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Abbreviations used

AD: Atopic dermatitis

AKT1: V-Akt murine thymoma viral oncogene homolog 1

CTSH: Cathepsin H

EM: Electron microscopy

FLG: Filaggrin gene

GAPDH: Glyceraldehyde-3-phosphae dehydrogenase

mTORC1/2: Mechanistic target of rapamycin complex 1/2

RAPTOR: Regulatory associated protein of the MTOR complex 1

REK: Rat epidermal keratinocyte

RXRa: Retinoid-X receptor a

shRNA: Short hairpin RNA

SNP: Single nucleotide polymorphism

WT: Wild-type
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Background: Filaggrin, which is encoded by the filaggrin gene
(FLG), is an important component of the skin’s barrier to the
external environment, and genetic defects in FLG strongly
associate with atopic dermatitis (AD). However, not all patients
with AD have FLG mutations.
Objective: We hypothesized that these patients might possess
other defects in filaggrin expression and processing contributing
to barrier disruption and AD, and therefore we present novel
therapeutic targets for this disease.
Results: We describe the relationship between the mechanistic
target of rapamycin complex 1/2 protein subunit regulatory
associated protein of theMTOR complex 1 (RAPTOR), the serine/
threoninekinaseV-Aktmurine thymomaviral oncogenehomolog1
(AKT1), and the protease cathepsin H (CTSH), for which we
establish a role in filaggrin expression and processing. Increased
RAPTOR levels correlated with decreased filaggrin expression in
patients with AD. In keratinocyte cell cultures RAPTOR
upregulation or AKT1 short hairpin RNA knockdown reduced
expression of the proteaseCTSH. Skin ofCTSH-deficientmice and
CTSH short hairpin RNA knockdown keratinocytes showed
reduced filaggrin processing, and the mouse had both impaired
skin barrier function and a mild proinflammatory phenotype.
Conclusion: Our findings highlight a novel and potentially
treatable signaling axis controlling filaggrin expression and
processing that is defective in patients with AD. (J Allergy Clin
Immunol 2017;139:1228-41.)

Key words: Atopic dermatitis, skin barrier, filaggrin, regulatory
associated protein of the MTOR complex 1, protease

Atopic dermatitis (AD) is a common disease in which the skin
is sensitive to allergens and irritants, resulting in an immune
response characterized by redness and scaling. Current evidence
suggests that the primary cause of disease development in the
majority of patients with AD is a defective skin barrier.1,2 There is
a strong genetic component to AD associated with skin barrier
dysfunction.3 One important protein is the epidermal structural
protein filaggrin. Null mutations in the filaggrin gene (FLG) are
responsible for the common inherited dry skin condition
ichthyosis vulgaris and are a major predisposing factor for
AD.4,5 However only approximately 40% of patients with AD
in the United Kingdom and around 10% of patients with AD in
the rest of the world have filaggrin mutations,6,7 and conversely,
not all persons with filaggrin mutations have AD,8 suggesting
that other mechanisms might contribute to filaggrin expression
and processing defects and hence to the barrier defect observed
in patients with AD.

Profilaggrin to filaggrin processing is complex, requiring
dephosphorylation and numerous proteolytic events; several
proteases have been identified that cleave profilaggrin at specific
sites, releasing the filaggrin monomers and both the N- and
C-termini.9 Proteases, such as elastase 2, aspartic peptidase,
retroviral-like 1 (SASPase), and matriptase, are reported to be
involved in profilaggrin to filaggrin processing.10-13 There are
also reports of aspartic- and cysteine-type cathepsin proteases
playing a role in this process.14-16 AKT1 is required for correct
formation of the cornified envelope.18 AKT1 activity in the
epidermis is increased by treatment with the mechanistic target
of rapamycin complex 1/2 (mTORC1; regulatory associated pro-
tein of the MTOR complex 1 [RAPTOR]) inhibitor rapamycin,18

suggesting a role of RAPTOR in modulating AKT1 activity.
Therefore we hypothesized that AKT1 activity might be reduced
in AD skin, leading to alteration in protease expression, reduced
filaggrin expression and processing, and skin barrier disruption.

Using a combination of keratinocyte short hairpin RNA
(shRNA) knockdownmodels, human clinical samples, andmouse
knockouts, we show that increased RAPTOR expression
correlates with reduced filaggrin expression in the skin of atopic
subjects, being most apparent in those with FLG compound het-
erozygous mutations. RAPTOR overexpression in keratinocytes
reduced filaggrin expression, loss of AKT1 activity and filaggrin,
and loss of cathepsin H (CTSH). CTSH-deficient mice have
reduced filaggrin processing, subtle barrier defects, and an
increase in proinflammatory molecules associated with increased
macrophage infiltration of the skin and increased mast cell
degranulation. Taken together, this provides strong evidence
that RAPTOR levels and AKT1 signaling are important in
modulating filaggrin levels and the immune environment in
patients with AD.

METHODS

Animals
Ctsh knockout and heterozygote mice were generated, as previously

described,19 and backcrossed onto the C57BL/6J background for eight

generations.Ctsh2/2 andCtsh1/2mice and wild-type (WT) littermate control

animals were bred under specific pathogen-free conditions in accordance with

the German law for Animal Protection (Tierschutzgesetz), as published on

May 25, 1998. Three-day-old (neonate) mice were obtained from 5 litters,

and 6-month-old (adult) mice were obtained from 2 separate litters.

A maximum of 5 WT, 8 Ctsh1/2, and 10 Ctsh2/2 neonatal mice and 3 adult

mice of each phenotype were used in all analyses, and blinding was not

used in the assessment of mouse skin.

Short hairpin RNA knockdown, cell and organotypic

culture, and mouse tissue
Four shRNA plasmids (Qiagen, Hilden, Germany) were used to knock

down Akt1 expression (shRNA1: GCACCGCTTCTTTGCCAACAT,

shRNA2: AAGGCACAGGTCGCTACTAT, shRNA3: GAGGCCCAA

CACCTTCATCAT, and shRNA4: GCTGTTCGAGCTCATCCTAAT), and

of these, 1 and 3 were used for further experiments. Ctsh knockdown was

successfully achieved by means of transient transfection with 2 shRNA

plasmids (shRNA1: CAAGAATGGTCAGTGCAAATT and shRNA3: CTA

GAGTCAGCTGTGGCTATT). The following scrambled control was used:

GGAATCTCATTCGATGCATAC. Akt1 and Ctsh shRNA knockdown

plasmids were transfected into REK cells17 by using lipofectamine

(Invitrogen, Carlsbad, Calif), according to the manufacturer’s instructions.
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Mycoplasma species testing was performed before the experiments. Cells

were cultured, and G418 (Gibco, Carlsbad, Calif) selection was performed,

as previously described.17 The organotypic cultures were either embedded

in OCT for frozen sections or paraffin embedded. Drug treatments with

all-trans retinoic acid (10 mmol/L; Fisher Scientific, Waltham, Mass) or

wortmannin (2 mmol/L; Sigma, St Louis, Mo) were for 24 hours. Dorsal

skin was removed from neonatal (postnatal day 3) Ctsh1/1, Ctsh1/2, and

Ctsh2/2 mice for subsequent analyses.
Lentiviral shRNA knockdown in human

keratinocytes
Lentiviral particles (23 105; scrambled control, AKT1 shRNA, and CTSH

shRNA; Santa Cruz Biotechnology, Dallas, Tex) were incubated for 24 hours

with 50% to 70% confluentMycoplasma species–free keratinocytes grown in

Gibco serum-free keratinocyte culturemedium (Invitrogen) in a 12-well plate.

Cells were trypsinized and selected by means of puromycin selection for

2 weeks per the manufacturer’s instructions. Cells were subsequently calcium

switched at 2.4 mmol/L CaCl2 for 4 days before investigation by using

Western blotting of AKT1, CTSH, and filaggrin.
Western blotting and antibodies
Keratinocyte protein lysates and skin protein lysates from commercially

available skin samples (Caltag Medsystems, Buckingham, United Kingdom)

were prepared by boiling in a denaturing SDS buffer (2% 2-mercaptoethanol,

2%SDS, and 10mmol/LTris [pH 7.5]) for 10minutes. For the cytokine arrays,

suspensions of T25 Ultra-Turrax (IKA, Wilmington, NC) homogenized

neonatal mouse skin were spun down, and the suspensions from 2 Ctsh1/1,

Ctsh1/2, and Ctsh2/2 mouse skin samples were pooled and used on cytokine

array panel A (R&D Systems, Minneapolis, Minn), according to the manufac-

turers’ instructions. Densitometry of enhanced chemiluminescence exposures

of cytokine arrays andWestern blots, where appropriate, were performed with

ImageJ software (National Institutes of Health, Bethesda, Md). Briefly, this

was achieved by inverting the monochrome image, removing the background,

thresholding the image, and then measuring the thresholded bands, and then

the integrated density (pixel value 3 band area) was used as a measure of

band intensity, which is subsequently normalized by using a loading control

(glyceraldehyde-3-phosphae dehydrogenase [GAPDH]). Antibodies used

were rabbit anti-RAPTOR (24C12; 1:500; Cell Signaling Technologies,

Danvers, Mass), rabbit anti-filaggrin (M-290; no. sc-30230, 1L500; Santa

Cruz Biotechnologies), mouse anti–c-Myc (9E10; 1:500; Sigma), mouse

anti-FLAG (1:100; F1804, Sigma), rabbit anti-Rictor (no. 2140, 1:500; Cell

Signaling Technologies), rabbit anti-pSerine473 Akt (no. 9271, 1:500; Cell

Signaling Technologies), mouse anti-Akt-1 (2H10; #2967, 1:500; Cell

Signaling Technologies), mouse anti-GAPDH (1:2000, AB2303; Millipore,

Temecula, Calif), rabbit anti-loricrin (PRB-145P, 1:1000; Covance, Princeton,

NJ), rabbit anti–keratin 10 (PRB-140C, 1:1000; Covance), rabbit anti–IL-4

(ab9622, 1:500; Abcam, Cambridge, United Kingdom), and CTSH (H-130;

1:500, sc-13988; Santa Cruz Biotechnologies). Primary antibody incubations

were in PBS plus 0.1% Tween-20 or in Tris-buffered saline with 0.1% Tween

20 (100 mmol/L Tris HCl, 0.2 mol/L NaCl, and 0.1% Tween 20 [vol/vol])

containing either 5% BSA (Sigma, Gillingham, United Kingdom) or 5%

skimmed milk powder either overnight at 48C or for 1 to 2 hours at room

temperature, whereas secondary antibody incubations were in 5% skimmed

milk powder for 1 hour at room temperature. The following concentrations

were used: swine anti-rabbit–horseradish peroxidase (1:3000; DakoCytoma-

tion, Glostrup, Denmark) and rabbit anti-mouse–horseradish peroxidase

(1:2000; DakoCytomation). Protein was visualized by using the enhanced

chemiluminescence plus kit (Amersham, Piscataway, NJ).

Immunofluorescence, immunohistochemistry, and

eczema and unaffected samples
Clinical material was obtained after achieving informed written consent

from patients attending dermatology clinics at Great Ormond Street Hospital.

Ethics approval was granted by the local research ethics committee. Normal
paraffin-embedded skin samples were obtained from a commercially available

tissue microarray (Biomax, Planeg, Germany), and all tissue samples were

from nonflexural areas.

Immunohistochemistry and immunofluorescence on paraffin-embedded

and frozen sections were done by using standard techniques. Antibodies used

were RAPTOR (24C12; 1:50; Cell Signaling Technologies), mouse

anti-filaggrin (GTX23137, 1/:0; GeneTex, Irvine, Calif), CTSH (H-130;

sc-13988, 1:50; Santa Cruz Biotechnologies), rabbit anti-F4/80 (CL:A3:1;

Bio-Rad AbD SeroTec, Hercules, Calif), rabbit anti-loricrin (PRB-145P,

1:200; Covance), rabbit anti-Il1a (H-159; sc-7929, 1:50; Santa Cruz

Biotechnology), rabbit anti-cathepsin B (3190-100, 1:25; Biovision, Milpitas,

Calif), rabbit anti–thymic stromal lymphopoietin (Tslp; PA5-20321, 1:25;

Thermo Fisher), and rabbit anti-CD45 (EP322Y; ab40763, 1:25; Abcam).

Primary antibodies were detected by using Alexa Fluor 488– and 594–

conjugated goat anti-mouse and anti-rabbit (1:500; Invitrogen). Cells and

sections were counterstained with 49,6-diamidino-2-phenylindole (Sigma).

Images were taken with a Leica Upright Microscope (Leica, Wetzlar,

Germany) with either 320 (NA 0.4) or 340 (NA 1.40) objectives by using

a CoolSNAP digital camera (MediaCybernetics, Bethesda, Md) with

ImagePro 6.0 software (MediaCybernetics). Immunofluorescence intensity

was measured with ImageJ software (https://imagej.nih.gov/ij/) to determine

the integrated density on a thresholded image after processing to remove

background.
RNA extraction and microarray analysis
RNA (0.1 mg) was extracted from 2 scrambled REK lines and 2 biological

replicates of each Akt1 shRNA knockdown, and poly-A1 RNAwas selected

by using the Oligotex system (Qiagen). RNA was extracted from the 2 Ctsh

knockdown REK lines by using the same approach. Second-strand cDNAwas

synthesized with the Superscript II kit (Invitrogen) after the RNA was

annealed with a T7 promoter-poly-T primer (Genset, Evry, France).

Biotin-labeled cRNA was made from this cDNA (Enzo Diagnostics,

Farmingdale, NY). The whole probe was hybridized to the Rat Exon 1.0 ST

Array chip (Affymetrix, Santa Clara, Calif), according to the manufacturer’s

specifications. The scrambled control cells were the baseline in all analyses.

Genes that were tagged as present and increased in all 6 analyses with a

P value of less than or equal to .05 by usingMann-Whitney analysis, a P value

of less than .05 after Benjamini-Hochberg false discovery rate correction, and

1.5-fold or more altered in expression were regarded as differentially

expressed. Supervised analysis of overrepresented genes was performed by

inputting lists of differentially expressed genes into the Gene Set Enrichment

Analysis program (http://software.broadinstitute.org/gsea/index.jsp).
Electron microscopy
Transmission electron microscopy (EM) was performed onWT littermates

and Ctsh heterozygous and null mouse tissue (n5 2 each genotype). Normal

EM protocols were used. Briefly, tissues were fixed overnight in

glutaraldehyde, with postfixation in 1% osmium tetroxide in 100 mmol/L

phosphate buffer for 2 hours at 48C. En bloc staining with 2% aqueous uranyl

acetate was performed for 2 hours before embedding and cutting of semithin

sections and sections for EM grids.
Real-time PCR
Rat CTSH and filaggrin message levels were measured by using

gene-specific QuantiTect primers (Qiagen) and SYBR green (Qiagen) and

DDCT relative quantification.
Sonication assay for cornified envelopes and

hematoxylin dye penetration assays
Cornified envelopes were extracted from the neonatal mouse skin

by boiling for 10 minutes in 50 mmol/L Tris-HCl (pH 7.5), 2% SDS, and

5 mmol/L EDTA. Cornified envelopes were pelleted by means of centrifuga-

tion and washed in cornified envelope washing buffer (10 mmol/LTris-HCl in

https://imagej.nih.gov/ij/
http://software.broadinstitute.org/gsea/index.jsp
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0.1% SDS). After resuspension, envelopes were counted with a

hemocytometer. After sonication with a probe sonicator for 53 1-second

pulses, the intact envelopes were counted and expressed as a percentage of the

unsonicated total. The hematoxylin penetration assay on neonate mouse skin

and subsequent sectioning has been described previously.20
Correlation analysis of RAPTOR in human

expression data and code availability
Skin biopsy specimens from nonlesional and nonflexural skin biopsy

specimens from 26 patients with AD and 10 nonatopic control subjects of

known FLG genotype (FLG WT [n 5 7], FLG heterozygous [n 5 12], and

FLG compound heterozygous [n 5 7]) were taken, the RNA was extracted,

and the direct RNA sequencing reads were processed, as described

previously.21 The mean expression for each gene was determined across the

3 FLG genotypes in the samples (WT, heterozygous, and compound

heterozygous) and correlated to RAPTOR’s expression by using the Pearson

method. Any genes with an r value close to 1 or 21 are the most likely

candidates to be coregulated with RAPTOR under the FLG genotype

background. Only genes with a total mean expression across the 3 genotypes

of greater than 25 reads were considered (n5 9708) to avoid genes with low

counts having spurious correlations.

A significance value for the correlations can be calculated. First, the t

statistic can be determined for gene i as follows:

ti 5 ri:

ffiffiffiffiffiffiffiffiffiffiffi
n22

12r2i

s
;

where ri is the Pearson correlation and n is the number of genotypes per gene

(here n5 3), which determines the df (n - 2). Given ti and the df, a P value can

be calculated from the standard t distribution by using the pt function in R

software (v3.1.3). P values are quoted unadjusted. The code for this analysis

is available from GitHub (https://github.com/drchriscole/eczemaDRS). All

genes with a correlation P value of less than .05 and a log2 fold change

of greater than 0.5 or less than 20.5 in the WT versus compound

heterozygote comparison were considered for further investigation with

STRING (http://string-db.org/).
RFLP analysis
RFLP analysis was performed on 18 skin samples. DNAwas extracted by

using the DNA Mini Spin Kit (Qiagen), according to the manufacturer’s

instructions. The rs8078605 polymorphism introduced a BsmAI site into the

locus. F- CACCGCATTTGCTCTTACAA and R- CCTACACATGGTCCTT

CATCC (Tm 608C) primers produced a 454-bp amplicon. The T variant after

BsmAI digestion produces a 203- and 251-bp product.
Statistical analysis
For quantitative PCR and analysis of normalized data from Western blots,

t tests or 1-way ANOVAwere used. For all other analyses, nonparametric tests

were performed (Kruskal-Wallis with Dunnett post hoc testing). Specific

analyses are also identified in the figure legends.
RESULTS

Increased RAPTOR expression correlated with

reduced filaggrin expression in rat epidermal

keratinocytes and nonlesional AD skin
Because inhibition of the mTORC1 complex by rapamycin

increases AKT1 phosphorylation in keratinocytes,18 we
hypothesized that the inverse could occur and that increased
expression of the key mTORC1 protein RAPTOR in patients
with AD would result in a reduction of AKT1 phosphorylation
and therefore activity. To test this, we examined the expression
of RAPTOR, phosphorylated AKT, and filaggrin in the
unaffected, nonlesional, nonflexural epidermis of 5 patients
with early-onset severe AD and of 3 subjects without AD
(Fig 1, A and B, and Table E1 in this article’s Online Repository
at www.jacionline.org). Nonlesional and nonflexural skin from
patients with AD has been previously demonstrated to be barrier
deficient and represented away of investigating the disease before
acute immune involvement.21,22 Phosphorylated AKT was
significantly downregulated on the protein level in unaffected
AD skin sections. However, in both patients with AD and control
subjects, therewere subjects with RAPTOR present in the spinous
and granular layers, which corresponded to lower filaggrin levels
in these subjects (see Fig E1, A, in this article’s Online Repository
at www.jacionline.org).

To investigate this finding in a larger number of subjects with a
known FLG genotype, we extended our analysis of RAPTOR and
filaggrin to a gene expression analysis of nonlesional and
nonflexural skin biopsy specimens from 26 patients with AD
and 10 nonatopic control subjects of a known FLG genotype, as
previously described.21 All cases of AD had early-onset persistent
and severe disease. There was no significant change in mRNA
levels of RAPTOR in nonlesional atopic skin, according to the
FLG genotype (Fig 1, C). However, changes in RAPTOR
expression correlated with a number of the highly differentially
expressed genes in FLG compound heterozygotes and filaggrin
heterozygotes, including FLG itself (Fig 1, D and E, and see
Table E2 in this article’s Online Repository at www.jacionline.
org). Although TH2 cytokines, such as IL-13 and IL-4, are known
to be able to modulate expression of filaggrin and alter epidermal
barrier function,23,24 rapamycin-treated cells did not reduce IL-4
expression, and AKT1 knockdown keratinocytes did not have
increased levels of IL-4 (see Fig E1, B and C). IL-4 and IL-13
expression levels were not correlated with RAPTOR levels in
the data from Cole et al.21 Taken together, this suggests that the
mechanism by which RAPTOR controls filaggrin is not due to
an increase in either IL-4 or IL-13 cytokine expression.

These genes and RAPTOR itself comprised a network centered
on the insulin-mediated control of AKT1, which we have
described previously and is important in both epidermal skin
barrier function and UV protection (see Fig E2, A, in this article’s
Online Repository at www.jacionline.org).18 A large proportion
(17/22 [77%]) of the correlated and anticorrelated highly
expressed genes with a mean normalized read count of 100 or
more were also genes with expression that correlated with
filaggrin expression (see Fig E2, B, and Table E3 in this article’s
Online Repository at www.jacionline.org).21 These data
demonstrate that in patients with AD, RAPTOR mRNA levels
strongly anticorrelated with filaggrin mRNA expression. To
directly test the effect of increased RAPTOR expression, we
overexpressed human RAPTOR in rat epidermal keratinocytes
(REKs). RAPTOR overexpression led to a decrease in AKT
phosphorylation. Filaggrin is produced as a long proprotein,
which is proteolytically processed to a monomeric mature form.
We observed a reduction in total and processed monomeric
filaggrin levels (Fig 1, F and G).

A single nucleotide polymorphism in RAPTOR in a
retinoid-by-receptor binding site correlated with increased
RAPTOR and decreased filaggrin and CTSH levels.

To determine whether there were genetic changes that could
lead to a change in RAPTOR expression in keratinocytes, we
evaluated data from a previously published genome-wide

https://github.com/drchriscole/eczemaDRS
http://string-db.org/
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org).18
http://www.jacionline.org).18
http://www.jacionline.org).21
http://www.jacionline.org).21


FIG 1. Increased RAPTOR expression correlated with reduced filaggrin expression in keratinocytes and AD

skin. A, Filaggrin, pSerAKT, and RAPTOR immunofluorescence in normal (n5 3) and unaffected AD (n5 5)

skin. B, Image analysis of filaggrin and pSerAKT in normal and unaffected AD skin. Error bars indicate SDs.

C, RAPTOR expression from RNA sequencing analysis is described in Cole et al.21 The box shows

medians and interquartile ranges for WT control specimens and AD specimens of the 3 FLG genotypes.

D, Scatterplots showing fold change and correlation of differentially expressed genes (false discovery

rate P < .05) with RAPTOR expression. Filaggrin (FLG) is shown in orange. E, Graph of fold change of

highly correlated and anticorrelated genes in the FLG compound heterozygotes (FC Cmpd) and

heterozygotes (FC Het). F, Western blotting of phosphorylated Akt (pAkt), total AKT, and filaggrin in

RAPTOR-overexpressing keratinocytes. Boxes indicate total filaggrin and filaggrin monomer for

densitometry (Fig 1, G). A graph of densitometry is shown in Fig 1, F (n 5 2). GAPDH is the loading control.

Fig 1, B: **P < .05. Fig 1, A: Bars 5 50 mm.
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FIG 2. Loss of Akt1 leads to loss of filaggrin expression and hyperkeratosis in skin-equivalent organotypic

cultures. A, Western blot of Akt, pSerAkt, and filaggrin in human keratinocytes treated with 2 mmol/L

wortmannin or vehicle (dimethyl sulfoxide [DMSO]) for 24 hours (n 5 2). B, Western blot of pSerAkt and

Akt1 in Akt1 knockdown keratinocytes. C, Western blots of Akt1, filaggrin, keratin 10, and loricrin in all

Akt1 shRNA–expressing lines. GAPDH is the loading control. D, Real-time PCR analysis of filaggrin

expression in Akt1 shRNA–expressing lines. E, Graph of mean densitometry of Akt1, total filaggrin and

filaggrin monomer, loricrin, and keratin 10 in Western blots of Akt1 shRNA. F, Knockdown cells (red bars)
compared with scrambled values (blue bars). Histology and immunofluorescence of Akt1 and filaggrin in

Akt1 shRNA–expressing organotypic cultures (n5 4). Fig 2, F: Bars5 50 mm. **P < .05, unpaired t test. Error
bars are SDs.
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association study25 for any of the 649 single nucleotide
polymorphisms (SNPs) in the RAPTOR gene that were
overrepresented in patients with AD. We were not expecting
gene-wide significance (P < 1 3 1028) because RAPTOR
overexpression also occurred in normal non-AD skin (see Fig
E3, A, in this article’s Online Repository at www.jacionline.
org). No SNPs were significantly overrepresented, but we found
an increased frequency in patients with AD of one commonly
observed (>1%) SNP. rs8078605 (C>T) is in an intronic region
of RAPTOR in a region of DNA, which, according to
Encyclopedia of DNA Elements data,26 includes a region of
acetylated histones in keratinocytes only, which is suggestive of
a keratinocyte-specific enhancer (see Fig E3, A) and a binding
site for retinoid-X receptor a (RXRa). The variant SNP abolished
a key nucleotide of a putative RXRa-binding site. In 18 DNA
samples examined 3 heterozygotes and a single homozygote
were found (representing a minor allele frequency of 13.9 and
5.6% homozygotes; see Fig E3, B). The frequency of this variant
allele in European populations was 14% compared with 79% in
sub-Saharan populations. This was of particular interest because
other SNPs in noncoding parts of RAPTOR with a high
prevalence in sub-Saharan populations compared with European
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FIG 3. CTSH is a differentiation-dependent protease coexpressed with filaggrin. A, Heat map of differential

gene expression between 2 Akt1 knockdown and scrambled control keratinocytes. Blue, Downregulated;

yellow, upregulated. B, Graph of highly differentially expressed genes (DEGs), including Ctsh. C and D,

Heat maps of DEGs involved in mTORC signaling (Fig 3, C) and proteases (Fig 3, D). E, Quantitative PCR

analysis of Ctsh in Akt1 knockdown cell lines. Bars show SDs. P < .01, 2-way ANOVA. F, Western blot of

Ctsh in Akt1 knockdown and control (scram) cells. G, Western blot of CTSH, phosphorylated AKT (pAKT),
and total AKT in human keratinocytes treated with wortmannin (WORT) or vehicle (dimethyl sulfoxide

[DMSO]). H,Western blot of preconfluent and postconfluent REKs for pSerAKT, Ctsh, and keratin 1. I, Coim-

munofluorescence of Ctsh and filaggrin. GAPDH is the loading control in all Western blots. Bar 5 50 mm.
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populations associated with putative retinoid binding sites that
controlled the level of RAPTOR expression.27 Therefore we
tested whether RAPTOR itself was a retinoid-responsive gene
in human keratinocytes Treatment of human keratinocytes with
all-trans retinoic acid reduced RAPTOR expression levels
(see Fig E3, C), suggesting that retinoids could control RAPTOR
levels in keratinocytes. Therefore we hypothesized that RXRa
binding in the RAPTOR gene reduced RAPTOR expression and
that the rs8078605 C>T variant would lead to increased RAPTOR
expression. High-RAPTOR, low-filaggrin protein levels and low



FIG 4. CTSH is a filaggrin-processing protease controlled by RAPTOR and AKT1. A, Ctsh immunofluores-

cence in normal and unaffected AD skin (n 5 5). B, Graph of Ctsh fluorescence intensity. Error bars are

SDs. C, Western blot of Ctsh in RAPTOR-overexpressing REKs. D, Western blotting for AKT1, filaggrin,

and Ctsh of AKT1 and CTSH knockdown human keratinocytes (NHEKS). E, Graph of mean densitometry

of Akt1, total filaggrin and filaggrin monomer, and Ctsh. F, Western blot of filaggrin and Ctsh in Akt1

knockdown REKs transiently transfected with Ctsh or empty vector.G,Graph of mean densitometry for total

filaggrin and filaggrin monomer. Two separate experiments are shown. *P < .05 and **P < .005, unpaired

t Test (Fig 4, E and G). GAPDH is the loading control for Western blots. Fig 4, A: Bar 5 50 mm.
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Ctsh levels correlated with the presence of the T/T variant of
rs8078605 (see Fig E3, D-F).
Loss of AKT1 activity or expression leads to reduced

filaggrin processing in keratinocytes
We assessed the effect of the phosphoinositide 3-kinase

inhibitor wortmannin, which inhibits AKT1 phosphorylation on
filaggrin expression and processing in human keratinocytes.28

Wortmannin treatment reduced levels of the mature processed
filaggrin monomer (Fig 2, A). These observations suggest that
phosphoinositide 3-kinase signaling through AKT1 was required
for the proteolytic processing of filaggrin during late epidermal
terminal differentiation. To test whether AKT1 loss was
responsible for the observed changes in filaggrin expression after
wortmannin treatment in keratinocytes, we transfected an REK
line, which is known to represent the end stages of terminal
differentiation in confluent submerged cultures,17 with shRNA
to rat Akt1 (Fig 2, B and C). We demonstrated a significant
reduction in levels of processed filaggrin monomer in 4
separate knockdown lines using Western blotting, whereas
levels of total filaggrin and filaggrin mRNA remained unchanged



FIG 5. Reduced filaggrin processing and impaired epidermal barrier in CTSH-deficient mouse skin.

A, Histology of Ctsh2/2, Ctsh1/2, and WT mouse neonatal skin (n 5 5, 8, and 10, respectively). B, Graph

of stratum corneum thickness. C, Filaggrin immunofluorescence. Inset shows granular layer detail.D,Graph

of filaggrin immunofluorescence (upper) and for occurrence (counts) of granular filaggrin expression

(lower). E, Loricrin immunofluorescence. F, Graph of loricrin immunofluorescence intensity. G, Hematoxy-

lin dye penetration. H, EM of keratohyalin granules. k, Keratohyalin granules. I, Graph of keratohyalin

granule size. J, Sonication analysis of cornified envelopes. Bars and boxes showsmedians and interquartile

ranges (Fig 5, I and J). *P < .05, **P < .05, and #P < .05, Fisher exact test (Fig 5, D). Bars5 50 mm (Fig 5, A, C,
and G) and 2 mm (Fig 5, H).
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(Fig 2, C-E). Organotypic skin equivalent cultures from these
cells were hyperkeratotic compared with those from control cells
(Fig 2, F). We also demonstrated a reduction in filaggrin
expression in these organotypic cultures (Fig 2, F) with an
antibody specific to the repeating mature monomeric form. These
data suggest that although RAPTOR expression increase led to



FIG 6. Loss of CTSH increases skin macrophage counts, mast cell degranulation, and proinflammatory

molecule expression. A, Immunofluorescence of macrophages (F4/801) in WT, Ctsh2/2 (ko), and Ctsh1/2

(het) mouse neonatal skin. B, Toluidine blue staining. C, Graph of average F4/801 cell and mast cell counts

and percentage of degranulating mast cells per field of view. D, Densitometry of the cytokine arrays

incubated with pooled lysates from 2 WT and 2 heterozygous or knockout mice (Het/Ko). E, Il1a and Tslp

immunofluorescence. F, Graph of immunofluorescence intensity of Tslp and Il1a. Bars 5 50 mm (Fig 6, A,
B, and E). *P < .05 and **P < .005 (Fig 6, C and F). n.s., Not significant.
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FIG 7. The mTORC/AKT1/CTSH axis in control of the physical and immune

skin barrier. The variant SNP rs8078605 prevents RXR binding to the

putative intragenic enhancer in RAPTOR, potentially increasing RAPTOR

expression, which itself reduces filaggrin expression. This increases the

ratio of mTORC1 to mTORC2, reducing Akt1 phosphorylation. This leads to

reduced CTSH expression and decreases filaggrin processing. Upregula-

tion of other filaggrin-processing proteases in response, such as cathepsin

B, not only leads to rescue of barrier function but also causes macrophage

infiltration, mast cell activity, and proinflammatory cytokine expression.
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reduction in filaggrin expression, loss of the downstream kinase
AKT1 or its activity resulted only in reduced filaggrin processing.
mTORC signaling–related proteins and proteases,

principally CTSH, are differentially expressed in

Akt1 knockdown cells
Differential gene expression analysis was performed on the

knockdown REK lines, with the greatest reduction in Akt1 (A1
and A3). Five hundred seventy genes were significantly
differentially expressed in both lines compared with scrambled
controls (Fig 3, A). Of these, 59 genes had differential
expression of 1.5-fold or greater, and 17 genes had differential
expression of 2-fold or greater (Fig 3, B, and see Table E4 in
this article’s Online Repository at www.jacionline.org). Gene
set enrichment analysis (see Fig E4, A, in this article’s Online
Repository at www.jacionline.org) identified 3 gene ontology
groups overrepresented in the analysis, cholesterol
homeostasis, androgen response, and, consistent with a role
downstream of RAPTOR, MTORC signaling (Fig 3, C, and see
Fig E3, B and C). Leading-edge analysis identified 3 genes,
isopentenyl-diphosphate delta isomerase 1 (IDI1), 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR), and 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (HMGCS1), in all 3 ontology
groups. HMGCS1 was downregulated in our AKT1 knockdown
cells and in AD skin (see Fig E4, D and E).21 We identified 3
downregulated proteases or proteolysis-associated proteins in
our Akt1 knockdown cell lines (Fig 3, D). We confirmed
downregulation of the most highly downregulated of these, the
lysosomal protease CTSH (3- to 4-fold), by using real-time
PCR (Fig 3, E) and Western blotting (Fig 3, F). Ctsh was of
particular interest because other members of the cathepsin
proteases have been implicated in filaggrin processing.14-16

Ctsh was downregulated in human keratinocytes treated with
wortmannin (Fig 3, G) and was expressed in postconfluent
cultured REKs coincident with terminal differentiation and
AKTactivity (Fig 3,H). Reinforcing a potential role in the control
of filaggrin processing, Ctsh was expressed coincident with
filaggrin in the granular layer of the epidermis and organotypic
cultures, with a reduction of both filaggrin and Ctsh in the Akt1
shRNA–expressing organotypic cultures (Fig 3, I).
Loss of CTSH inhibits filaggrin processing, but not

expression, and impairs epidermal barrier function:

Evidence of compensation in CTSH knockout
CTSH expression was decreased in nonlesional epidermis from

patients with AD (Fig 4, A and B) and was reduced in
keratinocytes overexpressing RAPTOR (Fig 4, C), suggesting
that it was a downstream effector of the RAPTOR/AKT1 axis
in patients with AD. Ctsh expression was knocked down by using
shRNA in our REKmodel to investigate a potential role for CTSH
in filaggrin processing. In all 4 shRNA knockdown lines
examined, there was a reduction of filaggrin processing without
a reduction in filaggrin mRNA levels (see Fig E5, A-C, in this
article’s Online Repository at www.jacionline.org), which is
consistent with our Akt1 knockdown data in REKs. There was a
trend toward reduction of median CTSH levels in the AD RNA
sequencing analysis (see Fig E5, D)21; however, consistent
with the lack of change in FLG mRNA levels, there was no
correlation between filaggrin levels and CTSH in patients with
AD (see Fig E5, E).

Knockdown of both AKT1 and CTSH in human keratinocytes
revealed the same reduction in filaggrin processing but no
reduction in total filaggrin protein levels (Fig 4,D andE), strongly
implying that the phenomenon we observed in the REK model
was recapitulated in human keratinocytes as well, further rein-
forcing our finding that an increase in RAPTOR expression
decreased filaggrin expression and knockdown of either AKT1
or CTSH resulted in impaired filaggrin processing only. Transient
transfection of Ctsh into the Akt1 knockdown rat cell line rescued
filaggrin processing (Fig 4, F and G), suggesting that loss of
Ctsh was directly responsible for the reduction in filaggrin
processing.

To investigate the effect of Ctsh reduction in vivo, we examined
newborn mouse skin from Ctsh2/2 and Ctsh1/2 mice (Fig 5, A
and B)19 using histology. Although there was no change in
epidermal thickness, the cornified layer was significantly thinner
in both the Ctsh1/2 and Ctsh2/2mice. We observed no change in
total filaggrin levels (Fig 5, C and D) but increased loricrin levels
in the Ctsh1/2 and Ctsh2/2 mice using immunofluorescence
(Fig 5, E and F). Granular filaggrin expression was lost in the
Ctsh1/2 mice but was partially restored in the Ctsh2/2 mice
(Fig 5, D). This was confirmed by means of Western blotting,
which showed that filaggrin processing was normal and
expression of loricrin and keratin 10 was increased (see Fig E7,
C, in this article’s Online Repository at www.jacionline.org). In
adult mice, in contrast, expression of filaggrin and loricrin was
reduced in the Ctsh1/2 mice and mostly restored in the Ctsh2/2

mouse (see Fig E7, A).
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Dye penetration assays20 showed no significant gross barrier
defects, but closer examination revealed penetration of dye into
the cornified layers of the Ctsh1/2 mice (Fig 5, G), which is
consistent with defective barrier function. EM revealed smaller
keratohyalin granules specifically in both the Ctsh1/2 and
Ctsh2/2 mice (Fig 5, H and I), but the granule size in the
Ctsh2/2 mice was partially rescued. This was reflected in a
strengthening of cornified envelope integrity in Ctsh2/2 mice
compared with the weaker cornified envelopes in the Ctsh1/2

mice (Fig 5, J).
We examined the expression of other cathepsins known to

process filaggrin14-16 to determine whether the rescue in the
phenotype seen in the Ctsh2/2 mouse was due to some kind of
compensation by another cathepsin. We were unable to detect
cathepsins D and L in skin of neonates; however, the expression
of cathepsin B was increased in both the knockout and
heterozygous mice (see Fig E6, A, in this article’s Online
Repository at www.jacionline.org), suggesting that the rescue of
physical barrier function was possibly due to the upregulation
of this filaggrin-processing protease.
Ctsh-deficient count, mast cell degranulation, and

proinflammatory molecule expression
Defects in the physical barrier in patients with AD result in an

immune response,29 which typically includes an increase in mast
cell numbers and macrophage and lymphocyte infiltration.30,31

We saw no change in CD451 cell (lymphocytes) numbers in
the dermis or epidermis of either the Ctsh1/2 or Ctsh2/2 mice
(Fig 6, A, and see Fig E6, B). Increased macrophage numbers
in the skin are associated with filaggrin-defective and barrier-
defective epidermis.32,33 Consistent with this, macrophage
(F4/801 cell) counts were increased in skin of the Ctsh1/2 and
Ctsh2/2 mice (Fig 6, A and C). Mast cell degranulation and the
release of histamine, proteases, and other immune mediators
are common phenomena linked to the atopic phenotype,34 and
although overall mast cell number was unchanged, degranulation
was increased in the skin of theCtsh1/2 and Ctsh2/2mice (Fig 6,
B and C).

To determine whether the skin was more proinflammatory, we
investigated cytokine and related protein expression using
antibody array dot blots in pooled lysates from whole skin
from WT and polled Ctsh2/2 and Ctsh1/2 newborn mouse skin
(Fig 6, D). There was an increase in the expression of a number
of cytokines and soluble immune mediators, including IL-1a, a
protein with levels known to be increased in barrier-defective
skin and skin of subjects with eczema,35 which was
subsequently confirmed by means of immunofluorescence
(Fig 6, D-F). Tslp expression induces AD in mouse models
and is present in lesional AD skin.36 It also plays a key role
in mast cell degranulation. However, we saw no significant
change in Tslp expression in the epidermis of Ctsh2/2 and
Ctsh1/2 newborn and adult mouse skin (Fig 6, E and F). Taken
together, these data suggested that loss of Ctsh mediated by
RAPTOR increase and AKT1 activity loss in patients with
AD leads to mild epidermal barrier disruption and that the
epidermis subsequently becomes more proinflammatory. In
addition, although some aspects of the physical barrier are
rescued in the knockout mouse, potentially because of
compensation by cathepsin B and increased loricrin expression,
the immune phenotype is not rescued (Fig 7).
DISCUSSION
Although there has been a great deal of study of FLGmutations

and their association with barrier disruption and AD, there are
surprisingly few reports on variation of filaggrin protein levels
and filaggrin processing.37-39 Here we show that the increase in
RAPTOR expression correlates with the decrease in filaggrin
expression and processing not only in patients with AD but also
in healthy ‘‘unaffected’’ subjects. This is consistent with other
work on filaggrin proteases in patients with AD.13 Taken together,
these data strongly suggest that there would be value in assessing
genetic variants in the healthy population as awhole that correlate
to barrier disruption and filaggrin expression and processing and
disregarding AD because this might be a downstream
consequence of the silent barrier disruption that is potentially
mediated by its own set of genetic associations.25,40,41

Our analysis suggested that retinoids could be used as a
treatment to reduce RAPTOR expression in patients with AD
and hence increase filaggrin expression and processing. Retinoids
have been used to successfully treat eczema in a number of
studies.42-44 Typically, around 50% of patients respond to retinoid
treatment.42 Although the immunosuppressive properties of
retinoids are cited as the cause of recovery, another reason could
be the reduction of RAPTOR expression and subsequent increase
in filaggrin expression and processing. Both CTSH and filaggrin
have been reported previously as being upregulated by retinoids,
which is consistent with this hypothesis.43,45,46 It would be
interesting to investigate epidermal RAPTOR, CTSH, and
filaggrin levels and processing before and after treatment with
retinoids and to determine whether there is a different response
in patients with different FLG phenotypes. A potential
complication would be that treatment with all-trans retinoic
acid or retinoic acid metabolism inhibitors can both inhibit and
enhance epidermal terminal differentiation,47-50 and therefore
the potential overall effect on epidermal barrier function would
be hard to predict.

Interestingly, in the context of the skin barrier and RAPTOR,
mTORC1 is a pH sensor, and at acidic pH, such as that
encountered in the granular layer of the epidermis, mTORC1 is
inhibited.51 This should decrease filaggrin expression and would
be balanced against filaggrin-derived urocanic acid and
pyrrolidone carboxylic acid levels.52 Coupled with the fact that
CTSH is a lysosomal protease and therefore active at acidic
pHs, it is likely that pH is one of the factors that determine overall
levels of processed filaggrin.

The skin of Akt1 null mice models and Akt1 knockdown
organotypic cultures display hyperkeratosis with reduced
cornified envelope strength and reduced filaggrin expression
and processing.17,53,54 Activation of Akt1 also results in
hyperkeratosis and altered filaggrin expression,17,54 demon-
strating that normal Akt activity levels are required for correct
filaggrin processing and hence epidermal barrier function. The
new findings presented here reveal CTSH to be required for
filaggrin processing and epidermal barrier formation and that in
the skin RAPTOR regulates CTSH expression and filaggrin
processing through reduced Akt signaling.

CTSH is expressed ubiquitously, and in addition to being
involved in bulk protein degradation, it does display cell-specific
functions, such as its role in the processing and secretion of
surfactant protein C in type II pneumocytes.19,55 Ctsh-deficient
mice have reduced lung surfactant levels, which might interfere
with breathing mechanisms, causing respiratory complications.19
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Furthermore, reduced Ctsh mRNA expression in airway smooth
muscle cells has been reported in asthmatic patients,56 suggesting
the possibility that low levels of Akt signaling might, in a range of
epithelia, contribute to progression of AD to other atopic disease,
the so-called atopic march.57 The finding that Ctsh is either
directly or indirectly involved through the activation of other
proteases, such as granzymes,57 in the processing of key barrier
proteins in the epidermis and in the lung leads to the possibility
that the atopic march might not only be an immunologic
phenomenon but could also be the result of altered barrier
function in multiple epithelia.

CTSH deficiency in vivo led to an increase in macrophage
numbers and mast cell degranulation and increased IL-1a
levels in the skin of Ctsh1/2 and Ctsh2/2 mice. CTSH overex-
pression typically correlates to macrophage infiltration and a
proinflammatory environment in a number of tissues.58,59

Therefore it is likely that the loss of Ctsh leads to an increase in
levels of other cathepsins, such as our observation of increased
levels of cathepsin B, which might have a proinflammatory role
and is known to play an important role in processing of mast
cell proteases.60,61 Therefore it is possible that the immune
changes are driven by increased cathepsin B levels in both
Ctsh1/2 and Ctsh2/2 mice. The interplay between these
proteases and inhibitors and how this relates to levels of
filaggrin and other related (fused-S100 group) proteins and their
processing and subsequently the proinflammatory status of the
skin in patients with AD is difficult to dissect. This was apparent
by the lack of correlation between filaggrin levels and CTSH in
patients with AD. However, understanding how overall
filaggrin protease activity levels are altered in atopic skin would
provide targets to treat both the barrier and immune aspects
of AD.

Subjects with 2 loss-of-function mutations in FLG
(compound heterozygotes) show the greatest increase in risk of
AD,62,63 and gene expression differences in these subjects is
greater than in FLG heterozygote and WT subjects,21 which
allowed for the detection of statistically significant
differentially expressed genes correlated with RAPTOR
expression. Consistent with our work in vitro, high levels of
RAPTOR correlated with low levels of filaggrin expression and
AKT signaling components. Taken together, our findings make
a convincing case for the role of RAPTOR in regulating genes,
including FLG, that are important in the AD phenotype. Also,
this work suggests that rapamycin or retinoid treatment could
be of benefit in these patients with filaggrin haploinsufficiency
and severe AD.

We acknowledge UCL genomics for the gene array hybridization and

subsequent analysis. We thank the Electron Microscopy Units of Queen Mary

University of London and UCL for the transmission EM analyses.

Key messages

d RAPTOR expression is increased in patients with AD and
are inversely proportional to filaggrin expression.

d The upregulation of RAPTOR leads to AKT1 activity
downregulation and downregulation of the protease
CTSH, which is involved in filaggrin processing and
epidermal barrier function and modulates skin immunity.
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