2. This test comprised starting in a fixed position and orientation (ZU1 in

fact, see Section 4.3), then walking around the room, holding the array at waist height for

around 30 seconds, and finally return to the same position and orientation on the optical

table. Navigation performance is also assessed while static.

In this section, the results of integrating these recorded static and dynamic periods using

the inertial navigation equations (see Section 2.2.3) are presented. It should be noted that

these navigation tests are not a perfect means to assess the performance of the calibration

algorithm. There are a number of limitations. For instance,any given error at a particular

moment in time will be the result of a number of di↵erent error sources, for example both an

attitude error and an accelerometer bias error will cause an increasing velocity error, so this

kind of test can only be viewed as a measure of overall performance and the precise cause

of poor performance cannot be determined. Also, even a perfectly calibrated INS would

drift from the truth due to sensor noise and accumulation of numerical rounding errors so

zero-displacement is virtually impossible.

Most of the graphs presented in this section contain a series of sub-graphs each showing one

component of the resulting position, velocity and attitude solution (PVA). In these graphs

each sensor (or sub-array) is represented by a di↵erent colour, e.g. the grey line in all of the

sub-graphs represents the calculated PVA of the 13th sensor.

In these experiments the sensors had been running for nearly 60 minutes and so had long

since warmed up to long-term operating temperature (see Figure 5.12), which takes less

than 10 minutes, and the calibration results used to correct the output was based on a

calibration procedure conducted within five minutes of the data recording (i.e. immediately

before or after).
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This section first presents the results of integrating static data (Section 5.6.1) then a dynamic

test (Section 5.6.2)

5.6.1 Static test

This section presents a static test, several were conducted with very similar results so only

one is shown for reasons of space.

In a static test such as this the truth is known (no motion) so it is straightforward to

assess what is an error. However, the drift observed in the figures is from a combination

of sources. In this static case the attitude errors are a combination of (residual) gyroscope

bias and gyroscope noise. The position and velocity errors are more complex, they are a

combination of (residual) accelerometer bias and noise but also current attitude error, via

the compensation for specific force due to gravity, and this is also a↵ected by the accuracy of

the attitude initialisation, which is calculated from the table angles in this case. Additionally

the accelerometer scale factor of the (in this case) z-axis also e↵ects the position and velocity

errors. This means that determining the precisely which error source is the reason for poor

performance is not clear, but the relative e↵ectiveness of di↵erent calibration techniques can

be seen.

Figure 5.21: Uncorrected IMU measurements integrated over a 30 second static period.

Figure 5.21 shows the inertial navigation PVA solution from the uncorrected IMU mea-

surements. It is clear that the sensors are not going to be particularly useful for inertial

navigation in their uncalibrated state. After 30 seconds the attitude solutions are wrong by

up to 45� and the positions are wrong more than a kilometre.
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Figure 5.22: Error-compensated IMU measurements integrated over a 30 second static pe-

riod, using manoeuvre sets C and D.

Figure 5.23: Error-compensated IMU measurements integrated over a 30 second static pe-

riod, using manoeuvre sets A and B.
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The PVA solutions calculated from IMU measurements corrected using the advanced (set C

and D) and basic (set A and B) calibration techniques are shown in Figures 5.22 and 5.23,

respectively. These show much better navigation performance over the 30 seconds observed

than Figure 5.21. Position is mostly within a few tens of metres and attitude within a couple

of degrees of the static truth. This kind of improvement might be expected, because the

uncalibrated gyroscope biases are around 1-2 �/s and the simulation presented in Section 5.3,

predicted cb
g

accuracy of 0.0015 �/s. What is a more interesting observation is that there

is very little di↵erence between the IMU measurements corrected by the more laborious

24-position 6-rotation method in Figure 5.22 and the IMU measurements corrected by the

6-position 3-rotation results in Figure 5.23. However, this actually supports the results of

the simulation in Table 5.10. This is because the improvement in residual error between for

the biases, cAa and cGg is expected to be modest between the set A and set C estimates, an

improvement of less than a factor of two. This is because the optical table is almost level,

so the primary benefit of set C over set A is lost. The more significant di↵erences expected

(from Table 5.10) in the accuracy of cAg, between manoeuvre sets B and D, are not excited

because this is a static test.

5.6.2 Dynamic test

To provide a more exhaustive test of the IMU navigation performance, inertial data was

recorded for a 40 second period of pedestrian motion walking around a laboratory. This,

with a single second of static data before and afterwards, was integrated with the inertial

navigation equations (see 2.2.3) to assess the performance of the sensor calibration. The

data recorded by one of the sensors (SDA02, number 13 in the graphs) for this period is

shown in Figure 5.24. A second test was also conducted with very similar results so only

one is shown for reasons of space.

(a) Specific Force (b) Angular rate

Figure 5.24: The raw IMU measurements recorded for the pedestrian motion from one of

the sensors (number 13).
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Figure 5.25: Motion profile obtained from a short pedestrian motion test by running inertial

navigation with uncorrected IMU measurements.

Figure 5.26: Motion profile obtained from a short pedestrian motion test by running inertial

navigation with IMU measurements corrected using manoeuvre sets C and D.
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Figure 5.27: Motion profile obtained from a short pedestrian motion test by running inertial

navigation with IMU measurements corrected using manoeuvre sets A and B.

While there is no truth model available for these dynamic tests, there are a number of ways

of assessing performance. At all times, the equipment remained within 5m of the starting

point, and during the first and last second the array was static and at the same position and

attitude. Additionally all the sensors are rigidly attached together so their motion should

have been identical. Thus, any divergence in their PVA solutions indicates an error.

In a dynamic test such as this, errors in the PVA solution are from a combination of sources,

and in addition to the errors mentioned at the start of Section 5.6.1, the attitude solution

is also a↵ected by the accuracy of the gyroscope scale factor and alignment/cross-coupling

matrix estimate (cAg) as well as the accuracy of cGg and the magnitude of errors which are

not estimated by the calibration procedure such as scale-factor non-linearity. The position

and velocity solutions are still a↵ected by all the error sources which degrade the attitude

solution, including errors in cAg. However, the variation in specific force, see Figure 5.24a,

means that, in addition to all of these errors sources, the accuracy of cAa and the magnitude

of the unestimated higher order errors such as scale-factor non-linearity also a↵ect the

navigation performance.

Figure 5.25 shows the navigation performance obtained from the uncalibrated set of sensors.

The PVA solution shown is poor with up to a kilometre of error vertically, several hundred

metres horizontally and tens of degrees of attitude error with the heading performance being

the worst. The east and north velocity spread out so quickly and in such an apparently

unstructured manner that it is very di�cult to determine what the true profile might have

been from examining the spread of results. The same thing could be said of the bank and

elevation profiles.
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It is important to note that walking in circles is flattering to the position accuracy because

the body-frame is rotated relative to the local navigation frame through the experiment, so

the e↵ect of body-fixed errors, such as biases, are being applied in di↵erent local navigation

frame directions and so their e↵ects partly cancel out. This explains why the performance

appears worse for the uncalibrated static experiment (Figure 5.21) than the uncalibrated

dynamic experiment (Figure 5.25).

Figures 5.26 and 5.27 show the PVA solution from the calibrated output of the IMUs, from

the set C and D and the set A and B manoeuvres, respectively. The navigation performance

is much better with this calibration than without calibration, the position errors only being

a few tens of metres and the final attitude di↵erence (which is known to be very close to

zero) being less than a degree. What can be seen by comparing these two figures is that, in

contrast to the analogous pair for the static data, there is significantly less spread with the

C/D technique. Comparing the bank and elevation between the two, especially around the

peaks on the graph, reveals a greater spread among the 14 sensors in Figure 5.27, even very

early into the experiment. Interestingly, examining the final (static) second does not show

much greater spread between the two datasets. The velocity solution is also slightly worse

in Figure 5.27 than Figure 5.26

The static experiments in Figures 5.22 and 5.23 showed that there is little di↵erence in

the bias calibration, between the estimates from the set C and D and the set A and B

manoeuvres, therefore the di↵erence must be due to other error sources. The variation in

specific force (see Figure 5.24a) over the experiment is not very great compared to a static

experiment, as the array remains the same way up, so there is unlikely to significantly more

impact from cGg than in the static case. Thus the di↵erence between Figures 5.22 and 5.23

must be due to cAa or cAg. Due to the two complete (heading) rotations, any impact of

errors in cAa on the x- and y-velocity solution will cancel out over the course of the whole

experiment, but not their influence on the position solution. Similarly, any impact from

errors in cAg on the bank and elevation solutions will cancel out over the circuits, but not

their influence on the velocity or position solutions. Comparing the bank solutions in the

first 15 seconds (i.e. before the first circuit has been completed) between Figures 5.22 and

5.23, the spread of estimates in the set A/B solutions are greater than the C/D solutions.

Also the spread of x- and y-velocity solutions in the final few seconds (more clearly visible

for y) is slightly worse for the set A/B solution. Both of these points suggest that the

di↵erence in performance between A/B and C/D, is due to errors in cAg rather than cAa.

This is not particularly surprising as the C/D solution is predicted to make more di↵erence

to the cAg than the cAa. This supports the simulation results in Table 5.10.

5.7 Summary

This chapter presented three primary results. It determines the consistency of the calibra-

tion procedure by conducting the calibration procedure multiple times and examining the

distribution of the output, in Section 5.2. Section 5.3 presented a comparison between these

empirical results and the accuracy and consistency expected from a simulation of the type

presented in Chapter 4 but with the input modified to better reflect the circumstances of the
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empirical calibration procedures. The main results of these experiments and simulations are

summarised in Table 5.11. The variations in the IMU error estimates were examined at dif-

ferent range settings (Section 5.4) and from experiments with identical settings on di↵erent

days (Section 5.5). Results were also presented (Section 5.6) showing how much navigation

performance is improved by comparing the inertial navigation performance with the simpler

(set A and B) and more complex (set C and D) calibration manoeuvres to uncalibrated

sensors using static and dynamic datasets.

IMU Error typical Sample of 14 IMUs Expt repeat. 500 run simulation

Coe�cient spec. Mean SD* RMS SD* Acc.(RMS) Rep.(SD)
cb
a

(x) (ms�2) ±0.59 0.397 0.382 0.5414 0.0064
cb
a

(y) (ms�2) ±0.59 0.193 0.173 0.2550 0.0080 0.00626 0.000427
cb
a

(z) (ms�2) ±0.78 -0.508 0.593 0.7644 0.0106
cb
g

(x) ( �/s) 0.0704 1.295 1.250 0.0187
cb
g

(y) ( �/s) ±5 0.625 0.8615 1.0393 0.00145 0.00145 0.0014
cb
g

(z) ( �/s) 0.5700 0.7006 0.8836 0.0151
cAa � I3(x, x) 0.00205 0.000883 0.00222 0.0001107
cAa � I3(y, y) ±3% 0.00201 0.000468 0.00206 0.0000886 0.00112 7.59e-5
cAa � I3(z, z) 0.00784 0.00298 0.00836 0.0002551

mean cAa o↵-diag. ±2%+Cs
b -0.000154 0.0048 0.0048 0.0001289

cAg � I3(x, x) -0.00641 0.00164 0.00660 0.00391
cAg � I3(y, y) ±3% 0.00106 0.00279 0.00289 0.00127 0.00164 0.00105
cAg � I3(z, z) -0.00235 0.00249 0.00336 0.00587

mean cAg o↵-diag. ±2%+Cs
b -0.000321 0.0051 0.0052 0.0000892

cGg ( �/s/g) none 0.00077 0.0055 0.0057 0.003839 0.00317 0.00252

mean all 9 entries

@b
a

/@T (x) (ms�2/�C) -0.0201 0.0160 0.0260

@b
a

/@T (y) (ms�2/�C) ±0.0147 -0.00727 0.00690 0.00985 n/a n/a n/a

@b
a

/@T (z) (ms�2/�C) 0.00618 0.0251 0.0249

@b
g

/@T (x) ( �/s/�C) ±30 �/s 0.000516 0.0472 0.0455

@b
g

/@T (y) ( �/s/�C) (-40 to 85 -0.0266 0.0148 0.0302 n/a n/a n/a

@b
g

/@T (z) ( �/s/�C) �C) -0.000366 0.0150 0.0144

Table 5.11: Summary statistics of experimental estimates and simulation results for cb
a

, cb
g

,

scale factor errors and bias variation with temperature. Set C (technique 1) and D (sum

method) results quoted. Specifications are from [23] and information is from Tables 5.7,

5.10, 6.1 and 6.2. ‘SD*’ denotes unbiased estimate of population SD, i.e. normalised by

n� 1.

The simulated calibration procedure produced results that were a good match for the em-

pirical results for the cAa and cGg, and to slightly underestimate the variation found in

the accelerometer and gyroscope biases, which could be explained by the biases changing

slightly over time and/or with temperature during the physical experiment. In the case of
cAg the situation was more nuanced. For the six-rotation manoeuvre set D, the simulated

results correspond well with the experiments, and in both cases it is shown to be e↵ective.

However, the simulation failed to take into account all the complexity introduced by the

free-hand rotations of manoeuvre set B, so the di↵erence in performance between the sum-

of-angular-increments and integrated algorithms was not adequately captured. However, the

basic recommendation from the simulation is to avoid the set B manoeuvres, particularly

the sum-of-angular-increments algorithm, and the fact that it is even worse than simulated
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is good grounds to avoid it.

This chapter also presents results characterising the sensors error performance at di↵erent

range settings. The range setting was shown not to make a significant di↵erence to the

systematic error distribution (Section 5.4) or the noise performance (Table 5.6).

Section 5.5 presents results on how useful a user-conducted calibration procedure is in the

longer term, that is whether an old calibration is still an improvement on no calibration

weeks later. This was based on the average estimates of calibration procedures conducted

on three separate days. The IMU biases were found to vary slightly from day-to-day, as

were the scale factors Any e↵ect on cGg over time was not large enough to be seen given the

proportionately high uncertainty in the estimate.

The estimates of o↵ diagonal elements of Ag and Aa were shown to remain valid at all the

range settings (Figures 5.15b and 5.16b), and despite being several weeks old (Figures 5.19b

and 5.20b), they will also be shown to be remain valid when temperature changes (Figures

5.19b and 5.20b). This implies that a one-time calibration would be su�cient for the o↵-

diagonal elements of the Aa and Ag, meaning that it might be possible to only estimate

scale factors as KF states.

It is also worth noting that the run-to-run variation in cb
a

and cb
g

is su�ciently small to be

well within the stable region for KF integration, as found in Chapter 3. The simulated RMS

accuracy and the experimental repeatability of cAa are well below the medium level (1% scale

factor, 0.5% cross coupling, see Table 3.3) required for stable KF integration, even including

the run-to-run variation. In fact, they are nearly within this level uncalibrated. The required

accuracy of cGg is reached even without calibration for these sensors. The accuracy needed

for cAg is the low level (0.3% scale factor, 0.2% cross coupling, see Table 3.3), the simulation

predicts that the estimate should be within that accuracy for the manoeuvre set D (the

set B manoeuvres are not accurate enough), the experimental repeatability within this

requirement for the o↵-diagonals and is right on this level (0.13–0.6% see Table 5.7) for the

diagonal elements. However, the variation from day-to-day of the gyroscope scale factors is

above this level so the calibration would need to be repeated each time the IMUs are used.

In this chapter and Chapter 4 the performance improvement possible with user-conducted

calibration has been shown. This can make a dramatic improvement in use relative to

uncalibrated sensors, see Section 5.6. However, there are limitations to this approach, for

example the noise cannot be reduced by calibration, and so will become the dominant

error source when the systematic errors are well calibrated, and the calibrated sensor biases

will frequently vary with temperature, and given equipment limitations of user calibration

techniques this cannot not necessarily be calibrated. In Chapter 6 some techniques which

use arrays of sensors, including techniques which can reduce the e↵ects of both of these error

sources, will be presented.
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Chapter 6

Use of sensor arrays

This chapter presents techniques that can be used to improve the performance of an inertial

navigation system (INS) by using an array of IMUs.

This will begin with a discussion of the basic e↵ects of all array techniques and the perfor-

mance improvement expected by adding more sensors (Section 6.1). Following this ground-

work, theoretical methods for improving performance more than a simple array-average

approach are presented. This begins with discussion of techniques using arrays of similar

sensors, for example sensors of the same model (Section 6.2). This includes orienting the

sensors so that their sensitive axes point in opposite directions to reduce temperature depen-

dent bias drift. This is followed by discussion of arrays of sensors with di↵erent performance

characteristics , particularly when the This includes where the performance and performance

requirements of sensors within the array are asymmetric and techniques for weighting the

output of sensors with di↵erent performance characteristics (Section 6.3). This chapter also

examines the idea of arrays of IMUs with di↵erent measurement ranges (Section 6.4) This

chapter also discusses the best way to calibrate an array of IMUs using user calibration

procedures (Section 6.5).

Experiments which provide supporting evidence for the array techniques investigated in

this chapter are presented in Section 6.6. This includes examining the distribution of errors

of the 14 sensors in the test hardware described in Appendix A, and conducting dynamic

experiments. These experiments include the e↵ect of changing the ambient temperature.

This sections main findings are summarised in Section 6.7.

6.1 General error characteristics of sensor arrays

The type of array considered here is a set of multiple inertial sensor triads, fixed relative to

one another within the body frame of a navigation device. This is assumed in subsequent

discussions. An example would be multiple MEMS IMUs on the same printed circuit board

(PCB). As there are multiple triads each of which is measuring the inertial forces in/about

all three principle axes, all the inertial forces are measured by more than one IMU.

The simplest thing that can be done with these multiple measurements of specific force

and/or angular rate is to transform them all into an array resolving axes, and then average

their readings into a single virtual IMU (VIMU) output for the navigation system. The

transformation is fairly straightforward (see Section 4.3) as in the case of a single PCB

195
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sensor positions and orientations should be known to < 0.5mm and < 5�, respectively

(according to [186] placement accuracy of between 10–50 µm SD for robotically constructed

mass production PCBs), as otherwise their mis-placement would cause short-circuits. This

mis-placement should be e↵ectively fixed after construction, see Section 5.5, so a one-time

calibration should be su�cient to determine these o↵sets. These o↵sets are required to

compensate for the lever-arm e↵ect. This e↵ect is important wherever the sensors are not

located at the same point, i.e. always. The IMU or IMU array is meant to be describing

the motion of a particular point fixed in the body-frame, but many of the sensors are not

all located precisely on at this point. If the body frame rotates about this point in inertial

space then any sensor not located at the will measure a specific force due to this rotation

proportional to its distance from that point. This can be compensated for if the position of

each accelerometer in the body frame is known.

This combined VIMU output will have smaller errors than those of the individual sensors,

or rather the errors will tend towards the array-average. In the case of the sensor white

noise, since by definition that error is zero-mean, the averaged signal of an array of n sensors

will be
p
n less noisy. This behaviour is noted frequently in the literature, e.g. [164, 187],

but what might not be so obvious is that systematic errors will also be reduced by this

averaging. Take any error distributed over the population with a mean value a and SD

of b, the overall averaged n-sensor signal will be distributed with mean value a and SD of

b/
p
n. This assumes that the IMU error coe�cients of all sensors in the same array are

independently chosen from this distribution, which may not be the case for those describing

array alignment. Strictly the distribution of the array mean tends towards being distributed

normally, even if the underlying sensor distributions are not normal, by the law of large

numbers, but arrays of sensors will likely contain tens rather than hundreds of sensor triads

so this will not have a significant e↵ect.

Assuming that the x- y- and z-sensors of each IMU behave similarly and that each of the

sensors’ individual errors are drawn from zero-mean distribution (i.e. a = 0), the actual

physical orientation of the sensors in the body frame does not make a di↵erence. There is

no di↵erence if the sensors are arranged so that all the sensor axes are parallel or if they are

at an arbitrary (but known) orientation to one another.

This virtual IMU could also incorporate some integrity checks which eliminate gross errors

from the virtual IMU output, there is significant research into this topic, see Section 2.5.2,

but it is not considered in this thesis.

The main benefit of the VIMU approach, over treating the sensors individually, is to separate

the combination of the sensors from the integration algorithm to reduce computational costs.

If all the sensors were treated separately there would be 6n bias states for the n IMUs rather

than just 6 for the VIMU. Additional computational resources may be better deployed using

a better integration algorithm (e.g. UKF [130]) rather than adding many states to a standard

KF.

Note that, in order for techniques involving averages of the sensors, such as this one, to make

any di↵erence values of the sensors’ errors must be di↵erent across the set being averaged.

This is trivial for most error sources, but some calibration procedure errors may e↵ect all
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the sensors in an array in a virtually identical way. Ideally the mean of the error source

would be zero, which would make the e↵ect of error tend to zero as the The errors need

not be distributed exactly as specified, or rather as implied by the specification, but there

must be a random distribution from which the coe�cients of each within the array are

drawn. This should generally be a reasonable assumption to make for uncalibrated errors.

However, if the sensors have been subject to a calibration procedure, this may not apply

because some of the residual error coe�cients are primarily functions of the imperfection

in the procedure. For example, in the simulations of Chapter 4, many of the accelerometer

errors were shown to be more strongly related to the box’s deviation-from-orthogonal-sided

than any other factors. This is partly because the default procedure was not simulating

a highly accurately made box. The implications of this are that array averaging will not

make as much di↵erence residual sensor errors that are primarily a function of the cube’s

accuracy such as cAa, as these errors are common to all sensors in the array. However, it

might still have an e↵ect on those error sources that are not significantly a↵ected by cube

accuracy such as cb
g

, the accuracy of which mostly related to sensor noise (see Chapter 4).

However, in the event that a certain (even-order) error characteristic is not zero-mean, the

sensor orientations can be specifically chosen to make the array averaged error zero-mean,

as will be explained in the next section.

6.2 Anti-parallel arrays of similar sensors

If one constructs an array consisting of multiple units of a single type of IMU then certainly

in a mass-production device, these are likely to be IMU from the same batch. One reason

for this is that component placing machines are generally supplied with small surface-mount

(SMD) components on a reel, so sensors produced together will be packaged together and

stay together until circuit assembly.

One might expect the output of sensors from a single batch to be more correlated than

the entire population of sensors, because they may all be constructed from the same sil-

icon wafers at the same time. This correlation can be exploited to improve the array’s

performance.

This section focusses on and extends an idea proposed by Yuksel et al. [55]. This idea is

to create an array of gyroscopes consisting of six sensors, where two are arranged for each

orthogonal axis with their sensitive axes pointing in opposite directions. A 2D illustration

of this concept is shown in Figure 6.1. The angular rate reading for each axis is then half

the di↵erence of the two sensors. Yuksel et al. observe earlier in the paper that two sensors

of the same model (ADXRS150 [188]) had very similar temperature response curves. They

then suggest if the temperature and g-dependent response coe�cients were the same for

both sensors then this formulation of “half the di↵erence” would eliminate the temperature

dependent response and one of the three components of the g-dependent bias (for each axis).

They note that “with proper individual sensor placements, common bias like factors can be

eliminated in multi-IMU configurations. (It should be noted that. more than 2 sensors must

be used for each axis in order to eliminate all of the g-dependence e↵ects.)” [55]. They also
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demonstrated that the idea with a static test where the temperature varies with time. They

plot the individual outputs of two sensors and their combination to illustrate the reduction

in bias variation with temperature (@b
g

/@T ). They do not prove this was viable with more

than one pair of sensors. In [8], my co-authors and I demonstrated a similar e↵ect for a pair

of L3G4200D 3-axis gyroscopes [24], although not for all axes. It should be noted that even

without an (apparent) change in ambient temperature, as in Section 6.6, the temperatures

of IMUs within an array can still be highly correlated (e.g. see Figure 5.12)

In fact this opposing sensitive axis idea is more powerful than Yuksel et al. presented. First,

for this idea the coe�cients of the error (e.g. b
g

or @b
g

/@T ) need not be equal; they need

only have a non-zero mean. Importantly, if the array is arranged anti-parallel this technique

means that array-average even-power errors, when distributed with mean a and SD b will

converge to b/
p
n rather than a+ b/

p
n. This means that if the error coe�cients are zero-

mean (i.e. a = 0) it behaves in the same way as a parallel array, but it helps when a 6= 0.

This means that there is no downside to using this technique compared to aligned arrays.

It should be observed that this anti-parallel array technique works for errors which do

not depend on the sensors’ output (0th-order) such as bias, but it will not work for those

which depend on an odd power of the output, such as scale-factor or alignment (1st-order).

It would also theoretically work for errors depending on an even power of sensor output,

henceforth even-power errors, such as quadratic sensor non-linearity (2nd-order), which for

some MEMS models is the most significant part of the non-linearity, as discussed in Section

2.2.6. Thus it works for temperature dependent bias drift, but not temperature dependent

scale-factor drift. These two temperature-related errors are likely to be the more significant

than other temperature-related errors on the basis that they are the two most commonly

specified on datasheets, such as [23, 25]. Note that anti-parallel arrays will also reduce the

non-temperature related part of the bias, if that is asymmetrically distributed.

Yuksel et al. [55] were working with single-axis-per-chip inertial sensors which meant that

they could create a fully anti-parallel array with only 6 sensors. However, any realistic low-

cost array implementation in future will be based on 3-axis sensors (one SMD component

which contains 3 orthogonal gyroscope and/or 3 orthogonal accelerometers) so a single pair

cannot be fully opposing. For example in Figure 6.1, the z-axes would be in the same

direction, out of the paper.

In order to create a fully anti-parallel set one can either assume that the x- and y-axes are

su�ciently similar to have +x of one IMU chip oppose -y of the other or use four sensors

arranged like those in Figure 6.1 on both sides of a PCB. This 4-IMU approach has the

advantage of eliminating all the components of Gg from e↵ecting the result. One might

expect the x- and y-sensors of an IMU to be the same design (see Section 6.3.3) and thus

have similar error distributions. However, as will be seen in Section 6.6, our research does

not support the idea that the x- and y-axis sensors always have the same error coe�cient

distributions.

This would equally apply to bias drift with temperature which is just as, if not more, likely

to have a highly non-zero distribution such as 0.015 ± 0.005 �/s/�C. This is particularly

significant because bias drift with temperature is di�cult for an end-user to calibrate. This
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Figure 6.1: An illustration of sensors with aligned and opposing x and y sensitive axes.

is because any user calibration procedure would have to be repeated at a wide range of

di↵erent operating temperatures for an accurate calibration.

The critical question for this idea is: how likely are non-zero-mean IMU error coe�cient

distributions?

In the simulations presented in Chapters 3 and 4, all the IMU errors were assumed to be

zero-mean and Gaussian. This assumption is a natural one given the specifications on the

datasheets which are symmetric about zero, e.g. ±2%. However, as discussed in Section

2.2.7, this assumption is not necessarily true.

The prominence given to the specified performance in flyers and leaflets distributed by

inertial sensor manufacturers, implies that it is valuable for marketing. This combined

with the di�culty (at least for a small-scale user) of verifying the manufacturers’ claimed

performance, might be justifiable reason for scepticism among readers. Additionally any

non-zero mean error if presented as such on the datasheet would look like the manufacturers

were not doing as good a job as they might on the out-of-the-box calibration. Essentially

they would be flagging up that they had made a mistake.

These reasons why the manufacturers would imply that their sensors have zero-mean errors

do not mean that the errors are actually zero-mean. The fact that manufacturers do not

always accurately state sensor characteristics that are easy to check should raise further

scepticism, particularly with regard to characteristics that are hard to check such as non-

linearity or the sensor’s response to temperature. For example in [8], my co-authors and

I presented an example of a 12-bit sensor where the LSB of the ADC was always a zero.

However, few published studies into the accuracy of these datasheets exist.

There are a few published examples independent from sensor manufacturers which have

shown non-zero mean distributions of errors, although most are from small samples of sen-

sors. An example is in [155], where incidentally to the main point of the paper, one can
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see their sample of 14 accelerometers is certainly not zero-mean for all the errors they have

calibrated (e.g. x-axis bias). It is di�cult to draw conclusions from reports which publish

the calibration parameters of only 2 or 3 examples of a sensor model, such as [55], so these

are disregarded.

There are also studies from sensor manufacturers. Although these are partly marketing, it

is still worth considering their results. An example of this type of study is [48], where the

manufacturer ST presents data on the performance of their gyroscope model L3G4200D.

While some of the error coe�cients are close to zero-mean others are clearly not. For example

the bias (over 1000 samples) appears, from a histogram, to have a significant negative mean

on two of the three axes. This implies that the anti-parallel array would help the bias

performance of uncalibrated sensors. In this report, the error type with the strongest non-

zero-mean distribution is the “Sensitivity change with temperature”, this is specified as ±2%

“typical” over �40�C to +85�C, which would imply a zero-mean distribution. However, the

distribution reported over 22 sensors in [48], has mean �0.0270/ � 0.0301/ � 0.0248 with

SD of 0.0091/0.0042/0.0038 in units of %/�C for pitch/roll/yaw sensors respectively. This

translates to �3.375% (SD 1.1375%), i.e. �3± 1%, over the whole temperature range. This

error is not a↵ected by the anti-parallel array idea. However, data on the bias change with

temperature, collected from 33 sensors, implies that the anti-parallel technique suggested

here would reduce bias drift with temperature on the yaw-gyroscope but not on the pitch

and roll ones.

6.3 Arrays of sensors with asymmetric performance charac-

teristics

While the previous section relies on exploiting correlations between sensors of the same

model, this section and Section 6.4 exploit di↵erences.

6.3.1 Weighting IMUs with di↵erent performance characteristics

If the same inertial signal is measured by sensors with significantly di↵erent performance

then an equal weighting of their outputs does not make sense, so some weighting scheme

needs to be developed.

If the combination is of sensors where one is simply better than the other, then the weighting

should be relatively straightforward. This becomes complex when a sensor is superior by

one metric but inferior by another. There is also the question of how an array consisting of

several sensor types should be considered in the integration algorithm.

One idea is to combine the whole array as a VIMU was discussed above (Section 6.1).

Consider, where the array consists of a mixture of IMUs type A and B. In the simplest case,

where one of the sensor-types consistently under-performs the other, a simple weighting

corresponding to their relative errors can easily be established. However, what about, for

example, when A has better noise performance, and B better scale factor?
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One option is to construct a complicated VIMU combination algorithm. For instance, if A

has better noise and B better bias, take a low- and high-pass filter of the output of both

with the same characteristic frequency, construct di↵erently weighted combination of the

two low-frequency signals and the two high-frequency signals, before recombining the high-

and low-frequency parts to create the VIMU output. Another possible example is, if A has

better noise and B better scale-factor and/or non-linearity then have the weighting of the

combination change with the magnitude of the signal. A final example is: A and B have

identical performance at room temperature, but A has bias that varies more than that of

B with temperature, then, assuming that they had been calibrated at room temperature,

there could be a 50/50 combination at room temperature, but the percentage weighting

could change as the temperature becomes higher or lower.

The alternative would be to create two VIMUs one of all the A sensors and another of all

the B sensors. These could be fed as separate measurements into the overall integration

algorithm. This has the advantage that the precise performance di↵erences need not be

determined for creating an optimal VIMU from the two, and it should theoretically perform

better than a pre-determined combination. However, it requires more processing power, due

to at least estimating the error states separately, but not as much as estimating every sensor

in the array separately.

6.3.2 Asymmetric INS requirements

Any navigation system is built to a performance specification, either explicitly or implicitly,

by specifying its use for a particular application. The first task when considering an array

of sensors with di↵erent performance characteristics is to consider whether there is any

asymmetry in the performance requirements.

There are few applications where the required navigation system performance is truly the

same in all directions. The most common one (for low-cost applications) will be a hand-

held navigation system, e.g. in a smartphone. This is because it will be used in a wide

variety of contexts [10], e.g. for both pedestrian navigation and vehicle navigation, and its

orientation relative to the motion/vehicle/person will not necessarily be fixed due to its

hand-held nature.

In most other contexts in which an INS would be used, particularly where its orientation

relative to the vehicle/motion is fixed, the required sensor performance is not likely to be

the same on all axes, even if the integrated navigation system must achieve an overall target

performance that is the same in all 3 dimensions.

If a sensor that only measures a subset of the navigation solution is integrated with the INS,

then clearly that has asymmetric implications for the requirement performance of the INS.

For example, integrating a magnetometer only measures (local navigation frame) heading

(see Section 2.3.2.1), this would make it easier to observe the bias of whichever gyroscope

whose axis is most frequently co-incident with the local gravity vector (e.g. the yaw gyroscope

for a land vehicle). Another example is that, a barometer provides a measure of height (see

Section 2.3.2.2). This is particularly helpful for the accelerometer that most frequently
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coincides with the local gravity vector, but also in-directly helps the attitude solution in

pitch and roll, due to the compensation for gravity in the specific force to acceleration

conversion. This helps the estimation of the pitch and roll gyroscopes.

Even though INS/GNSS provides a full 3D position, its use to estimate INS errors has

complex e↵ects. The di↵ering accuracy in the vertical and horizontal directions (see Section

2.3.1) mean that it is directly more helpful to the x- and y- accelerometers than the z.

While its indirect correction of the attitude solution makes it more helpful to the x- an y-

gyroscopes which can be corrected based on the correction for gravity as above while the

heading can only be corrected by motion.

Any vehicle motion constraints (see Section 2.3.3) have by definition more e↵ect in one

(body-frame) direction than another, making e.g. the performance of the accelerometers in

the direction of travel and the yaw gyroscope much more important than the pitch or roll

gyroscope for road vehicles. The directional e↵ect of map-matching techniques (see Section

2.3.4) is more subtle, but they may be asymmetric in some conditions, e.g. in a large flat

field, map-matching would not provide useful information horizontally, but vertical position

uncertainty would be much smaller.

6.3.3 Asymmetric INS performance

If one were to construct an array of low-cost MEMS IMUs asymmetric performance (di↵erent

performance for each sensor in the triad) is almost inevitable. MEMS inertial sensor are

often fabricated using technology developed for silicon micro-processors. This is based on

building up layers of thin silicon wafers and thus there is not full freedom to create 3D

structures [20]. For 3-axis IMUs, usually all three sensors of each type are constructed as

a unit, so they must share the same construction plane. This is desirable because it means

that the triad is well aligned (i.e. orthogonal). As a result, while the two sensors sensitive

to motion along or about the in-plane axes (typically x and y) may be of an identical design

rotated by 90 degrees, the out-of-plane sensor (typically z) must be of a di↵erent design.

In some cases the manufacturer specifies that the performance of the out-of-plane sensor

is di↵erent e.g. for the ADXL345 [49]. In other cases the specifications are the same for

in- and out-of-plane sensors, such as the BMA180 [52]. However, in both these cases the

performance characteristics frequently di↵er, see [8]. This is also the case for other sensor

designs. The ST report on L3G4200D performance [48] also gives significant data supporting

there being di↵erent performances for the di↵erent axes, despite all the specifications on the

datasheet [24] being identical for all axes.

If the axes’ properties are significantly di↵erent, the navigation performance of the system

will become non-isotropic, perhaps with larger drift in one direction than the others. This

in and of itself is not an issue; it is better to acknowledge the anisotropy in the resulting

system and tune the filter accordingly than to overstate the errors on the better performing

axes and in order to treat it as an isotropic system. Given the cost and space limitations

are related mostly to the number of micro-chips being placed, single-axis sensors are not

likely to be economic for array techniques. This means that the choice is really, use all
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three sensors in the triad or ignore the output of one of them, the latter is unlikely to be

worthwhile.

However, if the array is constructed across several PCBs then a combination of in-plane and

out-of-plane sensors can face in the same direction, if this is implemented then an ‘IMU’

made of all the out-of-plane sensors could be considered a type A and another of all the

in-plane sensors a type B, and then these treated in one of the ways discussed above.

If the designer wishes to create an array with equal error characteristics in all directions, this

is possible even with IMUs with markedly di↵erent properties between in- and out-of-plane

sensors. One such example would be mounting the sensors on the faces of a platonic solid

(such as the tetrahedron used in [163]). If the orientation of the IMUs on their faces are

chosen carefully then even if the x- and y-sensors are di↵erent there can be equal spread of

sensor sensitive axes in all directions. Note that for there need not be one IMU per face,

several IMUs could be mounted on each face providing that the number was the same for

all the faces, there could even be small anti-parallel arrays as suggested in Section 6.2 on

each face.

6.4 Sensor arrays with mixed measurement ranges

It is also possible to construct arrays to exploit the di↵erences between IMU models. An

example for combining sensors with dissimilar qualities would be constructing an array of

sensors with di↵erent measurement ranges.

The measurement range or full scale of a MEMS sensor is the maximum specific force, or

angular rate, that it can measure; for example ± 4g or ± 500 �/s, respectively. One might

assume that if two sensors are of the same quality but di↵erent measurement range the

lower-range sensor will measure small inertial forces more accurately. The validity of this

assumption is examined later in this section.

For any given application, the maximum specific force and angular rate that the INS needs

be sensitive to can be specified. This must be based on the peak specific force/angular

rate that the INS will be exposed to during regular use. However, for many applications

these peak dynamics will only be experienced a very small fraction of the time. So while

the system is experiencing low-dynamics the lower-range (assumed to be higher accuracy)

sensor is used, but when the forces exceed the range of this sensor the high-range sensor is

used, thus avoiding the signal being clipped.

This necessitates that there be some kind of switching method to combine the sensors’

output depending on the amplitude of the signal. The simplest implementation of such a

system would be a switch between two (or more) sensors, where at some threshold (close

to the maximum measurement range of the low-range sensor) the array’s output switches

from 100% low-range sensor to 100% high range. However for a number of reasons this is

not optimal. First, the high-range sensor could still potentially provide useful information

in the low-dynamics domain, which might reduce the e↵ect of the noise (or other errors).

An example, of this is in [172] where arrays are constructed one of 10g, 100g and 1000g and
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another of 2g, 10g and 100g accelerometers, with a very simple weighting regime, where

each is weighted in inverse proportion to its range, and zero when out of range. Second,

as a sensor gets close to the extremes of its measurement range, one might assume that

its reliability and accuracy become lower as it gets close to its maximum output, as for

instance the e↵ect of non-linearity increases [47], as it has terms proportional to output

squared and cubed. This second point makes an abrupt switch undesirable. However a

weighted combination of the two outputs could be designed so that is less a↵ected by these

issues. The weighting system at very low dynamics would weight the low-range sensor more

highly, and its relative contribution would decrease as the dynamics increase reaching 0%

at the end of its range. However, the precise weighting factor used should depend on the

relative improvement in performance given by the decrease in measurement range, and its

optimal composition depends on the specific relationship between these characteristics.

A key point for this idea, is that the cost, size and power consumption depend on the

overall number of sensors. So, the choice is between having an array entirely consisting of

high-range sensors, and thus improving performance by the expected
p
n throughout the

range, or whether to switch part of the array to lower-range sensors, potentially improving

the low-dynamics performance more, but at the expense of (some of) the high-dynamics im-

provements. So the question is whether the lower-range performance is better by a su�cient

margin. But here it is important to consider the fraction of the time the sensors are going

to be used outside the low-range. That is, a 5% lower errors for 99% of the time might be

worth 50% higher errors during the remaining 1%

This idea assumes that the lower-range sensor performs better. One error that certainly

will scale with measurement range is quantisation error. This is created when a continuous

quantity is converted to a discrete number of levels by an analogue-to-digital converter

(ADC). If two sensors both have the same word-length ADCs, the number of discrete levels

they can measure will be the same. So the smallest increment that can be measured will

scale with the measurement range, and thus the quantisation error will increase for higher

measurement range sensors. Additionally, one might hypothesise that the magnitude of

other errors such as noise might scale with dynamic range, e.g. it might be equally di�cult

to make a ±16g accelerometer accurate to ±160 milli-g as to make a ±4g accelerometer

accurate to ±40 milli-g.

Sensors that have very high ranges such as the 200g ADXL375 [50] do have poorer accu-

racy than their lower-range equivalents. This sensor has a min/max scale factor tolerance

of 10%, bias typical ± 400 and min/max ± 6000 milli-g and noise 5 mg/
p
Hz. This is

considerably worse than even the several years older 2g-to-16g ADXL345 [49], e.g. its noise

is 0.42mg/
p
Hz. This means that an array of 100 ADXL375s would still have worse noise

performance than a single ADXL345. Thus, it would certainly be worth constructing a

mixed-range array if 100+ g or 10000 �/s ranges are required.

If the INS application does not require these very high measurement ranges, the evidence is

not so clear cut.

When comparing IMU models in the sub-20g and sub-5000 �/s, to ascertain the improvement

in performance that a lower-range sensor will have over a high-range sensor it is di�cult
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to determine when sensors are of equivalent quality. This is because the performance of

low-cost MEMS sensors has improved significantly, so slightly older designs or designs from

di↵erent companies are not necessarily of equivalent quality despite being at the same price-

point. One way to get around this problem is to use a sensor type that has a programmable

range, then one can compare the same sensor running at di↵erent ranges.

Many digital inertial sensors frequently have configuration options which include di↵erent

range settings. For example, for the Invensense MPU-9250 IMU, used in this thesis’ hard-

ware (see Appendix A), the gyroscopes can be set at ± 250, 500, 1000 or 2000 �/s and the

accelerometers can be set to ± 2, 4, 8 or 16g [23]. The remaining specifications of the IMU

may or may not be defined with reference to the range at which the sensor is set. In the

case of the MPU-9250 the “accelerometer sensitivity change versus temperature” is defined

at one specific range (± 2g), and not at others and all other specifications make no reference

to range, and so are implicitly defined to be range-setting-independent. On the other hand

the Bosch BMA-180 accelerometer has possible range settings or ± 1, 1.5, 2, 3, 4, 8 or 16g

and has a separately defined sensitivity (scale factor) error at every one of between 1.5%

and 3% [52]. The non-linearity also varies between ±0.15 and ±0.75 % FS depending on the

range. The Bosch BMI055 IMU also has programmable measurement ranges of ± 2, 4, 8 or

16g and ± 125, 250, 500, 1000 or 2000 �/s, but the all the sensors errors are only specified for

at one particular range (2g and 2000 �/s), the sensors’ performance at other range settings

is unspecified [45].

This is of course only the specified performance, the actual performance of the sensors may

well di↵er. It is unlikely that the sensor performance with unspecified range settings is

better, for simple marketing reasons.

The report on STMicrotronics L3G4200D gyroscope performance [48] shows the performance

of all the errors tested at all 3 possible range settings (250, 500 and 2000 �/s). It does not

show any significant di↵erences for sensitivity change with temperature or zero-rate-level

(bias) change with temperature at the di↵erent ranges. It does show, as specified a worse

distribution of biases at higher range, and a worse non-linearity. Scale factor is only shown

at one range. Surprisingly, the noise is almost identical and in fact slightly worse for the

lower-range settings than the higher range settings.

For this type of programmable-range sensor, it is very unlikely, for reasons of cost, that

there are multiple sensitive elements for the di↵erent range settings, so a single proof-mass

is used for all ranges with some electronic changes. In the examples where designs or

CAD drawings are published, e.g. [48], this appears to be the case. Thus, a 2g-to-16g

accelerometer is mechanically a 16g accelerometer, at least in the open-loop case, where the

change could be as simple as amplifying the signal before digital conversion. This would

explain why the noise characteristics do not change, One would still expect the sensor to

be more linear at its low setting, assuming that non-linearity is dominated by quadratic

or higher order terms (see Section 2.2.6), and one might expect di↵erent biases, given the

specifications are frequently di↵erent. The sensor will certainly be more precise, in that the

physical quantity represented by 1 LSB is smaller, but may not be more accurate. It might

be simply because the sensor is more accurate at measuring small (< 1g) forces, irrespective

of the range setting. If the only improvement from switching to a lower-range setting is to
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the bias, which was shown in Chapter 4 to be the easiest error to calibrate, this mixed-range

idea is unlikely to make a worthwhile improvement.

6.5 Individual Calibration or VIMU calibration

When using an IMU array, It is also worth considering whether the user calibration procedure

outlined in Chapter 4 should be conducted on the individual sensors in the array, or the

array-averaged VIMU. For static calibration, in general it should not make a di↵erence

whether the sensors are calibrated individually or as a complete VIMU. For the dynamic

calibration presented in this thesis, where a set of 360� rotations are used to calibrate the

sensors using no other information than that they are 360� about a particular axis, the

final performance should not be di↵erent. However, for some other dynamic calibration

procedures that use magnetometers and/or the accelerometer signals to calculate a partial

attitude solution, such as [154, 156, 161], then using an array-averaged accelerometer or

magnetometer signal should produce better results for the gyroscope calibration. This is

because the algorithm assumes the accelerometer or magnetometer signal is true to calculate
cAg, so a less noisy signal accelerometer or magnetometer signal which also has equal or

smaller systematic errors should produce a better cAg.

However, calibrating the sensors individually has some advantages. First, if there are indi-

vidual sensor outputs then the results can be checked against the specifications as a way

to detect gross errors, which may indicate a faulty sensor, if it only a↵ects one sensor, or a

mis-conducted calibration procedure, and prompt the user to repeat the procedure. Second,

if any sort of fault detection and exclusion algorithm or dynamically changing weighting al-

gorithm is used then if a sensor is down-weighted or ignored, the complete VIMU calibration

becomes incorrect, so individual calibrations are required.

Applying a single VIMU correction is less computationally intensive than applying the

corrections to every sensor individually before averaging. However, a single VIMU correction

could be calculated from the individual correction factors once, as well as by putting the

VIMU output into the calibration algorithm, and so the in-run computational cost could be

the same in either case.

6.6 Experimental support for these techniques

6.6.1 IMU error coe�cient distribution

The array techniques presented in this chapter rely on certain characteristics of the distri-

bution of measurement errors. The general array e↵ects (Section 6.1) rely on independence

across the sensors. The anti-parallel array ideas in Section 6.2 only make a di↵erence when

the distribution of errors is asymmetrical about zero, i.e. not zero-mean. Incidentally they

also remove any skewness of the distribution. The techniques in Section 6.3 rely only on

there being di↵erently performing sensors, which is a given. However, a combination of

di↵erently performing IMUs being better than an equal sized array of identical ones, needs
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Error typical spec. Mean Standard Deviation RMS
cb
a

(x) (ms�2) ±0.59 0.397 0.382 0.5414
cb
a

(y) (ms�2) ±0.59 0.193 0.173 0.2550
cb
a

(z) (ms�2) ±0.78 -0.508 0.593 0.7644
cb
g

(x) ( �/s) ±5 0.0704 1.295 1.250
cb
g

(y) ( �/s) ±5 0.625 0.8615 1.0393
cb
g

(z) ( �/s) ±5 0.5700 0.7006 0.8836
cAa � I3(x, x) ±3% 0.00205 0.000883 0.00222
cAa � I3(y, y) ±3% 0.00201 0.000468 0.00206
cAa � I3(z, z) ±3% 0.00784 0.00298 0.00836
cAg � I3(x, x) ±3% -0.00641 0.00164 0.00660
cAg � I3(y, y) ±3% 0.00106 0.00279 0.00289
cAg � I3(z, z) ±3% -0.00235 0.00249 0.00336

Table 6.1: Summary statistics of experimental estimates for cb
a

, cb
g

and scale factor errors

an IMU A to be better in one way than IMU B and worse in another. In order for the

mixed measurement arrays described in Section 6.4 to work then low-range sensors must be

substantially better performing than the high-range ones.

In Chapter 5 of this thesis some experimental results for an array of MPU-9250 sensors [23]

were presented. This shows that, for the 14 working sensors in the array there is e↵ectively

no di↵erence in performance at the di↵erent range settings in terms of noise (Section 5.1) or

significant improvement for the other errors calibrated (Section 5.4). One might reasonably

hypothesise that the only e↵ect of changing the range setting is to amplify the signal. The

quantisation level is su�ciently small in comparison with the noise that it does not make a

significant di↵erence to the results. This makes an array of di↵erently set MPU-9250s not

a good candidate for the techniques proposed in Section 6.4.

There are significant di↵erences between the sensors’ axes. However, the experiments show

that the z-axis accelerometers are significantly worse in uncalibrated scale-factor and bias

than the x- or y-accelerometers (4⇥ and 1.5⇥, respectively), as well as being noisier (1.5⇥
see Table 5.4). By contrast, the z-gyroscope is slightly less noisy than the x- or y-gyroscopes

(0.8⇥).

Using the calibration procedure presented in Chapter 5, the estimates of the IMU errors

bias, alignment and scale factor matrix, and gyroscope g-dependence for each of the 14

sensors can be used as a small sample to examine the of the starting distribution of errors.

The resulting estimates for gyroscope g-dependent error are so small that the measurement

uncertainty and is of almost equal magnitude (see Section 5.2, particularly Figure 5.5, and

Table 5.11) so their distribution cannot be determined. So the distribution of Gg will not

be discussed here.

Summary statistics for the other error sources calibrated for are presented in Table 6.1.

As can be seen the mean is significant in proportion to the standard deviation, for every

error source but x-gyroscope bias (cb
g

(x)). This is also reflected in the fact that the RMS

is significantly greater than the SD. This means that making the distribution zero-mean by
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(a) cba (b) cbg

(c) cAa diagonal elements (d) cAg diagonal elements

Figure 6.2: Kernel density estimates from calibration of 14 sensors. X-, Y- and Z-axes in

red, green and blue, respectively. Individual samples are also marked.

using the opposing axes would make an improvement. For example, the x-axis accelerometer

bias would have a mean of zero and standard deviation of 0.19 ms�2 in an anti-parallel array

of 4 sensors, rather than mean of 0.40 ms�2 and SD of 0.19 ms�2, which would need to be

modelled in a zero-mean assumption KF with an uncertainty of nearly 0.6 ms�2, about a

factor of 3 improvement from changing the alignment.

The 14 sensors’ systematic errors are also visualised in Figure 6.2 in the form of Kernel

density estimation (KDE) [189, 190]. This is used here as a visualisation technique and

is used rather than a more standard histogram because there are only a small number

of points which will not be adequately represented by binning values. Additionally, the

continuous nature of the estimates can be represented by KDE. The KDE is an estimate

of the probability density of a distribution from a finite number of points taken from it,

which allows smoothing. Each point is replaced by a kernel with the property that the

area under the curve integrates to 1, in this case a fixed-width Gaussian, with a degree

of freedom known as the bandwidth parameter, which controls the level of smoothing. In

this case the bandwidth parameter is the variance of the Gaussian, i.e. its width. The

kernels representing each points are combined to form an overall estimate of the probability
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density. The bandwidth setting presented here is that which is optimal when the distribution

is normal. The bandwidth, u, is calculated as u = b�
�

4

3n

�
0.2

, where n is the number of data

points and b� is calculated as follows, b� = 1

0.6745

median
1in

( |y
i

�median
1jn

(y
j

) | ),
where y

i

are the data points. The sample points, about which the kernels are centred, are

also shown in Figure 6.2, by crosses (+) of the appropriate colour.

Figure 6.2 shows that nearly all the distributions are not only non-zero-mean (as could be

seen in Table 6.1) but also appear skewed, particularly cb
g

. However, there are not su�cient

samples to make this statement reliably.

The experimental results show the 14 sensors on the testbed perform well within their stated

specification (b
a

0.78–1.47ms�2, b
g

5 �/s, both scale factors 3%) . However, it is notable

that the scale factor errors are much better than specified: the accelerometer has an RMS

over the sample of between 0.2 and 0.8% as compared to the 3% specified.

g-g Input

Output

Line through -g, 0 and g:
Low scale factor error

High non-linearity

Line of best fit, through zero:
High scale factor error.

Low non-linearity

Input = Output

True sensor 
response curve

Figure 6.3: An illustration of di↵erent possible definitions of scale factor error and non-

linearity.

This highlights a problem with getting a consistent comparison between the specification

and the calibration outputs.

The MPU9250 datasheet [23] describes the non-linearity parameter as “Best fit straight line;

25�C” for the gyroscope and as “Best Fit Straight Line” for the accelerometer. It also define

the quantity referred in this thesis as b
a

as “Zero-G Initial Calibration Tolerance”. The the

implication of these two points is that they are taking the input-output curve, removing b
a

so that this input-output curve passes through the origin and then fitting a straight-line to

this curve that passes through the origin. This is illustrated in Figure 6.3 by the blue line.

This is not the same as fitting a straight line to the curve and then using its y-intercept as

b
a

, although they may also be doing that. However, the calibration procedure presented

in Chapter 4 of this thesis and used for the experiments in Chapter 5, does not do this.

The procedure e↵ectively takes the output when the input is �g, 0 and g and fits a straight

line between these 3 points. In fact, the Technique 2 bias estimation method only fits the

straight line between �g and g. This is illustrated in Figure 6.3 by the blue line. If one

assumes that the non-linearity error increases as the sensor’s input increases, which is there
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is evidence to suggest is a reasonable assumption in general, see Section 2.2.6. As can be

seen the former approach (blue line) results in a greater scale factor error but a smaller

non-linearity than the latter approach.

Note that, this e↵ect is common to any 6-position calibration method, see Section 2.5.1.3,

and any of the static calibration methods that use more than 6 positions are at best fitting a

straight line through �g, 0, g and a small number of points in between, e.g. in [161] they are

also e↵ectively fitting it through gp
2

. As can be seen in Figure 6.3 this would have virtually

the same e↵ect.

A similar but potentially less extreme e↵ect is produced by the user-calibration procedure

in estimating gyroscope scale factor. The manufacturers’ method is to fit a straight-line

through the input-output curve with an (implicitly) equal weight to every point on the

line. On the other hand the user-calibration procedure e↵ectively weights the points on the

input-output curve by their frequency of occurrence in the recorded data, and because the

user must be careful not to saturate the gyroscope by rotating too fast, there will be a much

greater frequency of slower angular rates, leading to a similar problem to that outlined for

the accelerometer above where the scale-factor is determined predominantly from the lower

magnitude angular rates. Additionally if calculating cAg from the set B manoeuvres then

the straight line will be fitted to, for example, only positive angular rates, as the rotation

only takes place in one direction. This is remedied in set D because while the rotation that

appears to be in the same direction to the user (table frame) it is in the opposite direction

in the sensor frame for the rotations on opposite faces. This is a fundamental limitation,

which can be summarised as: it is only possible to fit the line to the data available.

6.6.2 Bias variation with temperature

An experiment to determine the approximate response to temperature of the accelerometers

was carried out, to see if there was a significant chance of the anti-parallel approach working

for the MPU-9250 sensors in the custom hardware test-bed described in Section A.2.

First, some calibration procedures were run which are discussed in Section 6.6.3, but are

not relevant to this section. Then the test-bed was left static for around a minute. Then

the sensors were heated using a hair-dryer from the side at a distance of 85cm. For the first

2.5 minutes the hair-dryer was on ‘cool’, which caused a drop in internal temperature, then

for next for 2.5 minutes on ‘medium’ then 2.5 minutes on ‘hot’. Finally it was heated from

40cm straight above on ‘hot’ for 2.5 minutes, then left to cool for approximately 15 minutes.

The outputs of the IMUs internal temperature sensors during this time are shown in Figure

6.4.

In Figures 6.5 to 6.10, the smoothed raw output of each type of inertial sensor is presented

against the individual sensor’s smoothed internal temperature sensor output. The data from

after 3600 sec when the sensors are no longer being heated, and so are cooling down, are

shown by the dotted lines. The di↵erent colours are the di↵erent sensors, each sensor is

given the same colour in Figures 6.4 to 6.10, enabling one to see that the bright green sensor

which drifts the most in Figures 6.5 and 6.6 is from the same IMU.
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Figure 6.4: The temperature profile during the heating experiment. Each colour is a di↵erent

sensor’s unfiltered temperature sensor output.

Figure 6.5: The response of the X accelerometer to heat. Raw output of specific force and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the second

part of the data when the sensor was cooling down.

Figure 6.6: The response of the Y accelerometer to heat. Raw output of specific force and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the second

part of the data when the sensor was cooling down.
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Figure 6.7: The response of the Z accelerometer to heat. Raw output of specific force and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the second

part of the data when the sensor was cooling down. Two graphs are necessary as half the

sensors read ⇡ g and the other half ⇡ �g.

Figure 6.8: The response of the X gyroscope to heat. Raw output of angular rate and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the

second part of the data when the sensor was cooling down.

Figure 6.9: The response of the Y gyroscope to heat. Raw output of angular rate and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the

second part of the data when the sensor was cooling down.
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Figure 6.10: The response of the Z gyroscope to heat. Raw output of angular rate and

temperature filtered over 5 seconds (1250 samples). The dotted part of the line is the

second part of the data when the sensor was cooling down.

There is clearly some hysteresis in the temperature response and/or some lag between the

temperature sensor detecting the change and sensors readings being a↵ected. This is not a

precise temperature calibration, rather an indication of the trend of temperature response.

In Figures 6.5 and 6.6 it can be seen that the general trend in temperature response for

the x- and y-accelerometers are negative with temperature. In Figure 6.7 the trend for the

z-accelerometer is more complex. The trend is not consistently positive or negative and the

magnitude of the change is much greater. However, the scale factor change with temperature

is also a factor for this measurement, as illustrated by the fact that it must be split into

⇡ 10ms�2 and ⇡ �10ms�2 graphs, for the sensor top and bottom of the PCB, respectively.

The approximately 30�C change in temperature, and the specified ±0.026 % / �C typical

scale factor change with temperature, means a typical change should be around 0.75% or

0.075 ms�2. Thus if the specification is believed then this is can only account for a small

amount of the >0.5 ms�2 change in output.

The x-gyroscopes (Figure 6.8), for all but 3 of the 14, show a slight positive trend of bias

with temperature, although the 3 that show a negative trend have greater magnitudes. The

y-gyroscopes (Figure 6.9) generally show negative trends. This di↵erence which would imply

that a 2-sensor opposed array, which opposes x of one sensor with -y of the other would

not work well for this sensor model. The z-gyroscopes (Figure 6.10) generally show smaller

variations, but are neither consistently positive or negative. Performing a simple linear fit to

Error typical Mean Standard RMS

specification Deviation

@b
a

/@T (x) (ms�2/�C) ±0.0147 -0.0201 0.0160 0.0260

@b
a

/@T (y) (ms�2/�C) ±0.0147 -0.00727 0.00690 0.00985

@b
a

/@T (z) (ms�2/�C) ±0.0147 0.00618 0.0251 0.0249

@b
g

/@T (x) ( �/s/�C)) ±30 �/s (-40 to 85 �C) 0.000516 0.0472 0.0455

@b
g

/@T (y) ( �/s/�C)) ±30 �/s (-40 to 85 �C) -0.0266 0.0148 0.0302

@b
g

/@T (z) ( �/s/�C)) ±30 �/s (-40 to 85 �C) -0.000366 0.0150 0.0144

Table 6.2: Summary statistics for estimated bias-temperature slopes
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(a) @ba/@T (b) @bg/@T

Figure 6.11: Kernel density estimates of bias-temperature slope estimates of 14 sensors. X-,

Y- and Z-axes in red, green and blue, respectively. Individual samples are also marked.

the post-3600 seconds (cooling) part of the data (the dotted lines) can generate approximate

temperature change coe�cients. Summary statistics for these 14 sets of estimates are given

in Table 6.2. These are also visualised as Kernel densities in Figure 6.11. These summary

statistics support the observations made above from Figures 6.5 to 6.10. The x- and y-axis

accelerometers show more potential for improvement than the z-axis one. Additionally the

much lower drift of the y-axis accelerometers is noteworthy. For the gyroscopes the anti-

parallel technique looks most promising for the y-axis and no use at all for the z-axis (which

is e↵ectively zero-mean). In discussing Figure 6.8, the distribution of the x-gyroscopes slopes

was noted mostly positive, but with a few highly-negative sensors. This can be seen clearly

in the red (X) line of Figure 6.11b.

6.6.3 Dynamic tests of the array techniques

In order to demonstrate that these array techniques work in practice a set of further dynamic

tests was carried out, whose results can be compared with the experiments in Section 5.6.2.

First a full array average was made by taking the mean of the 14 available sensor measure-

ments before running the measurements through the inertial navigation equations, using the

same data as used in Section 5.6.2. Figure 6.12 presents the profile calculated from running

the uncalibrated data (green line - as in Figure 5.25) and the calibrated data (orange line -

as in Figure 5.26). This figure shows a dramatic improvement relative to either of the fig-

ures from Section 5.6.2. It is worth noting, that the test-bed is nearly an anti-parallel array,

see Figure A.4, only the two broken sensors prevent this from being the case. Thus this

improved performance is not only a demonstration of the basic array averaging of Section

6.1 but also the anti-parallel techniques in Section 6.2. Note that the di↵erence between the

uncalibrated and calibrated results is rather smaller than might have been expected from

comparing the spreads of results from the sensors individually in Figures 5.25 and 5.26, par-

ticularly the velocity solutions. This is an indication that the anti-parallel array cancelling

of the uncalibrated biases is also having an e↵ect.
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Figure 6.12: Motion profile obtained from a short pedestrian motion test by running inertial

navigation on the mean of the whole array’s uncorrected (green) and corrected (orange)

inertial data.

A second experiment is also run to examine the e↵ect of the anti-parallel arrays on the bias

drifts with temperature. The testbed was allowed to warm up for 15 minutes then 4 complete

calibration procedures were carried out. Then the heating described in Section 6.6.2 was

conducted, which will not be considered in this section. After this the test-bed was briefly

re-heated with the hair-dryer, and then left static for 1 minute. Then the a short period of

pedestrian motion (about 40 seconds) was recorded. Then two further calibration procedures

were recorded. The temperature outputs during this entire experiment are presented in

Figure 6.13.

In order to compare aligned (i.e. basic) and anti-parallel arrays subsets of the array were

combined. In order to compare the performance the sensors output was calibrated using the

calibration procedure estimates from the 4th procedure, i.e. from before the heating began.

In the original design, see Figure A.4, there were 8 sensors on each side, 2 at each 90� rotated

orientation, but two sensors are broken. Thus, there six possible aligned pairs whose output

can be used as the null-hypothesis and is presented in Figure 6.14. This can be compared to

sets of xy-opposed pairs where the z-axes are in opposite directions, and the ‘+x’ direction

of one sensor is the ‘�y’ direction of the other. This is presented in Figure 6.15. All 12

possible pairs are presented. There are also 12 possible pairs where the z-axis directions are

in the same direction, but in the horizontal plane they are opposed, i.e. the ‘+x’ direction

of one sensor is the ‘�x’ direction of the other (this is the orientation depicted in Figure

6.1). This is presented in Figure 6.16.
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Figure 6.13: The output of the internal temperature sensors during the experiment. The

duration of each of the 6 calibration procedures are marked by coloured horizontal lines, the

walking test by the red triangles. Compare to Figure 5.12

Figure 6.14: Motion profile obtained from a short pedestrian motion test by running inertial

navigation on the mean of each aligned pair’s corrected inertial data.
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Figure 6.15: Motion profile obtained from a short pedestrian motion test by running inertial

navigation on the mean of each xy-opposed pair’s corrected inertial data.

Figure 6.16: Motion profile obtained from a short pedestrian motion test by running inertial

navigation on the mean of each horizontally-opposed pair’s corrected inertial data.
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It is also possible to construct fully opposed sets of 4 IMUs, by combining a horizontally-

opposed pair of IMUs on each side of the PCB (see Section 6.2). These would be expected

to perform better than the 2 IMU pairs, due to
p
4 rather than

p
2 averaging of both noise

and error coe�cient distribution SDs.

There are not 4 aligned sensors on the PCB to which these can be compared, so this is

presented only for completeness. Their input is presented as Figure 6.17, all 20 possible sets

are presented. The improvement is most obvious, when comparing the position solutions

between this figure and Figures 6.14 to 6.16.

Figure 6.17: Motion profile obtained from a short pedestrian motion test by running inertial

navigation on the mean each 4 IMU anti-symmetric set’s corrected inertial data.

If the anti-parallel arrangement did not work then one would expect the aligned pairs (Figure

6.14) to perform equally well as both the xy-opposed (Figure 6.15) and horizontally-opposed

(Figure 6.16) pairs. However, the aligned pairs appear to perform considerably worse. For

example, the z-position spreads approximately 450m for the aligned pairs and about 300m

for the xy-opposed pairs and 350m for the horizontally-opposed pairs.

Note that, by including all the possible pairs in Figures 6.14 to 6.17, it is clear this thesis is

not cherry-picking the best performing pairs to present.

The improvement from the opposed pairs is due to part of the temperature related drift

being cancelled. This can be seen in Figure 6.18 where the 2 post-heating calibration

procedures (5 and 6) produce very di↵erent outputs in both bias and scale factor from the

4 pre-heating procedures, because, as can be seen in Figure 6.13, the internal temperature

of the sensors was about 5�C higher. Note also that while the biases and scale factors

(particularly the z-accelerometers) vary considerably between these two sets, the cross-
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(a) cba (b) cbg

(c) cAa diagonal elements (d) cAa o↵-diagonal elements

(e) cAg diagonal elements (f) cAg o↵-diagonal elements

Figure 6.18: Comparison of the six procedures calibration estimate outputs: 1–4 pre-heating;

5–6 after heating, approximately 5�C hotter, see Figure 6.13.

coupling components do not significantly change. This implies, in conjunction with re

apparent lack of variation day-to-day (Section 5.5), that an in-run estimate procedure could

assume that the cross-coupling estimates from an older user calibration procedure at a

di↵erent ambient temperature remained valid, and thus did not need to be estimated as a

state.
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6.7 Summary

This chapter presented several techniques for improving INS performance using an array

of sensors. First, the baseline e↵ect of averaging a simple array of n IMUs to create a

single virtual IMU (VIMU) was described. In brief, this is a reduction in both noise and

systematic error coe�cient SD of
p
n. This chapter then describes three possible techniques,

which could further improve the performance of an array of IMUs.

One technique is to orient the IMUs in an anti-parallel manner. This arrangement, illus-

trated in Figure 6.1, arranges the IMUs in the array such that all of their x- y- and z-axes

are parallel, but half of the IMUs have their positive direction in each of the two possible

parallel directions. To accomplish this requires at least 4 IMUs. For this idea to improve

performance compared to the baseline of aligned IMUs the error coe�cients much be dis-

tributed with a non-zero mean. The is evidence that this improves performance both in the

literature (see Section 6.2) and from the experiments in Section 6.6.

Another aspect examined in this chapter is the di↵erence between x- y- and z-axes in both

performance of most models of low-cost IMUs and required performance for most of their

applications. Optimisation of the IMU array to its requirements is examined, as well as

ways to make an array of asymmetrically performing IMUs symmetrical. Evidence for the

occurrence of these asymmetries is presented. The considerable di↵erences between the

x- y- and z-axes sensors in the MPU9250 IMUs in this thesis’ hardware test-bed are also

demonstrated.

The third technique examined in this chapter is IMU arrays with mixed measurement ranges.

This technique assumes that lower-range sensors are more accurate. The idea is that part

of an array of high-range sensors could be replaced with lower-range sensors, which could

be used to measure the inertial forces more accurately during periods of lower-dynamics

and then when the dynamics are higher, causing the low-range sensors to saturate, the

higher-range sensors can be used alone. The trade-o↵ is between an array of all high-range

sensors, which has the same performance all of the time, and a mixed-range array which has

better low-dynamics performance but slightly worse high-dynamics performance, due to the

reduced number of high-range sensors. In many applications the system will be measuring

low dynamics the majority of the time, so this technique will be a benefit. Experiments with

the MPU9250 IMUs show no particular performance benefit to using the sensors at their

lowest-range settings (250 �/s and 2g) as compared to their highest range setting (2000 �/s

and 16g) thus this technique is not recommended for these IMUs.
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Conclusions and future work

In this thesis, calibration of sensors for inertial navigation has been discussed and new

research presented in the following areas:

• A new method for assessing KF stability, which has been used to determine how

well-calibrated an IMU must be for a basic 15-state INS/GNSS integration to remain

stable.

• Several alternative methods that can be used to calibrate an IMU without requiring

any equipment other than a flat surface with a ‘corner’. These alternative methods

have been analysed through statistical tests to determine which produces the most

accurate calibration under specific circumstances.

• Three techniques for improving INS performance using IMU arrays, which produce

better performance than simple averaging, have been presented and discussed. The

circumstances under which they will improve performance have also been examined.

• An electronic hardware platform has been developed and experiments to support the

ideas presented above have been carried out.

This chapter begins with the main conclusions of the thesis (Section 7.1). Then, the overall

implications of and recommendations arising from this research are discussed in Section 7.2.

Finally, recommendations for future research to build on the work presented in this thesis

are made in Section 7.3.

7.1 Conclusions

The conclusions are divided into those related to the research on filter stability (Section

7.1.1), end-user calibration (Section 7.1.2) and on IMU arrays (Section 7.1.3).

7.1.1 Kalman filter stability

In Chapter 3, a new simulation approach to determine the limit of in-run sensor calibration

using Kalman or Kalman-derivative filter has been presented. Filter stability criteria are

defined based on the consistency of the state estimation errors and their uncertainties. This

is tested with a basic 15-state Kalman filter INS/GNSS integration.

Monte Carlo simulations using a basic INS/GNSS Kalman filter to calibrate the sensor

biases have been used to determine which IMU specifications are good enough for in-run

221
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calibration. It is important to note that this technique is not specific to GNSS integration,

another aiding technology or zero-velocity updates could be used instead.

Both car and UAV motion have been simulated. These tests have shown that within the

ranges of errors encountered by real MEMS inertial sensors the most important error is the

gyroscope bias. The maximum gyroscope bias standard deviation that is acceptable varies

between 0.75 and 2.6 �/s (1 to 3.4 �/s for quadcopter) depending on the accelerometer noise

level, gyroscope noise level and accelerometer bias SD, the last being the most important.

A major limitation on filter stability is the size of the higher-order errors, such as scale factor

and cross coupling errors and gyroscope g-dependent errors, that are present in typical IMUs.

The basic KF integration will remain stable for a wide range of accelerometer and gyroscope

biases when the accelerometer higher order errors are up to a medium level of 1% scale-

factor and 0.5% cross coupling errors, and when the gyroscope errors are up to a low level

of 0.3% scale factor, 0.2% cross coupling and 5 �/hour/g g-dependent error. Whereas the

filter will only be stable for the greater levels of bias tested when there is a high level of 2%

scale factor and 0.75% cross coupling for the accelerometer or a medium level of 1% scale

factor, 1% cross coupling and 10 �/hour/g g-dependent error.

To maintain KF stability, these must be estimated as Kalman filter states, pre-calibrated

and/or averaged out using an array technique.

It should be noted that, now that the stability limits of a standard KF are known, using a

higher-performance KF-variant (such as a UKF [130]), or KF with more states at the start,

and switching to the lower-computational load basic KF and once the state estimates are

su�ciently accurate is a viable option.

7.1.2 User-conducted calibration

Another approach to improve the performance of the IMU is for the end-user to calibrate

the IMU themselves. Chapter 4 presents possible series of manoeuvres which can be used to

estimate the IMUs error parameters through a combination of IMU measurements recorded

during static periods and dynamic manoeuvres. Simpler and more complex alternative

versions of both static (either 6-position or 24-position) and dynamic (either 3-rotation

or 6-rotation) manoeuvre sets were included. Importantly, these manoeuvres require no

equipment other than an approximately level surface with a corner or straight edge down

one side to calibrate the IMU in its box, which is assumed to be cubic or cuboid. Several

alternative methods to calculate the calibration outputs from the IMU output recorded

during these manoeuvres were also presented. The accuracy of these methods was assessed

both through Monte Carlo simulations (Chapter 4) and through experiments with a bespoke

IMU array (Chapter 5).

The Monte Carlo simulation determined how much the residual IMU errors depend on

procedural error sources such as: how orthogonal sided the IMU’s box is, how accurately

the user replaces the IMU between manoeuvres, or how level the table is; or IMU error

sources such as: how great the gyroscope noise PSD or the starting error in accelerometer

bias is.
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The conclusions from the KF stability part of this thesis gave minimum standards of IMU

specification that needed to be met for a stable INS/GNSS integration. The simulations

presented in Chapter 4 show that, the calibration procedure easily reaches and exceeds this

standard for gyroscope bias calibration for a wide range of input parameters. They also show

that the required standard for accelerometer alignment and scale factor matrix calibration

can be reached when the IMU’s box has a deviation from orthogonal sided of 1� SD or less.

However, the standard that needs to be reached for the gyroscope scale factor and alignment

matrix is more challenging. This can be reached with the 6-rotation manoeuvre set provided

the cubes deviation from orthogonal sided is less than 0.25� SD. The required accuracy is

not realistically possible with the 3-rotation manoeuvre set, although it can improve upon

uncalibrated performance.

The simulations showed that the estimates calculated from the 24-position static manoeuvre

set consistently outperformed those from the 6-position set. This is partly due to reducing

the e↵ects of sensor noise by averaging, but the more significant e↵ect of this method

is to virtually eliminate any e↵ect of the table not being level from the results. Aside

from this table-not-level error, which only significantly a↵ected the 6-position set, the most

significant procedural error was the box’s deviation-from-orthogonal-sided. The e↵ect of the

user placing the cube at a slightly di↵erent heading than intended was less significant than

might be expected. The IMU specifications with the most significant e↵ect on the residual

errors were the gyroscope noise PSD and the accelerometer non-linearity.

Two possible bias calculation techniques were tested, one was shown to be better for gyro-

scope bias and accelerometer bias when the box is very accurately made ( 0.25� deviation-

from-orthogonal SD), the other better for accelerometer bias with less accurate boxes. Two

calculation techniques were also tested for the estimation of the gyroscope alignment and

scale factor matrix, one of which was found to be better when the rotation axis was accurate

( 2� error) but unstable for large axis errors, the other performed better with larger axis

errors and with real data.

Experiments, conducted with an array of 14 Invensense MPU9250 IMUs, demonstrated that

the calibration procedure produced repeatable estimates. By comparing simulation-derived

and experimental repeatability, the simulation was shown to be a good representation of

reality. Additionally, by integrating short periods of IMU measurements recorded while

static or during pedestrian motion, the calibration was shown to work and the relative

improvement that the more complex (24-position, 6-rotation) manoeuvre set makes over

the simpler (6-position, 3-rotation) one was verified.

Experiments in calibrating the 14 IMUs on separate days several weeks apart, showed that

the variation from day-to-day in the calibrated systematic IMU errors was significantly

smaller than the initial distribution of errors between the sensors. This was particularly

marked for both the accelerometer and gyroscope cross-coupling which were shown to remain

virtually unchanged weeks later. In addition, these cross-coupling errors appeared una↵ected

by either temperature variation or range setting. This implies that a one-time calibration

would be su�cient for accelerometer and gyroscope cross coupling, meaning that it might

be possible to only estimate scale factors as KF states.
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7.1.3 Sensor array techniques

The third approach to improving low-cost inertial navigation performance studied in this

thesis is to use an array of multiple IMU sensors. This is a viable option because the cost of

adding additional IMU chips to the navigation device’s circuit board is low in comparison

with that of factory calibration. Additionally the size and power consumption of MEMS

IMUs are small in comparison with the other parts of a usable navigation device such as

the CPU and the screen, so this is not a significant barrier. In this thesis, arrays of n IMUs

are considered where each IMU contains an accelerometer triad and a gyroscope triad.

It is possible to arrange the IMUs in an array in such a manner that each sensitive axis

of one IMU has the equivalent axis of another IMU parallel but pointing in the opposite

direction. For example, the ‘+X’ direction of one IMU is the ‘�X’ direction of another. This

can reduce the e↵ect of biases, bias variation with temperature, and second-order errors on

the navigation performance of the array, provided that these are distributed with a non-zero

mean. Experiments characterising the performance of the MPU9250 IMUs in the array lead

to the conclusion that this arrangement will improve performance. This is demonstrated

with a test where an IMU is calibrated then heated up and around 30 seconds of pedestrian

motion were recorded. The position solution was shown to drift by around 350m for parallel

arrays and 250m for anti-parallel arrays.

Another possibility explored is that of having an array of sensors with mixture of di↵erent

measurement ranges. A weighted combination is made of lower- and higher-range IMUs,

assuming that the lower-range sensors will be more accurate. The idea is that when the

specific force or angular rate is low, assumed to be the majority of the time, the lower-range

sensors provide a more accurate signal, but when the dynamics are higher the higher-range

sensors are used alone. Experiments characterising the performance of the 2-to-16g and

250-to-2000 �/s MPU9250 IMUs show that the range setting does not significantly change

for either systematic or stochastic error performance. Thus, this idea will not work for the

MPU9250.

The final topic explored in Chapter 6 is asymmetry in IMU performance. In many applica-

tions, the INS performance is not required to be the same in all directions, and the IMUs

often have di↵erent error performance on their di↵erent axes. This asymmetric IMU per-

formance can be optimised for asymmetric requirements. Experiments characterising the

MPU9250 IMUs show considerable performance di↵erences between the three axes, not only

between the out-of-plane z-axis and the in-plane x and y axes, but also between x and y.

7.2 Implications of the research

The results of the work on KF stability will enable navigation system designers to determine

for which IMUs specification levels it is possible to use a basic 15-state KF for sensor integra-

tion. Thus, only when outside of these levels is a more complex and/or non-linear Kalman

filter variant and/or sensor pre-calibration required. The research into end-user-calibration

will enable the optimal estimation algorithm to be applied given the IMUs specifications
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and the construction accuracy of the INS’s housing. Better navigation performance can be

obtained by averaging the output of an array of IMUs, the work on array techniques in this

thesis will allow users to optimise the performance of an array of a given size, given the per-

formance characteristics of the particular model of sensor or the complementary properties

of di↵erent sensor models.

Better low-cost INS performance will reduce the cost of systems that currently require

factory-calibrated IMUs for their operation. It will also make integrated INS/GNSS available

in applications where it is currently not economic such as smartphones. This makes the

much better short-term navigation performance of INS/GNSS compared to GNSS alone

much more widely available. Also if the INS can be calibrated when GNSS is available, the

ability of the navigation system to bridge signal outages will be markedly improved. These

improvements will be particularly useful for low-cost UAVs, emergency response teams and

military applications in urban areas.

This thesis makes the following specific recommendations:

• Gyroscope bias has been shown to be more important for filter stability than ac-

celerometer bias. Thus, the user should concentrate on reducing the gyroscope bias

before use. This could be by, for example, using a zero angular rate update.

• The main factor that makes low-cost sensors unsuitable for basic KF INS/GNSS in-

tegration is their levels of first-order errors, such as scale factor and cross coupling

errors, which are too high to be neglected by the integration filter. Thus, the recom-

mendation is that these errors be pre-calibrated, and/or they or a subset of them be

modelled as KF states.

• The 24-position static calibration (C) and the 6-rotation (D) manoeuvre sets are rec-

ommended for user-calibration, for their considerably better calibration performance.

• The optimal algorithm for calculating the relative magnitudes of the various factors

a↵ecting calibration accuracy. The recommendation is that a sample of mass-produced

devices have their housings measured and their noise characterised to pick the optimal

algorithm.

• Some of the user-calibration procedure algorithms can produce poor estimates in the

case of poorly conducted or mis-identified manoeuvres. Thus, before use in production

devices a more robust error-checking algorithm is needed.

• Orientating the sensors in an IMU array in an anti-parallel manner is recommended

as it has been shown to improve the performance of the MPU9250 IMUs tested.

• The MPU9250 sensors performance is very similar at di↵erent measurement range

settings. Thus, to avoid clipping, it is recommended that these IMUs be used at their

maximum (16g and 2000 �/s) range settings.

7.3 Future work

As the research presented in this thesis splits into three topics the future work for each of

these will be presented separately.
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7.3.1 Integration Filter stability

The Kalman filter stability simulation method developed in this thesis (Chapter 3) could

be extended for further research on more sophisticated Kalman filters or Kalman filter

variants. For example, the basic KF could be replaced with a more advanced algorithm

such as a Unscented Kalman filter [130]. This kind of filter might reasonably be expected

to be more stable, at least for higher levels of starting bias, whether it would also be stable

for higher levels of unestimated first-order errors is not clear.

This thesis shows that any important limitation for stable 15-state Kalman filter integration

is the error sources not estimated, i.e. scale factor, cross coupling and gyroscope g-dependant

errors, exist at a magnitude in low-cost MEMS IMUs that significantly de-stabilises the basic

KF integration tested in this thesis. One solution to this is to model these states or a subset

of them in the KF integration. This would require a more complex IMU model, such as that

used for the research presented in Chapter 4. The gyroscope scale factor and cross coupling

matrix is the error source most di�cult to calibrate with su�cient accuracy using the user

calibration techniques of Chapter 4, it should be added to the 15-state KF first. This could

be tested as 3-states (scale factors modelled only), the full 9 states, or a 6-state diagonalised

representation of the gyroscope scale factor and cross coupling matrix. The 3 additional

state scale-factor-only option is a sensible one to test because this thesis has shown that

the scale factor varies more, with temperature and day-to-day, than the cross-coupling. The

other un-estimated states of gyroscope g-dependent error and accelerometer scale factor and

cross coupling could also be modelled.

Another possible area for future research are di↵erent filter stability criteria. More and

less stringent versions of the criteria presented here could be tested, as well as alternative

methods of assessment, most of which would only require modification of one or two functions

of the MATLAB code.

GNSS-aiding was only the example used to test the technique for examining KF stability

developed in this thesis. This technique to examine filter stability could be quickly adapted

to another aiding technique. There is potential to examine the integration stability with

other positioning technologies which have di↵erent update rates and di↵erent position and

velocity measurement accuracies, or to examine the e↵ect of including additional sensors

with the IMU, potentially magnetometers would have a large impact because the heading

solution is the hardest to observe with GNSS. KF-variant filters could also be used to

calibrate the IMU with stationarity detection for ZVUs and ZARUs, and either a defined

(as in Chapter 4) or an arbitrary set of gestures. Di↵erent motion profiles could also be

simulated potentially including pedestrian navigation or more niche highly dynamic ones.

7.3.2 User calibration

There are several ways in which the research presented on user calibration (Chapter 4 and

5) should be extended in the future.

The main topic that should be investigated is determining a more reliable automatic de-

tection and compensation for incorrect (or mis-identified) manoeuvres and/or bad error
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estimates caused by unstable iterative processes. In the current code, bad parameter esti-

mates are identified by inspection of automatically generated plots, and the correction done

manually. In a production system, this could be done by comparison with previous esti-

mates, or comparison with specified performance. However, as bad data frequently results

in highly incorrect estimates e.g. scale factors of  0.5 or > 2, then very simple thresholds

may be su�cient.

Additional static estimation manoeuvre sets should be tested. As discussed in Section 4.5.3,

the six-position method is not actually the minimum number of positions. The static test-

ing simulation could be extended to compare the minimal positions. These are 1-position

(gyroscope bias), 2-position (accelerometer and gyroscope bias) and 4-position (accelerom-

eter alignment and scale factor and gyroscope g-dependent error). Additionally methods

which might be expected to have performance between that of the 6-position and 24-position

methods could be tested. Particularly, a 12-position method, using two positions on each

face at 180� heading from one another.

There are also alternative algorithms and manoeuvres that could be used for the dynamic

estimation. This thesis has shown there are stability issues with the iterative process used

for estimating the gyroscope scale factor and cross coupling particularly for the sum method

when the axis-errors are larger. Aside from the comparison with specifications or thresh-

olds suggested above, there are other possible approaches. This includes integrating the

gyroscope output of other parts of the data, e.g. moving between static faces in manoeuvre

set A or C and seeing if the apparent error gets smaller or larger with each correction in

the iterative process, quitting the iteration when it grows. One could also test di↵erent

algorithms for comparison with the sum and integrated methods. One option is separating

the estimation of the diagonal and o↵-diagonal elements, using the ratios of the di↵erent

angular rates for the o↵-diagonal elements and then the magnitude of the integrated change

in position for correcting the diagonal elements.

There are also other possible dynamic manoeuvres that could be used to estimate gyroscope

scale factor and alignment which should be tested. One is to use the four 90� rotations on

each face during set C as an alternative to the one 360� rotation of set D. This has the

advantage that the rotations are being done anyway, and while the percentage e↵ect of each

heading replacement errors is larger, the fact that there are 8 heading replacements per side

rather than 2 alleviates this somewhat through averaging. Also for a real system, a single

incident of sensor clipping would only make one rotation invalid leaving 270� worth, rather

than invalidating the reading for that entire face.

A thorough assessment of the accuracy of other user calibration techniques suggested in the

literature should be made through Monte Carlo simulation, so that their results can be com-

pared with those of the procedure presented in this thesis under equivalent circumstances.

This might include the technique, presented in [154, 161], which ignores the fact that the

box’s faces are orthogonal and uses a least squares estimation to calibrate the accelerome-

ters. Another which should be assessed is that used in [159], to determine its sensitivity to

procedural and IMU errors.

Many of the ideas of averaging IMU error sources across an array of sensors in Chapter
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6 make the assumption that the error on each sensor is independently distributed. While

this is a reasonable assumption for uncalibrated sensors, the extent to which it is for post-

calibration residual errors, when all the sensors in the array are calibrated simultaneously

using the same set of manoeuvres in the same box, should be tested.

7.3.3 Sensor arrays

The research presented in Chapter 6 should be extended in the future.

The limited resources of this project has resulted in only characterising the performance of

one model of consumer-grade IMU, the MPU9250, where some of the ideas have been shown

to be viable. Assessing the performance of di↵erent IMU models may reveal non-zero mean

error distributions for other IMU models which can be exploited by the array techniques

suggested in this thesis. To properly test these ideas, new bespoke test-beds would need to

be designed and manufactured, but the operating principle could be the same.

The multiple measurement-range-array techniques would be more promising in instances

where much higher dynamics are expected, so future research in this idea should concen-

trate on these areas. However, even for applications where one might not expect high

inertial forces, such as pedestrian navigation, it is possible to saturate the sensors, par-

ticularly the gyroscopes. This means that including even a single IMU with much higher

measurement range (e.g. 100g and 10,000 �/s) would make clipping very unlikely and pro-

vide a low-accuracy signal to bridge the short periods of time when clipping would otherwise

occur. In order to assess their viability, sensors with both higher and lower maximum mea-

surement ranges than the 16g and 2000 �/s of the MPU9250s tested in this thesis should be

tested.

Additionally, it would be useful to assess the linearity of the sensors across a range of outputs.

This would require a centrifuge and/or rate-table. This would be make it possible to assess

whether the anti-parallel arrays would reduce the error due to 2nd-order non-linearity terms,

by seeing if the quadratic terms were distributed with a non-zero mean across the sensors.

It would also be desirable to perform heat-chamber testing on the consumer-grade IMUs

to more accurately assess their errors response to variation in temperature. The results

presented in this thesis are only indicative of the inertial sensors bias behaviour with tem-

perature. A proper laboratory thermal calibration would enable, state of the art temperature

compensation to be compared with the approximate removal of temperature e↵ects made

by the array techniques, in addition to comparing it with no compensation.
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Appendix A

Development of electronic

hardware

This thesis presents ideas for the use of inertial sensors. To test these ideas some physical

experiments needed to be carried out, and for these several pieces of electronic equipment

were made. This test bed is required to log the output of multiple inertial sensors simulta-

neously to a storage device (e.g. SD card) which can be used to implement the calibration

algorithms and assess their e↵ectiveness. The development process of these experimental

platforms is described in this appendix. As the physical designs do not constitute the novel

contribution of this thesis this development process is treated briefly.

Preliminary research into the error behaviour of di↵erent models of inertial sensors required

a simple and fast turn-around experimental platform, which could flexibly sample many

di↵erent models, and read di↵erent sub-sets of them. The one chosen is based on Arduino-

family microcontrollers. This was chosen because it could quickly be built based on a

combination of commercially-available circuit boards for which considerable libraries of code

were already available. This is described in Section A.1.

However, in order to conduct better tests of the ideas presented in this thesis a higher-

performance experimental platform was also built. This is based around array of single

sensor model and uses a much higher-performance Atmel AVR32 microcontroller. However,

it required a completely bespoke printed circuit board (PCB) design and custom-written

firmware. This is described in Section A.2.

In addition, during the development of the calibration techniques presented in Chapter 4,

two calibration cubes were made that could contain the test-beds. These cubic or cuboid

frames are intended to enclose the circuit boards. There is a larger but less-accurately made

one which can contain either test setup, and there is a smaller more accurately orthogonal-

sided one designed for the high-performance array. These are described in Section A.3

A.1 Arduino-based test platforms

During the initial exploratory phase of the research presented in this thesis several di↵er-

ent experimental platforms were constructed by combining commercially available circuit

boards. These included microcontroller boards, secure digital (SD) memory card readers,

and various so called break-out boards containing individual inertial sensors. These break-
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out boards consist of individual sensors and small peripheral components, such as capacitors

and/or resistors, on a small circuit board with 0.1 inch spaced holes1 on one side connected

to the pins of the inertial sensor chip, so that it can easily be used on a breadboard. An

example is shown in Figure A.1. The purpose of this test-bed is to simultaneously log an

array of inertial sensors consisting of a mixture of di↵erent models to allow their comparison,

although this was only partially successful for reasons detailed below.

Figure A.1: A break-out PCB contain-

ing an L3G4200D gyroscope [24].

The Arduino platform was used because of its

ease of use and the large variety pre-existing li-

braries and peripherals for it (for more informa-

tion see [191]). Several di↵erent preliminary bread-

board test platforms were made before the semi-

permanent one shown in Figure A.2 was con-

structed. This set-up is the one used for the exper-

iments in [8]. This experimental platform is bet-

ter than a breadboard set-up because the breakout

boards are soldered down, making the connections

more electrically reliable and fixing the position of

the sensors better. However, the sensors are still

up to 15cm apart and, particularly in some harsher vibration environments, they may not

be fixed down adequately.

The basic firmware architecture of Arduino microcontrollers is that there is a setup loop

which is run once and a main loop which is run continuously until the test platform is

powered down. The setup loop sends the commands to power up the sensors and other

necessary peripheral parts of the hardware. Then it programs registers on the sensors for

settings, such as the measurement ranges and on-board filters and, finally, it sets them to

start generating measurements. The main running loop of the experimental platform reads

the sensors and records their output on a micro-SD card.

So-called digital inertial sensors are used for this research meaning that they have an ana-

logue to digital converter (ADC) built into the sensors FLP. This means that the output

of the sensors does not depend on the microcontroller or ADC used to read them or, for

example, the length of the wiring path between the sensor and the microcontroller. This

means that rather than an analogue voltage being sent from the sensors to the microcon-

troller board, the measurements are passed by a digital communications protocol. The two

protocols commonly used on consumer-grade inertial sensors are serial peripheral interface

(SPI) and inter integrated circuit (I2C or I2C), which is also known as two-wire interface

(TWI). For some inertial sensors both of these interfaces are available, but SPI is only avail-

able for some of those which were to be tested. The main advantage of SPI is that it allows

a faster clock speed, if the peripherals are capable of handling it, and the address of the

peripheral being communicated with does not need to be included in the message. Both

of these mean that there is a faster theoretical reading speed. One disadvantage of SPI is

that only a few sensor models support it. Another disadvantage is that it requires two data

12.54mm the standard electronic breadboard spacing, also known as 100 mil.
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Figure A.2: One of the test beds constructed for inertial sensor testing based around an

Arduino microcontroller. It contains ADXL345 (‘ADXL’ [49]) and BMA180 (‘BMA’ [52]) ac-

celerometers, L3G4200D gyroscopes (‘Gyro’ [24]), Honeywell magnetometers (‘Comp’ [77])

and a temperature and pressure sensor (‘Temp’ [192])

lines (‘master’-to-‘slave’ and ‘slave’-to-‘master’2), a clock line and one chip select line per

sensor, to identify which peripheral is being addressed. In contrast, I2C only needs a clock

and a single data line, because an address is included at the start of each message which

identifies the peripheral that the message is intended for. However, fundamentally both

of these interfaces are serial, that is, communication takes place one sensor at a time. A

method by which parallel communication can be ‘hacked’ will be discussed in Section A.2.

This serial reading means that the maximum possible logging rate depends on the number

of sensors that need to be read. Thus, as the arrays of sensors get larger, this becomes a

more serious problem. In addition, the array-based techniques for which these test beds are

intended assume that all the sensors are read at the same epoch, which with serial reading is

clearly impossible. The time between each sensor being read can be reduced by first reading

all the sensors in the array, saving each measurement to the on-board memory and then

sending all the measurements together to the micro-SD card at the end. There is a further

complication when using I2C to communicate with arrays; the address mentioned above, is

a 2-digit hex number (i.e. 0 to 255). While this would in theory not be a problem until the

arrays get very large, the reality is that the manufacturers fix this ‘slave address’ to one of

two values allowing only the LSB to be changed. Thus as soon as the array contains more

than two of one sensor model you need either a microcontroller with multiple separate I2C

buses, of which very few have more than two, or to use a multiplexer to split the bus. This

second option is used in the circuit depicted in Figure A.2, and the multiplexer can be seen

on the blue breakout board. This does mean extra I2C commands to switch between halves

of the multiplexed bus.

2The use of this politically incorrect terminology is regrettable. However, it is used in this thesis as these

are the standard terms used to describe this type of communication in Electronic Engineering.
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As an example of how these various performance-limiting factors added up the test-bed

pictured in Figure A.2 could record the output of the 9 inertial sensors pictured and the

temperature-and-pressure sensor (but not the two magnetometers) at about 80 Hz. Of

course, this means that it could have logged one sensor at about 800 Hz, but many sensors

needed to be read to test the array ideas.

Some improvements in logging speed could have been made by using a higher power mi-

crocontroller, but the maximum clock rate of I2C at 400 kHz is a major limiting factor.

Switching to SPI communication would also have slightly helped for the reasons discussed

above but it would have been a small improvement rather than many multiples faster. This

is partly because the open-source method of sending data to an SD card, which incidentally

is SPI, is slow so that this is also a major limiting factor.

A.2 High-speed simultaneously-logging array of MPU-9250

IMUs

The limited logging rate, caused by reading and logging the sensors one-by-one, makes it

potentially di�cult to correctly capture dynamic motion, additionally the break-out boards

place the sensors further apart than would be possible if chips were placed on a single PCB

creating a larger lever-arm between them, which is also potentially less rigid than a single

board. Both of these make the Arduino-based test-beds less than ideal for dynamic tests. So,

considering these limitations, a higher-performance experimental platform was constructed

with all the sensors on a single PCB, and considerably closer together. For this final piece

of hardware only a single model of IMU was chosen: the Invensense MPU9250 [23]. 16

of these sensors were connected to a much higher performance Atmel microcontroller the

AT32UC3A3256S [193]. This was chosen because it is much faster than the microcontrollers

used on an Arduino. It also includes a 4-bit wide parallel bus for SD-card writing function-

ality which significantly increases the writing speed (also see [194]). This high-performance

platform is shown in Figure A.3.

Figure A.3: The high-performance test bed. Both front and rear are shown.

However, the really important functional di↵erence between this high-performance platform
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and the previous Arduino-based platforms is that the sensors are read simultaneously. The

idea behind this comes from the “OpenShoe MIMU” of Skog et al. [164]. The idea is that

the I2C ‘slaves’, that is the IMU chips, are fooled into all responding simultaneously to

a single command sent on the I2C bus. To accomplish this the sensor wiring is changed.

Instead of a single clock and data line connected to all the sensors there is a separate

data line attaching each sensor to the microcontroller chip. Thus, from the point of view

of each IMU, it is the only ‘slave’ on the bus and so the microcontroller can send ‘read

measurement’ commands simultaneously to all the sensors. However, this circumvented or

‘hacked’ architecture creates certain other problems. First, as mentioned in Section A.1, it is

uncommon for a microcontroller chip to have more than two hardware-defined I2C buses, so

when connecting 16 sensors (or 32 in Openshoe’s case) the microcontroller’s regular general-

purpose input-output (GPIO) pins needed to be used. This means that, rather than using

the built-in I2C functionality, low-level ‘bit-banging’ code needed to be written. In fact

this is needed anyway to conduct the simultaneous read. Using a single shared clock line

for all sensors reduces the number of instructions that the bit-banged code needs to create

the correct signal for ‘read measurement output registers of ‘slave’ (sensor address)’ on all

the data lines simultaneously. Due to the way that GPIO pins on a microcontroller work

internally changing the value of a group of pins like this is not actually slower than changing

the value of a single pin. Then in accordance to the I2C protocol [195], all the IMUs respond

down their own data line with their measurement. At the microcontroller end, rather than

just recording the data byte digit-by-digit as it comes o↵ a single pin, the outputs of all the

pins for a particular digit of the response are recorded in an array. Once the transmission

has finished the array can be transposed to reconstruct each sensor’s response. This is done

to improve computational speed.

Both the hardware and the firmware/software design for this test-bed were fully bespoke.

The results of this fully custom design is that the experimental platform can record the

output of the 16 sensors on the board at 1000 Hz. While the operating principle is based

on the OpenShoe idea, in order to support the SD card at high speed a di↵erent model

of microcontroller was used. Also a newer model model of IMU was used and to have the

sensors at the correct orientations as required for the ideas in Chapter 6 the layout was

also changed, these orientations are shown in Figure A.4. These changes among others also

made it necessary to write the firmware from scratch. This process of bespoke design took

in total approximately 15 months.

Due to the limited resources available to this research project, it was not possible to build

a second iteration of the hardware design so some mistakes made at the design stage of

the PCB could not be fully rectified. Some mistakes such as non-ideal choice of on-board

oscillator could be rectified in the firmware, but others, most importantly the incorrect

wiring to the programming interface meant external wires had to be soldered to the surface

of the board, replacing, for example the socket in the design with a soldered and glued

on ribbon cable (see Figure A.3). Unfortunately, as is also a common problem with hand-

placing surface-mount (SMD) components, particularly ones as small as the 3x3mm leadless

package MPU-9250s, two of the sensors were damaged during fabrication, so only 14 of the

16 sensors give reliable measurements.
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Figure A.4: The orientations of the sensors on the high-performance test bed. Array frame

is yellow, sensors are red. The two broken sensors in dark blue.

A.3 Calibration frames

The calibration techniques described in Chapter 4 use a cuboid calibration box or frame in

which the sensors are mounted. This is then used to enable static recordings to be made at

orthogonal attitudes by resting di↵erent faces of the cube on a flat surface.

Initially, a cube was constructed by building a design in SketchUp and having it 3D printed.

The printing was carried out on a laser-sintering machine, the plastic powder and the bed-

ding/construction planes are visible in Figure A.5a. However, it is worth considering that

3D printing is a relatively new technique, and as such is not as mature as other construction

methods. Perhaps as a result of this the angular accuracy of the cube’s walls was rather

disappointing, the result being a noticeable bowing of the cube across its long side. This

was partially alleviated by having the outside of the bottom solid face machined to render it

flatter.While most construction techniques will be more angularly accurate when making a

larger items, because of fixed distance tolerances, 3D printing is not. 3D printers frequently
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(a) Fresh from 3D printing. (b) During testing with an Arduino test-bed

Figure A.5: The 3D printed calibration frame.

better calibrated in the centre of their printable area with accuracy dropping o↵ towards

the edges. Thus for a given printer the angular accuracy is not likely to improve as the box

becomes larger. The box is large enough to mount the Arduino test bed of Figure A.2, as

is shown in Figure A.5b.

In order to improve on the first cube’s drawbacks, a second frame was constructed. This was

made by the much more established technique of machining aluminium. It is constructed

from four pieces of high-quality aluminium alloy which after being permanently assembled

were post-machined to improve its accuracy.

Figure A.6: The aluminium calibration cube.
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This cube is shown in Figure A.6, fitted with the MPU9250 array. Note the IMU manufac-

turer’s recommended 3-point mounting and the precision placed holes and machined plastic

supports, this was done to minimise the mounting error, Cs
b. This cube is smaller than

the 3D printed one with 75mm (external) sides, and thus only the advanced experimental

platform fits inside. This cube is the one used for the experiments presented in Chapter 5.


