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Abstract  1 

To be suitable for informing digital behavior change interventions (DBCIs), theories and models 2 

of behavior change need to capture individual variation and changes over time. The aim of this 3 

paper is to provide recommendations for development of models and theories that are informed 4 

by, and can inform, DBCIs based on discussions by international experts, including behavioral, 5 

computer, and health scientists and engineers.  The proposed framework stipulates the use of a 6 

state-space representation to define when, where, for whom, and in what state for that person, an 7 

intervention will produce a targeted effect. The “state” is that of the individual based on multiple 8 

variables that define the “space” when a mechanism of action may produce the effect. A state-9 

space representation can be used to help guide theorizing and identify cross-disciplinary 10 

methodological strategies for improving measurement, experimental design and analysis that can 11 

feasibly match the complexity of real-world behavior change via DBCIs.  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Introduction  21 

A central task in science is the development and refinement of theories. A cross-disciplinary 22 

consensus definition of theory is “... a set of concepts and/or statements which specify how 23 

phenomena relate to each other. Theory provides an organizing description of a system that 24 

accounts for what is known, and explains and predicts phenomena.”1 For health behavior change, 25 

theories provide a mechanism to encapsulate previous knowledge about how variations in causal 26 

factor(s) (e.g. an intervention) produce a desired effect (e.g. behavior change). Theory is useful 27 

because it provides explanations and predictions that support the generalization of findings from 28 

past work into future areas of inquiry and/or use.2, 3   29 

 30 

Theories of behavior change have been highly variable in the extent to which they achieve these 31 

goals.2  A review of behavior change theories with strict definitions of theory and behavior 32 

identified 83 theories.4, 5 Of these, only three were judged to be comprehensive within their scope 33 

and there was generally poor specification, both in construct definitions and in the relationships 34 

between them. Further, most behavioral theories emphasized group-level and largely static 35 

generalization, meaning the theory supports explanations and predictions about average changes 36 

in outcomes in groups.6 Theory also has the potential to generate insights for specific individuals. 37 

Ideally, a good theory will provide both group-level and individual-level generalizations.7-9  38 

 39 

As described elsewhere,10 digital behavior change interventions (DBCIs) are interventions that 40 

employ digital technologies to encourage and support behavior change that will promote and 41 

maintain health, through primary or secondary prevention and management of health problems. 42 

Theories are key to effectively personalizing DBCIs.11 DBCIs facilitate health promotion by 43 
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providing support in the “real-world” to change specific behaviors in specific contexts and are 44 

used by individuals.12 They increasingly use information about a person to adapt provision of 45 

support to the unique and often changing needs of the individual. One class of DBCIs is the 46 

“just-in-time” adaptive intervention (JITAI).13  A JITAI provides support to a person during just-47 

in-time states when a person has the opportunity to engage in a healthy behavior (or vulnerability 48 

to a negative behavior) and is receptive to support.14 JITAIs and DBCIs more generally require 49 

theories that take into account variations in individual characteristics and contexts and recognize 50 

that these variations in the individual and context will change over time.15 Current behavioral 51 

theories provide only limited insights for this type of intervention11 but are needed to manage the 52 

inherent complexity of real-world behavior change.   53 

 54 

The aim of this paper is to provide recommendations for supporting the development of models 55 

and theories that are informed by, and can inform, DBCIs. The term “model” is used for a variety 56 

of purposes but in general, models are sets of concepts and/or statements that specify how 57 

constructs relate to each other to represent aspects of the world and can be precise and quantified 58 

or imprecise and qualitative.16 Theories are types of models that seek to explain phenomena that 59 

often invoke unobserved constructs to achieve this.16 Well-specified computational models, 60 

defined below, may be particularly useful for achieving the promise of highly personalized and 61 

precise DBCIs such as JITAIs.6 However, imprecisely specified models and theories can be 62 

useful. For example, a theory that stipulates that a construct such as ‘core identity’ is an 63 

important driver of behavior can be useful in designing an intervention that seeks to change this 64 

in order, for example, to promote reduction in alcohol use. A great deal of work has already been 65 

done to advance strategies to use these more imprecise models and theories for intervention 66 
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development.17 Thus the focus of this paper is on development of precise, quantifiable 67 

computational models as they are particularly relevant for DBCIs but also because the 68 

specifications targets of computational models can support more careful theorizing even with 69 

imprecise models and theories.  70 

 71 

Building on previous work,1, 5, 6, 11, 14, 15, 18-24 this pape: (i) specify differences between broadly 72 

specified theories vs. highly specified computational models that may be required for developing 73 

precise DBCIs; (ii) state the case for more specific theorizing and testing on when, where, for 74 

whom, and in what state of the person a mechanism of action will produce an effect23, by 75 

proposing the concept of “multidimensional generalization space,” which specifies a set of 76 

dimensions along which contextual factors may vary to influence the size of effect of an 77 

intervention. Examples of such dimensions are aspects of target population and intervention 78 

setting. Any given context can be specified as a point in that space; and (iii) suggest cross-79 

disciplinary methods to facilitate advancing the concept of multidimensional generalization 80 

space for DBCIs.  81 

 82 

Specification requirements for theories vs. computational models 83 

 84 

The differences between theories vs. computational models are related to the level of 85 

specification. Ideally, behavioral theories provide good specification of model structure and clear 86 

predictions about directionality and anticipated magnitudes of effects of a mechanism of action 87 

on an outcome. Model structure means clear specification of constructs and how constructs 88 

interact with one another such as main effect relationships (i.e., self-efficacy is associated with 89 
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behavior), moderation effects (i.e., the relationship between self-efficacy and behavior is 90 

moderated by self-regulatory skills), and mediation effects (i.e., the relationship between an 91 

intervention and behavior occurs via self-efficacy).25 These model structures are often visually 92 

described via path diagrams and are analyzed by techniques such as structural equation 93 

modeling.25-27 They may be tested by statistical estimation of effect sizes, which define the 94 

amount of variance statistically explained from an outcome variable by the predictor variable 95 

including specification of if there is a relationship, directionality, magnitude, and confidence in 96 

the relationship. For example, in one-meta-analysis, the mechanism of action of “teach to use 97 

prompts/cues,” which is relevant to several theories,28 had an effect size estimate of d=.52 for 98 

influencing physical activity.29  99 

 100 

INSERT TABLE 1 HERE 101 

 102 

Within computational models, model structure and predictions about directionality and 103 

anticipated magnitudes of effects must be specified and thus, computational models can be 104 

conceptually seeded with well-validated theories. Computational models, however, require 105 

greater specification of the following two issues.  The first is the dynamics of a relationship. This 106 

includes: (i) the anticipated timescale of an effect (i.e., amount of time when a meaningful 107 

change in a construct occurs, such as within seconds for heart rate and across years for the built 108 

environment);6, 14 (ii) response patterns (i.e., the shape of a relationship, such as linear 109 

relationships or more dynamic step response options, such as feedback loops, see examples 110 

here19), (iii) latency (i.e., the amount of time when one variable changes before observing change 111 

in the other) and (iv) decay (i.e., the amount of time it takes for an effect to dissipate, see operant 112 
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learning theory for examples30, 31)6. For example, social cognitive theory predicts a reciprocal 113 

relationship between self-efficacy and behavior.25 As one goes up or down, the other goes up or 114 

down. Social cognitive theory does not provide clear specification on timescale (e.g., does self-115 

efficacy change by the minute, hour, or day, etc.?) latency (e.g., does a change in self-efficacy 116 

immediately increase walking?), or decay (e.g., does the strength of the relationship between 117 

self-efficacy and walking diminish over time?) but these can be specified.25  The second issue to 118 

be specified is the multidimensional generalization space, which, again, specifies dimensions 119 

along which contextual factors may vary to influence the size of effect of an intervention.  Thus, a 120 

core difference is not only the specification on IF there is a relationship, but also HOW that 121 

relationship functions over time and in context.19  Please see other work for careful discussion 122 

about the issues of dynamics,6, 11, 14, 19, 25 as an essential element of computational models.  123 

 124 

Rothman23 and many others before have argued for the need for specification of when, where, 125 

and for whom a mechanism of action will produce a targeted effect through moderation testing.  126 

The argument is that behavioral theories, and by extension the development of theory-driven 127 

interventions, will become more precise if attention is placed on defining when, where, and for 128 

whom an intervention will and will NOT produce an effect. This argument is extended to the 129 

realm of DBCIs, which, as discussed already, are used in the real-world context where behaviors 130 

occur. Since DBCIs are used in a real-world context, it implies the need for not only 131 

understanding when, where, and for whom an intervention will produce an effect but also a clear 132 

understanding of the state of the person, thus implying the need for a state-space representation 133 

and the concept of a multidimensional generalization space.  134 

A state-space representation for theorizing about multidimensional generalization space 135 
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 136 

Multidimensional generalization spaces can be conceptualized using a state-space representation. 137 

Specifically, it is assumed that a participant’s state can be represented in a multidimensional state 138 

space defined by variables that could feasibly impact the probability that an intervention will 139 

produce a desired effect such as self-efficacy or self-regulatory skills. The point that represents an 140 

individual’s current state is moving in accordance with the state-space transitions as predicted by 141 

different mathematical models such as a dynamical model of social cognitive theory.25  142 

 143 

Given the instantaneous state of the individual, her response can be characterized for any given 144 

intervention as the probability of the desired behavior. For simplicity, assume all other variables 145 

are constant but one (an unrealistic assumption but useful for demonstration). Based on that 146 

variable, differing probabilities are expected of the outcome occurring for two different 147 

interventions, A and B (Figure 1). 148 

 149 

INSERT FIGURE 1 HERE 150 

  151 

Theories of behavior change are not that simple and instead are based on the premise that 152 

individual, social, and environmental characteristics will change dynamically and interact to 153 

cause behavior change. For example, a cue to action to go for a walk (e.g., a text message saying, 154 

“Want to go for a walk?”) could only inspire a walk if the state-space of the person is 155 

appropriately receptive to this intervention.  For example, Figure 2 is a plausible example of a 156 

multidimensional generalization space defined via three variables. The probability that a person 157 

goes for a walk increases if another person interested in walking is present (others present=yes), 158 
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if the person has a high overall opportunity to walk (>5 on a 0-10 scale), and if they are not 159 

stressed (e.g., <5 on a 0-10 scale).  160 

 161 

INSERT FIGURE 2 HERE 162 

 163 

This multidimensional generalization space is relevant for less time-intensive interventions.  For 164 

example, a doctor-delivered motivational intervention to facilitate increased physical activity 165 

with a patient might only produce behavior change when the patient is sufficiently aware of the 166 

health risks of physical inactivity, is awake enough to engage in the interaction, and can fit in 167 

physical activity.   168 

 169 

Theorizing about multidimensional generalization spaces for DBCIs are important for 170 

understanding concepts such as “teachable moments”30 and “just-in-time.”14 A teachable 171 

moment, defined as events or circumstances that can lead a person to positive change, is widely 172 

referred to but has received little rigorous testing.30 DBCIs enable theoretical thinking and 173 

testing, for example when defining just-in-time states of opportunity and receptivity to an 174 

intervention.14 A person may have the opportunity to plan exercises for the week after dinner and 175 

right after putting her children to bed and be receptive to a small notification to do this planning 176 

from her smartphone when in that particular state. It is a plausible hypothesis that DBCIs will be 177 

more potent if they can be provided during these just-in-time states. Defining the 178 

multidimensional generalization space on when a mechanism of action will produce an effect 179 

will enable more rigorous testing of the teachable moment and just-in-time concepts, which has 180 

the potential to lead to more precise and potent DBCIs.  181 
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 182 

Methodological strategies for advancing multidimensional generalization space 183 

Measurement 184 

A pre-condition of multidimensional generalization spaces for DBCIs is robust measurement 185 

strategies that can assess theoretical constructs in context, at the appropriate timescale, and with 186 

minimal burden to ensure continued data collection over time. Effective measurement of 187 

constructs is no small task but is key as it defines the level of precision that can be achieved 188 

within DBCIs. There are at least three areas that would advance measurement. 189 

 190 

First, individuals that use digital technologies such as smartphones, computers, websites, and 191 

social media have a wide range of data gathered about them (e.g., all interactions a person has 192 

via email). These data or “digital traces” are aggregated, connected, and organized and can be 193 

used for a variety of purposes such as highly targeted recommendations31 (e.g., if you like this 194 

movie than you will like this one), or inferring psychological characteristics, such as 195 

personality.32, 33 If individuals gain access to their own digital traces, these data could be used to 196 

infer multidimensional generalization spaces.34 The use of digital traces can best be supported 197 

through strategies from computer science broadly labeled “machine learning.”35 The field of 198 

pervasive/ubiquitous computing, which studies the incorporation of computing capacity into 199 

everyday objects, provides insights from the “noise” of a digital trace, for example identifying 200 

meaningful patterns of breathing rates of individuals by translating small variations in the radio 201 

frequency signals sent and received from a WiFi hotspot (originally thought of as noise).36   202 

 203 
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Second, there are important opportunities for developing ecologically valid sensors37, 38 such as 204 

“wearables,” which include fitness and stress tracking devices sensing and inferring target 205 

behaviors in context.37 These wearable technologies can enable increased measurement of real-206 

world activities occurring in context, such as physical activity. 207 

 208 

For constructs that cannot be measured directly (e.g., cognitions, perceptions), user-friendly 209 

strategies for measuring them in context are needed, with good progress being made in devising 210 

more advanced ecological momentary assessment (EMA) techniques.39  For example, researchers 211 

are using “context-sensitive” EMA that utilizes sensors to infer the moments when it would be 212 

appropriate to ask for more detailed questions.18, 40 This type of work represents a logical path 213 

forward for EMA.  These latent constructs are important to measure.  For example, 214 

multidimensional generalization  spaces  should likely include the expected value of that action, 215 

which for an individual would include both the likelihood of the intended effect and the value (both 216 

cost and benefit) of the outcome.  217 

 218 

As these measurement targets increasingly advance, they enable increased precision in the 219 

development of DBCIs that can be delivered efficiently when needed.  Measurement alone 220 

cannot achieve this:  advanced research methods and analytic strategies are also required.   221 

 222 

Experimental Designs & Analytic Strategies 223 

 224 

Strategies inspired by both engineering and computer science can provide a logical empirical 225 

foundation for defining multidimensional generalization spaces for DBCIs. In engineering, 226 
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methods from system identification41 present approaches to experimental design in behavioral 227 

intervention settings that are particularly useful for accomplishing the modeling of individual 228 

behavior and, by extension, can be supportive of multidimensional generalization spaces.  229 

System identification is an analytical technique that specifies the dynamic relationships between 230 

manipulated inputs (i.e., intervention components like goal-setting), disturbance variables (i.e., 231 

time-varying covariates that influence the outcome such as weather), endogenous state variables 232 

and outputs (i.e., behavioral outcomes such as steps) within a single-case, time-series context. 233 

The most common identification techniques apply strategies that build on the logic of regression 234 

in that they find solutions by minimizing squared errors.  Methods from system identification are 235 

used extensively in practical engineering settings as a means for obtaining dynamical models that 236 

can be used in optimization strategies, such as model predictive control, to develop frameworks 237 

that support dynamic decision making, such as selection of a particular intervention option for a 238 

particular just-in-time state.42, 43  Comprehensive system identification methodologies provide 239 

guidance regarding experimental design, model structure selection, parameter estimation for 240 

defining the dynamics, and validation of these idiographic models (e.g., a system  identification 241 

experiment for physical activity44, 45).  This type of system identification experiment provides 242 

great opportunities for the empirical study of multidimensional generalization spaces. 243 

 244 

Inspired by computer science, experimental design and analytic approaches have been developed 245 

for a “micro-randomization” trial, which is also a useful experimental design for the study of 246 

multidimensional generalization spaces.20  The micro-randomization trial is a sequential factorial 247 

design that randomizes delivery/no delivery of an intervention at “decision points” when it is 248 
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plausible that the intervention would be valuable.20 For example, every morning could be 249 

randomly assigned to delivering an intervention to help a person plan for that day. This approach 250 

supports empirically examining “time-varying moderation,” which examines how factors that 251 

vary over time like context or stress, can moderate the efficacy of an intervention. This can 252 

answer questions like: “was the intervention only efficacious when a person was not stressed and 253 

at home?”.  This approach, which melds insights from computer science and statistics, provides 254 

appropriate data for examining multidimensional generalization spaces via time-varying 255 

moderation.14  256 

 257 

Future work 258 

There are four important opportunities for moving forward as a field. First, there should be 259 

increased movement towards theories and models that are as precise, quantitative and testable as 260 

possible for describing the complexity of behavior change. Incremental advances towards 261 

precision can occur via specifying model structures, defining directionality and magnitude of 262 

relationships, dynamics, and multidimensional generalization spaces.  263 

 264 

Second, the inherent complexity of behavior change implies that no one research group is likely 265 

to, alone, fully understand or model a phenomenon, particularly the multidimensional 266 

generalization spaces of an intervention, as this requires considerable resources. This points to 267 

the desirability of, and need for, collaborative research consortia.  It also points to the need for 268 

the development of ontologies for understanding behavior as they provide a coherent structure 269 

for organizing and sharing insights across disparate research efforts.  In brief, an ontology, as 270 
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defined by the informatics tradition, is a highly structured description of terms/constructs and 271 

their inter-relationships.46 A key focus of ontological work is to facilitate careful selection and 272 

definition of terms, such as behavior change techniques47 and mechanisms of action, and the 273 

proposed relationships between them. This type of work is essential to ensure scientists are 274 

studying the same concepts and thus will be critical for the study of multidimensional 275 

generalization spaces, as they will enable separate research efforts to be combined into more 276 

robust theories and computational models.  277 

 278 

Third is the importance of thinking of theories and computational models in integrated rather 279 

than siloed fashion, leading to collaboratively developed and evaluated theoretically-based 280 

intervention modules.15 The study of human behavior involves careful understanding of under 281 

what conditions a mechanism of action will produce an effect.  Behavioral theories are often 282 

treated as if they were generally true rather than specified well-enough to define when they 283 

would and would not be useful for understanding a target phenomenon.23 It is essential for 284 

advancing behavioral science not only to focus on building computational models but also on the 285 

development of these models and behavioral theories more generally in a collective mindset 286 

where each group of scientists are clearly specifying when a theory/model will and will not be 287 

useful. Theorizing about multidimensional generalization spaces is a logical target for supporting 288 

advancement in this area.  289 

 290 

Fourth, far greater work is required in the development of models that take into account 291 

changes over time that occur at an N=1 or idiographic level.8, 9  As discussed elsewhere,9 292 

statistical analyses conducted within behavioral science tend to focus on an aggregation of data 293 
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across individuals.  For example, mixed model analyses48 parse variance to different “levels” 294 

such as distinguishing between-person and within-person variance explained for a target 295 

outcome. Between-person involves those factors that vary across individuals that are predictive 296 

of the outcome, such as differences in age, gender, or personality. Within-person factors (which 297 

is a misnomer) focuses on how variations in predictor variables (e.g., daily variations in self-298 

efficacy) on average across individuals, are related to daily variations in an outcome measure of 299 

interest (e.g., daily variations in walking).49 In mixed model analyses, variations in factors that 300 

are specific to each individual (i.e., N=1) are incorporated into the error terms and not the focus 301 

of modeling.48 The focus of idiographic modeling, such as system identification,50 attempts to 302 

generate highly specified models that describe how factors relate to one another for a specific 303 

individual. Put differently, variations that are currently in the error term in mixed model analyses 304 

are the core focus of idiographic modeling. This level of analysis is an essential target as it is at 305 

this level that personalized predictions and decisions for a specific individual will occur. 306 

Idiographic models are particularly well suited for temporally dense time series data, which are 307 

increasingly available with DBCIs.22, 27 Based on this, more careful modeling of N=1 308 

understanding of behavior8, 9 is warranted and system identification is one logical approach.  309 

 310 

Conclusions and Next Steps 311 

 312 

DBCIs require theories and models of behavior change that capture and take into account 313 

individual variation and changes over time. There is a need for clear specification of facets of 314 

theories and models including model structure, directionality and magnitudes of effects, 315 
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dynamics, and the multidimensional generalization space when a mechanism of action of a DBCI 316 

will produce a desired effect. Based on this work, there are three next steps.  First, increased 317 

theorizing about dynamics and multidimensional generalization spaces is warranted to inform 318 

theories and models about behavior change and intervention effects.  While computational 319 

models can be useful for specifying this theorizing into quantifiable and falsifiable predictions, 320 

more general theorizing would be a valuable first step.  Second, the concept of multidimensional 321 

generalization spaces is limited by the quality of measures of important constructs in context.  322 

Therefore, transdisciplinary research is needed to advance the understanding and measurement of 323 

these dynamic concepts and highlight particular opportunities in the realm of digital traces, 324 

wearable technologies, and EMA. Third, increased exploration and use of research methods and 325 

analytic techniques that can support more detailed study of both the dynamic relationships 326 

between constructs and the study of multidimensional generalization spaces is warranted. Uptake 327 

of these methods, such as system identification or the use of micro-randomized trials, requires 328 

careful theorizing and thus can be supported via computational models.  That said, progress can 329 

be made on the use of these methods even without fully specified computational models.14  330 

These three steps can feasible help to realize the vision of the DBCIs for improving public health 331 

and preventative care that is delineated in a sister piece in this special issue.21  332 
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Table 1. Theories vs. computational models 

 

 Theory Computational Models 

Facets Specified Model structure Model structure 

 Predicted directionality & 

magnitude of effects 

Predicted directionality & 

magnitude of effects 

  Dynamics 

  Multidimensional 

generalization space 

Advantages Provides a conceptual 

framework to organize 

research efforts 

Provides a mechanism to 

falsify complex predictions 

related to dynamics and 

multidimensional 

generalization spaces 

  Enables the use of simulation 

to further study behavioral 

phenomena 
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Figure 1. One variable visualization of a multidimensional generalization space 
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Figure 2. Three-variable visualization of a multidimensional generalization space.  

 

Note the darker the shade, the increased likelihood that an intervention will produce the desired effect.  
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Figure 3. Take home messages.  

 


