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Abstract

Background: Variation in cancer risk among somatic tissues has been attributed to variations in the underlying rate
of stem cell division. For a given tissue type, variable cancer risk between individuals is thought to be influenced by
extrinsic factors which modulate this rate of stem cell division. To date, no molecular mitotic clock has been
developed to approximate the number of stem cell divisions in a tissue of an individual and which is correlated
with cancer risk.

Results: Here, we integrate mathematical modeling with prior biological knowledge to construct a DNA
methylation-based age-correlative model which approximates a mitotic clock in both normal and cancer tissue. By
focusing on promoter CpG sites that localize to Polycomb group target genes that are unmethylated in 11 different
fetal tissue types, we show that increases in DNA methylation at these sites defines a tick rate which correlates with
the estimated rate of stem cell division in normal tissues. Using matched DNA methylation and RNA-seq data, we
further show that it correlates with an expression-based mitotic index in cancer tissue. We demonstrate that this
mitotic-like clock is universally accelerated in cancer, including pre-cancerous lesions, and that it is also accelerated
in normal epithelial cells exposed to a major carcinogen.

Conclusions: Unlike other epigenetic and mutational clocks or the telomere clock, the epigenetic clock proposed
here provides a concrete example of a mitotic-like clock which is universally accelerated in cancer and
precancerous lesions.
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Background
Estimating the relative rate of stem cell divisions of a
given tissue type between individuals may allow their
stratification according to their prospective risk of
cancer [1, 2]. It is therefore of interest to construct
molecular mitotic-like clocks, which may provide an
approximate estimate of the relative stem cell division
rate of a tissue in an individual [3–5]. While telomere
shortening represents a mitotic clock [6] and has been
associated with increased cancer risk [7], these associa-
tions have, however, been largely inconsistent and only

obtained in surrogate tissues such as blood [8]. A
recently identified mutational clock-like signature [5]
may also approximate a mitotic clock but has not yet
been applied to cancer risk prediction.
Errors in the maintenance of DNA methylation

(DNAm) arising during cell division may accumulate in
the stem cell population of a tissue in line with the stem
cell division rate and chronological age and have been
proposed as molecular marks for a mitotic clock [3, 4, 9].
In addition, an increased rate of mitosis in the stem cell
pool, possibly associated with cancer risk factors such as
inflammation or viral infection, has been suggested to fuel
epigenetic cellular heterogeneity and to lead to an
increased epigenetic clonal mosaicism which may
predispose the tissue to future neoplastic transformation
[10–15]. Indeed, clonal genetic and copy number variation
mosaicism has already been associated with the future risk
of hematological cancers [16–19], and DNAm variability
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in normal cervical cells has been shown to predict the
prospective risk of cervical cancer [15]. Given that many
cancer risk factors have been associated with DNAm
changes in normal cells [12, 15, 20–22], and preferentially
at the same sites that undergo DNAm changes with age in
healthy tissue [23, 24], we posited that a DNAm
based mitotic-like clock could serve as a tool to pre-
dict cancer risk.
Here we report substantial progress towards the con-

struction of such an epigenetic mitotic-like clock. Using a
novel approach, based on an underlying mathematical
model, we build a DNAm-based age-correlative model
called “epiTOC” (Epigenetic Timer Of Cancer). A key
feature underlying the construction of epiTOC is the
focus on Polycomb group target (PCGT) promoter CpGs
which are unmethylated in many different fetal tissue
types, thus allowing us to define a proper ground state
from which to then assess deviations in DNAm in aged
tissue. By correlating the tick rate predictions of this
model to the rate of stem cell divisions in normal tissue,
as well as to an mRNA expression-based mitotic index in
cancer tissue, we demonstrate that our model approxi-
mates a mitotic-like clock. Importantly, unlike Horvath’s
epigenetic clock [25], the tick rate of epiTOC is universally
accelerated in cancer, in preinvasive lesions, in normal
epithelial cells at risk of neoplastic transformation, and in
normal epithelial cells exposed to smoke carcinogens.

Results
Construction of the epiTOC model
By virtue of it being a highly accurate multi-tissue age pre-
dictor, Horvath’s clock cannot be a mitotic clock [14, 25].
Thus, in order to construct an age-correlative model
which also reflects a mitotic clock-like process, we devised
an alternative strategy, integrating mathematical modeling
with previous biological knowledge (“Methods”). We
reasoned that using only one tissue type from a large
cohort of healthy individuals and focusing on CpG sites
which, based on previous biological knowledge [26, 27],
would more likely capture mitotic effects, relevant CpGs
could be identified by correlation with chronological age
(“Methods”; Fig. 1a). Specifically, we focused on CpGs sat-
isfying the following criteria (justification in “Methods”):
(1) CpGs that are constitutively unmethylated in fetal
tissue encompassing many different tissue types [27]; (2)
CpGs that map to gene promoters marked by the PRC2
polycomb repressive complex (also known as Polycomb
group targets (PCGTs)) in human embryonic stem cells
(hESCs) [26]; and (3) CpGs whose DNAm levels increase
with chronological age [23]. Briefly, requirement 1
facilitates the construction of a mitotic-like clock since
these CpGs all have comparable DNAm levels in a ground
state of age zero, ensuring that deviations from this
ground state are therefore also comparable between CpGs.

Requirements 2 and 3 are justified based on prior
biological knowledge that PCGT promoters undergo
DNAm increases during hematopoietic ontogeny [26] and
that they define age-associated signatures which are valid
across different normal tissue types [23], including puri-
fied blood [24] and stem cell populations [23].
Using one of the largest Illumina 450 k DNAm datasets

encompassing over 650 whole blood samples from healthy
individuals spanning an age range of over 80 years [28]
and correcting for changes in blood cell subtype compos-
ition (“Methods”; Additional file 1), we identified a subset
of 385 PCGT promoter CpGs satisfying all required
properties, including being unmethylated across 11
different fetal tissue types and exhibiting age-associated
hypermethylation (false discovery rate <0.05) (“Methods”;
Additional file 2). For each sample, epiTOC yields a score,
denoted “pcgtAge”, as the average DNAm over these 385
CpG sites, representing the age-cumulative increase in
DNAm at these sites due to putative cell-replication errors
(Figure S1a in Additional file 3). Given that hypomethy-
lation is also commonly observed in aging and cancer
[29, 30], a separate age-correlative model based on
promoter CpGs that are partially methylated in fetal
tissue and which become hypomethylated with age was
also derived (“Methods”; Figure S1b in Additional file
3). We validated both age-correlative models in an
independent Illumina 450 k data set, encompassing
over 300 whole blood samples from healthy individuals
[31] (Figure S2 in Additional file 3). However, only
epiTOC correlated with age in other normal tissue
types (Figure S3 in Additional file 3), with the age-asso-
ciated hypomethylation model showing inconsistent
patterns (Figure S4 in Additional file 3).

epiTOC correlates with age in purified cell and stem cell
populations
Although epiTOC was constructed by correcting for cellu-
lar heterogeneity in blood, age-associated DNAm changes
could be non-linear and therefore linear correction for cell
type composition may not effectively remove the effect of
this confounder [32]. Hence, we sought to reconfirm that
the identification of our 385 PCGT promoter CpGs was
not affected by age-associated changes in blood cell type
composition. To this end, we analyzed Illumina 450 k data
from a cohort of healthy individuals spanning a wide age
range of over 70 years, obtained from purified cells sorted
using FACS and representing three different blood cell
subtypes (CD4+ T cells, CD14+/CD16− monocytes, and
CD19+ B cells) and encompassing 151 independent sam-
ples (“Methods”). In all three cell subtypes, the pcgtAge
score correlated very significantly with chronological age
(Fig. 2a; linear regression P = 0.0001 for B cells, P = 1e-9
for CD4+ T cells, and P = 2e-6 for monocytes). Despite
the relatively small sample size of each purified sample set

Yang et al. Genome Biology  (2016) 17:205 Page 2 of 18



(n ~ 50), a relatively large fraction of the 385 PCGT CpGs
were significantly hypermethylated with age in each set,
with 91 % of the 385 PCGT CpGs correlating with age in
at least one of these purified sample subsets (Fig. 2b).
Further attesting that epiTOC correlates with chrono-
logical age independently of changes in cell type compos-
ition, we observed that pcgtAge also increased significantly
with age in two additional purified cell 450 k sets profiling
a larger set of samples (214 CD4+ T cell and 1202 mono-
cyte samples) but spanning a much lower age range of
~40 years [33] (linear regression P < 1e-5 for T cells and P
< 1e-9 for monocytes) (Figure S5 in Additional file 3).
We also performed a gene set enrichment analysis on

the 385 PCGT CpGs that make up epiTOC to see if there
is any evidence for these CpGs mapping to immune/blood
cell subtype markers. To identify relevant blood cell or
immune cell type terms, we first conducted the gene set
enrichment analysis on top ranked CpGs in the Hannum
et al. [28] data without correction for cellular heterogen-
eity, which, as expected, revealed strong enrichment of

promoter CpGs mapping to genes underexpressed in lym-
phocytes and genes overexpressed in myeloid cells (Fig. 2c),
consistent with the known increased myeloid–lymphoid
ratio with age [34]. In contrast, these same biological terms
were conspicuously absent and underenriched among the
385 PCGT epiTOC CpGs (Fig. 2c; Additional file 4).
Finally, we also assessed epiTOC in stem cell popula-

tions in order to support our underlying assumption that
DNAm alterations at the epiTOC PCGT loci can accrue
with age in a stem cell pool. We obtained Illumina
Infinium 27 k DNA methylation data for a total of eight
bone marrow-derived mesenchymal stem cell (MSC)
populations of low passage number, representing a wide
donor age range (20–80 years) [35], as well as for 12
CD34+ hematopoietic progenitor cell (HPC) populations
derived from cord blood and adult peripheral blood [36].
In both studies, and despite the small sample sizes, the
pcgtAge score correlated positively with donor age
(linear regression P = 0.015 for MSCs and Wilcoxon
rank sum test P = 0.037 for HPCs; Fig. 2d).

Fig. 1 Flowchart of epiTOC. a The epiTOC score (also pcgtAge score) is estimated over 385 PCGT/PRC2-marked promoter CpGs that are
constitutively unmethylated in over 37 fetal tissue samples from 12 tissue types and whose DNAm increases with chronological age in a large
cohort of healthy individuals, as assessed in one tissue type (blood). The epiTOC/pcgtAge score of any sample represents the average DNAm from
the ground fetal state over these 385 sites, representing the life-time accumulation of DNAm replication errors, and provides a relative estimate
of the number of stem cell divisions per stem cell. The lower panel shows how this score varies linearly with chronological age (data as estimated
in the Hannum et al. [28] blood dataset). b Validation of the epiTOC/pcgtAge score by correlation to the estimated intrinsic rate of stem cell
division per stem cell in normal tissue samples from The Cancer Genome Atlas (TCGA) for which such estimates are available. Further validation
of epiTOC/pcgtAge by correlation to an mRNA expression-based mitotic index in cancer tissues from TCGA. c Assessment of whether epiTOC/
pcgtAge is accelerated in precancerous lesions (lung carcinoma in situ (LCIS) and ductal carcinoma in situ of the breast (DCIS) and cancer (TCGA)
and whether it can predict the prospective risk of invasive lung cancer (ILC)
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epiTOC approximates a mitotic clock
To demonstrate that epiTOC approximates a mitotic-like
clock we computed the pcgtAge score in 288 normal sam-
ples from nine different tissue types collected from TCGA

consortium [37] and for which independent estimates of
the intrinsic stem cell division rates were available [2, 38]
(Fig. 1b). Using the chronological age of the sample and
the intrinsic cell division rate of the tissue, we obtained
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Fig. 2 epiTOC correlates with chronological age in purified cell and stem cell populations and is independent of blood cell type composition.
a pcgtAge versus chronological age in three purified blood cell subtype sample sets, as indicated. Number of samples is indicated at the top of
each panel. The green dashed line is a linear least squares fit. R2 value, Pearson correlation coefficient (PCC) and linear regression P values are
given. b The fraction of the 385 PCGT CpGs that make up epiTOC which are significantly hypermethylated with age in each of these three
purified sample sets, as well as the fraction of these 385 CpGs which are significantly hypermethylated with age in at least one of these three
sets (ALL, red). c Gene set enrichment analysis odds ratios (OR) of immune and blood cell subtype terms that are highly enriched among
age-associated promoter CpGs in Hannum et al. [28] without adjustment for cellular heterogeneity (Unadjusted, magenta bars). Adjusted
P values (adjP) are given. ORs for these same biological terms among the 385 PCGT CpGs of epiTOC are also shown (cyan bars), indicating strong
underenrichment. d Left panel: Correlation of the pcgtAge score with donor age of eight bone marrow-derived mesenchymal stem cell (MSC)
populations (all of low passage). R2 value, Pearson correlation coefficient (PCC) and linear regression P value are given. Right panel: Correlation of
pcgtAge score with donor age of 12 CD34+ hematopoietic progenitor cell (HPC) populations. Here we used a Wilcoxon rank sum test to derive a
P value since there are two well defined groups of cord blood (n = 7, age zero) and adult peripheral blood (AdultPB, n = 5) samples
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estimates of the cumulative total number of divisions
incurred per stem cell in each sample (TNSC). Plotting
these TNSC estimates on a log scale showed that samples
spread mainly according to tissue type and secondly by
age (Fig. 3a). On the natural unlogged scale, it revealed
that the 288 normal samples clustered into three groups,
characterized by a low, intermediate, and high cellular
turnover (Fig. 3b). Fitting a linear regression, adjusted for
chronological age, between the predicted pcgtAge from
our model and the total number of stem cell divisions per
stem cell in the sample revealed a strong positive
correlation (P < 1e-26, R2 = 0.45; Fig. 3b). Differences in
pcgtAge between the cellular turnover groups were also
statistically significant (Fig. 3d). As a negative control, the
corresponding correlation between Horvath’s measure of
age acceleration [25] and TNSC was either not significant
(P = 0.39, R2 ~ 0; Fig. 3c) or, in the case of between group
comparisons, of only marginal significance (Fig. 3e).
To further demonstrate that pcgtAge provides a correla-

tive measure of the cell division rate in a tissue, we posited
that it would correlate with an mRNA expression-based
mitotic index, which we constructed from the expression
levels of genes that have been highly validated as being cell
proliferation markers (“Methods”). This expression-based
mitotic index was increased in all 15 TCGA cancer types
compared to their corresponding normal tissue (Figures S6
and S7 in Additional file 3) and also correlated strongly
with the TNSC estimates across normal tissues (P < 1e-21;
Figure S8 in Additional file 3). Focusing on only the cancer
samples from each of these cancer types, we obtained
Pearson correlations between their pcgtAge and their
expression-based mitotic index. Correlations were generally
positive and much higher than those obtained using
Horvath’s age-acceleration measure (Fig. 3f; paired
Wilcoxon rank sum test P < 0.0001). For pcgtAge we
observed a significant (P < 0.05) positive correlation in
7/15 cancer types, whilst for Horvath’s clock only one
cancer type (KIRP) exhibited such an association
(Fig. 3g). All these data support the view that epiTOC
represents an approximate mitotic-like clock. In con-
trast, the model based on age-associated hypomethyla-
tion did not correlate well with the expression-based
mitotic index in cancer tissue, although we did ob-
serve an excellent correlation with cellular turnover
rates in normal tissue (Figure S9 in Additional file 3).

epiTOC predicts universal age acceleration in cancer and
is further increased in cancer cell lines
Because cell proliferation is a cancer hallmark, we
reasoned that epiTOC would predict an accelerated tick
rate in all cancer types (Fig. 1c). We confirmed this
using all age-matched normal–tumor pairs from 15
TCGA cancer types (Fig. 4). In contrast, Horvath’s clock
and the age-hypomethylated CpG-based model did not

consistently predict age acceleration in cancer (Figures
S10 and S11 in Additional file 3). Of note, the pcgtAge
score also outperformed the mRNA-based mitotic index,
as a discriminator of normal/cancer status, in 9/15 can-
cer types (Figure S12 in Additional file 3).
Next, we asked if the pcgtAge score is also increased in

cancer cell lines compared to cell lines of normal
karyotype. Using Illumina 450 k DNAm data from 24
cancer and 29 normal cell lines, all profiled as part of
ENCODE [39], we observed a significantly higher pcgtAge
score in the cancer cell lines (Wilcoxon rank sum test
P = 6e-14; Figure S13a in Additional file 3). Cancer cell
lines generally also exhibited higher pcgtAge scores than
those observed in cancer tissue. To confirm this, we
compared the pcgtAge scores for 11 cancer types
against the pcgtAge score of a corresponding represen-
tative cancer cell line (“Methods”). In all 11 cancer
types, the cancer cell line exhibited a higher score than
the average over corresponding cancer tissue samples
(Wilcoxon paired rank sum test P = 0.005; Figure S13b
in Additional file 3).

Increased epiTOC tick rate in pre-invasive cancer lesions
We further reasoned that pcgtAge might also be in-
creased in pre-cancerous tissue owing to a marginal in-
crease in cell proliferation. We computed pcgtAge in an
independent Illumina 450 k dataset encompassing 21
normal lung tissue samples and 35 lung carcinoma in
situ (LCIS) samples, of which 22 progressed to an inva-
sive lung cancer [20]. This revealed a gradual increase in
pcgtAge from normal lung, to LCIS, and to LCIS which
progressed to invasive lung cancer (ILC), a result which
was independent of chronological age (Fig. 5a). pcgtAge
could discriminate normal lung from LCIS with an AUC
of 0.88 (95 % confidence interval (CI) 0.79–0.97; Fig. 5a),
as well as discriminating the LCIS which progressed to
ILC from those which did not (AUC = 0.79, 95 % CI
0.63–0.94; Figure S14a in Additional file 3). In contrast
to epiTOC, Horvath’s clock did not predict age
acceleration in the LCIS samples and LCIS samples
which progressed to ILC even exhibited substantial age
deceleration (Fig. 5b). The age-hypomethylated model
could neither discriminate normal from LCIS (Figure
S15 in Additional file 3) nor predict cancer risk (Figure
S14b in Additional file 3).
Most of these results were replicated in an Illumina

450 k dataset encompassing 14 normal breast tissues
(from reduction surgery), 28 age-matched ductal carcin-
omas in situ (DCIS), and a further 13 age-matched DCIS
samples from women who later developed an invasive
breast cancer (IBC) [40] (Fig. 5c). Specifically, we
observed an increased pcgtAge score in DCIS compared
to normal breast (AUC = 1, P < 0.05; Fig. 5c). In contrast,
neither Horvath’s measure of age acceleration nor the
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age-associated hypomethylation model could discriminate
normal breast from DCIS samples (Fig. 5d; Figure S16 in
Additional file 3). In another independent Illumina 450 k
set which profiled 50 normal breast samples, 42 age-
matched normal samples adjacent to a breast cancer and
an additional 305 breast cancers [41], pcgtAge also showed
a gradual age-independent increase between normal breast
tissue and normal-adjacent breast tissue and breast cancer
and was able to discriminate normal breast from normal-
adjacent tissue (AUC= 0.66, 95 % CI 0.55–0.77; Fig. 5e).
Again, this was not the case for Horvath’s age-acceleration
measure nor for the analogous age-associated hypomethy-
lation signature (Fig. 5f; Figure S17 in Additional file 3).
To translate the discrimination accuracies above

into an estimate of the difference in incurred stem
cell divisions, we integrated the estimate of the

intrinsic rate of stem cell division in lung tissue [2,
38] with the epiTOC model, using the normal lung
samples from TCGA to estimate the intercept and
slope in our regression model (“Methods”). We ob-
tained an estimate of 8.45 stem cell divisions per
stem cell in the normal tissue compared to 13.33 di-
visions per stem cell in LCIS which did not progress
to ILC and 22.02 divisions in the LCIS samples which
progressed to ILC, representing an approximate three-
fold increase compared to normal samples. In the
case of breast tissue, the underlying rate of stem cell
division is unknown, but we could nevertheless esti-
mate that DCIS samples had a 3.5-fold higher num-
ber of total stem cell divisions per stem cell
compared to age-matched normal breast, a ratio simi-
lar to that of LCIS to normal lung tissue.
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Fig. 4 The pcgtAge/epiTOC model predicts universal age acceleration in cancer. Boxplots comparing the pcgtAge of age-matched normal cancer
samples across 15 TCGA cancer types. P values are from a paired (one-tailed) Wilcoxon rank sum test. BRCA breast adenocarcinoma; BLCA bladder
adenocarcinoma; COAD colon adenocarcinoma; ESCA esophageal cancer; HNSC head & neck squamous cell carcinoma; KIRC kidney renal cell
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UCEC uterine corpus endometrial carcinoma
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Increased epiTOC tickrate in normal buccal tissue of
smokers
Next, we asked if epiTOC’s tick rate is increased in nor-
mal cells exposed to a major carcinogen. Given that
smoking is a well-established major cancer risk factor
for epithelial cancers like lung cancer [42, 43] and that
smoking has been shown to be strongly associated with
DNAm changes in epithelial cells, specifically in buccal
tissue [20], we hypothesized that epiTOC would exhibit
an accelerated rate in the buccal tissue of smokers com-
pared to non-smokers. We estimated pcgtAge in a large
cohort of 790 buccal samples from women all aged

53 years at the time of sampling and for which DNAm
data with Illumina 450 k arrays had been generated and
smoking pack-year (SPY) information was available for
647 of these women [20]. We focused on SPY as opposed
to smoking status at the time of sampling given that SPY
better reflects the smoking history of women [20].
Consistent with a model in which smoke carcinogens
cause inflammation [44] and in turn an increased mitotic
rate [12], the pcgtAge score significantly correlated with
SPY (linear regression P < 1e-6; Fig. 6a). However, sub-
stantial variation in the pcgtAge scores unrelated to smok-
ing exposure was also evident (Fig. 6a). In contrast,
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Fig. 5 pcgtAge/epiTOC is aggravated in pre-cancerous lesions whereas Horvath’s age-acceleration measure is not. a Left panel: the pcgtAge
between normal lung tissue (N), lung carcinoma in situ (LCIS), and LCIS samples from patients who later progressed to an invasive lung cancer
(LCIS- > LC). P values between respective groups are from a one-tailed Wilcoxon rank sum test. P value from a linear regression of pcgtAge versus
group adjusted for age is also given at the top. Right panel: corresponding receiver operating characteristic (ROC) for discriminating the normal
and all LCIS samples. AUC and 95 % CI is given. b Horvath’s age-acceleration measure between normal lung tissue (N), lung carcinoma in situ
(LCIS), and LCIS samples from patients who later progressed to an invasive lung cancer (LCIS- > LC). P values between respective groups are from
a one-tailed Wilcoxon rank sum test. c, d Exactly as a, b but now in a different Illumina 450 k data set, encompassing normal breast tissue, ductal
carcinoma in situ (DCIS), and DCIS samples from women who later developed an invasive breast cancer (BC). e, f Exactly as a, b but now in an
Illumina 450 k set which profiled normal breast tissue from healthy women (N), normal breast tissue adjacent to a breast cancer (NADJ), and
breast cancers (BC). The number of samples in each group is given below
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Horvath’s measure of age acceleration did not correlate
with SPY (Fig. 6b), although the age-hypomethylated
model did show a strong association (Figure S18 in
Additional file 3).
For a subset of 152 women for which there was matched

blood–buccal tissue, we found that the pcgtAge score in
the two tissues did not correlate with each other (Fig. 6c),

consistent with the fact that all women were of the same
age and that the effect of inflammation (and hence cancer
risk) is tissue-specific. In line with this, the association of
the pcgtAge score with SPY was stronger in buccal tissue
than in blood (Fig. 6d). In contrast, for Horvath’s age-
acceleration measure, which in this cohort of identically
aged women equals the predicted DNAm age, we

Fig. 6 epiTOC’s tick rate is increased in buccal tissue from smokers. a Density scatterplot of pcgtAge (y-axis) versus smoking pack-years for a total
of 647 buccal samples from women all aged 53 years at the time of sampling. Pearson correlation coefficient (PCC) and one-tailed P value from a
linear regression are given. b As a but for Horvath’s age-acceleration measure. c Density scatterplot of pcgtAge (y-axis) in whole blood (WB) versus
pcgtAge in buccal (BUC) tissue for a total of 152 women all aged 53 years who provided both a WB and a buccal sample. PCC and associated
one-tailed P value are given. d Density scatterplots of pcgtAge in WB and BUC tissue against smoking pack years for 122 women with smoking
pack year information. P values are from a one-tailed correlation test. e, f As c, d but for Horvath’s age acceleration measure. Note that because
all samples are of the same age, the age-acceleration measure is just a constant shift of the predicted DNAm age
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observed a weak yet significant correlation across the two
different tissues (Fig. 6e). Correspondingly, no association
between Horvath’s age-acceleration measure and SPY was
observed, irrespective of tissue type (Fig. 6f).

Discussion
Unlike telomere shortening [6–8], or the recently identified
mutational clock-like signature [5], epiTOC provides a
concrete example of a molecular mitotic-like clock which
predicts universal acceleration in cancer. Although we
acknowledge that current estimates of stem cell division
rates in normal tissues are only very rough approximations,
the observed correlation between epiTOC and the number
of cell divisions per stem cell in over 288 normal samples
was obtained by broadly categorizing tissues into groups of
low, medium, and high cellular turnover, a classification
which is likely to be robust (i.e., it is well accepted that
colon has one of the highest cellular turnover rates of any
tissue). Importantly, the pcgtAge score from epiTOC
further correlated with an expression-based mitotic index
in as many as seven different cancer types. In those cancer
types where we did not see an association with the
expression-based mitotic index, this could be due to small
differences in proliferation rates between the actual
tumors. Supporting this, the pcgtAge score was universally
increased in cancer, as assessed in 15 tumor types encom-
passing over 5000 samples, in line with an increased
mitotic rate being a universal cancer hallmark. The pcgtAge
score was also accelerated in preinvasive cancer lesions,
including LCIS and breast DCIS samples, allowing highly
accurate discrimination of such lesions (AUC~ 0.9–1). In
addition, epiTOC was able to predict risk of an ILC, pro-
viding highly accurate identification (AUC~ 0.8) of LCIS
which progressed to an ILC (Figure S14a in Additional file
3). The estimated epiTOC tick rate in normal breast tissue
adjacent to breast cancer was also accelerated, albeit at a
much lower level, consistent with most of the cells in these
samples being of normal cytology. Of note, we recently
demonstrated the existence of DNAm field defects in the
same normal-adjacent breast tissue samples [41]. That the
pcgtAge score could discriminate normal tissue containing
such field defects from the normal tissue of age-matched
cancer-free women (AUC of 0.66, 95 % CI 0.55–0.77)
suggests that epiTOC may serve to assess the risk of
neoplastic transformation of normal tissue. Large prospect-
ive studies will, however, be required to demonstrate utility
of epiTOC in a clinical setting.
Of note, the pcgtAge score also correlated with SPY in

normal buccal tissue, highlighting the potential of epiTOC
to capture putative increased cellular proliferation of
epithelial cells that have been exposed to a major carcino-
gen. Although we did not measure inflammatory or cell
proliferation markers in our buccal samples, previous
studies have noted increased inflammation and

proliferative activity in the oral epithelium of smokers [44,
45]. Although it is also plausible that the DNAm changes
seen in the buccal epithelium of smokers reflects active
changes associated with smoking-induced DNA damage,
there is another observation supporting the view that in-
flammation and increased proliferation underlie most of
the observed changes: smoking-associated DNAm
changes seen in the buccal epithelium are generally very
similar to those seen in healthy aging [20, 46]—for in-
stance, as seen in blood cells from pediatric populations
[47, 48]—or similar to those DNAm changes seen in in-
flammatory diseases [12, 49]. Indeed, a recent review
highlighted enrichment of PCGT CpGs as a common
DNAm signature which is seen in healthy aging of normal
cells (which are presumably free of DNA damage), as well
as in normal cells of the same chronological age but which
have been exposed to a variety of different cancer risk fac-
tors [14]. Hence, the more likely explanation for the ob-
served increased pcgtAge score in the buccal epithelial
cells of smokers compared to non-smokers of the same
age is a marginally increased proliferative activity, possibly
associated with an inflammatory response to smoke
toxins.
Assessment of epiTOC in cancer cell lines was less

conclusive. Although cancer cell lines always exhibited a
higher pcgtAge score than the average value of the corre-
sponding cancer tissue, consistent with our epiTOC model
and with reports that cancer cell lines exhibit higher levels
of promoter methylation than cancer tissue [50], compari-
sons between cell lines and cancer tissue is difficult for a
number of reasons. First, studies have shown that the
artificial microenvironment and selection pressures of cell
culture conditions can modify the genomic, DNAm, and
expression patterns of the parental cells [35, 51–53].
Therefore, it is unclear whether the mechanism underlying
DNAm changes upon cell division in tumors is also opera-
tive in cell lines. Second, a cell line derives from a parent
cell which may grossly underrepresent the level of epigen-
etic heterogeneity in the stem cell pool of the primary
cancer tissue, rendering comparisons between cell lines
and independent cancer tissue samples problematic. Third,
many cell lines would be needed to render meaningful
comparisons with cancer tissue [54]. Notwithstanding
these limitations, our data are broadly supportive of epi-
TOC, assuming that, once cells are cultured in vitro, the
pcgtAge score ceases to reflect the mitotic age of the cells
while still reflecting the mitotic age of the parent tissue.
The data presented here further confirm that Horvath’s

clock is not a mitotic clock and that it does not exhibit a
consistent universal acceleration in cancer or precancer-
ous lesions. Indeed, by its very nature, Horvath’s clock was
designed to predict chronological age independently of
tissue type and must, therefore, reflect a biological process
unrelated to cell division (since cell division rate is highly
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variable between tissues). While it is not yet clear what
this biological process may be, the data presented here
indicate that it is not a process that is uniformly altered in
cancer, nor a process which appears accelerated in
response to a major cancer risk factor such as smoking. In
comparing epiTOC to Horvath’s clock, it is also important
to point out that epiTOC does not attempt to predict
chronological age of samples in absolute terms. This is not
a limitation but, in fact, a key advantage of our approach,
since any optimization procedure aimed at predicting
chronological age as accurately as possible would not
allow us to reliably identify the CpGs which reflect an
underlying mitotic process.
Importantly, our work has further exposed a subtle

difference between promoter CpGs that undergo age-
associated hypermethylation from those that undergo
hypomethylation, with the analogous model based on age-
hypomethylated sites not correlating with the mitotic
index in cancer tissue and correspondingly not exhibiting
a consistent acceleration in cancer. This is consistent with
a recent report by Lin and Wagner [55]. In fact, whereas
the model based on hypomethylation also correlated with
the number of stem cell divisions per stem cell in normal
tissues, as well as with exposure to smoking in normal
buccal tissue, it is intriguing that no consistent associa-
tions were found in cancer or preinvasive cancer lesions.
This suggests that DNA hypermethylation errors associ-
ated with cell replication might be similar in cancer and
normal stem cells but not so for the corresponding hypo-
methylation aberrations. It will be important for future
studies to try to understand this deep and subtle asym-
metry between age-associated hyper- and hypomethyla-
tion in relation to the changes seen in cancer.
Interestingly, the mRNA expression-based mitotic index

also correlated with the estimated number of stem cell di-
visions, with the strength of correlation comparable to
that obtained by epiTOC. Both mitotic indices were also
comparable predictors of normal/cancer status (Figure
S12 in Additional file 3). However, only the DNAm-
based mitotic index correlates with chronological age.
Indeed, it has been shown that mRNA expression sig-
natures correlating with age are not strongly consist-
ent or reproducible across independent studies and
that the only consistent genes map to immune system
and metabolic pathways and not to cell proliferation
[56]. Thus, epiTOC has a higher sensitivity to detect
differences in cell division numbers between differ-
ently aged samples of the same tissue type. Moreover,
epiTOC could discriminate normal breast tissue adja-
cent to breast cancer from the corresponding normal
tissue of age-matched healthy women (Fig. 5e).
Although matched mRNA data were not available to
assess this for an expression-based mitotic index, it is
unclear whether expression based assays can offer the

stability and reliability of a DNA-based assay to de-
tect such subtle differences [57].
Although epiTOC correlates with stem cell division rate

estimates in normal tissues and correctly predicts an
increased tick rate in precancerous and cancer lesions, it
is important to point out several limitations underlying
our model. First, epiTOC assumes that the underlying
DNAm errors are occurring in the underlying stem cell
pool of a tissue and ignores active DNAm changes which
may occur post-mitotically in response to exposure to
various risk factors. As such, the epiTOC model may only
capture one part of a more general cancer risk-predictive
DNAm signature. However, by computing the pcgtAge
score in populations of mesenchymal stem cells and
hematopoietic progenitor cells, we have seen that epiTOC
does predict an increased mitotic age in older stem/pro-
genitor cell populations, supporting the view that it may
measure mitotic age of the stem cell pool in epithelial
tissues. A second limitation of our model is that it largely
ignores absolute stem cell numbers in the tissue of inter-
est, which may vary substantially between individuals and
even within an individual as a function of current
exposure to environmental factors. The absolute number
of stem cells in a tissue is expected to be an important
determinant of epigenetic stem cell heterogeneity and
clonal mosaicism and, therefore, of cancer risk, as
proposed by a number of studies [10, 13, 58]. This is
therefore an important caveat, since our model does not
distinguish between a tissue with a lower number of stem
cells carrying lots of DNAm changes from another tissue
with a large number of stem cells, each carrying only a
few yet unique DNAm alterations. Nevertheless, assuming
similar stem cell numbers, our pcgtAge score would be
expected to increase in line with the level of epigenetic
heterogeneity in the stem cell pool and thus be inform-
ative of cancer risk. It is also worth stressing that the
observed correlation of the pcgtAge score with the tissue’s
cellular turnover rate does not depend on any estimates of
the actual number of stem cells in the tissue of interest.
Indeed, the pcgtAge score is an intensive variable, defined
as an average over cells and a specific set of loci, and, as
such, correlation can only be assessed meaningfully
relative to another intensive variable. This other intensive
variable is the cumulative number of cell divisions per
stem cell in the tissue of interest and not the extensive
variable defined as the total number of stem cell divisions
in the tissue. For this reason, our model does not make,
and cannot make, any predictions of cancer risk between
different tissues.
In spite of these limitations, epiTOC may allow, in

principle, prediction of stem cell division numbers if
absolute stem cell numbers remain constant, if the intrin-
sic division rate in a tissue is known and if a large DNAm
data set of that tissue from healthy individuals is available.
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In the case of lung tissue, for which estimates of the
intrinsic rate of stem cell division are available [2, 38], and
using normal-adjacent samples from the TCGA to train
the model, we found that LCIS samples exhibited a total
of about 13 to 22 divisions per stem cell. This is signifi-
cantly larger than the approximate eight to nine divisions
per stem cell for the normal lung samples, which in turn
is only marginally higher than the life-time number of
divisions per stem cell in lung tissue (approximately six
divisions per stem cell) as estimated by Tomasetti and
Vogelstein [2]. Given that it has been estimated that lung
tissue contains about one billion stem cells, and assuming
that a 2 cm sized LCIS contains 0.5 % of these stem cells,
this translates into approximately (22/8) × 0.005 × 109 ~ 14
million additional cell divisions in LCIS compared to a
normal sample. We acknowledge that these estimates are
only very rough approximations, yet they are also not
necessary for the purpose of cancer risk prediction where
only the tick rate relative to that of a normal reference
tissue is required.
Finally, it is of interest to discuss the relation of epiTOC

to a recently proposed “Big Bang” model of early cancer
evolution as proposed by Sottoriva et al. [59]. This Big
Bang model describes the clonal expansion of a tumor
and can accurately explain the observed patterns of spatial
genetic heterogeneity within the tumor. In contrast,
epiTOC provides an estimate of the relative number of
stem cell divisions per stem cell in a tissue of interest,
which may approximate the level of epigenetic stem cell
heterogeneity within the normal tissue before the cancer
clone emerges. Once the cancer clone has emerged, the
increased cellular proliferation of this clone would be
expected to generate a “large wave” of further DNAm
changes that may affect most of the genome. Thus, when
applying epiTOC to cancer tissue, the pcgtAge score is
expected to correlate strongly with the level of prolifera-
tion of the tumor, and we have indeed demonstrated this
in as many as 15 TCGA cancer types. Moreover, we
recently demonstrated that the pattern of aberrant DNAm
of one tumor sample can explain, on average, about 60 %
(R2 ~ 0.6) of the aberrant DNAm variation of another tumor,
even if from a different cancer type [60], suggesting that a
common process underlies most of the DNAm variation in
the cancer genome. This common universal process is likely
to be an increased cell division rate. The epigenetic epiTOC
and genetic Big Bang model are therefore mainly aimed at
describing different phases of the carcinogenic process, with
epiTOC providing an approximate measure of cell division
numbers per stem cell before the first cancer clone emerges
and with the Big Bang model providing a description of sub-
sequent cancer evolution. Both models together are highly
consistent with an overarching “phase transition” model of
oncogenesis, in which epigenetic clonal mosaicism is max-
imal before cancer emerges [61].

Conclusions
The epigenetic mitotic clock-like signature presented here
exhibits a consistent universal pattern of acceleration in
cancer, in precancerous epithelial lesions, and in normal
epithelial cells exposed to a major carcinogen. We propose
that DNAm-based models such as epiTOC may constitute
informative biomarkers of cancer risk if evaluated in the
cell of origin or in a relevant surrogate tissue.

Methods
Construction of an epigenetic mitotic clock (epiTOC): a
mathematical model
In order to provide the rationale for the procedure of
constructing epiTOC, as described in the next subsec-
tion, we here first present the salient features of the
underlying mathematical model. We assume that cancer
risk of a tissue type t in an individual s, which we denote
as CR(s,t), is a monotonically increasing function f of the
total number of stem cell divisions (per stem cell)
incurred in the tissue, i.e., we assume that:

CR s; tð Þ ¼ f TNSC s; tð Þ½ �

where TNSC is the total number of stem cell divisions,
which will depend on tissue type t and individual s. We
assume further that TNSC can be approximated as:

TNSC s; tð Þ ¼ A sð Þ IR tð Þ þ E sð ÞER tð Þ½ �
¼ A sð ÞIR tð Þ þ A sð ÞE sð ÞER tð Þ ð1Þ

where A(s) denotes the chronological age of the individ-
ual s, IR(t) denotes the intrinsic rate of stem cell divi-
sions per stem cell in tissue type t, E(s) is a complex
non-linear (generally unknown) positively valued func-
tion representing the exposure of individual s to a cancer
risk factor, and where ER(t) denotes an extrinsic rate of
stem cell division associated with exposure to the cancer
risk factor and which we assume may depend on tissue
type t. Note that we assume that the intrinsic rate IR
only depends on tissue type and that it is, therefore,
independent of chronological age and individual s, so we
are ignoring genetic factors which may influence the rate
of stem cell division.
Motivated by previous work [4], we further assume that

specific CpG sites in the genome acquire stochastic
DNAm errors during cell replication and that the cumula-
tive number of DNAm errors is a linear function of the
total number of stem cell divisions per stem cell. We de-
note the cumulative amount of DNAm errors as “pcgtAge”
in anticipation of how the corresponding CpGs will be
identified (see the “Construction of an epigenetic mitotic-
like clock: CpG selection” section below). Hence, we can
also write a linear model of the form:
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pcgtAge s; tð Þ ¼ α tð Þ þ ξ tð Þ TNSC s; tð Þ þ ε ð2Þ

However, we can’t train a DNAm-based model with
TNSC, since the latter depends on the exposures which
are generally unknown. Instead, we could link Eqs. 1 and
2 above to train a DNAm-based model. Since IR is
dependent on the tissue type, and since E(s) and ER(t) are
generally unknown quantities, it is best to focus on one
tissue type only and to consider a healthy population of
individuals. This then allows us to assume that E(s) ≈ 0
and that IR(t) = constant, so, to a first approximation:

pcgtAge s; tð Þ ¼ α tð Þ þ ξ tð Þ A sð ÞIR tð Þ þ ε
¼ α tð Þ þ γ tð Þ A sð Þ þ ε

where we have absorbed the term IR into a new slope
coefficient. Thus, to identify CpGs whose DNAm levels
correlate with TNSC, it is justified to correlate DNAm to
chronological age, as long as we use one tissue type and
focus on healthy individuals. However, since many
biological processes may be associated with distinct age-
associated DNAm changes, it is necessary to make a se-
lection of CpGs which are more likely to capture the
DNAm aberrations caused by cell division.

Construction of an epigenetic mitotic-like clock: CpG
selection
Motivated by the above mathematical model, we posited
that we could identify relevant CpGs as follows: (i) identify
CpG sites undergoing age-associated DNAm changes in a
large DNAm dataset of healthy individuals, encompassing
one tissue type only and correcting for potential changes
in cell type composition; (ii) identify a subset of these that
map to PCGT promoters, i.e., marked by the PRC2
complex, and which are constitutively unmethylated in a
ground state of age zero (e.g., fetal tissue).
To justify (i), we reasoned that using multiple tissues,

which would naturally differ in their mitotic tick rates,
would only hamper or confound derivation of a mitotic
clock (see above mathematical model). Correction for
underlying changes in cell type composition is, however, an
important potential confounder if we are to use only one
tissue type. For these reasons, we used the dataset of 656
whole blood samples from Hannum et al. [28], representing
one of the largest cohorts of healthy individuals which have
been profiled with Illumina 450 k DNAm beadarrays, and a
tissue type (blood) for which accurate correction for
changes in blood cell type composition is possible [62]. We
justify (ii) on grounds that a recent study has shown that
DNAm changes occurring during hematopoietic ontogeny
involve preferentially DNAm increases at PCGT promoters,
i.e., sites marked by the PRC2 complex [26]. Thus, we rea-
soned that focusing on a subset of such promoter CpGs
which are also constitutively unmethylated in a large set of

fetal tissues [63] would provide us with the right markers to
measure the rate of cell division.
In detail, using Hannum’s whole blood samples, we

ran linear regressions of chronological age versus DNA
methylation beta profiles adjusted for plate, sex, and
estimates of blood cell subtypes. Estimates of blood cell
subtypes were obtained using quadratic programming
[64] and a novel blood cell subtype DNAm reference
matrix (Additional file 1) constructed by integrating the
Illumina 450 k DNAm data from Reinius et al. [65] with
blood cell subtype-specific DNase hypersensitive site
data from the NIH Epigenomics Roadmap (Teschendorff
A et al: A comparison of reference-based algorithms for
correcting cell-type heterogeneity in Epigenome-Wide
Association Studies, submitted). Age-associated CpGs
were selected at a false discovery rate threshold of <0.05.
Subsequently, these age-CpGs were filtered for those
mapping unambiguously to within 200 bp of a transcrip-
tion start site (TSS200 probes). We note that this restric-
tion to TSS200 probes was done in order to minimize
differences in the ground state (i.e., at age zero) methyla-
tion levels between probes, which facilitates the later
construction of the pcgtAge score as an average of the
probes. With this restriction to TSS200 probes as well as
the inherent restricted coverage of the 450 k beadarrays,
we nevertheless still covered 72 % of all PCGT promoters
as defined in Lee et al. [66]. The age-associated TSS200
CpGs were then divided into age-hypermethylated CpGs
and age-hypomethylated ones. Age-hypermethylated CpGs
were filtered further, selecting only those with absent or
low (beta <0.2) methylation across 52 fetal tissue samples
encompassing 11 tissue types (cord blood (GSE72867),
stomach, heart, tongue, kidney, liver, brain, thymus, spleen,
lung, adrenal gland [63]). These unmethylated promoter
CpGs were divided further into those marked by PRC2 in
human embryonic stem cells (hESCs) and those that are
not, according to the annotation provided [66]. This re-
sulted in an age-hypermethylated set of 385 CpGs, which
we denote “pcgtAge”. In the case of the age-hypomethylated
promoter CpGs, we selected those with a methylation level
of at least 0.3 across all 52 fetal tissue samples in order to
guarantee that the observed hypomethylation at these sites
is genuine and of potential biological significance. This re-
sulted in a second set of 656 CpGs, denoted “hypoAge”.
Age-correlative DNAm deviation scores, pcgtAge and

hypoAge, were then calculated as the average DNAm
over the respective CpG sites. Mathematically, pcgtAge
for sample s in tissue type t, is calculated as:

pcgtAge s; tð Þ ¼ 1
n

Xn

c¼1
βcst

By construction, this score should correlate with chrono-
logical age, and we can estimate parameters α’ and γ’
from fitting a linear model:
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pcgtAge s; tð Þ ¼ α tð Þ þ γ tð Þ A sð Þ þ ε’

From this, we can now obtain an estimate of TNSC(s,t)
for a sample of the same tissue type t but which is not
healthy, e.g., one exposed to a cancer risk factor:

TNSC s; tð Þ ¼ pcgtAge s; tð Þ – α’ tð Þ½ �IR tð Þ= γ ’ tð Þ ð3Þ
since estimates for IR(t) are available from the literature
[2]. Thus, for the same tissue type t used in the training
(i.e., blood) and from which the estimates α’ and γ’ were
obtained, we can derive estimates of TNSC but not so
for a different tissue type (e.g., lung or breast). However,
the second term in Eq. 3 above is independent of the
sample s; hence, one can write for the cancer risk:

CR s; xð Þ ¼ f TNSC s; xð Þ½ �
¼ f pcgtAge s; xð ÞIR tð Þ= γ ’ tð Þ – term tð Þ½ �

and so, if pcgtAge(s1,x) > pcgtAge(s2,x), then the cancer risk
(CR) of sample s1 is also greater than that of s2: CR(s1,x) >
CR(s2,x). Hence, a higher pcgtAge score should be in-
dicative of a higher mitotic tick rate and indicate a higher
cancer risk, which we can formally test if data for pre-
cancerous lesions are available. Similarly, a lower hypoAge
score would correspond to a higher cancer risk.
From Hannum et al. [28] whole blood data set, we es-

timated for the pcgtAge model that α’ = 0.052 and γ’ =
0.000345. From the 81 normal breast tissue samples
from TCGA, we estimated α’ = 0.053 and γ’ = 0.000165,
and from the combined 73 normal lung samples from
the TCGA we estimated α’ = 0.021 and γ’ = 0.000588.
We note that even in the absence of an IR(t) estimate

one can still estimate the relative TNSC numbers of two
samples s1 and s2 of the same tissue type since the ratio:

TNSC s1; tð Þ = TNSC s2 ;t
� � ¼ pcgtAge s1; tð Þ – α’ tð Þ½ �

= pcgtAge s2; tð Þ – α’ tð Þ½ �

does not depend on IR(t).

Validation of the age-correlative models in blood and
other normal tissue types
EpiTOC and the analogous model based on age-
hypomethylated sites were tested in the large independent
whole blood Illumina 450 k dataset of Liu et al. [31] using
only healthy controls (over 300 samples). We also tested
these two models in other normal tissue types. For this
purpose, we used normal-adjacent tissue from TCGA,
focusing on tissues for which there were enough normal
samples and for which there had been corresponding fetal
tissue used in the derivation and selection of the CpGs
making up these models. This included 38 normal colon
(normal-adjacent tissue to colon adenocarcinoma
(COAD)), 160 normal kidney (adjacent to kidney renal
cell carcinoma (KIRC)), 47 normal liver (adjacent to liver

hepatocellular carcinoma (LIHC)), and 73 normal lung
samples (adjacent to lung squamous cell carcinoma
(LSCC)/ lung adenocarcinoma (LUAD)).

Validation of the epigenetic mitotic clock in normal tissue
In order to demonstrate that our age-correlative models
define approximate mitotic clocks, i.e., that the relation
TNSC(s,t) ~ pcgtAge(s,t) holds, we estimated the age-
correlative scores in the normal tissue samples of TCGA
[37], for which estimates of the intrinsic stem cell division
rates (IR) per stem cell and per year are available from [2].
Specifically, this included colon (IR = 73 divisions per stem
cell per year), rectum (IR = 73), esophagus (IR = 17.4), head
and neck (IR = 21.5), liver (IR = 0.9125), lung (IR = 0.07),
pancreas (IR = 1) and thyroid (IR = 0.087), encompassing a
total of 288 normal tissue samples. Cumulative total
number of cell divisions per stem cell (i.e., TNSC) was
estimated for each of these 288 normal “healthy” samples
as the product of chronological age (tissue-independent)
and the corresponding rate IR (tissue-dependent), i.e., as
TNSC(s,t) = A(s)IR(t). The sample-specific scores pcgtAge,
nonpcgtAge, and hypoAge were then correlated to these
sample-specific cumulative cellular turnover rates using a
linear regression framework adjusted for chronological age
(in order to avoid the expected trivial correlation by age).

Validation of the epigenetic mitotic clock in cancer tissue:
construction of an mRNA expression based-mitotic index
Because cell division rates are altered in cancer, we
validated the mitotic nature of the age-correlative scores
pcgtAge and hypoAge in cancer samples by comparison
of these scores to an mRNA expression-based mitotic
index. This mitotic index was constructed by first taking
the interConstruction of the epiTOC model of genes in
the cell proliferation cluster of Ben-Porath et al. [67] and
those of the proliferation signature of Rhodes et al. [68].
This resulted in nine genes (CDKN3, ILF2, KDELR2,
RFC4, TOP2A, MCM3, KPNA2, CKS2, and CDC2). The
mitotic index was then defined as the average mRNA ex-
pression over these nine genes. This mRNA expression-
based mitotic index was validated in 15 cancer types of
TCGA by demonstrating that it is significantly increased
in each cancer type compared to its corresponding nor-
mal tissue type. We verified that it was a more reliable
mitotic index than PCNA expression (not shown).

Cancer and pre-cancerous Illumina 450 k datasets
We downloaded and processed level 3 Illumina 450 k and
RNA-SeqV2 data from TCGA [37], as described by us pre-
viously [69]. In total, we considered 15 cancer types: BLCA
(bladder adenocarcinoma, nN = 19, nC = 204), BRCA
(breast adenocarcinoma, nN= 81, nC = 652), COAD (colon
adenocarcinoma, nN= 38, nC = 272), ESCA (esophageal
carcinoma, nN = 15, nC = 126), HNSC (head and neck
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squamous cell carcinoma, nN = 45, nC = 402), KIRC (kid-
ney renal cell carcinoma, nN= 160, nC = 299), KIRP (kid-
ney renal papillary carcinoma, nN = 45, nC = 196), LIHC
(liver hepatocellular carcinoma, nN = 47, nC = 176), LSCC
(lung squamous cell carcinoma, nN= 41, nC = 275), LUAD
(lung adenomacarcinoma, nN = 32, nC = 399), PAAD
(pancreatic adenoma carcinoma, nN = 10, nC = 146), PRAD
(prostate ademoma carcinoma, nN = 48, nC = 278), READ
(rectal adenoma carcinoma, nN = 7, nC = 95), THCA
(thyroid carcinoma, nN = 53, nC = 489), and UCEC (uterine
cervix endometrial carcinoma, nN = 34, nC = 374).
We used Illumina 450 k DNAm data from the three

previous publications and which had profiled precursor
cancer lesions or normal-adjacent tissue in addition to
normal samples. Briefly, these datasets were: (i) a dataset
of normal lung and lung carcinoma in situ (LCIS) sam-
ples, with a subset of these progressing to an invasive
lung cancer, previously described in [20]; (ii) a dataset of
normal breast tissue and ductal carcinoma in situ (DCIS)
samples, with a subset of these progressing to an inva-
sive breast cancer, previously described in [40]; (iii) a
dataset of 50 normal breast tissue samples, 42 matched
normal-adjacent breast tumor pairs, and an additional
263 breast cancers, previously described in [41].
Age-correlative scores pcgtAge and hypoAge were esti-

mated as average DNAm levels over the corresponding
CpG sites in all of these samples.

Buccal tissue Illumina 450 k set
Illumina 450 k DNAm profiles were generated for buccal
samples from 790 women, all aged 53 at the time of
sampling, as described by us previously [20]. For a subset
of 152 women, there were matched buccal–blood samples.
We used the normalized data as used in our previous
publication.

Non-TCGA cancer tissue and ENCODE cell line DNAm
datasets
Illumina 450 k DNAm data for 32 glioblastoma multi-
formes (GBM) were downloaded from the Gene Expres-
sion Omnibus (GEO; accession number GSE30338) [70]
and normalized with BMIQ. Illumina 450 k data for 215
ovarian cancers was processed and normalized with
BMIQ as described by us previously (GEO: GSE74845)
[71]. Illumina 27 k DNAm data for a total of 49 cervical
cancer epithelial samples were processed and normalized
as described by us previously (GEO: GSE30759) [15].
Cell line Illumina 450 k DNAm data for 62 cell lines was
obtained from ENCODE via GEO (GSE40699). These
data were subsequently normalized with BMIQ.

Purified T-cell, B-cell and monocyte Illumina 450 k sets
Illumina 450 k profiling was performed on 100 purified
CD19+ B-cell samples, 98 CD4+ T-cell samples, and 104

CD14+/CD16− monocytes from a total of 52 monozygotic
twins discordant for type 1 diabetes, as described by us
previously (Paul D et al: Increased DNA methylation vari-
ability in type 1 diabetes across three immune effector cell
types, submitted) Here we only used the samples from the
healthy controls, amounting to 50 B-cell, 49 T-cell, and 52
monocyte samples. Across all cell types, the mean cell
purity was 90 %. The Illumina 450 k data were processed
as described (Paul D et al: Increased DNA methylation
variability in type 1 diabetes across three immune effector
cell types, submitted) and are available from the European
Genome-phenome Archive (EGA; https://www.ebi.ac.uk/
ega/) under accession number EGAS00001001598.
In addition, we used Illumina 450 k data of an inde-

pendent set of purified CD4+ T-cell (n = 214) and mono-
cyte (n = 1202) samples, as generated by the MESA
study [33]. These data were downloaded from the GEO
(GSE56046 and GSE56581). Intra-array normalization
was performed with BMIQ.

Stem cell Illumina DNAm sets
We downloaded normalized Illumina 27 k data for two
sets of stem cell-like cell populations. One set had pro-
filed eight mesenchymal stem cell (MSC) samples (all of
the same low passage number of 2) collected from the
bone marrow of eight donors of widely different ages
[35]. Data were obtained from the GEO (GSE17448).
Another set consisted of 12 CD34+ hematopoetic pro-
genitor cell (HPC) samples collected from either cord
blood (n = 7) or mobilized peripheral blood from adults
(n = 5, age range 28 to 41 years) [36]. Data were obtained
from EBI’s ArrayExpress repository (E-MTAB-487).

Software availability
An R script implementing epiTOC and the associated
probe IDs of the CpGs making up epiTOC is available
as Additional files 5 and 6.

Additional files

Additional file 1: Blood reference DNA methylation data matrix in Excel
format. Detailed legend in file. (XLS 85 kb)

Additional file 2: The 385 PCGT CpGs that make up epiTOC. Detailed
legend in file. (XLS 205 kb)

Additional file 3: Supplementary information document with all
supplementary figures and their legends. (PDF 1902 kb)

Additional file 4: Gene set enrichment analysis results (in Excel table
format) of the 385 PCGT CpGs that make up epiTOC. Columns label
the biological term, number of genes present in the term, number
and corresponding fraction of genes present on the bead array, the number
in the overlap between term and the genes mapped by the 385 PCGT
CpGs, the odds ratio (OR), the Fisher test one-tailed P value of enrichment,
the adjusted P value (Benjamini–Hochberg adjusted) and the overlapping
gene symbols. (XLS 1403 kb)

Additional file 5: epiTOCcpgs.RData. An R object data file containing the
450 k probe IDs of the 385 PCGT CpGs that make up epiTOC. (RDATA 1 kb)
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Additional file 6: EstEpiTOC.R. An executable R script function to allow
estimation of the pcgtAge score in independent samples. (R 1 kb)
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