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 Abstract 

Incidental learning of appropriate stimulus-response associations is crucial for optimal 

functioning within our complex environment. Positive and negative prediction errors 
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(PEs) serve as neural teaching signals within distinct (‘direct’/‘indirect’) dopaminergic 

pathways to update associations and optimize subsequent behavior. Using a 

computational reinforcement-learning model, we assessed learning from positive and 

negative PEs on a probabilistic task (Weather Prediction Task, [WPT]) in three 

populations that allow different inferences on the role of dopamine (DA) signals: (1) 

Healthy volunteers that repeatedly underwent [11C]raclopride Positron Emission 

Tomography, allowing for assessment of striatal DA release during learning, (2) 

Parkinson’s disease (PD) patients tested both on and off L-DOPA medication, (3) early 

Huntington’s disease (HD) patients, a disease that is associated with hyper-activation of 

the ‘direct’ pathway. Our results show that learning from positive and negative feedback 

on the WPT is intimately linked to different aspects of dopaminergic transmission. In 

healthy individuals, the difference in [11C]raclopride binding potential (BP) as a 

measure for striatal DA release was linearly associated with the positive learning rate. 

Further, asymmetry between baseline DA tone in the left and right ventral striatum was 

negatively associated with learning from positive PEs. Female patients with early HD 

exhibited exaggerated learning rates from positive feedback. In contrast, dopaminergic 

tone predicted learning from negative feedback, as indicated by an inverted-u-shaped 

association observed with baseline [11C]raclopride BP in healthy controls and the 

difference between PD patients’ learning rate on and off dopaminergic medication. 

Thus, the ability to learn from positive and negative feedback is a sensitive marker for 

the integrity of dopaminergic signal transmission in the ‘direct’ and ‘indirect’ 

dopaminergic pathways. The present data are interesting beyond clinical context in that 

imbalances of dopaminergic signaling have not only been observed for neurological and 

psychiatric conditions but also been proposed for obesity and adolescence. 
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1. Introduction   

Incidental stimulus-response learning heavily relies on striatal functioning (Poldrack et 

al., 2001; Jahanshahi et al., 2010). Within the striatum, dopamine (DA) transmission is 

known to play a key role in fostering learning via encoding the difference between 

expectations and outcomes of our actions (Montague et al., 1996; Schultz et al., 1997; 

Schultz, 2002). These prediction error signals (PEs) are utilized to update current 

beliefs and, importantly, to adapt subsequent behavior. Positive PEs are signaled via a 

transient increase in firing rate (‘burst’) and negative PEs are associated with a pause in 

tonic firing (‘dip’). It has been proposed that DA mediates learning from positive as well 

as negative outcomes (Van Der Schaaf et al., 2014), but via two segregated (‘direct’ / 

‘indirect’) pathways (Frank, 2005; Frank and O’Reilly, 2006; Frank et al., 2007b; Kravitz 

et al., 2010). Recently, direct experimental evidence has been provided for this model in 

healthy volunteers (Cox et al., 2015).  

In the ‘direct pathway’, striatal D1 receptor expressing neurons predominantly send 

inhibitory projections directly to the output nucleus of the basal ganglia, the globus 

pallidus interna/substantia nigra pars reticulata (GPi/SNr). Postsynaptic D1 receptors 

are sensitive to bursts in DAergic transmission. Thus, correct stimulus-response 

associations are strengthened via D1-receptor related modulation of synaptic plasticity 

within the direct pathway subsequent to positive PEs. In the ‘indirect pathway’ (Gerfen 

et al., 1990; Surmeier et al., 2007), striatal neurons expressing D2-receptors 

predominantly send inhibitory projections first to the external segment of the globus 

pallidus. From there inhibitory projections reach the subthalamic nucleus (STN). The 

STN then sends excitatory projections back to the GPi/SNr. Postsynaptic D2 receptors 

are sensitive to detecting transient dips within the tonic DA signal (Goto and Grace, 

2005; Day et al., 2006). Hence, wrong stimulus-response associations are weakened 

through D2 receptor activity in the indirect pathway subsequent to negative PEs (Klein 

et al., 2007; Jocham et al., 2009, 2014). Importantly, too low tonic DA may impair D2 

receptor-related signaling, as the magnitude of extracellular tonic DA determines the 

background stimulation of DA receptors (Grace, 1991). In addition, too high tonic DA 

release may impede D2 receptor-related signaling, as high tonic DA levels can inhibit 

the phasic DA response via action on presynaptic D2 auto-receptors (Goto et al., 2007) 

or via hyperpolarization of DAergic neurons (Dyakonova et al., 2009). Thus, either too 

low or too high tonic DA levels may specifically impede the capability of detecting dips 

and, consequently, may alter learning from negative PEs in particular. Further, recent 

data indicate that the hemispheric asymmetry of DA signals is related to the propensity 

to learn from positive vs. negative PEs (Maril et al., 2013; Tomer et al., 2014; Aberg et 

al., 2015). A mechanistic explanation for this phenomenon is missing to date.  
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Consequently, it is important to differentiate between learning from positive and 

negative feedback to identify the specific involvement of different DA pathways or 

aspects of DA transmission. Further, an investigation of different aspects of DA 

transmission based on behavior on the same behavioral task will be beneficial for 

interpretation of the results.  

Here, we assessed learning in response to positive and negative PEs in three 

populations that allow different inferences on the role of DA in incidental stimulus-

response learning. Importantly, all participants completed the same probabilistic 

learning task, the Weather Prediction Task (WPT, Knowlton et al., 1994). To 

differentiate between learning from positive and negative PEs, we employed a 

computational reinforcement-learning model.  

First, we explored the influence of DAergic signaling in a sample of healthy volunteers 

who repeatedly underwent [11C]raclopride Positron Emission Tomography while 

completing the WPT with and without corrective feedback. Specifically, we investigated 

the impact of DA release, tonic DA level, and the asymmetry of phasic responses 

between left and right striatum on learning from positive and negative feedback. We 

hypothesized that the strength of phasic striatal DA transmission during procedural 

learning is linearly related to the participants’ capability of learning from positive PEs. 

Further, we predicted that tonic DA levels within the striatum are associated with the 

ability to learn from negative PEs in an inverted u-shaped manner. Finally, we expected 

that asymmetry between left and right striatal signaling is related to learning from 

positive PEs.   

Second, we investigated the effect of L-Dopa medication on learning from negative PEs 

in a sample of patients with Parkinson’s disease (PD) who were tested both on or off 

medication when completing the WPT. Evidence (e.g. Agid et al., 1993; Kish, Shannak, 

& Hornykiewicz, 1988) suggests that in early PD dopamine depletion is mainly limited to 

dorsal striatum and the ventral striatum is relatively less affected.  We expected patients 

on levodopa medication to be selectively impaired in learning from negative PEs 

compared to off medication due to an nonspecific increase in DAergic tone in the ventral 

striatum in the on state (Cools et al., 2006; Frank et al., 2007a).  

Third, we investigated learning in a sample of early Huntington’s disease (HD) patients, 

a disease that is associated with a hyper-activation of the ‘direct’ pathway. Thus, we 

hypothesized that these patients will be selectively impaired in successful learning from 

positive PEs.  



 5 

2. Methods 

2.1. General methods 

2.1.1. WPT 

All three studies (PET, PD & HD) involved the same stimulus-response learning task, a 

standard version of the Weather Prediction Task ([WPT], Knowlton et al., 1994; see 

Figure 1 in Wilkinson et al., 2014), with corrective feedback to ensure learning based on 

striatal DA transmission. In the PET study, participants also completed a control version 

of the WPT without corrective feedback. Further, the card patterns in the control task 

were not related to the outcome.   

On each trial, participants were presented with a particular arrangement of cards 

comprising one, two or three of the four possible tarot cards. Participants were asked to 

decide whether the presented set of cards predicted sunshine or rain. There were 14 

possible arrangements of cards, as the four card and no card patterns were not used. 

The four cards were assigned with a probability for predicting sunshine of 80%, 60%, 

40% and 20%, respectively, and predicting rain otherwise. Prediction probabilities for 

the presented arrangements of cards were derived from the joint probability distribution 

of the individual cards they contained. (see Table 2 in Wilkinson et al., 2014). 

After presentation of the stimuli during each trial, participants were asked to predict the 

weather on that trial, which required them to classify the card arrangement into one of 

the two possible outcomes (e.g. rainy / fine). Responses were made either via two 

response buttons (PET / PD study) or verbally to the experimenter (HD study). 

Following their response, feedback appeared on the screen depending on whether the 

response was correct (thumbs up) or incorrect (thumbs down). The feedback and the 

card arrangement both remained on the screen for a short period. After they 

disappeared a blank screen preceded the presentation of the next combination of cards. 

If participants failed to make a response, the card arrangement appeared on the screen 

for the same duration but no feedback was provided. For more details on the particular 

task designs used in the respective studies please see the original publications 

(Jahanshahi et al., 2010 [PD study]; Holl et al., 2012 [HD study]; Wilkinson et al., 2014 

[PET study]). 

 

2.1.2. Computational model 

Performance on the WPT relies on updating of outcome predictions and related 

adaptation of subsequent response behavior. Thus, the task was previously used to 
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assess PE-related learning (Rodriguez et al., 2006). As the aim of our study was to 

assess differential learning from positive and negative feedback, from a conceptual 

point of view, our computational model needs to fulfill two criteria: (1) The model 

incorporates two learning rates, separating learning from positive and negative 

feedback, and (2) the two learning rates need to be interpretable independently from 

other model parameters. Consequently, we used a slightly modified version of the 

classical Q-learning model (Frank et al., 2007b) with two separate learning rates that 

are fitted independently of the choice consistency parameter β (see equation (1)). The 

latter ensures that the learning rates are statistically independent of the choice 

consistency parameter, which is not the case when fitting is performed simultaneously. 

In more detail, our reinforcement learning model consists of four input nodes 𝐼𝑖=1,…,4 with 

weighted connections to two output nodes (Q-values) 𝑄𝑗=1,2  that represent the 

presence or absence of the four different cues and the two possible outcomes in the 

WPT, respectively. On each trial, activity of the output nodes is computed as 𝑄𝑗 =

 ∑ 𝑞𝑖𝑗𝑖 𝐼𝑖, where 𝑞𝑖𝑗 is the weight connecting input node 𝐼𝑖 and output node 𝑄𝑗. Weights 

are initialized to 0 and updated in each trial by means of 𝑞𝑖𝑗(𝑘 + 1) = 𝑞𝑖𝑗(𝑘) +

𝛼
+ −⁄ 𝑆𝑗(𝑅𝑗 − 𝑄𝑗)𝐼𝑖 where 𝑅𝑗 encodes the correct output in this trial and 𝑆𝑗 represents the 

subject’s response. The latter is included for allowing the model to simulate the behavior 

of the individual participant rather than optimal learning. To assess learning from 

positive and negative PEs separately, we fitted two independent learning rates 𝛼+/− for  

𝑅𝑗 − 𝑄𝑗 ≥ 0 and 𝑅𝑗 − 𝑄𝑗 < 0, respectively. For each participant the individual learning 

rates 𝛼+/− were determined that minimized the sum of squared differences between the 

model's output and the participant's response: ∑ (𝑆𝑗𝑘 − 𝑄𝑗𝑘)
2

𝑗𝑘  → 𝑚𝑖𝑛, with 𝑗 = 1, 2 and 

𝑘 being the number of trials. In a subsequent step, we modeled each participant’s 

choices of a particular outcome to follow a softmax distribution: 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑆𝑗  | 𝑄1, 𝑄2) =  
𝑒𝑥𝑝 (𝛽𝑄𝑗)

𝑒𝑥𝑝(𝛽𝑄1)+𝑒𝑥𝑝 (𝛽𝑄2)
with 𝑗 = 1, 2  (1) 

The choice consistency parameter β was fitted to participants’ choices by minimizing the 

negative log likelihood of the choice probabilities P 

𝐿𝐿 = − 𝑙𝑛( ∏ 𝑃𝑘(𝑄𝑗))𝑘 ,       (2) 

while the two learning rates were held constant at the values optimized in the first step. 

Model fitting and estimation of all parameters was accomplished by nonlinear 

optimization.  

In order to ensure that the modifications to a standard Q-learning model did not 

compromise adequate model fit, we compared the model described above with (1) a 

similar model with only one learning rate instead of two and (2) a Q-learning model with 
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simultaneous fitting of all three free parameters. For quantitative model comparison, we 

performed random-effects Bayesian model comparison (Daunizeau et al., 2014) to 

estimate exceedance probabilities and expected model frequencies (Stephan et al., 

2009). Additionally, we utilized the Bayesian information criterion 𝐵𝐼𝐶 =  −2 ∗ 𝐿𝐿+k*ln(n) 

(Schwartz, 1978), where LL is the log likelihood of the model’s choice probabilities, k is 

the number of free parameters of the respective model and n=200 represents the 

number of trials. Based on BIC we computed ΔBIC values that represent mean 

differences (per subject) between the respective model and the model with the lowest 

BIC value. We also computed pseudo-r² values as defined in Daw et al. (2006) to test if 

our model fitted subjects’ learning performance above chance level.  

In addition to a quantitative model fit comparison, we assessed if the respective models 

resembled participants’ learning performance in a meaningful way. Therefore, we 

computed linear regression models with participants’ mean percent correct responses 

as dependent variable and fitted model parameters as independent regressors.  

Details of the model comparison are presented in Table 1. Across all subjects, model 

frequencies and exceedance probabilities favor standard QL which was identified as the 

best fitting model in 46% of participants. However, BIC values are almost identical for 

the three models and ΔBIC values of 1.76 and 0.32 do not provide any strong evidence 

against the two competing models. In addition, pseudo-r² values show that all three 

models fit similarly above chance level. Within all different study populations, the 

stepwise 2LR model provides the best or second best model fit, again with pseudo-r² 

values showing that the model fitted subjects’ performance above chance level. 

Importantly, the stepwise 2LR model explained significant variance in participants WPT 

performance in all three studies according to regression analyses. Thus, modifications 

in our new model yield meaningful and independently interpretable parameter estimates 

without compromising adequate model fit. 

 

2.1.3. Statistical analyses 

All behavioral results were computed with PASW-SPSS-Statistics 19.0 (IBM 

Corporation, Somers, NY, USA). A significance criterion of α = .05 was used, unless 

otherwise specified. All significance levels reported are two-tailed.  

 

2.2. Methods PET study (Wilkinson et al., 2014) 

2.2.1. Participants 
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Seven (3 female) healthy volunteers in the age of 45-70 (M = 56.86, SD = 8.7) were 

recruited. None of the participants had any neurological disorder or history of psychiatric 

illness, drug or alcohol abuse or were on any drug treatments that might influence 

performance. Participants were asked not to smoke or drink caffeinated drink for at least 

12 h prior to the scan, although we did not control for their average daily consumption of 

caffeine or nicotine. Participants completed the Beck Depression Inventory (BDI-II) 

(Beck et al., 1961, 1996) to preclude signs of depression. The study was approved by 

the Research Ethics Committee of Hammersmith, Queen Charlotte's and Chelsea and 

Acton Hospitals Trust. Permission to administer radioactive substances was granted by 

the Administration of Radioactive Substances Advisory Committee of the UK. All 

participants gave written informed consent to take part in this study in accordance with 

the Declaration of Helsinki. For more details on selected participants, please see 

Wilkinson et al. (2014). 

 

2.2.2. WPT 

All participants completed 400 trials of the WPT in eight blocks of 50 trials each while 

having a [11C]raclopride PET scan. For more details, see Wilkinson et al. (2014). 

Notably, here we analyzed participants’ task performance across the first four blocks of 

200 trials to assess learning, as afterwards participants’ performance reached a 

plateau. 

 

2.2.3. Control task 

As for the WPT, the control task comprised 400 trials (of which we analyzed the first 

200) that were completed while participants had a [11C]raclopride PET scan. On each 

trial participants were presented with an arrangement of between one and three of four 

possible cards, these were in the same positions on the screen as the card 

arrangements that were used in the experimental conditions. However, here the 

patterns on the four cards were identical and were not related to any outcomes or 

followed by corrective feedback. The card arrangements remained on the screen for a 

fixed period of 7 s after which they disappeared and the next card arrangement 

appeared after 2s. Participants were required to press a response button with their right 

index finger to indicate they had seen the card arrangements. 

 

2.2.4. Scanning procedure 
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All participants underwent [11C]raclopride PET twice within four weeks. On each 

scanning session the respective task started 5 min before injection of tracer and ended 

5 min before completion of [11C]raclopride PET (total duration 60 min). Half of the 

participants completed the WPT during the first [11C]raclopride PET session and the 

remainder did the control task first.  

 

2.2.5. PET scanning 

As stated in Wilkinson et al. (2014) PET was performed using an ECAT EXACT HR+ 

(CTI/Siemens 962, Knoxville, TN) tomograph with a total axial field of 15.5 cm. 63 

transaxial image planes were displayed as 2.46 mm slices with a reconstructed axial 

resolution of 5.4 mm and a transaxial resolution of 5.6 mm. A 10-min transmission scan 

was performed prior to injection of the tracer to correct for tissue attenuation of 511 keV 

gamma radiation. Dynamic emission scans were acquired in three-dimensional mode. 

The mean injected doses of [11C]raclopride for each group is listed in Table Table 1 of 

Wilkinson et al. (2014). Scanning began at the start of tracer infusion generating 20 

periods over 60 min. A laptop was used to present the WPT or control task to the 

participants, and the tasks commenced 5 min before the injection of RAC. RAC was 

supplied by Hammersmith Imanet. 

 

2.2.6. Image analysis 

As stated in Wilkinson et al. (2014) parametric images of [11C]raclopride binding 

potential (BPND) were generated using a basis function implementation of the simplified 

reference tissue model using cerebellar cortex to estimate non-specific tracer uptake 

(Gunn et al., 1997). An image of integrated [11C]raclopride signal from 0 to 60 min (an 

“ADD” or summed image) was also created for each participant. The ADD images were 

then spatially normalized to an in-house [11C]raclopride template in standard stereotaxic 

(MNI) space using statistical parametric mapping (SPM2) software (Wellcome 

Functional Imaging Laboratory, London). The transformation matrices were then applied 

to the corresponding [11C]raclopride parametric image. A standard region-of-interest 

(ROI) object map that outlined putamen, heads of caudate nucleus and ventral striatum 

was defined on the [11C]raclopride template with magnetic resonance imaging guidance. 

The ROI object map was then applied to the individual [11C]raclopride parametric 

images to sample [11C]raclopride BPND. The investigator analyzing the scans was 

blinded to the task associated with each scan. 

 

http://www-ncbi-nlm-nih-gov.browser.cbs.mpg.de/pmc/articles/PMC4285817/table/tbl1/
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2.3. Methods PD study (Jahanshahi et al., 2010) 

2.3.1. Participants 

Eleven individuals with a diagnosis of idiopathic PD (8 male) aged between 53 and 73 

(M=63.5, SD=6.2) were included. Patients were recruited from the Movement Disorders 

Clinics at the National Hospital for Neurology and Neurosurgery. They met Parkinson’s 

Disease Society Brain Bank diagnostic criteria for PD (Hughes et al., 1992). Disease 

duration ranged from 3 to 37 years (M=13.2, SD=10.7). Despite the wide range of 

disease duration, the majority of patients was in the early stage of PD, with disease 

durations of less than 14 years. Two patients, however, had relatively long disease 

duration of 30 and 37 years. Without those two patients the average disease duration 

was 8.76 years. Importantly, the results reported below did not change when the two 

subjects were excluded from the analyses (or disease duration was included as a 

covariate). All patients were non-demented as demonstrated by scores > 26 on the 

Mini-Mental State Examination (MMSE) (Folstein et al., 1975) and non-depressed 

according to scores < 18 on the Beck Depression Inventory (BDI) (Beck et al., 1961). 

The MMSE has been recommended as a screening tool for identifying cognitively 

impaired patients and, specifically, for characterizing PD associated dementia (e.g. 

Dubois et al., 2007). All patients were treated with levodopa (Sinemet, Madopar) and 

were responding well and stable on their medication doses. PD patients were matched 

with the controls for age, education, sex, verbal IQ and dementia based on MMSE 

scores. For further details regarding the patient sample please see Jahanshahi et al. 

(2010). 

Further, thirteen healthy volunteers (5 male) aged between 44 and 69 (M=60.0, SD=9.7) 

took part in the study. None of the controls had any neurological disorder, psychiatric 

illness, head injury, history of alcohol or drug abuse, or depression (BDI). For more 

details see Jahanshahi et al. (2010). 

2.3.2. Task procedure 

All participants performed 200 trials of the WPT separated into four blocks of 50 trials 

each (for more details see e.g. Jahanshahi et al., 2010) twice with different but parallel 

stimuli and outcomes (rainy/fine or cold/hot) presented on each occasion. Six of the PD 

patients were tested off medication first and the remainder was tested on medication 

first. PD patients completed the off and on medication conditions on 2 separate days, 

with a mean delay of 11.9 days (SD=6.9) in between. Controls completed the two 

assessments on the same day, separated by a long lunch break.  

 

2.4. Methods HD study (Holl et al., 2012) 
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2.4.1. Participants 

Eighteen individuals (9 male) with genetically proven HD (for genetic details, see Table 

1 in Holl et al. (2012)) aged between 32 and 68 (M=50.28, SD=10.2) took part. Patients 

were recruited from the HD clinic at the National Hospital for Neurology and 

Neurosurgery and from the HD clinic at the Department of Psychiatry at Graz Medical 

University. Patients were in the early stages of the disease, with an average score on 

the Unified Huntington’s Disease Rating Scale Total Functional Capacity (UHDRS TFC, 

Shoulson and Fahn, 1979) of 11.61 (SD=.3). The UHDRS motor score (Hungtington 

Study Group, 1996) was used for assessment of motor symptoms, patients presented 

with an average score of 20.39 (SD=10.4). All patients were non-demented, as 

demonstrated by scores >24 on the MMSE. The MMSE has been recommended as a 

screening tool for identifying cognitively impaired patients (e.g. Dubois et al., 2007). In 

addition, the patients were screened for clinical depression on the BDI. One patient had 

a BDI score of 18 and one had a score of 24 (moderate depression), but neither met the 

criteria for clinical depression in a psychiatric interview.  

Eighteen healthy volunteers (9 male) aged between 30 and 74 (M=50.00, SD=13.3) 

took part in the study. Controls were recruited via an advertisement at a local adult 

education center in London and a participant recruitment website. Prior to participation 

in the study, controls were interviewed and screened for suitability. None of the controls 

had any neurological disorder, psychiatric illness, head injury, or history of alcohol or 

drug abuse. Further screening of the controls was achieved through completion of the 

MMSE and BDI, on which the controls had mean scores in the normal range.  

For further information on the patients and controls sample, please see Holl et al. 

(2012). 

Unfortunately, we had to exclude one healthy participant and one HD patient from 

modeling analyses, due to partial data loss. 

 

2.4.2. Task procedure 

All participants performed 150 feedback-based trials of the WPT separated in three 

blocks of 50 trials each (for more details see Holl et al., 2012). 

 

3. Results 

3.1. Results PET in healthy volunteers 
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3.1.1. Striatal 11C-Raclopride binding 

Here, we only report on post-hoc comparisons of RAC BPND between the WPT and 

baseline task across ROIs utilizing independent samples t-tests. For more details on 

analyses regarding RAC BPND data, we refer the reader to Wilkinson et al. (2014). 

There was a trend for a reduction in RAC BPND in the right and left ventral striatum 

when performing the WPT compared to the control task (13.4% reduction in the right, 

t(6)=−2.01, p=.09, 6.0% reduction in the left, t(6)=−2.18, p=.07), indicating release of 

synaptic DA during feedback-based stimulus-response learning. This comparison did 

not trend towards significance for any other region, left putamen (t(6)=−1.15, p=.29), 

right putamen and right and left caudate (all ts < 1). For subsequent analyses we use 

the mean baseline and % change in RAC BPND of left and right ventral striatum (9.7%). 

 

3.1.2. Behavioral data 

As mentioned previously, in the original paper (Wilkinson et al., 2014) WPT mean 

proportion of correct responses across 8 blocks of 50 trials was analyzed. Here, we only 

analyzed participants’ WPT performance across the first four blocks, as we were 

interested in the initial learning phase of the task. For this purpose, we utilize a 

repeated-measures ANOVA model with within-subjects factor block (4 levels). In 

addition, to assess the time of emergence and progression of learning across blocks in 

this condition, mean proportion of correct responses per block was compared to chance 

(50%) for all four blocks using one sample t-tests. Following Bonferroni corrections we 

adopted a significance threshold of α=0.0125.  

Although the repeated-measures ANOVA reported no significant differences between 

task-blocks (F(3,6)=1.6, p=.23) on learning performance, there was a trend for a linear 

association (F(1,6)=4.47, p=.08), indicating that participants’ WPT performance 

increased across the initial four task-blocks. In line, participants’ proportion of correct 

responses was significantly better than chance from block three onwards: (b1: 

t(6)=3.31; b2: t(6)=3.08; b3: t(6)=3.72, p<.01; b4: t(6)=3.77, p<.01).  

3.1.3. Modeling  

As learning the WPT was related to DA transmission within the ventral striatum only, we 

focus on ventral striatal RAC BPND in subsequent analyses. We utilized two separate 

regression models to test our hypotheses regarding the associations of learning from 

positive and negative PEs with averaged ventral striatal RAC BPND measures.  

The first regression model included positive learning rate as dependent variable and 

baseline RAC BPND and % change in RAC BPND as regressors to test for a positive 
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linear association between positive learning rates and phasic DA transmission. The 

second model included negative learning rate as dependent variable and baseline RAC 

BPND as well as RAC BPND
2 as regressors to test for a quadratic (inverted u-shaped) 

association between height of negative learning rate and tonic DA levels in the ventral 

striatum. In addition, we computed a regression model with positive learning rate as the 

dependent variable and ventral striatal DAergic asymmetry as a regressor. Asymmetry 

was assessed by percent difference between left and right baseline RAC BPND. Finally, 

we tested a possible quadratic (inverted u-shaped) association between modeled 

choice consistency and tonic DA release with a model similar to the second one. All 

regression models included age as a covariate to control for age related effects in DA 

transmission.  

In line with our first hypothesis, learning from positive PEs showed a significant negative 

linear association with the % change in RAC BPND within ventral striatum for WPT 

compared to control task assessment (R²=.89, β=-.94, p=.001, Figure 1A), indicating a 

positive linear association of phasic DA release and learning from positive PEs. Further, 

modeled negative learning rates showed a significant negative quadratic relationship 

with the baseline RAC BPND (R²=.89, β=-.74, p=.005, Figure 1B) in ventral striatum. In 

addition, we observed a significant negative linear relationship between positive 

learning rate and asymmetry between left and right ventral striatal baseline RAC BPND 

(R²=.81, β=-.9, p=.006, Figure 1C). Choice consistency was negatively associated with 

baseline RAC BPND (R²=.87, β=-.91, p=.006) in a quadratic model.   

 

3.2. Results PD  

3.2.1. Behavioral data 

As reported (Jahanshahi et al., 2010) WPT performance (averaged over 200 trials) of 

healthy controls did not differ significantly across sessions (session 1 (2): .68 (.72), 

t(12)=−.99, p=.34). Therefore, their data were collapsed across assessments to 

compare PD patients’ overall learning performance on and off medication with the 

performance of healthy controls. When off medication, patients’ performance was 

comparable to the controls’ combined performance (t(35)=−.92, p=.36) indicating that 

dopamine levels within ventral striatum were still in an optimal range for learning the 

WPT. In contrast, when PD patients were tested on medication, their overall 

performance was significantly worse than the controls’ combined performance 

(t(35)=−2.26, p=.03).  

To assess the impact of levodopa on PD patients’ performance an repeated-measures 

ANOVA was performed on mean proportion of correct responses with medication (on 

vs. off) as a within subjects variable and order of testing (on first vs. off first) as a 
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between groups variable. This analysis revealed a significant main effect of medication 

(F(1,9)=11.45, p=.01). A post-hoc paired sample T-test revealed that PD patients 

showed better WPT performance off (.67) than on (.63) medication (t(10)=2.72, p=.02, 

Figure 2A). There was no significant main effect of order (F(1,9)=1.64, p=.23) or order x 

medication interaction (F(1,9)=4.89, p=.06). 

 

3.2.2. Modeling 

To test our hypothesis that PD patients on medication are specifically impaired in 

learning from negative PEs we set up a repeated-measures ANOVA with within-

subjects variable medication (off / on). As gender is known to modulate PD onset and 

phenotype (Haaxma et al., 2007) Van den Eden et al., 2003) we included it as a 

covariate. As there was no effect of order in the behavioral data we did not include this 

variable. We observed a significant main effect of medication on participants’ negative 

learning rates (F(1,9)=7.57, p=.02, Figure 2B). A similar model yielded no significant 

effect of medication on positive learning rates (F(1,9)=.07, p=.79). There was no 

significant effect of medication on modeled response consistencies (F(1,9)=.16, p=.23). 

 

3.3. Results HD  

3.3.1. Behavioral data 

We utilized a repeated measures ANOVA with within-subjects variable block (1-3) and 

between-subjects variable group (patients / controls). As the sample size (18) was 

reasonably large and there is recent evidence of gender-related differences in HD 

phenotype (Zielonka et al., 2013), we also included gender into our model. The analysis 

revealed a significant effect of block (F(2,64)=17.1, p<.001) indicating that, on average,  

participants learned the task. Learning performance in general was different for healthy 

controls compared with HD patients as revealed by a significant main effect of group 

(F(1,32)=5.64, p=0.02). The between-subject interaction of group x gender was 

significant (F(1,32)=4.9, p=.03, Figure 3A), showing that learning performance in 

general was different between gender-specific subgroups.  In line, the three-way 

interaction of block x group x gender exhibited a trend for significance (F(2,64)=2.87, 

p=.06), indicating that learning was different between gender specific control and HD 

groups. All other interactions were non-significant. 

In view of the significant gender x group interaction, post-hoc independent samples t-

tests revealed that female HD patients showed lower over-all learning performance than 



 15 

female control participants (HD =.72, control =.61, t(16)=3.5, p=.003), whereas there 

was no difference for men (HD=.7, control=.7, t(16)=.11, p=.92). 

 

3.3.2. Modeling 

We computed two separate ANOVAs for positive and negative learning rates as 

dependent variables with group and gender as between-subject factors. There was no 

significant main effect in either model, but the group x gender interaction had a 

significant impact on participants’ positive learning rates (F(1, 30)=5.15, p=.03, Figure 

3B), whereas there was no such effect on learning rates from negative PEs 

(F(1,30)=.15, p=.7). Post-hoc independent samples t-tests revealed that female HD 

patients showed elevated learning from positive PEs compared to controls (t(15)=2.13, 

p=.05). There was no difference between male patients and control participants 

(t(15)=.98, p=.34). In addition, positive learning rates showed a positive linear 

association with assessed motor symptom severity across all HD patients (R²=.3, β=.55, 

p=.02, Figure 3C). Motor symptom severity did not differ significantly between male and 

female HD patients (t(15)=0.24, p=.81). 

There was no significant main effect of group (HD / controls, F(1,30)=2.14, p=.15) or a 

group x gender interaction (F(1,30)=2.78, p=.11) on participants’ response 

consistencies between HD patients and healthy controls. 

 

4. Discussion 

4.1. Summary 

For optimal functioning within our complex environment procedural learning of 

appropriate stimulus-response associations is crucial. Positive and negative PEs serve 

as neural teaching signals within distinct pathways to update these associations and 

optimize our subsequent behavior. Positive PEs are reflected in an increase in the 

phasic firing rate of dopaminergic neurons, whereas negative prediction errors are 

reflected in transient dips of the tonic dopamine signal (Schultz et al., 1997; Tobler et 

al., 2003). Here, we assessed stimulus-response learning from positive and negative 

PEs on the probabilistic WPT using computational modeling. We included data from 

healthy volunteers and from two samples of patients exhibiting specific alterations in 

predominantly one of the two segregated pathways. Consequently, the different patient 

populations should reveal disturbances mainly in either learning from positive or 

learning from negative PEs.  
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Taken together, our computational modeling results indicate that learning from positive 

and negative feedback on the WPT is intimately linked to different aspects of 

dopaminergic transmission. Phasic dopaminergic responses are predictive of learning 

from positive feedback on the WPT. In healthy individuals, we observed a linear 

association between difference in [11C]raclopride binding potential as a measure for 

striatal DA release and positive learning rate on the WPT. Further, asymmetry between 

baseline DA tone in left and right ventral striatum is negatively associated with learning 

from positive PEs. Female patients with early progression of Huntington’s disease, 

which is characterized by a hyper-activation of the direct pathway, exhibited 

exaggerated learning rates from positive feedback. In contrast, dopaminergic tone 

predicts learning from negative feedback on the WPT, as indicated by an inverted-u-

shaped association observed with baseline [11C]raclopride binding potential in healthy 

controls and the difference between PD patients on and off medication.  

 

4.2. Learning from negative prediction errors on the Weather Prediction Task 

Dopaminergic tone predicts learning from negative feedback on the WPT, as indicated 

by an inverted-u-shaped association observed with baseline RAC BP in healthy 

controls. This is in line with previous research showing that avoidance learning was 

associated in an inverted-u-shaped manner with D2 receptor availability (Cox et al., 

2015). Importantly, because [11C]-raclopride is competing with endogenous dopamine, 

D2 receptor availability as estimated by [11C]-raclopride binding potential may depend 

on both, the occupancy of receptors by endogenous dopamine and D2 receptor density. 

Thus, baseline BP may in part be interpreted as reflecting dopaminergic tone. It has 

been shown that either too low or too high tonic dopamine levels impair behavior in 

different cognitive domains (Cools and D’Esposito, 2011; Floresco, 2013). Non-optimal 

dopamine levels seem to affect particularly the capability of detecting dips in tonic 

DAergic signaling and, consequently, may thus alter learning from negative PEs in 

particular. In healthy volunteers, depletion of dopamine precursors specifically improves 

avoidance learning, presumably via a better signal-to-noise ratio due to a reduction of 

DA tone in the indirect pathway, but leaves approach learning unaffected (Cox et al., 

2015). Our results indicate that in PD patients, however, a drastic increase in the level 

of ventral striatal dopamine impairs learning from negative PEs. L-DOPA has previously 

been shown to specifically impair reversal learning (Cools et al., 2001) and disrupt 

activity in the nucleus accumbens in PD patients (Cools et al., 2007). Since 

dopaminergic tone is associated with the ability to learn from negative PEs in an 

inverted u-shaped manner, our results suggest that ventral striatal dopaminergic tone in 

PD patients off medication is still preserved at an optimal level. This is corroborated by 

comparable performance of PD patients off medication and healthy controls. Additional 

administration of L-DOPA then causes a suboptimal increase in DA levels in the ventral 
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striatum, resulting in an impaired ability to detect dips in tonic DA. PD patients in our 

subject sample also received DA agonists besides L-DOPA (see Jahanshahi et al., 

2010). Thus, withdrawal from both or even withdrawal from DA agonists alone might 

have caused the observed differences in PD patients off vs. on medication (Moustafa et 

al., 2012). However, our results on differences in PD patients’ learning from negative 

PEs between on and off medication are consistent with earlier reports on the effects of 

dopaminergic medication on reinforcement learning in PD patients using different tasks 

(Frank et al., 2004, 2007a; Bodi et al., 2009). In line, Cools et al. (2006) demonstrated a 

medication-induced deficit that was restricted to conditions with unexpected punishment 

and Moustafa et al. (2013) reported reduced learning from negative feedback in PD 

patients under dopaminergic medication compared to unmedicated patients. 

Additionally, Moustafa et al. observed enhanced learning from positive feedback under 

dopaminergic medication. Notably, they used a simpler probabilistic stimulus-response 

learning task with only single cue stimuli. Together, these results suggest that 

dopaminergic tone predicts the ability to learn from negative PEs on the WPT, both in 

healthy individuals and in PD patients on dopaminergic medication. Importantly, the 

specific effect depends on the initial level of DA: Because of the basic non-linear 

relationship between DA levels and performance, additional heightening or lowering 

levels of DA might cause suboptimal performance on the WPT.   

 

4.3. Learning from positive prediction errors on the Weather Prediction Task 

Learning from positive PEs depends linearly on the magnitude of phasic dopamine 

release in healthy volunteers. Importantly, dopaminergic tone seems to be a powerful 

modulator of phasic DA transmission, as learning from positive PEs was best explained 

when we took into account both, % change in RAC BP as a measure of phasic 

dopamine release during learning and baseline RAC BP as an indicator of density and 

background stimulation of DA receptors. These results are in line with a previous report 

demonstrating the direct association between learning from positive feedback and 

signaling in the direct pathway in healthy volunteers (Cox et al., 2015). In their study, 

learning to approach options associated with a positive outcome in a probabilistic 

selection task was linearly associated with D1 receptor density in the striatum.  

Further, we found the ability to learn from positive PEs to be negatively associated with 

the asymmetry between baseline DA tone in left and right ventral striatum in healthy 

volunteers. Our results are in line with previous findings. Gray (1981) postulated that 

individual differences in motivational behaviour are related to either a bias towards 

behavioural activation to approach incentives or behavioural inhibition to avoid 

punishment. Stronger approach motivation has been linked to greater left than right 

prefrontal activation according to EEG power (e.g. Sutton and Davidson, 1997), as well 
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as PET and fMRI-related activation (Wager et al., 2003; Murphy et al., 2003). 

Presumably, this asymmetric activation is related to hemispheric asymmetry in 

dopaminergic transmission. Hemispheric asymmetry in DA has repeatedly been shown 

to be associated with approach and avoidance motivation and learning. In healthy 

volunteers, self-reported motivational bias between approach and avoidance was 

predicted by the asymmetry of frontal D2 binding (Tomer et al., 2014). Further, striatal 

and frontal asymmetries in D2 dopamine receptor binding predicted individual 

differences in learning from reward versus punishment (Tomer et al., 2014). PD patients 

with predominantly left hemispheric deficits were less willing to invest effort to maximize 

gain, indicating a selective impairment in approach motivation. In contrast, PD patients 

with a right hemispheric deficit exhibited impairments in avoidance motivation (Porat et 

al., 2014). Further, these patients were impaired in learning from positive vs. negative 

feedback, respectively (Maril et al., 2013). In contrast to Aberg et al. (Aberg et al., 

2015), who reported a positive association between better learning from positive PEs 

and functional asymmetry in left and right ventral striatum, our data indicate a negative 

relationship. This seeming discrepancy can be explained by the indirect modulation of 

phasic responses by DA tone via inhibitory actions on the presynaptic cell (Goto et al., 

2007; Dyakonova et al., 2009). 

So what happens if the balance between the integrity of direct and indirect pathways is 

compromised? Female patients with early progression of Huntington’s disease, which is 

characterized by a hyper-activation of the direct pathway, exhibited exaggerated 

learning rates from positive feedback in our study. In Huntington’s disease (HD), a 

neurodegenerative, autosomal-dominant transmitted neurodegenerative disorder, cell 

death of striatal neurons already occurs in early and even pre-symptomatic stages of 

the disease. The progression of neuronal death in the striatum is gradual and proceeds 

from dorsal to ventral and from medial to lateral (Vonsattel et al., 1985; Aylward et al., 

2004). In early stages of HD, cell death primarily affects GABAergic medium-sized spiny 

neurons within the indirect pathway. Furthermore, HD has been associated with a loss 

of pre-synaptic D2 auto-receptors, thus impairing the ability of tonic DA to regulate 

phasic responses (Cepeda et al., 2014). Reduced striatal D2 receptor availability has 

been reported even in asymptomatic HD patients and mutation carriers, suggesting that 

dopaminergic signaling is compromised early in HD (Weeks et al., 1996; van Oostrom 

et al., 2009). Taken together, this leads to a hyper-activation of the direct pathway 

already in very early stages of the disease. In line, HD patients in early stages of the 

disease have been shown to be generally impaired in procedural stimulus-response 

learning (Holl et al., 2012). Adding to this, our results indicate that in early HD, DA 

pathways are affected differentially in women and men and that impairments are 

selective for learning from positive PEs. While we predicted specificity for learning from 

positive PEs, the finding of a gender-specific effect in patients with early HD is novel. It 

has been proposed that a general gender difference in endogenous dopamine levels or 
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other aspects of dopaminergic transmission (Pohjalainen et al., 1998; Kaasinen et al., 

2001; Laakso et al., 2002) may account for gender differences in the vulnerability to 

neuropsychiatric disorders such as depression, schizophrenia or Parkinson’s disease 

(Gillies et al., 2014). For Huntington’s disease, however, penetrance and prevalence 

seems to be equal for both sexes. Interestingly, a large European study showed 

recently that women with HD exhibited more severe symptoms and a faster progression 

of the disease (Zielonka et al., 2013), and a large US study found that women have a 

longer duration of the disease (Foroud et al., 1999). Thus, there might be gender 

differences in the progression of the disease. Our results indicate a more severe 

impairment in learning from positive PEs in women with HD compared to men. This 

might be explained by an interaction of disease-specific effects with sex differences in 

dopaminergic transmission. Women have a higher presynaptic dopaminergic synthesis 

capacity (Laakso et al., 2002) and show a lower binding potential for [11C]raclopride, 

suggestive of a higher striatal dopamine concentration (Pohjalainen et al., 1998). 

Further, women have been shown to have higher D2-like receptor binding potentials 

than men in frontal cortex, temporal cortex, and thalamus (Kaasinen et al., 2001). 

Together, these might produce an additive effect on the hyper-activation of the direct 

pathway, and, in consequence, exaggerated learning from positive PEs especially in 

women with early HD. However, as positive learning rate was associated with motor 

symptom severity across all patients, the gender specific effect might alleviate during 

further progression of the disease. In line with our results, Palminteri and colleagues 

observed an asymmetry in favor of reward-based relative to punishment-based learning 

in patients with early compared to late HD and to controls (Palminteri et al., 2012). 

Specifically, the authors found a higher reward bias and a higher reinforcement 

magnitude for gains compared to losses. However, learning rates for gain and loss 

conditions were not different between HD groups or compared to controls in their study. 

Importantly, the task they used differed from the WPT in that participants had to learn to 

approach, i.e. select, rewarding options and to avoid, i.e. to not choose, punishing 

options in different conditions. Taken together, our results indicate that future work 

should pay special attention to sex differences in HD.  

An imbalance between tonic and phasic DA signaling may lie at the heart of alterations 

in dopamine-based learning, as has been observed in attention deficit hyperactivity 

disorder (Badgaiyan et al., 2015), depression (Dunlop BW and Nemeroff CB, 2007; 

Mörkl et al., 2016), schizophrenia (Juckel et al., 2006; Brunelin et al., 2013), obesity 

(Frank et al., 2012; Horstmann et al., 2015) or Parkinson’s disease (PD) patients on 

dopaminergic medication (Jahanshahi et al., 2010). Further, within healthy volunteers, 

the layout of the dopaminergic system seems to be intimately linked to the individual 

level of personality traits such as approach/avoidance bias and impulsivity (Buckholtz et 

al., 2010; Tomer et al., 2014).  
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Taken together, our results demonstrate that solving the WPT relies on the integrity of 

different pathways within the dopaminergic system. In line with our hypotheses, data 

from healthy individuals, patients with PD on dopaminergic medication as well as from 

patients with HD show that variance within each pathway is linked to specific 

performance differences when solving the WPT.  

5. Conclusions 

The present data reveal that the WPT is suitable to disentangle learning from negative 

and positive feedback with the help of computational modeling. The ability to learn from 

positive and negative feedback might prove to be a sensitive marker for the integrity of 

dopaminergic signal transmission. In particular, it might differentiate between the 

involvement of the ‘direct’ and ‘indirect’ dopaminergic pathways. The present data are 

interesting beyond clinical context in that imbalances of dopaminergic signaling have 

not only been observed for psychiatric conditions but also for obesity (Kessler et al., 

2014; Horstmann et al., 2015) and adolescence (Luciana et al., 2012). Thus, future 

work should differentiate between learning from positive and negative feedback since 

these processes rely on segregate neural mechanisms. In the case of medical 

conditions, specific learning impairments would point to associated specific neural 

changes that call for different treatment options.  

 

Author contributions & Funding 

DM and Annette Horstmann designed research, MJ, LW and Anna Holl contributed 

data, DM and JN implemented computational model, DM analyzed data, LD contributed 

to model comparisons, DM and Annette Horstmann wrote paper. All authors revised 

and edited the manuscript.  

This work was supported by grants from the Federal Ministry of Education and 

Research (BMBF), Germany (to Annette Horstmann, JN, AV; FKZ: 01EO1001), the 

German Research Foundation (to Annette Horstmann, JN, AV; DFG-SFB1052), and 

stipends from the FAZIT-STIFTUNG (to DM; FAZIT-STIFTUNG Gemeinnützige 

Verlagsgesellschaft mbH), and the Free State of Saxony (to DM; Landesstipendium). 

 

  



 21 

References 

Aberg KC, Doell KC, Schwartz S (2015) Hemispheric Asymmetries in Striatal Reward 
Responses Relate to Approach – Avoidance Learning and Encoding of Positive – 
Negative Prediction Errors in Dopaminergic Midbrain Regions. J. Neurosci. 35:14491–
14500  

Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, Faucheux B, 
Michel P, Kastner A, Blanchard V (1993) Are dopaminergic neurons selectively 
vulnerable to Parkinson’s disease? Adv. Neurol. 60:148–64 Available at: 
http://cat.inist.fr/?aModele=afficheN&cpsidt=4120205 [Accessed July 25, 2016]. 

Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, 
Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA (2004) Onset and rate of striatal 
atrophy in preclinical Huntington disease. Neurology 63:66–72 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15249612 [Accessed March 2, 2016]. 

Badgaiyan RD, Sinha S, Sajjad M, Wack DS (2015) Attenuated tonic and enhanced 
phasic release of dopamine in attention deficit hyperactivity disorder. PLoS One 10:1–
14  

Beck AT, Steer RA, Brown G (1996) Manual for the beck depression inventory (BDI-II). 
TX: Psychological Corporation. 

Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for 
measuring depression. Arch. Gen. Psychiatry 4:561–71 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/13688369 [Accessed January 10, 2013]. 

Bodi N, Keri S, Nagy H, Moustafa A, Myers CE, Daw N, Dibo G, Takats A, Bereczki D, 
Gluck MA (2009) Reward-learning and the novelty-seeking personality: A between-and 
within-subjects study of the effects of dopamine agonists on young parkinsons patients. 
Brain 132:2385–2395  

Brunelin J, Fecteau S, Suaud-Chagny M-F (2013) Abnormal striatal dopamine 
transmission in schizophrenia. Curr. Med. Chem. 20:397–404 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3866953&tool=pmcentrez&re
ndertype=abstract [Accessed January 21, 2015]. 

Buckholtz JW, Treadway MT, Cowan RL, Neil D, Li R, Ansari MS, Baldwin RM, 
Schwartzman AN, Shelby S, Smith CE, Kessler RM, Zald DH (2010) Dopaminergic 
Network Differences in Human Impulsivity. 329:11–14  

Cepeda C, Murphy KPS, Parent M, Levine MS (2014) The Role of Dopamine in 
Huntington ’ s Disease. Prog. Brain Res. 211:235–254  

Cools R, Altamirano L, D’Esposito M (2006) Reversal learning in Parkinson’s disease 
depends on medication status and outcome valence. Neuropsychologia 44:1663–1673  

Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive 
function in Parkinson’s disease as a function of dopaminergic medication and task 



 22 

demands. Cereb. Cortex 11:1136–1143  

Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working 
memory and cognitive control. Biol. Psychiatry 69:e113–25  

Cools R, Lewis SJG, Clark L, Barker RA, Robbins TW (2007) L-DOPA disrupts activity 
in the nucleus accumbens during reversal learning in Parkinson’s disease. 
Neuropsychopharmacology 32:180–189  

Cox SML, Frank MJ, Larcher K, Fellows LK, Clark C a, Leyton M, Dagher A (2015) 
Striatal D1 and D2 signaling differentially predict learning from positive and negative 
outcomes. Neuroimage 109:95–101 Available at: 
http://dx.doi.org/10.1016/j.neuroimage.2014.12.070. 

Daunizeau J, Adam V, Rigoux L (2014) VBA: A Probabilistic Treatment of Nonlinear 
Models for Neurobiological and Behavioural Data A. Prlic, ed. PLoS Comput. Biol. 
10:e1003441 Available at: http://dx.plos.org/10.1371/journal.pcbi.1003441. 

Daw ND, Doherty JPO, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for 
exploratory decisions in humans. Nature 441:876–879  

Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, 
Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) 
Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson 
disease models. Nat. Neurosci. 9:251–259 Available at: 
http://www.nature.com/doifinder/10.1038/nn1632 [Accessed April 13, 2016]. 

Dubois B et al. (2007) Diagnostic procedures for Parkinson’s disease dementia: 
Recommendations from the movement disorder society task force. Mov. Disord. 
22:2314–2324 Available at: http://doi.wiley.com/10.1002/mds.21844 [Accessed July 25, 
2016]. 

Dunlop BW, Nemeroff CB (2007) THe role of dopamine in the pathophysiology of 
depression. Arch. Gen. Psychiatry 64:327–337 Available at: 
http://dx.doi.org/10.1001/archpsyc.64.3.327\nhttp://archpsyc.jamanetwork.com/data/Jou
rnals/PSYCH/11839/yrv60000_327_337.pdf. 

Dyakonova VE, Chistopolsky I a., Dyakonova TL, Vorontsov DD, Sakharov D a. (2009) 
Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of 
isolated monoaminergic neurons. J. Comp. Physiol. A Neuroethol. Sensory, Neural, 
Behav. Physiol. 195:515–527  

Floresco SB (2013) Prefrontal dopamine and behavioral flexibility: shifting from an 
“inverted-U” toward a family of functions. Front. Neurosci. 7:62 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3630325&tool=pmcentrez&re
ndertype=abstract [Accessed October 28, 2013]. 

Folstein M, Folstein S, McHugh P (1975) “Mini-mental state”: a practical method for 
grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189–198 



 23 

Available at: 
/citations?view_op=view_citation&continue=/scholar%3Fq%3Dfolstein%2Bfolstein%2B
mchugh%26hl%3Dde%26as_sdt%3D0,5%26scilib%3D1&citilm=1&citation_for_view=k
GQy6cYAAAAJ:7uOkfv6XYJ4C&hl=de&oi=p [Accessed April 13, 2016]. 

Foroud T, Gray J, Ivashina J, Conneally PM (1999) Differences in duration of 
Huntington’s disease based on age at onset. J. Neurol. Neurosurg. Psychiatry 66:52–6 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1736160&tool=pmcentrez&re
ndertype=abstract. 

Frank GKW, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, O’Reilly RC 
(2012) Anorexia nervosa and obesity are associated with opposite brain reward 
response. Neuropsychopharmacology 37:2031–46 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3398719&tool=pmcentrez&re
ndertype=abstract [Accessed December 19, 2013]. 

Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a 
neurocomputational account of cognitive deficits in medicated and nonmedicated 
Parkinsonism. J. Cogn. Neurosci. 17:51–72 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15701239. 

Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in 
human cognition: psychopharmacological studies with cabergoline and haloperidol. 
Behav. Neurosci. 120:497–517  

Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007)(a) Hold Your Horses: 
Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism. Science (80-. ). 
318:1309–1312 Available at: http://www.ncbi.nlm.nih.gov/pubmed/17962524. 

Frank MJ, Scheres A, Sherman SJ (2007)(b) Understanding decision-making deficits in 
neurological conditions: insights from models of natural action selection. Philos. Trans. 
R. Soc. Lond. B. Biol. Sci. 362:1641–54 Available at: 
http://rstb.royalsocietypublishing.org/content/362/1485/1641.short. 

Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive 
reinforcement learning in parkinsonism. Science 306:1940–3 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15528409. 

Gerfen CR, Engber TM, Mahan LC, Susel ZVI, Chase TN, Monsma FJ, Sibley DR 
(1990) D1 and D2 Dopamine Receptor-Regulated Gene Expression of Striatonigral and 
Striatopallidal Neurons dopamine. :1429–1432  

Gillies GE, Virdee K, McArthur S, Dalley JW (2014) Sex-dependent diversity in ventral 
tegmental dopaminergic neurons and developmental programing: A molecular, cellular 
and behavioral analysis. Neuroscience 282:69–85 Available at: 
http://dx.doi.org/10.1016/j.neuroscience.2014.05.033. 

Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of 



 24 

nucleus accumbens in goal-directed behavior. 8:805–812  

Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new 
perspective. Neuropharmacology 53:583–7 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2078202&tool=pmcentrez&re
ndertype=abstract [Accessed December 22, 2014]. 

Grace AA (1991) Phasic versus tonic dopamine release and the modulation of 
dopamine system responsivity: A hypothesis for the etiology of schizophrenia. 
Neuroscience 41:1–24  

Gray J (1981) A Critique of Eysenck’s theory of Personality In H. Eysenck, ed. A Model 
for Personality  Springer Berlin / Heidelberg, p. 246–276. 

Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of 
ligand-receptor binding in PET using a simplified reference region model. Neuroimage 
6:279–287 Available at: http://www.ncbi.nlm.nih.gov/pubmed/9417971. 

Haaxma CA, Bloem BR, Borm GF, Oyen WJG, Leenders KL, Eshuis S, Booij J, Dluzen 
DE, Horstink MWIM (2007) Gender differences in Parkinson’s disease. J. Neurol. 
Neurosurg. Psychiatry 78:819–24  

Holl AK, Wilkinson L, Tabrizi SJ, Painold A, Jahanshahi M (2012) Probabilistic 
classification learning with corrective feedback is selectively impaired in early 
Huntington’s disease--evidence for the role of the striatum in learning with feedback. 
Neuropsychologia 50:2176–86 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22659110 [Accessed November 27, 2012]. 

Horstmann A, Fenske WK, Hankir MK (2015) Argument for a non-linear relationship 
between severity of human obesity and dopaminergic tone. Obes. Rev. 16:821–830 
Available at: http://doi.wiley.com/10.1111/obr.12303. 

Hughes A, Daniel S, Kilford L, Lees A (1992) Accuracy of clinical diagnosis of idiopathic 
Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. 
Psychiatry 55:181–184  

Hungtington Study Group (1996) Unified Huntington’s disease rating scale: reliability 
and consistency. Mov. Disord. 11:136–142  

Jahanshahi M, Wilkinson L, Gahir H, Dharmaindra A, Dharmarinda A, Dharminda A, 
Lagnado DA (2010) Medication impairs probabilistic classification learning in 
Parkinson’s disease. Neuropsychologia 48:1096–103 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20006629 [Accessed November 27, 2012]. 

Jocham G, Klein T a, Neumann J, Cramon DY von, Reuter M, Ullsperger M (2009) 
Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. 
J. Neurosci. 29:3695–704 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2694507&tool=pmcentrez&re
ndertype=abstract [Accessed July 26, 2011]. 



 25 

Jocham G, Klein TA, Ullsperger M (2014) Differential Modulation of Reinforcement 
Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism. J. Neurosci. 
34:13151–13162 Available at: 
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0757-14.2014. 

Juckel G, Schlagenhauf F, Koslowski M, Wuestenberg T, Villringer A, Knutson B, Wrase 
J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. 
Neuroimage 29:409–416  

Kaasinen V, Någren K, Hietala J, Farde L, Rinne JO (2001) Sex differences extrastriatal 
dopamine D2-like receptors in the human brain. Am. J. Psychiatry 158:308–311  

Kessler RM, Zald DH, Ansari MS, Cowan RL (2014) Changes in Dopamine Release 
and Dopamine D2 / 3 Receptor Levels with the Development of Mild Obesity. Synapse 
Available at: http://onlinelibrary.wiley.com/doi/10.1002/syn.21738/full [Accessed 
November 18, 2014]. 

Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven Pattern of Dopamine Loss in the 
Striatum of Patients with Idiopathic Parkinson’s Disease. N. Engl. J. Med. 318:876–880 
Available at: http://www.nejm.org/doi/abs/10.1056/NEJM198804073181402 [Accessed 
July 25, 2016]. 

Klein T a, Neumann J, Reuter M, Hennig J, Cramon DY von, Ullsperger M (2007) 
Genetically determined differences in learning from errors. Science 318:1642–5 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/18063800 [Accessed March 14, 
2012]. 

Knowlton BJ, Squire LR, Gluck MA (1994) Probabilistic Classification Learning in 
Amnesia. Learn. Mem. 1:106–120  

Kravitz A V., Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC 
(2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal 
ganglia circuitry. Nature 466:622–626 Available at: 
http://dx.doi.org/10.1038/nature09159. 

Laakso A, Vilkman H, Bergman J, Haaparanta M, Solin O, Syvälahti E, Salokangas 
RKR, Hietala J (2002) Sex differences in striatal presynaptic dopamine synthesis 
capacity in healthy subjects. Biol. Psychiatry 52:759–63 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/12372667. 

Luciana M, Wahlstrom D, Porter JN, Collins PF (2012) Dopaminergic modulation of 
incentive motivation in adolescence: age-related changes in signaling, individual 
differences, and implications for the development of self-regulation. Dev. Psychol. 
48:844–61 Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3341492&tool=pmcentrez&re
ndertype=abstract [Accessed January 16, 2015]. 

Maril S, Hassin-Baer S, Cohen OS, Tomer R (2013) Effects of asymmetric dopamine 
depletion on sensitivity to rewarding and aversive stimuli in Parkinson’s disease. 



 26 

Neuropsychologia 51:818–824 Available at: 
http://dx.doi.org/10.1016/j.neuropsychologia.2013.02.003. 

Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic 
dopamine systems based on predictive Hebbian learning. J. Neurosci. 16:1936–47 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/8774460. 

Mörkl S, Blesl C, Jahanshahi M, Painold A, Holl AK (2016) Impaired probabilistic 
classification learning with feedback in patients with major depression. Neurobiol. Learn. 
Mem. 127:48–55  

Moustafa A a, Krishna R, Eissa AM, Hewedi DH (2013) Factors underlying probabilistic 
and deterministic stimulus-response learning performance in medicated and 
unmedicated patients with Parkinson’s disease. Neuropsychology 27:498–510 Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/23876122. 

Moustafa AA, Herzallah MM, Gluck MA (2012) Dissociating the Cognitive Effects of 
Levodopa vs . Dopamine Agonists in a Neurocomputational Model of Learning in 
Parkinson ’ s Disease. :1–21  

Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of 
emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3:207–33 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/14672157 [Accessed August 5, 2016]. 

Oostrom JCH van, Dekker M, Willemsen  a TM, Jong BM de, Roos R a C, Leenders KL 
(2009) Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s 
disease. Eur. J. Neurol. 16:226–31 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19138335. 

Palminteri S, Justo D, Jauffret C, Pavlicek B, Dauta A, Delmaire C, Czernecki V, 
Karachi C, Capelle L, Durr A, Pessiglione M (2012) Critical Roles for Anterior Insula and 
Dorsal Striatum in Punishment-Based Avoidance Learning. Neuron 76:998–1009  

Pohjalainen T, Rinne JO, Någren K, Syvälahti E, Hietala J (1998) Sex differences in the 
striatal dopamine D2 receptor binding characteristics in vivo. Am. J. Psychiatry 
155:768–773  

Poldrack R a, Clark J, Paré-Blagoev EJ, Shohamy D, Creso Moyano J, Myers C, Gluck 
M a (2001) Interactive memory systems in the human brain. Nature 414:546–50 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/11734855. 

Porat O, Hassin-Baer S, Cohen OS, Markus A, Tomer R (2014) Asymmetric dopamine 
loss differentially affects effort to maximize gain or minimize loss. Cortex 51:82–91 
Available at: http://dx.doi.org/10.1016/j.cortex.2013.10.004. 

Rodriguez P, Aron A, Poldrack R (2006) Ventral-striatal/nucleus-accumbens sensitivity 
to prediction errors during classification learning. Hum. Brain Mapp. 27:306–13 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/16092133 [Accessed January 14, 
2015]. 



 27 

Schaaf ME Van Der, Schouwenburg MR Van, Geurts DEM, Schellekens AFA, Buitelaar 
JK, Verkes RJ, Cools R (2014) Establishing the dopamine dependency of human 
striatal signals during reward and punishment reversal learning. Cereb. Cortex 24:633–
642  

Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/12383780 [Accessed December 1, 
2014]. 

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. 
Science 275:1593–1599 Available at: 
http://www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593 [Accessed March 
20, 2014]. 

Shoulson I, Fahn S (1979) Huntington disease: clinical care and evaluation. Neurology 
29:1–3 Available at: http://www.ncbi.nlm.nih.gov/pubmed/154626 [Accessed April 13, 
2016]. 

Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor 
modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends 
Neurosci. 30:228–235 Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0166223607000690. 

Sutton SK, Davidson RJ (1997) Prefrontal Brain Asymmetry: A Biological Substrate of 
the Behavioral Approach and Inhibition Systems. Psychol. Sci. 8:204–210 Available at: 
http://pss.sagepub.com/lookup/doi/10.1111/j.1467-9280.1997.tb00413.x. 

Tobler PN, Dickinson A, Schultz W (2003) Coding of predicted reward omission by 
dopamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23:10402–10410  

Tomer R, Slagter HA, Christian BT, Fox AS, King CR, Murali D, Gluck MA, Davidson RJ 
(2014) Love to Win or Hate to Lose? Asymmetry of Dopamine D2 Receptor Binding 
Predicts Sensitivity to Reward versus Punishment. J. Cogn. Neurosci. 26:1039–1048 
Available at: http://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_00544. 

Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson  Jr. EP (1985) 
Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 
44:559–577 Available at: http://www.ncbi.nlm.nih.gov/pubmed/2932539. 

Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of 
functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. 
Neuroimage 19:513–531  

Weeks RA, Piccini P, Harding AE, Brooks DJ (1996) Striatal D1 and D2 dopamine 
receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann. Neurol. 
40:49–54 Available at: http://www.ncbi.nlm.nih.gov/pubmed/8687191 [Accessed 
February 15, 2016]. 

Wilkinson L, Tai YF, Lin CS, Lagnado DA, Brooks DJ, Piccini P, Jahanshahi M (2014) 



 28 

Probabilistic classification learning with corrective feedback is associated with in vivo 
striatal dopamine release in the ventral striatum, while learning without feedback is not. 
Hum. Brain Mapp. 35:5106–15 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24777947 [Accessed September 20, 2014]. 

Zielonka D, Marinus J, Roos R a C, Michele G De, Donato S Di, Putter H, Marcinkowski 
J, Squitieri F, Bentivoglio AR, Landwehrmeyer GB (2013) The influence of gender on 
phenotype and disease progression in patients with Huntington’s disease. Parkinsonism 
Relat. Disord. 19:192–7 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23102616. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Table 1: Model comparison between the stepwise modeling approach with two learning rates (stepwise, 2 

LR) and two alternatives: a model with only one learning rate and stepwise fitting (stepwise, 1 LR) and a 

model with two learning rates and simultaneous fitting (standard QL).  

  stepwise, 2 LR stepwise, 1 LR standard QL 

All 
subjects 
(n=63) 

pseudo-r²  0.37 0.37 0.38 

BIC 11352 11261 11241 

ΔBIC 1.76 0.32 - 

model frequencies 0.27 0.26 0.46 

exceedance 
probabilities 

0.03 0.02 0.95 

regression-model R²=0.65 
p<0.001 

R²=0.14 
p=0.01 

R²=0.05 
p=0.4 

 

PET (n=7) pseudo-r² 0.25 0.25 0.23 

BIC 1484 1485 1535 

ΔBIC - 0.14 7.29 

model frequencies 0.45 0.44 0.11 

exceedance 
probabilities (%) 

0.5 0.48 0.02 

regression-model R²=.96 
p=.01 

R²=.97 
p=.001 

R²=.96 
p=.02 

PD (n=22) pseudo-r² 0.23 0.29 0.21 

BIC 4677 4460 4953 

ΔBIC 9.86 - 22.41 

model frequencies 0.24 0.51 0.25 

exceedance 
probabilities (%) 

0.05 0.9 0.05 

regression-model  R²=.91  
p=1.17*10-9 

R²=.05 
p=.63 

R²=.11 
p=.53 

HD (n=34) pseudo-r² 0.47 0.46 0.51 

BIC 5192 5315 4752 

ΔBIC 7.02 13.62 - 

model frequencies 0.29 0.03 0.68 

exceedance 
probabilities (%) 

0.01 0 0.99 

regression-model R²=.29 
p=.02 

R²=.07 
p=.33 

R²=.04 
p=.76 

N.B. BIC = Bayesian Information Criterion. Values in bold indicate significant variance explanation. All 

three tested models showed comparable model fit according to pseudo-r² and BIC values. While standard 

QL shows the best fit according to estimated probabilities and model frequencies across all subjects, 

ΔBIC indicate no strong evidence against the other two models. Importantly, despite comparable model 

fit, only the stepwise model with two learning rates was able to explain significant variance in participants’ 

WPT performance in all three studies according to regression analyses. LR = Learning rate. 
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Figure 1 

 

Figure 1 Association between phasic and tonic dopaminergic signaling and learning on the Weather 
Prediction Task. (A) Dopamine release, as measured by the change in [11C]raclopride binding potential 
between WPT control and feedback sessions, is positively associated with the ability to learn from 
positive prediction errors (PEs) in healthy subjects. (B) Dopaminergic tone, as estimated by baseline 
[11C]raclopride binding potential, is associated with learning from negative PEs in an inverted u-shaped 
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manner. (C) Hemispheric asymmetry between left and right ventral striatum in dopaminergic tone is 
negatively associated with learning from positive PEs. 

 

Figure 2 

 

Figure 2 Behavioural differences between off and on dopaminergic medication in patients with 
Parkinson’s disease on the Weather Prediction Task. (A) Mean proportion correct responses on the 
Weather Prediction Task for Parkinson patients off and on dopaminergic medication. (B) Parkinson 
patients on dopaminergic medication are impaired in learning from negative prediction errors on the 
Weather Prediction Task compared to off medication. Asterisk indicates p<.05. 
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Figure 3 

 

Figure 3 Gender-specific behavioral impairment in patients with Huntington’s disease on the Weather 
Prediction Task. (A) Mean proportion correct responses on the Weather Prediction Task for healthy 
control subjects and early Huntington Disease (HD) patients split by gender. (B) Interaction between 
group (control/HD) and gender on the propensity to learn from positive prediction errors on the Weather 
prediction task. (C) Positive learning rate is positively associated with motor symptom severity across 
both genders in patients with early Huntington’s disease.   


