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Abstract—In this paper, we propose novel strategies for neu-
tral vector variable decorrelation. Two fundamental invertible
transformations, namely serial nonlinear transformation and
parallel nonlinear transformation, are proposed to carry out
the decorrelation. For a neutral vector variable, which is not
multivariate Gaussian distributed, the conventional principal
component analysis (PCA) cannot yield mutually independent
scalar variables. With the two proposed transformations, ahighly
negatively correlated neutral vector can be transformed toa set
of mutually independent scalar variables with the same degrees
of freedom. We also evaluate the decorrelation performances for
the vectors generated from a single Dirichlet distribution and
a mixture of Dirichlet distributions. The mutual independence
is verified with the distance correlation measurement. The ad-
vantages of the proposed decorrelation strategies are intensively
studied and demonstrated with synthesized data and practical
application evaluations.

Index Terms—Neutral vector, neutrality, non-Gaussian, decor-
relation, Dirichlet variable

I. I NTRODUCTION

In many pattern recognition and machine learning areas,
Gaussian distributions, among other probability distributions,
have been ubiquitously applied to describe data distribution,
with the assumption that these data are Gaussian distribut-
ed [1]. However, in many applications the distribution of data
is asymmetric or constrained [2]. For example, the pixel values
in a color or grey image [3], [4], the ratings assigned to
an item in collaborative filtering [5]–[7], and the epigenetic
mark values in epigenome-wide-association studies [8], [9]
have strictly bounded support (e.g., x ∈ [0, c]). In speech
enhancement, the spectrum coefficients [10], [11] are semi-
bounded (i.e., x ∈ (0,+∞)). The l2 norms of the spatial
fading correlation [12] and the yeast gene expressions [13]
are equal to1 and such data convey directional property (i.e.,
‖x‖2 = 1). A common property of the aforementioned data
is that, these data havenot onlya specific support range,but
alsoa non-bell distribution shape. Apparently, these properties
do not match the natural properties of a Gaussian distribution
(i.e., the definition domain is unbounded and the distribution
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shape is symmetric). Therefore, such data are non-Gaussian
distributed [14]. It has been demonstrated in many recent
studies that explicitly utilizing the non-Gaussian characteristics
can significantly improve the performance in practice [3], [4],
[8]–[20].

One typical type of non-Gaussian distributed data, among
others, is the one that represents proportions. In the frequently
used mixture modeling technique [3], [21], [22], the weighting
factors denote the proportions of each mixture component
in the whole mixture model. In the text mining area, the
Dirichlet distribution is used to model topic relations,i.e., the
proportions with which a specific topic appears in the total
set of documents [23]–[25]. For analyzing color images, the
normalized RGB space, which is often used as pure color
space by discarding the illuminance [26]–[29], representsthe
proportions of RGB channels in the whole color space. In
time series signal processing [30], [31], the difference between
two adjacent line spectral frequencies (LSFs) conveys the
proportion of frequency distance (in angle) to half of the unit
circle’s circumference. The LSFs are less sensitive to quan-
tization noise than other representations and are widely used
in speech coding [30], [32], [33]. Also, the parameters in the
multinomial distribution [34], [35] represent probabilities for
each particular event to happen in the trial sequence. In [36],
a novel online kernel learning algorithm, called QKRLS, was
developed, which is computationally efficient and can be used
for online regression and classification.

Data representing proportions can be denoted by aK + 1
dimensional vectorx = [x1, . . . , xK , xK+1]

T with K degrees
of freedom. Each elementxk is nonnegative and the sum of
all the elements inx is a constant (usually can be normalized
to 1). Connor et al. [37] introduced the concept “neutrality” to
investigate a particular type of independence for the elements
in x. Even though the resulting neutral vector represents a par-
ticular type of independence after a substraction-normalization
operation [38], the elements in the neutral vector are mutually
highly correlated, or rather, negatively correlated. Intuitively,
if one proportion increases, then the remaining proportions
would decrease correspondingly, since the summation of all
the proportions is a constant.

For correlated random vector variables, principal component
analysis (PCA) is a popular technique used for applications
such as data decorrelation, dimension reduction, lossy data
compression, and feature extraction [21], [39], [40]. It is
also known as Karhunen-Loève transform (KLT) in transform
coding [41], [42]. It can be considered as an orthogonal
transformation of the correlated variables into a set of un-
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correlated scalar variables, which are named as principal
components. This transformation is linear and invertible.PCA
is the optimal decorrelation strategy for multivariate-Gaussian
distributed data [21]. For data from a multivariate-Gaussian
distribution, the resulting transformed scalar variablesare not
only mutually uncorrelated but also mutually independent.For
data from other sources, PCA can only guarantee that the
scalar variables are mutually uncorrelated.

Independent component analysis (ICA) is a computational
method applied to separate a multivariate vector variable into
a set of additive and mutually independent scalar variables
(sources) [43], [44]. With the assumption that the source
signals are independent of each other and the source signals
are non-Gaussian distributed, ICA attempts to decorrelatea
multivariate vector variable into mutually independent non-
Gaussian scalar variables. ICA can be applied to several fields
such as face recognition [45], blind source separation [46],
and wireless communications [47].

A neutral vector has a bounded support (in[0, c]) and is
negatively correlated (the off-diagonal elements in the covari-
ance matrix is negative). Thus, it cannot follow a multivariate-
Gaussian distribution. In this case, applying PCA to neutral
vector can only yield mutually uncorrelated but not mutually
independent scalar variables. Although ICA can yield mutually
independent non-Gaussian scalar variables, it cannot preserve
the bounded support property. By considering the neutrality,
the highly correlated variables in a neutral vector can be
decorrelated into a set of independent variables with nonlinear
transformation. Moreover, such procedure does not depend on
the eigenvalue decomposition of the covariance matrix.

In this paper, we propose two fundamental transformation
strategies, namely the serial nonlinear transformation (SNT)
and the parallel nonlinear transformation (PNT), to decorrelate
neutral vectors. These invertible nonlinear transformations take
the advantages of the completely neutrality. We prove that
the above mentioned nonlinear transformations can decorrelate
the neutral vector variable into a set of mutually independent
variables. Particularly, if the neutral vector variable isDirichlet
distributed, each of the transformed variables follows thebeta
distribution, which is actually a special case of the Dirichlet
distribution with two parameters.

Although nonlinear kernel functions can be introduced to
carry out kernel PCA [48], [49] or kernel ICA [50], [51]
such that the vector variable decorrelation can be implemented
in a nonlinear manner, the proposed nonlinear transformation
strategies are different from these ones. In kernel PCA, input
vectors are firstly mapped into a feature space via a kernel
function, and then the standard PCA is applied to conduct the
decorrelation [21, Ch. 12.3]. Similar approaches are applied
to kernel ICA. Therefore, kernel PCA and kernel ICA each
contain two stages, which are nonlinear kernel mapping and
linear decorrelation (in the feature space). In contrast tothis,
the proposed nonlinear transformation strategies (i.e., SNT
and PNT) do not require kernel mapping. It is a one-stage
nonlinear operation in the decorrelation implementation.

For a neutral random vector, the decorrelation strategies
are based on each observed vectoronly and does not require
any statistical information (e.g., the covariance matrix) of

Algorithm 1 Serial Nonlinear Transformation

Input: Neutral vectorx = [x1, . . . , xK , xK+1]
T

Setx1 = x, i = 1
repeat

Assign the value of the1st element ofxi to ui ;
i = i + 1, xi = xi−1, with the first element inxi−1 removed;
Normalize the remaining elements inxi asxi = xi/‖xi‖1

until i == K
Output: Transformed vectoru = [u1, . . . , uK ]T.

the whole observation set. In other words, the decorrelation
strategies are model independent. Therefore, the proposed
decorrelation strategies reduce the computational complexity,
compared with PCA which requires eigenvalue decomposition
of the covariance matrix. ICA has even higher computational
costs than PCA. The decorrelation of a vector variable is
important and very helpful in many applications (e.g., source
coding, dimension reduction, and feature selection [52], [53]).
Hence, the proposed decorrelation strategies are novel and
useful for the data with neutrality.

The rest of this paper is organized as follows: we review
the concept of neutrality in Sec. II. The proposed transforma-
tion strategies are introduced in Sec. III where the proof of
mutually independence is also provided. In Sec. IV, we take
the Dirichlet distribution as an example for neutral vectors.
Comprehensive evaluations of the proposed strategies with
synthesized and real data are presented in Sec. V. We draw
some conclusions in Sec. VI.

II. N EUTRAL VECTORVARIABLE

Assuming we have a random vector variablex = [x1, x2,
. . . , xK , xK+1]

T, wherexk > 0 and
∑K+1

k=1 xk = 1. Letxk1 =
[x1, . . . , xk]

T andxk2 = [xk+1, . . . , xK+1]
T. The vectorxk1

is neutral if xk1 is independent ofwk = 1
1−sk

xk2, for 1 ≤

k ≤ K [37], [54], wheresk =
∑k

i=1 xi ands0 = 0. If for all
k, xk1 are neutral, thenx is defined as acompletely neutral
vector [37], [55]. A neutral vector with(K +1) elements has
K degrees of freedom.

The idea of neutrality was introduced by Connor et al. [37]
for describing constrained variables with the property men-
tioned above. It was originally developed for biological appli-
cations. According to the above definition, the neutral vector
conveys a particular type of independence among its elements,
even though the element variables themselves are mutually
negatively correlated. A complete neutral vector variablehas
a set of properties, we list those will be used here:

Property2.1 (Mutually Independence):For completely
neutral vectorx, definezk = xk

1−sk−1
and z1 = x1, we have

z1, z2, . . . , zK are mutually independent.
Property2.2 (Aggregation Property):Mutually

Independence For a completely neutral vectorx, when adding
any adjacent elementsxr andxr+1 together, the resultingK-
dimensional vectorxr⊎r+1 = [x1, . . . , xr + xr+1, . . . , xK+1]
is a completely neutral vector again.
The proofs of the above properties can be found in Appendix A
and B.

Usually, the dimensions in a completely neutral vector
should be equally treated. In other words, the positions of
the dimensions do not affect the properties of the vector. In
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Fig. 1. An example of SNT withK = 5. The transformed variables are
u1 = x1,1, u2 = x1,2, u3 = x1,3, u4 = x1,4 andu5 = x1,5. xi,j denotes
the ith element inxj . N is the l1-norm normalization.

order to explicitly convey this fact, we make the following
definition:

Definition For a completely neutralvector x, if arbitrarily
permuted version ofx is still completely neutral, then this
vector isexchangeably completely neutral.

In the field of statistical analysis, a typical variable which
has the above mentioned properties is the Dirichlet variable.
For the Bayesian analysis of mixture models [21], [22], the
weighting factors of the mixture components are usually
modelled by a Dirichlet distribution. Recently, the Dirich-
let process (e.g., [56], [57]) was applied for nonparametric
Bayesian analysis. If we represent the Dirichlet process with
the so-called stick-breaking process [56], the independence
among different generating steps can be expressed explicitly
as a neutral vector with infinite dimensionality. The Dirichlet
process is the cornerstone of non-parametric Bayesian analysis
and applied to a variety of practical signal and feature analysis
problems. Thus, the concept of neutral vectors is very useful
in many signal processing, pattern recognition, and other
practical applications.

III. T RANSFORMATIONS FORNEUTRAL VECTORS

In most signal processing applications, the transformations
we use are linear or linear according to some nonlinear
kernel functions. Even though we could apply PCA directly to
the neutral random vector variable, this linear transformation
could only decorrelate the data, but cannot guarantee the
independence if the data are not Gaussian. Furthermore, PCA
does not exploit the neutrality [14]. In this case, PCA is not
optimal for decorrelating neutral vectors. By consideringthe
exchangeably complete neutrality, we propose two nonlinear
invertible transformations, namely the serial nonlinear trans-
formation (SNT) and the parallel nonlinear transformation
(PNT). Each of the proposed nonlinear transformations can
decorrelate the vector variable into a set of mutually indepen-
dent variables. In contrast to PCA, the transformations do not
require any statistical information (e.g., the covariance matrix)
of the observed vector set. Thus, it avoids the eigenvalue
analysis for PCA and, therefore, the computational complexity
is reduced.
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Fig. 2. An example of PNT withK = 5. The transformed coefficients are
u1 = x1,1/x1,2, u2 = x3,1/x2,2, u3 = x5,1/x3,2, u4 = x1,2/x1,3 and
u5 = x1,3. R represents the reciprocal operation.

A. Serial Nonlinear Transformation

For an exchangeable completely neutral vector variable with
K degrees of freedom, if we process the vector variable
with the SNT strategy described in Algorithm 1, theK + 1
dimensional vector variablex is transformed to a vectoru
with K variables. TheseK scalar variables are mutually
independent.

The proof of mutually independence ofu is straightforward.
In the transformed vectoru, the first elementu1 = x1 = z1.
The second element ofu is

u2 =
x2

1 − s1
= z2. (1)

Similarly, we have

u3 =

x3
1−s1

1 −
x2

1−s1

=
x3

1 − s2
= z3. (2)

More generally, we can obtain that

uk =

xk
1−sk−2

1 −
xk−1

1−sk−2

=
xk

1 − sk−1

= zk, 3 ≤ k ≤ K. (3)

According to Property 2.1, Eq. 3 shows that theK variables
in u are mutually independent. Since the SNT is invertible
andx hasK degrees of freedom,u contains the same amount
of information asx. An example of the SNT withK = 5 is
illustrated in Fig. 1.

B. Parallel Nonlinear Transformation

The SNT algorithm needsK rounds of iterations to finalize
the transformation. In order to facilitate the operation, we
can also carry out the nonlinear transformation in a parallel
way, which is referred as the parallel nonlinear transformation
(PNT). The PNT scheme is introduced in Alg. 2. At each
iteration, the dimension of the processed vector is reduced
by half. Finally, we still get a vector variableu with K
mutually independent element variables. An example of PNT
with K = 5 is shown in Fig. 2. The proofs of independence
can be found in Appendix C.

C. Fast Parallel Nonlinear Transformation

According to Alg. 2, the implementation of PNT needs to
check if the length ofxi in each iteration is even or odd.
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Algorithm 2 Parallel Nonlinear Transformation [32]

Step 1. Initialization
Setx1 = x, i = 2
Step 2. Aggregation
L = length(xi−1) − 1
if L is eventhen

for l = 1, l ≤ L/2, l + + do
xl,i = x2l−1,i−1 + x2l,i−1

ul,i−1 =
x2l−1,i−1

xl,i

end for
xi = [x1,i, . . . , xl,i, xL+1,i−1]

T

ui−1 = [u1,i−1, . . . , ul,i−1]
T

else
for l = 1, l < (L + 1)/2, l + + do

xl,i = x2l−1,i−1 + x2l,i−1

ul,i−1 =
x2l−1,i−1

xl,i

end for
xi = [x1,i, . . . , xl,i]

T

ui−1 = [u1,i−1, . . . , ul,i−1]
T

end if
Step 3. Stop criterion
if length(xi) == 2 then

ui = x1,i, go to step4
else

i = i + 1, go to step2.
end if
Step 4. Return the transformed coefficientsu = [uT

1 , . . . ,uT
i ]T .

This is due to the fact that the number of elements inx is
not always equal to power of2. Inspired by the fast Fourier
transform [58], we design a fast PNT (FPNT) algorithm to
facilitate the practical computation with zero-padding. Zero-
padding is a technique usually employed to make the length
of a vector equal to a power of2, by adding zeros to the end
of the vector so that the total number of elements equals the
next higher power of2. The vectorx is expanded with zero-
padding to the next higher power of2. During each iteration
in the transformation, the vector length reduces to half, until
the length of the vector reduces to two. This algorithm skips
the check of parity, and, therefore, the practical computational
time is reduced. It is convenient to implement in practice.
It is worthy to note that this FPNT algorithm has similar
computational complexity to the PNT flow chart shown in
Alg. 2. The FPNT algorithm is introduced in Algorithm 3.

IV. D IRICHLET VARIABLE : AN EXAMPLE

In the above nonlinear transformations, we did not assign
any explicit distribution to the neutral vector variable. Indeed,
the transformation itself does not require us to know the
specific distribution of the vector variable, with the assumption
that the vector variable is exchangeably completely neutral.
In this section, we will take the Dirichlet variable as an
intuitive example. It has been showed in [54] that the Dirichlet
distribution is characterized by neutrality and a vector drawn
from a Dirichlet distribution iscompletelyneutral. Moreover,
any permutation of such vector (which is generated from
a Dirichelt distribution) is also acompletelyneutral vector
(i.e., exchangeably completely neutral). Note that, acompletely
neutral vectormay nothave such permutation property [37].

The Dirichlet density function is defined as

Dir(x;α)=
Γ(

∑K+1
k=1 αk)

∏K+1
k=1 Γ(αk)

K+1∏

k=1

x
αk−1

k
, xk≥0,

K+1∑

k=1

xk =1, αk >0. (4)

If we take any elementxk from x and denote the remaining
normalized elements asx\k = 1

1−xk
[x1, . . . , xk−1, xk+1, . . . ,

Algorithm 3 Fast Parallel Nonlinear Transformation

Input: Neutral vectorx = [x1, . . . , xK , xK+1]
T

SetT = ⌈log2 (K + 1)⌉ andP = 2T − (K + 1)
Setxzp = [xT, 0T

P ]T (zero-padding)†

Setx1 = xzp

for t = 1, t ≤ T, t + + do
u

temp
t = x

odd
t ./(xodd

t + x
even
t ) ‡

Setut to be a vector containing only the elements that are not equalto one in
u

temp
t

xt+1 = x
odd
t + x

even
t

end for
Output: Transformed vectoru = [uT

1, . . . ,u
T
T ]T.

†
0P is aP × 1 vector contains only0.

‡
x

odd
t andxeven

t represent the odd and even elements inxt, respectively. The operator
./ denotes element-wise division. Moreover, we define0

0 = 1.

xK+1]
T, it can be shown that [59]

f(xk,x\k)=Beta(xk;αk,

K+1∑

i=1,i6=k

αi) × Dir(x\k;α\k), (5)

whereα\k = [α1, . . . , αk−1, αk+1, . . . , αK+1]
T and

Beta(x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 (6)

is the beta density function, which is exactly a Dirichlet density
function with two parametersa andb. Thus a Dirichlet variable
x = [x1, . . . , xK , xK+1]

T is a neutral vector. Furthermore, the
Dirichlet variable has the aggregation property as [59]

xi+j ∼ Dir(xi+j;αi+j), (7)

where xi+j = [x1, . . . , xi + xj , . . . , xK+1]
T and αi+j =

[α1, . . . , αi + αj , . . . , αK+1]
T. These properties can be easily

shown by the principles of variable substitution.
For the SNT strategy, the transformed variableuk is beta

distributed as
uk ∼ Beta(uk;αk,

K+1∑

i=k+1

αi), (8)

which can be proved by the neutrality and the aggregation
properties. For each loop in the PNT algorithm (Algorithm 2),
we define a new parameter vectorαi for the ith loop (i ≥ 2).
The update rule forαi is the same asxi andα1 = α. In the
ith loop, we can obtain a Dirichlet distribution by aggregating
the elementsx3,i−1, . . . , xL+1,i−1 together as

[x1,i−1, x2,i−1,

L+1∑

l=3

xl,i−1]
T

∼Dir(x1,i−1, x2,i−1,

L+1∑

l=3

xl,i−1;α1,i−1, α2,i−1,

L+1∑

l=3

αl,i−1).

(9)

By considering that
∑L+1

l=3 xl,i−1 is a neutral variable, the nor-
malized version of the remaining two variablesx1,i−1, x2,i−1

are again Dirichlet distributed with two parameters. This is
equivalent to a beta distribution. Thus the obtained coefficient
u1,i−1 = x1,i−1/(x1,i−1 + x2,i−1) follows a beta distribution
as

u1,i−1 ∼ Beta(u1,i−1;α1,i−1, α2,i−1). (10)

Based on the same reasoning, we can show thatul,i−1 is also
beta distributed. Thus, with SNT or PNT, the Dirichlet variable
can be decorrelated into a vector with the same degrees of
freedom. Due to the complete neutrality, the element variables
in the transformed vector are mutually independent, and each
element variable is beta distributed.
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V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The importance of independence arises in many applica-
tions. The proposed nonlinear transformation methods can
decorrelate a neutral vector variable into a set of mutually
independent scalar variables. In order to illustrate the decor-
relation performance, the distance correlation (DC) [60],[61],
which measures statistical dependence between two random
variables, is applied to evaluate the mutual independence of
the scalar variables after transformation. Unlike the commonly
used Pearson correlation coefficient [62], [63], the DC is
zero if and only if the random variables are statistically
mutually independent [64]. Given a set of paired samples
(Xn, Yn), n = 1, . . . , N , all pairwise Euclidean distancesaij
andbij are calculated as

aij = ‖Xi − Xj‖, bij = ‖Yi − Yj‖, i, j = 1, . . . , N. (11)

Taking the doubly centered distances, we have

Aij = aij − āi· − ā·j + ā··, Bij = bij − b̄i· − b̄·j + b̄··, (12)

where āi· denotes the mean of theith row, ā·j is the mean
of the jth column, and̄a·· stands for the grand mean of the
matrix. The same definitions apply tōbi·, b̄·j, and b̄··.

In order to evaluate the statistical significance of the DC, a
permutation test is employed. Thep-value for the permutation
test is calculated as follows:

1) For the original data(Xn, Yn), create a new data set
(Xn, Yn∗), wheren∗ denotes a permutation of the set
{1, . . . , N}. The permutation set is selected randomly
as drawing without replacement;

2) Calculate a DC for the randomized data
3) Repeat the above two steps a large number of times, the

p-value for this permutation test is the proportion of the
DC values in step2 that are larger than the DC from
the original data.

The null hypothesis in this case is that the two variables
involved are independent of each other (the DC is0). When the
correspondingp-value is smaller than0.05, the null-hypothesis
is rejected so that these two variables arenot independent (but
could still be uncorrelated). Hence,p-value greater than0.05
indicates independence. We choose the significance level as
0.05 in the remaining parts of this paper.

In this section, we firstly compare PNT/SNT with PCA
and ICA, with evaluation of decortication performance. Next,
we demonstrate the decorrelation performance of PNT (in
terms of mutual independence) with both synthesized and real
data. Afterwards, we apply the proposed strategy to real-life
applications to improve corresponding practical performance.

A. Comparisons of SNT, PNT, PCA, and ICA

1) Computational Complexity:In practical applications,
the computational complexity of decorrelation is usually a
concern. We now analyze the computational complexities of
SNT and PNT, respectively, and compare them with that of
the conventionally used PCA and ICA strategies.

• SNT and PNT
As described in Algorithm 1, each iteration yields one
element in the target vectoru. Hence, when decorrelating

a (K + 1) neutral vector variable (withK degrees of
freedom) into a set ofK independent scalar variables,
K iterations are required. During each iteration, one
summation andL division should be operated for the
purpose of normalization, whereL is the number of
elements in the intermediate vectorxi. Therefore, if we
treat the summation as one floating-point operation and
the division as eight times of that1, the computational
complexity for SNT isO(NK2).
When applying Algorithm 3 to decorrelate the neutral
vector in a parallel manner, at most⌈log2 (K + 1)⌉
iterations are required. Within each iteration, aboutL/2
summations andL/2 divisions with an evenL or (L +
1)/2 summations and(L + 1)/2 divisions with an odd
L are needed. Therefore, with the same consideration
of the floating-point operation above, the computational
complexity for PNT isO(NK logK), sinceL = K at
the first iteration andL will reduce to (approximately)
half in each of the consequent iteration.
With the above analysis, we can conclude that the PNT
algorithm is more efficient than the SNT algorithm and
preferable in practice, although both algorithms can non-
linearly transform the neutral vector into a set of mutually
independent scalars.

• PCA
The operation of PCA includes two parts: 1) eigenvalue
analysis of the covariance matrix and 2) decorrelation
of the vector. Many approaches exist for an eigenvalue
analysis. To our best knowledge, the fastest method so-far
is the method proposed by Luk et al. [66]. The computa-
tional cost is aboutO(K2 logK) for aK×K covariance
matrix. For the decorrelation, multiplying the source vec-
tor with the eigenvector matrix will have computational
cost aroundO(K2). Therefore, the computational cost
for PCA is, on average,O(NK2 logK).
Hence, the proposed SNT- and PNT-based decorrelation
methods are more efficient than the PCA-based method.

• ICA
Although robust source separation performance can be
achieved by ICA, the drawback of algorithms for carrying
out ICA is the high computational complexity [67].
Typical algorithms for ICA requires centering, whiten-
ing, and dimension reduction as preprocessing steps to
facilitate the calculation. Unlike PNT/SNT or PCA which
converges fast, the convergence of ICA also depends on
the number of iterations. Hence, analytically tractable
solution does not exist. As introduced in [68], the compu-
tational cost for ICA, withM iterations, isO(MNK2)

2) Decorrelation Performance:We generated differen-
t amounts of samples from a single Dirichlet distribution,
where the parameters are chosen to beα = [2, 5, 6, 3, 7]T.
The proposed PNT method, which was shown more efficient
than the SNT method, was applied to decorrelate the generated
samples. With different amounts of data, the DCs between
possible pairs of all the transformed variables were evaluated

1According to T. Minka’s Lightspeed Matlab toolbox [65] http://research.
microsoft.com/en-us/um/people/minka/software/lightspeed/.
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TABLE I

EVALUATION OF THE DECORRELATION PERFORMANCE ON THE DATA GENERATED FROM A DIRICHLET DISTRIBUTION WITH α = [2, 5, 6, 3, 7]T . THE

NULL HYPOTHESIS IS THAT THE RELATED TWO DIMENSIONS ARE INDEPENDENT FROM EACH OTHER(i.e., THE DC IS 0). THE FIRST ROW: p-VALUES FOR
THE GENERATED DATA. THE SECOND ROW: p-VALUES FOR THE DECORRELATED DATA VIAPNT. THE THIRD ROW: p-VALUES FOR THE DECORRELATED

DATA VIA PCA. THE FOURTH ROW: p-VALUES FOR THE DECORRELATED DATA VIAICA. THE p-VALUES THAT ARE SMALLER THAN 0.05 ARE MARKED

WITH UNDERLINE, INDICATING THAT THE CORRESPONDING TWO RANDOM VARIABLES ARENOT INDEPENDENT.

(a) N = 100, original.

x1 x2 x3 x4

x1 0 0.198 0.127 0.376
x2 0 0.007 0.140
x3 0 0.067
x4 0

(b) N = 200, original.

x1 x2 x3 x4

x1 0 0.054 0.063 0.189
x2 0 0.001 0.024
x3 0 0.047
x4 0

(c) N = 400, original.

x1 x2 x3 x4

x1 0 0.010 0.004 0.069
x2 0 0.000 0.001
x3 0 0.002
x4 0

(d) N = 800, original.

x1 x2 x3 x4

x1 0 0.000 0.000 0.007
x2 0 0.000 0.000
x3 0 0.000
x4 0

(e) N = 100, with PNT.

u1 u2 u3 u4

u1 0 0.455 0.426 0.546
u2 0 0.481 0.405
u3 0 0.495
u4 0

(f) N = 200, with PNT.

u1 u2 u3 u4

u1 0 0.464 0.527 0.455
u2 0 0.621 0.625
u3 0 0.508
u4 0

(g) N = 400, with PNT.

u1 u2 u3 u4

u1 0 0.583 0.484 0.668
u2 0 0.538 0.402
u3 0 0.582
u4 0

(h) N = 800, with PNT.

u1 u2 u3 u4

u1 0 0.519 0.360 0.367
u2 0 0.561 0.496
u3 0 0.564
u4 0

(i) N = 100, with PCA.

u1 u2 u3 u4

u1 0 0.307 0.565 0.606
u2 0 0.211 0.330
u3 0 0.207
u4 0

(j) N = 200, with PCA.

u1 u2 u3 u4

u1 0 0.142 0.511 0.625
u2 0 0.075 0.152
u3 0 0.019
u4 0

(k) N = 400, with PCA.

u1 u2 u3 u4

u1 0 0.048 0.395 0.472
u2 0 0.003 0.084
u3 0 0.000
u4 0

(l) N = 800, with PCA.

u1 u2 u3 u4

u1 0 0.001 0.258 0.197
u2 0 0.000 0.008
u3 0 0.000
u4 0

(m) N = 100, with ICA.

u1 u2 u3 u4

u1 0 0.080 0.098 0.104
u2 0 0.095 0.092
u3 0 0.086
u4 0

(n) N = 200, with ICA.

u1 u2 u3 u4

u1 0 0.124 0.126 0.136
u2 0 0.142 0.145
u3 0 0.108
u4 0

(o) N = 400, with ICA.

u1 u2 u3 u4

u1 0 0.073 0.222 0.324
u2 0 0.123 0.134
u3 0 0.155
u4 0

(p) N = 800, with ICA.

u1 u2 u3 u4

u1 0 0.091 0.241 0.174
u2 0 0.329 0.353
u3 0 0.114
u4 0

and the correspondingp-values are listed in Tab. I(e), I(f), I(g),
and I(h), respectively. To make extensive comparison, we also
applied the PCA-based decorrelation method and the ICA-
based decorrelation method, respectively, to the generated data
and summarized the decorrelation performance in Tab. I(i)-
Tab. I(p).

When the amount of samples is small (e.g., N = 100),
the generated data cannot reveal neutrality completely (e.g.,
in Tab. I(a), thep-value for the DC betweenx1 and x2

is larger than0.05. This indicates that these two variables
are independent of each other, which is in conflict with
the definition of neutrality.), PNT, PCA, and ICA methods
can decorrelate the “semi”-neutral vector variable into a set
of mutually independent scalar variables. As the amount of
sample increases, the neutrality of the data becomes clear
(i.e., all the p-values are smaller than0.05 in Tab. I(b), I(c),
and I(d)). It can be observed that both the PNT and the ICA
algorithms can yield mutually independent variables for all
the cases (p-value is larger than0.05). In contrast, the PCA
algorithm can only lead to partially mutual independence.

In summary, the proposed strategy can nonlinearly transfor-
m the highly negatively correlated neutral vector variableinto
a set of mutually independent scalar variables. Compared with
PCA, PNT and ICA show better decorrelation performance for
the data with neutral property, with a wide range of amounts
of samples. In order to remove the effect of randomness, we
ran50 rounds of simulations and the mean values are reported
in Tab. I. Each round of simulation includes data generation,
PNT decorrelation, PCA decorrelation, ICA decorrelation,and
DC calculation.

3) Discussions:We compared the computational complexi-
ties of SNT, PNT, PCA, and ICA in Sec. V-A1. The proposed
SNT and PNT methods have less computational complexity
compared to PCA and ICA. In all of these methods, PNT
has the least computational complexity. ICA has the largest

computational complexity (usually,M is a number larger than
logK). At the meantime, it does not have analytically tractable
solution and needs many iterations to converge.

When evaluating these methods with decorrelation perfor-
mance, we only used PNT to represent the proposed nonlinear
transformation strategies. It can be observed that both PNTand
ICA have good decorrelatoin performance (in terms of mutual
independence measured by DC) for neutral vector variables,
with a wide range of data amounts. PCA does not perform
well for neutral vector variables whenN increases.

In summary, for neutral vector variable, PNT performs
better than PCA and ICA, in terms of both decorrelation and
computational complexity. Comparing with PNT and PCA,
ICA does not have an analytically tractable solution. There-
fore, ICA algorithms typically resort to iterative procedures
with either difficulties or high computational load. Hence,we
compare only PNT and PCA in the following experiments.

B. Synthesized Data Evaluation

1) Mixture of Dirichlet Distributions: In real applications,
the data we obtained are usually multimodally distributed.The
neutral vector variable is, however, uni-modally distributed
by definition. Hence, it is of sufficient interest to study the
decorrelation performance of the proposed method on the
data sampled from a mixture of Dirichlet distributions. In this
section, we generated a set of data from a mixture of Dirichlet
distributions to evaluate the decorrelation performance.The
chosen model contains two mixture components, which has
mixture coefficients asπ1 = 0.3, π2 = 0.7, and component
parameters asα1 = [2, 5, 6, 3, 7]T, α2 = [10, 2, 8, 2, 18]T. Ta-
ble II shows the decorrelation performance on the whole data
set. The upper row illustrates the decorrelation performance
for the data set withN = 50 samples. As mentioned in the
previous section, small amount of data from a single compo-
nent cannot completely reveal the neutrality. Hence, the data
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TABLE II

EVALUATION OF THE DECORRELATION PERFORMANCE ON THE DATA GENERATED FROM A MIXTURE OF DIRICHLET DISTRIBUTIONS WITH

π1 = 0.3, π2 = 0.7, AND α1 = [2, 5, 6, 3, 7]T, α2 = [10, 2, 8, 2, 18]T . THE UPPER ROW: p-VALUES FOR THE DATA SET WITHN = 50 SAMPLES. THE
BOTTOM ROW: p-VALUES FOR THE DATA SET WITHN = 800 SAMPLES. THE p-VALUES THAT ARE SMALLER THAN 0.05 ARE MARKED WITH UNDERLINE,

INDICATING THAT THE CORRESPONDING TWO RANDOM VARIABLES ARENOT INDEPENDENT.

(a) Whole data set, original.

x1 x2 x3 x4

x1 0 0.107 0.021 0.001
x2 0 0.246 0.019
x3 0 0.359
x4 0

(b) Whole data set, with PNT.

u1 u2 u3 u4

u1 0 0.031 0.029 0.000
u2 0 0.321 0.109
u3 0 0.147
u4 0

(c) Cluster1, with PNT.

u1 u2 u3 u4

u1 0 0.471 0.610 0.480
u2 0 0.463 0.513
u3 0 0.422
u4 0

(d) Cluster2, with PNT.

u1 u2 u3 u4

u1 0 0.468 0.410 0.502
u2 0 0.614 0.559
u3 0 0.534
u4 0

(e) Whole data set, original.

x1 x2 x3 x4

x1 0 0.000 0.000 0.000
x2 0 0.001 0.000
x3 0 0.023
x4 0

(f) Whole data set, with PNT.

u1 u2 u3 u4

u1 0 0.000 0.000 0.000
u2 0 0.000 0.000
u3 0 0.000
u4 0

(g) Cluster1, with PNT.

u1 u2 u3 u4

u1 0 0.529 0.484 0.429
u2 0 0.511 0.630
u3 0 0.469
u4 0

(h) Cluster2, with PNT.

u1 u2 u3 u4

u1 0 0.483 0.459 0.414
u2 0 0.531 0.474
u3 0 0.517
u4 0

generated from a mixture of Dirichlet distributions may still
have mutual independence between some pairs of dimensions
(e.g., in Tab. II(a), thep-value for the DC betweenx2 andx3

is larger than0.05, which indicates mutual independence.) In
such case, when applying the PNT algorithm to the whole
data set, it yields onlypartially mutual independence (see
Tab. II(b)). For each data cluster, the PNT algorithm works
well, as expected (see Tab. II(c) and II(d)). With large amount
of data (N = 800), the data generated from each mixture
component have strong neutral property so that the whole data
set are highly correlated butnot neutral (see Tab. II(e)). In this
case, the PNT algorithm does not work (see Tab. II(f)). This
is because the proposed decorrelation strategy is based on the
assumption of neutrality and it may not work for the data that
are not neutral. However, if we partition the data into clusters
where each cluster contains data vectors that are neutral, the
PNT algorithm can perfectly leads to mutual independence
between any possible pairs of decorrelated dimensions (see
Tab. II(g) and II(h)).

2) Coding Gain/Removal of Memory Advantage:One ad-
vantage of the proposed nonlinear transformation strategy
occurs in high rate quantization of vectors. In the application of
source coding, the source vectors are usually highly correlated.
Hence, it is natural to decorrelate the vector into a set of
mutually independent scalars so that the vector quantization
(VQ) can be replaced by a set of scalar quantization (SQ)
without losing the memory advantage [69]. This can be
quantified by the so-called coding gain measurement [69],
[70]. For different quantization methods, the coding gain can
be measured as (or proportional to) the ratio of quantization
distortions, with a given number of bits for quantization.

As shown in [71], with the high rate assumption, the
distortion incurred by quantizing a vector approaches a simple
quadratically weighted error as

d(x, x̂) = (u − û)T JT
T (u)JT (u) (u − û) , (13)

whereJT is the Jacobian matrix of theinversePNT algorithm
x = T (u). The distortion in thex domain, incurred by
quantizingu, can be approximated as [32]

Dx(u) ∼=

K∑

k=1

E

[
J T

T (u)JT (u)
]

k,k
× D(uk), (14)

whereK is the dimensionality ofu andE[·] denotes expecta-
tion operation. In the above equation, we denoteD(uk) as the
distortion incurred by quantization ofuk in theu domain. By

assuming thatx is Dirichlet distributed with known parame-
ters, we can apply the PNT algorithm to transformx to u, and
uk is beta distributed (see (10)) [32]. With the high rate theory
and entropy constrained quantization [69], we can derive that,
with R bits and probability density function (PDF)-optimized
bit allocation strategy [72], the distortion in thex domain
incurred by quantizingu is [32]

Dx(u) =
K

12
× 2

− 2
K

×
[
R−

∑K
k=1 h(uk)

]

× K

√√√√
K∏

k=1

E
[
J T

T (u)JT (u)
]
k,k

,

whereh(uk) is the differential entropy ofuk.
On the other hand, if we quantize each element inx accord-

ing to its marginal distribution (this means we replace a vector
quantizer by a set of scalar quantizer without decorrelation),
the distortion is

Dx(x) =
K

12
× 2

− 2
K

×
[
R−

∑K
k=1

h(xk)
]

. (15)

For a(K + 1)-dimensional Dirichlet distribution with param-
eterα = [α1, α2, . . . , αK+1]

T , the marginal distribution for
the kth dimension is

xk ∼ Beta(xk;αk,

K+1∑

i=1,i6=k

αi). (16)

Thus we can measure the coding gain as the ratio of two
distortions

G =
Dx(x)

Dx(u)
=

2
2
K

∑K
k=1[h(xk)−h(uk)]

K
√∏

K
k=1 E

[
J T

T (u)JT (u)
]
k,k

. (17)

In the above equation, the ratioG > 1 indicates less distortion
can be achieved by the proposed nonlinear transformation. The
larger this ratio is, the more benefit we obtain from the trans-
formation. In order to evaluate the coding gainG extensively,
we evaluated the coding gain with differentα and different
dimensionalities. To give an example, the inverse nonlinear
transformation and the elements inJT (u) with K = 4 are
listed in Tab. III. The expectation term in the denominator
of (17) can be calculated in a closed-form expression with
the fact thatui is beta distributed and the parameters can be
calculated from the original Dirichlet parameters (see (10) for
more details).

The coding gains withK = 4, 5, 6 are plotted in Fig. 3.
For eachK, we randomly generated the elements inα from
[10, 50]. In total 100 rounds of simulations were conducted
for eachK. It can be observed that the proposed nonlinear
transformation yield a coding gain greater than1 for different
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TABLE III

THE INVERSEPNT ALGORITHM x = T (u) AND THE JACOBIAN MATRIX JT (u) FOR (K = 4).

x = T (u) :

x1 = u1u3u4

x2 = (1 − u1)u3u4

x3 = u2(1 − u3)u4

x4 = (1 − u2)(1 − u3)u4

JT (u) =





u3u4 0 u1u4 u1u3

−u3u4 0 (1 − u1)u4 (1 − u1)u3

0 (1 − u3)u4 −u2u4 u2(1 − u3)
0 −(1 − u3)u4 −(1 − u2)u4 (1 − u2)(1 − u3)





0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

G=1.28 G=1.12 G=1.11

K = 4 K = 5 K = 6

Fig. 3. Coding gains for differentK shown as box plot. The central red
mark is the median, the blue star mark is the mean, the edges ofthe box are
the25th and75th percentiles. The outliers are marked with red crosses. The
mean values are listed at bottom.

dimensions. This is because the memory advantage of VQ over
SQ has been removed.

3) Discussion: The synthesized data experiments above
demonstrated the superior performance of the proposed nonlin-
ear transformation strategy for neutral data. The data generated
from a mixture of Dirichlet distributions are multimodally
distributed so that they are not neutral. In this case, we can
partition the data into different clusters. By assuming that the
data assigned to each cluster were generated from a single
Dirichlet distribution, the proposed method can be appliedto
these data and results in promising decorrelation performance.
Decorrelation of highly negatively correlated vector plays an
important role in many applications. In the next section, we
will apply this idea to real data applications.

C. Real Data Evaluation

Decorrelation of a highly correlated vector variable into aset
of mutually independent variables leads to many advantages
in real applications [21], [32], [39], [40], [69]. In this section,
we evaluate the decorrelation performance of the proposed
strategy for real life data that fit the definition of neutral
vector (nonnegative andl1 norm equals one). To this end,
we assume such “neutral-like”2 data have neutral property
and apply the PNT algorithm to nonlinearly transform them.
The performance improvement in practical applications is also
presented.

1) Vector Quantization of Line Spectral Frequency Pa-
rameters: Quantization of the LSF parameters of the linear
predictive coding (LPC) model is an essential part of speech
transmission [32], [73], [74]. The LSF parameters are usually
10-dimensional for narrow band speech and16-dimensional
for wide band speech. Hence, vector quantization (VQ) is
required. Generally speaking, VQ has memory, shape, and
space-filling advantages over scalar quantization (SQ) [69],
[73]. However, it isimpractical to design a full vector quan-
tizer because 1) the size of codebook increases exponentially
with the dimension of data, which leads to high storage

2Hereby, we name the vector 1) contains nonnegative elementsand 2) has
unit/constantl1-norm as “neutral-like” data.

0

0.2

0.3

0.95

1

 

 

Original data

PNT on original data

PNT on each cluster

In
de

pe
nd

e
nc

e
co

e
ffi

ci
e

nt

C1 C2 C3 C4 C5 C6 C7 C8

Fig. 4. Independence coefficients of different data set.Ci denotes theith

cluster obtained by the EM algorithm. The amount of samples is N = 800
and the number of mixture components (clusters) is8.

complexity; 2) the effort of training a codebook and searching
for an index in the codebook is also exponentially increased
with the data’s dimension, which is computationally costly.
Especially, when the dimension is high,e.g., > 10, the
above VQ is not feasible. In practical VQ implementation, the
frequently used method is to decorrelate the LSF parameters
into a set of mutually independent scalars so that the memory
advantage of VQ over SQ can be removed [69], [70], [73].
Then, a set of SQs will be employed to replace the VQ.

In the design of PDF-optimized VQ, the Gaussian distribu-
tion and the corresponding Gaussian mixture model (GMM)
have been intensively applied to model the distribution of
the LSF parameters [30], [75], [76]. However, since the LSF
parameters are in the interval(0, π) and are strictly ordered, it
is not Gaussian distributed. For the purpose of more efficient
modeling, the LSF parameters can be converted to the so-
called ∆LSF parameters [32], [72]. The∆LSF parameters
are nonnegative and the summation equals13. As the∆LSF
parameters fit the the definition, we suppose that they follow
Dirichlet distributions and apply a Dirichlet mixture model
(DMM) to describe the underlying distribution of the data. As
data generated from a Dirichlet distribution have neutral prop-
erty, the proposed nonlinear strategy is applied to decorrelate
the∆LSF parameters. A practical VQ is carried out based on
the neutrality.

• Evaluation of Independence
The∆LSF parameters are16-dimensional4 for wide band
speech data. It is space consuming to list a16 × 16
mutual independencep-value table. Thus, we calculat-
ed independence coefficient(IC), which is defined as the
proportion of the number of mutually independent pairs
to the number of all the possible pairs5 to measure the
decorrelation performance. The higher this proportion is,

3Strictly speaking, the summation of the∆LSF parameters equalsπ, which
can be scaled so that the summation equals1. The scaled∆LSF parameters
represent the proportions of the∆LSF on the unit circle [32].

4We show only the results for wide band data here. Similar performance
can also be obtained for narrow band data.

5For a K × K matrix, the number of all the possible pair isK(K−1)
2

,
without consideration of self pairs.
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the better the decorrelation performance is6.
As described in Sec. V-B3, we firstly applied the PNT
algorithm to the∆LSF parameters. As shown in Fig. 4,
the IC of PNT for the original data is small, which means
the decorrelation performance of PNT is not significant.
This is due to the fact that the∆LSF parameters are
multimodally distributed. We applied the EM algorith-
m [32] to partition the∆LSF parameters into different
clusters. With the assumption that the data in each cluster
are Dirichlet distributed (hence, they are neutral vectors),
we applied the PNT algorithm to the data in each cluster,
respectively. The ICs of PNT for each cluster are also
plotted in Fig. 4. It is clearly shown that most of the pairs
(more than95%) are mutually independent. Hence, the
mutual correlation for each cluster has been significantly
removed by PNT.

• Improvement in VQ
Motivated by the coding gain advantage in Sec. V-B2,
we designed and implemented a DMM-based VQ based
on the neutral properties. The LSF parameters were
partitioned intoI7 clusters with a DMM which contains
I mixture components [72]. With the above introduced
procedure, the PNT algorithm is applied to realize the
decorrelation for each cluster and a set of mutually
independent scalar elements are obtained. As the memory
advantage of VQ over SQ is removed by explicitly using
the neutrality, we carried out a PDF-optimized VQ for
the LSF parameters. The benefits are two fold:

1) Saving of the storage, training and searching costs.
With average bit rate (in per vector sense)R,
there arelog2 M bits spent on indexing the mixture
component andRq = R− log2 M bits spent on VQ.
Hence, by assuming all the components are identical
to each other, a codebook with2Rq codewords is re-
quired for each mixture component. In the SQ case,
the bit for each cluster (i.e., mixture component)
will be further placed on each dimension based on
its differential entropy. On average,Rq

16 is assigned

to each dimension and only16 × 2
Rq

16 is needed
for each component. Usually,R is a number about
40 ∼ 50. Hence, the required number of codewords
is significantly reduced and the storage cost is saved.
The well-known Lloyd algorithm [77], [78] and the
Linde-Buzo-Gray (LGB) algorithm [79], [80] are
usually utilized for obtaining the codebook. In the
case of VQ, the training is carried out in a16-
dimensional space. Meanwhile, the training is exe-
cuted in one-dimensional space for SQ. Obviously,
training a codebook in16-dimensional space is more
computationally costly than that in one-dimensional
space, and, therefore, the training cost is saved.
For the same reasoning, the searching cost is also
significantly reduced when replacing VQ by SQ.

2) Saving of Bit rates.The ultimate goal of PDF-

6The largest ratio is1, which means all the possible pairs are mutually
independent.

7Usually, I equals a power of2.
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(b) GMM-based VQ.

Fig. 5. Flow chart of DMM-based VQ and GMM-based VQ.

optimized VQ is to spend as less bits as possible
while satisfying the quantization distortion require-
ment. A practical VQ for the LSF parameters, which
is based on the DMM modeling and the proposed
nonlinear transformation strategy, was introduced
in [32]. With the transparent coding8 criterion, we
evaluated the log spectral distortion (LSD) obtained
from the DMM-based VQ and compared it with the
state-of-the-art GMM-based VQ [81]. The GMM-
based VQ partitioned the LSF parameters intoI
clusters with the EM algorithm for GMM. Next, the
LSF parameters are decorrelated with PCA. Finally,
a PDF-optimized GMM-based VQ is carried as
well. Fig. 5 shows the designs for the DMM-based
VQ and the GMM-based VQ. The VQ performance
comparisons are summarized in Tab. IV. It is clearly
demonstrated that the DMM-based VQ improves the
performance by about3 bits/vector. This is due to
the fact that the proposed nonlinear transformation
strategy removes the memory advantage and makes
the implementation of practical VQ feasible. More
details can be found in [32].

2) EEG Signal Classification: For persons who suffer
from neuromuscular diseases, brain-computer interface
(BCI) connects them with computers by recording and
analyzing the brain signals. As non-invasively acquired
signal, the Electroencephalogram (EEG) signal is the
most studied and applied one in the design of a BCI
system [82], [83]. For the EEG signal obtained from
one channel, various types of features have been ex-
tracted from the signal for the purpose of classification.
The marginal discrete wavelet transform (mDWT) vec-
tor, among others, is a typical feature that is widely
adopted [84]–[86]. The elements in a DWT vector reveal
features related to the transient nature of the signal.
The marginalization operation, which yields the mDWT
vector, makes the DWT vector insensitive to time align-
ment [84]. The data set used in this paper is from the
BCI competition III [87]. During one EEG signal trial
recording, a subject had to perform imagined movements
of either the left small finger or the tongue. The data
set contains278 trials for training and100 trials for
test. The trials in the training and test sets are evenly
distributed and labeled, respectively. For each trial,64

8Transparent coding criterion: 1)1 dB LSD on average, 2) less than2%
outliers in2 ∼ 4 dB range, and 3) no outlier larger than4 dB.



10
TABLE IV

COMPARISONS OFVQ PERFORMANCE.THE NUMBER OF MIXTURE

COMPONENTS ISM = 256. 706k LSF VECTORS WERE USED FOR
TRAINING AND 258k WERE USED FOR EVALUATION. THE SPEECH DATA

ARE FROM THETIMIT DATABASE [91].

VQ Type bits/vec. LSD (dB)
LSD outliers (in %)
2 − 4 dB > 4 dB

DMM-based VQ
44 1.039 1.200 0.000
45 0.997 0.830 0.000

GMM-based VQ
47 1.029 0.776 0.005
48 0.971 0.920 0.003

channel data of length3000 samples were provided. The
mDWT vector contains nonnegative elements and has unit
l1-norm. Hence, we applied the nonlinear transformation
method to decorrelate the mDWT vector for the purposed
of classification accuracy improvement.
In our previous work [88], we have successfully applied
the proposed PNT method in EEG signal classification.
The so-called multivariate Beta distribution (mvBeta)-
based classifier was introduced based on the feature
selection strategy in the transformed feature domain and
has been applied to classify the EEG signals. In this
paper, we will make thorough study to show that the
obtained gain in classification accuracy is indeed from
the application of the PNT method to the mDWT vectors.

– Channel Selection
Not all the channels are closely relevant to the
classification task. Before conducting the classifi-
cation task, it is of importance to select more rel-
evant channels so that the classification accuracy
can be improved. The Fisher ratio (FR) and the
generalization error estimation (GEE) [88], [89] were
applied to select channels. The channels are ranked
according to their FRs and GEEs, respectively. In the
classification stage, we exploit the mDWT vectors
from the topm channels.

– Feature Selection
Feature selection is an important problem in EEG
signal classification [84], [88], [90]. For each select-
ed channel, the dimension of the mDWT vector is5
(the degrees of freedom is4). We applied the PNT
algorithm to decorrelate the mDWT vectors from the
training set. A set of4-dimensional vectors, each
of which contains mutually independent elements
were obtained. We sorted the4 dimensions according
to their variances in descending order. The mDWT
vectors from the test set were also decorrelated
via PNT. The dimension reordering was carried out
based on the variance order from the training set.
According to the reordered dimensions, we selected
the relevantD dimensions for classification.

• Performance Improvement
For binary classification task, the support vector machine
(SVM) is a classic and the widely applied classifier [21],
[92]–[94]. We evaluated the above introduced feature
selection strategy by comparing the classification accu-
racies. For each channel selection method, an SVM with
radial basis function (RBF) kernel was trained as the
benchmark, respectively. With LIBSVM toolbox [95], we
adjusted the parameters in the RBF-SVM so that the
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(a) Channel selection with FR andD = 2.
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(b) Channel selection with GEE andD = 2.

Fig. 6. Classification accuracy comparisons of RBF-SVM (benchmark, no
transformation), RBF-SVM+PCA, and RBF-SVM+PNT withD = 2. The
results have been presented in [88].

cross validation of training accuracy is the highest.All
mDWT vectors from the training set were used for the
parameter adjustment. To make fair comparisons, we
also applied PCA to decorrelate the mDWT vectors. The
mDWT vectors in the test set were transformed with the
eigenvectors obtained from the training set. The relevant
dimensions were also selected according to the variances.
The classification results were obtained with the topm
channels (ranked via FR or GEE). For each channel,
the most relevantD features (ranked via variance) were
selected. In total, we obtained(m × D)-dimensional
feature vector to train the RBF-SVM. It can be observed
that the RBF-SVM+PNT yields the highest recognition
accuracies, for FR case and GEE case, respectively.
Figure 6 illustrates the classification results with top
m channels whenD = 2. The highest classification
rates are both obtained withD = 2, which indicates
that feature selection via variance indeed benefits the
classification. The RBF-SVM+PNT yields the highest
recognition accuracy for FR case (75% with with D = 2
andm = 19, 20) and GEE case (77% with D = 2 and
m = 4), respectively.

3) Discussion:The LSF parameters in the LPC model and
the mDWT parameters in the EEG signal contain nonneg-
ative elements and have unit/constantl1-norm, respectively.
Although it is difficult (or even not feasible) to prove the
neutrality for such neutral-like data, we can still exploitthe
neutrality to apply the PNT-based nonlinear transformation
strategy for the purpose of decorrelation and improve practical
performance. Compared with the PCA-based linear trans-
formation strategy, the PNT-based nonlinear transformation
showed advantages in both applications.

VI. CONCLUSIONS

Nonlinear transformations for neutral vector variable were
proposed and studied in this paper. By explicitly utilizingthe
neutrality of neutral vector variables, we introduced the serial
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nonlinear transformation and parallel nonlinear transformation
methods to decorrelate a neutral vector variable into a set of
mutually independent element variables. The mutual indepen-
dence was theoretically proved. The computational costs ofthe
proposed decorrelation methods were analyzed and compared
with the PCA-based and ICA-based approaches. It has been
shown that the computational costs of the proposed methods
are the smallest.

As a typical case, the vector variable following the Dirichlet
distribution is a completely neutral vector. The transformed el-
ement variables are all beta distributed. With the distancecor-
relation metric, the decorrelation performance of the proposed
nonlinear transformation was demonstrated to be superior to
those of PCA and ICA with both synthesized and real life data.
Moreover, we applied the proposed nonlinear transformation in
two applications,i.e., quantization of line spectral frequency
parameters in the speech linear predictive model and EEG
signal classification. Extensive experimental results showed
that, when carrying out decorrelation and feature selection for
neutral-like data, the proposed parallel nonlinear transforma-
tion (PNT)-based nonlinear transformation can achieve better
practical performance and is preferable to the conventionally
applied PCA-based linear transformation.

APPENDIX A
PROOF OFPROPERTY2.1

This property can be readily proved by iteratively using the
neutral property ofxk1. The reader is referred to [37, pp.196]
for more details.

APPENDIX B
PROOF OFPROPERTY2.2

Due to the completely neutral property, we havexk1 ⊥ wk,
1 ≤ k ≤ K, where⊥ denotes independence. For theK-
dimensional vectorxr⊎r+19,

1) When1 ≤ k < r, it can be recognized that the elements
in x

r⊎r+1
k1 are identical to those inxk1. The only differ-

ence betweenwr⊎r+1
k andwk is thatwr⊎r+1

k contains
elementxr+xr+1

1−sk
whilewk contains[ xr

1−sk
, xr+1

1−sk
]. Based

on these facts, we can immediately show thatx
r⊎r+1
k1 is

independent of all the elements inwr⊎r+1
k except for

xr+xr+1

1−sk
. On the other hand, we also have

x
r⊎r+1
k1 ⊥ wk ⇒ x

r⊎r+1
k1 ⊥ [ xr

1−sk
, xr+1

1−sk
] (18)

⇒ x
r⊎r+1
k1 ⊥ xr+xr+1

1−sk
, (19)

Hence, it can be proved thatxr⊎r+1
k1 is independent of

xr+xr+1

1−sk
and, therefore,xr⊎r+1

k1 is neutral for1 ≤ k < r.
2) Whenr < k < K, wr⊎r+1

k = wk and the distinct ele-
ments inxr⊎r+1

k1 andxk1 arexr + xr+1 and [xr, xr+1],
respectively. For the same reasoning, we can also prove
thatxr⊎r+1

k1 is neutral forr < k ≤ K.

Based on these, we conclude thatx
r⊎r+1
k1 is neutral for1 ≤

k ≤ K andxr⊎r+1 is completely neutral.

9We use similar notation as defined at the beginning of Sec. II.

APPENDIX C
PROOF OFINDEPENDENCE AFTERPNT

1) Independence within Subvectorui: According to the
PNT scheme in Alg. 2, at theith iteration, we obtain a new
vectorxi = [x1,i−1 + x2,i−1, x3,i−1 + x4,i−1, . . .]

T, where we
denote thelth element in thexi as xl,i and definex1 = x.
With Property 2.2 (the aggregation property), it can be readily
shown thatxi is completely neutral for anyi.

In the ith iteration, the elements inui are ul,i =
x2l−1,i

x2l−1,i+x2l,i
. For any two elementsum,i andun,i (we assume

m < n here), we have the following relation

[. . . , x2m−1,i, x2m,i]
T ⊥ [. . . , w2n−1,i, w2n,i, . . .]

T, (20)

which is due to the completely neutrality ofxi. Here,
w2n−1,i =

x2n−1,i

1−s2m
. By recognizingum,i =

x2m−1,i

x2m−1,i+x2m,i

and un,i =
x2n−1,i

x2n−1,i+x2n,i
=

w2n−1,i

w2n−1,i+w2n,i
and denoting

ūm,i = 1 − um,i and ūn,i = 1 − un,i, the relation between
[um,i, ūm,i, un,i, ūn,i]

T and [x2m−1,i, x2m,i, w2n−1,i, w2n,i]
T

can be presented as

[um,i, ūm,i, un,i, ūn,i]
T = H

(
[x2m−1,i, x2m,i, w2n−1,i, w2n,i]

T
)
. (21)

The Jacobian matrix of the above transformation is

JH =

[
A 0

0 B

]
, (22)

where

A =




∂um,i

∂x2m−1,i

∂um,i
∂x2m,i

∂ūm,i
∂x2m−1,i

∂ūm,i
∂x2m,i



 andB =




∂un,i

∂w2n−1,i

∂un,i
∂w2n,i

∂ūn,i
∂w2n−1,i

∂ūn,i
∂w2n,i



 .

(23)

By the principles of variable substitution, we have

f(x2m−1,i, x2m,i, w2n−1,i, w2n,i)

= | det(JH) | f(um,i, ūm,i, un,i, ūn,i)

= | det(A) || det(B) | f(um,i, ūm,i, un,i, ūn,i).

(24)

Similarly, the following relations also hold

f(x2m−1,i, x2m,i) = | det(A) | f(um,i, ūm,i)

f(w2n−1,i, w2n,i) = | det(B) | f(un,i, ūn,i).
(25)

Combining (20), (24), and (25), we can obtain

f(um,i, ūm,i, un,i, ūn,i) = f(um,i, ūm,i)f(un,i, ūn,i) (26)

and infer thatum,i ⊥ un,i. Hence, the elements within the
group ui are mutually independent. Note that this proof is
different from that shown in [32], as no permutation property
of x is used.

2) Independence between Subvectorsui and uj : In Al-
gorithm 2, each iteration yields one subvectorui based on
xi. Taking two arbitrary subvectorsui anduj (we suppose
i < j) and selecting arbitrary elementsup,i anduq,j from each
subvector, respectively, we have the following transformation

[up,i, uq,j , ūq,j ]
T = G

(
[up,i, x2q−1,j , x2q,j ]

T
)
, (27)

whereuq,j =
x2q−1,j

x2q−1,j+x2q,j
and ūq,j = 1 − uq,j . Similar as

the proof procedure in Sec. C-1, we get the Jacobian matrix
of the transformationG as

JG =




1 0 0
0

C
0



 , C =




∂uq,j

∂x2q−1,j

∂uq,j
∂x2q,j

∂ūq,j
∂x2q−1,j

∂ūq,j
∂x2q,j



 . (28)
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With the fact10 that up,i ⊥ [x2q−1,j , x2q,j ]
T, we have

f(up,i, uq,j , ūq,j ) =
1

| det(C) |
f(up,i, x2q−1,j , x2q,j)

=
1

| det(C) |
f(up,i)f(x2q−1,j , x2q,j).

(29)

In addition to this, we also have

f(x2q−1,j , x2q,j) =| det(C) | f(uq,j , ūq,j). (30)

Thus, substituting (30) into (29), we finally get

f(up,i, uq,j , ūq,j) = f(up,i)f(uq,j , ūq,j), (31)

which indicatesup,i ⊥ uq,j . Then it can be concluded that
any two subvectors are mutually independent.

Combining the conclusion of independence within and
among the subvectors, the mutual independence of the element
variables inu is proved.
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[64] G. J. Székely and M. L. Rizzo, “On the uniqueness of distance
covariance,”Statistics & Probability Letters, vol. 82, no. 12, pp. 2278–
2282, 2012.

[65] T. Minka, “The lightspeed matlab toolboxes.” [Online]. Available: http:
//research.microsoft.com/en-us/um/people/minka/software/lightspeed/

[66] F. T. Luk and S. Qiao,A fast singular value algorithm for Hankel
matrices. Boston, MA, USA: American Mathematical Society, 2003,
pp. 169–177.

[67] S. Shwartz, M. Zibulevsky, and Y. Y. Schechner,ICA Using Kernel En-
tropy Estimation with NlogN Complexity. Springer Berlin Heidelberg,
2004, ch. Independent Component Analysis and Blind Signal Separation,
pp. 422–429.

[68] V. Laparra, G. Camps-Valls, and J. Malo, “Iterative Gaussianization:
From ICA to random rotations,”IEEE Transactions on Neural Networks,
vol. 22, no. 4, pp. 537–549, April 2011.

[69] W. B. Kleijn, A basis for source coding, 2010, KTH lecture notes.
[70] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.

Kluwer Academic Publishers, 1991.
[71] W. R. Gardner and B. D. Rao, “Theoretical analysis of thehigh-rate

vector quantization of LPC parameters,”IEEE Transactions on Speech
and Audio Processing, vol. 3, no. 5, pp. 367 –381, sep 1995.

[72] Z. Ma and A. Leijon, “Modeling speech line spectral frequencies with
Dirichlet mixture models,” inProceedings of Interspeech, 2010.

[73] Y. Lee, W. Jung, and M. Y. Kim, “GMM-based KLT-domain switched-
split vector quantization for LSF coding,”IEEE Signal Processing
Letters, vol. 18, no. 7, pp. 415–418, July 2011.

[74] L. Wang, Z. Chen, and F. Yin, “A novel hierarchical decomposition
vector quantization method for high-order LPC parameters,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 1,
pp. 212–221, Jan 2015.

[75] S. Chatterjee and T. V. Sreenivas, “Predicting VQ performance bound
for LSF coding,”IEEE Signal Processing Letters, vol. 15, pp. 166 –169,
2008.

[76] M. A. Ramirez, “Intra-predictive switched split vector quantization of
speech spectra,”IEEE Signal Processing Letters, vol. 20, no. 8, pp.
791–794, Aug 2013.

[77] S. Lloyd, “Least squares quantization in PCM,”IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[78] Y. H. Kim and A. Ortega, “Quantizer design for energy-based source lo-
calization in sensor networks,”IEEE Transactions on Signal Processing,
vol. 59, no. 11, pp. 5577–5588, Nov 2011.

[79] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–
95, Jan. 1980.

[80] Y. Koren, I. Yavneh, and A. Spira, “A multigrid approachto the
scalar quantization problem,”IEEE Transactions on Information Theory,
vol. 51, no. 8, pp. 2993–2998, Aug 2005.

[81] S. Chatterjee and T. V. Sreenivas, “Low complexity wideband LSF
quantization using GMM of uncorrelated Gaussian mixtures,” in 16th
European Signal Processing Conference (EUSIPCO), 2008.

[82] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
“A review of classification algorithms for EEG-based brain-computer
interfaces,”Journal of Neural Engineering, vol. 4, no. 2, p. R1, 2007.

[83] H. Cecotti and A. Graser, “Convolutional neural networks for P300
detection with application to brain-computer interfaces,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3,
pp. 433–445, March 2011.

[84] A. Subasi, “EEG signal classification using wavelet feature extraction
and a mixture of expert model,”Expert Systems with Applications,
vol. 32, no. 4, pp. 1084 – 1093, 2007.

[85] Z. Ma, Z.-H. Tan, and S. Prasad, “EEG signal classification with super-
dirichlet mixture model,” inProceedings of IEEE Statistical Signal
Processing Workshop, Aug. 2012, pp. 440 – 443.

[86] G. Xu, J. Han, Y. Zou, and X. Zeng, “A 1.5-D multi-channelEEG
compression algorithm based on NLSPIHT,”IEEE Signal Processing
Letters, vol. 22, no. 8, pp. 1118–1122, Aug 2015.

[87] “BCI competition III,” http://www.bbci.de/competition/iii.
[88] Z. Ma, Z.-H. Tan, and J. Guo, “Feature selection for neutral vector in

EEG signal classification,”NEUROCOMPUTING, vol. 174, pp. 937–
945, Jan. 2016.

[89] T. N. Lal, M. Schroder, T. Hinterberger, J.Weston, M. Bogdan, N. Bir-
baumer, and B. Scholkopf, “Support vector channel selection in BCI,”
IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1003–
1010, Jun. 2004.

[90] H.-I. Suk and S.-W. Lee, “A novel Bayesian framework fordiscrimina-
tive feature extraction in brain-computer interfaces,”IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 286–
299, Feb 2013.

[91] “DARPA-TIMIT,” Acoustic-phonetic continuous speech corpus, NIST
Speech Disc 1.1-1, 1990.

[92] C. Cortes and V. Vapnik, “Support-vector networks,”Machine Learning,
vol. 20, no. 3, 1995.

[93] X. Huang, L. Shi, and J. A. K. Suykens, “Support vector machine
classifier with pinball loss,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 36, no. 5, pp. 984–997, May 2014.



14

[94] S. Nan, L. Sun, B. Chen, Z. Lin, and K. A. Toh, “Density-dependent
quantized least squares support vector machine for large data sets,”IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no. 99,
pp. 1–13, 2015, accepted and to appear.

[95] C.-C. Chang and C.-J. Lin., “LIBSVM: a library for support vector
machines,”ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 17, pp. 1–27, 2011.

Zhanyu Ma has been an Associate Professor at Bei-
jing University of Posts and Telecommunications,
Beijing, China, since2014. He is also an adjunct
Associate Professor at Aalborg University, Aalborg,
Denmark, since2015. He received his Ph.D. degree
in Electrical Engineering from KTH (Royal Institute
of Technology), Sweden, in2011. From 2012 to
2013, he has been a Postdoctoral research fellow in
the School of Electrical Engineering, KTH, Sweden.
His research interests include pattern recognition
and machine learning fundamentals with a focus on

applications in multimedia signal processing, data mining, biomedical signal
processing, and bioinformatics.

Jing-Hao Xue received the Dr. Eng. degree in signal
and information processing from Tsinghua Universi-
ty in 1998 and the Ph.D. degree in statistics from the
University of Glasgow in2008. Since2008 he has
worked in the Department of Statistical Science at
University College London as a Lecturer and Senior
Lecturer. His current research interests include sta-
tistical classification, high-dimensional data analysis,
computer vision, and pattern recognition.

Arne Leijon is a Professor in Hearing Technology
at the KTH (Royal Inst of Technology) Sound and
Image Processing Lab, Stockholm, Sweden, since
1994. His main research interest concerns applied
signal processing in aids for people with hearing im-
pairment, and methods for individual fitting of these
aids, based on psychoacoustic modelling of sensory
information transmission and subjective sound qual-
ity. He received the M. S. degree in Engineering
Physics in1971, and a Ph.D. degree in Information
Theory in 1989, both from Chalmers University of

Technology, Gothenburg, Sweden.
Zheng-Hua Tan is an Associate Professor in the
Department of Electronic Systems at Aalborg U-
niversity, Aalborg, Denmark,since May2001. His
research interests include speech and speaker recog-
nition, noise-robust speech processing, multimedi-
a signal and information processing, human-robot
interaction, and machine learning. He has served
as an Editorial Board Member/Associate Editor for
Elsevier Computer Speech and Language, Elsevier
Digital Signal Processing and Elsevier Computers
and Electrical Engineering. He was a Lead Guest

Editor for the IEEE Journal of Selected Topics in Signal Processing.
Zhen Yang received the PhD degree in signal
processing from the Beijing University of Posts and
Telecommunications. He is a associate professor of
computer science and engineering at Beijing Uni-
versity of Technology. His research interests include
data mining, machine learning, trusted computing,
and content security. He is also a senior Member of
the Chinese Institute of Electronics and a member
of the IEEE.

Jun Guo received B.E. and M.E. degrees from
Beijing University of Posts and Telecommunications
(BUPT), China in 1982 and 1985, respectively,
Ph.D. degree from the Tohuku-Gakuin University,
Japan in1993. At present he is a professor and a vice
president of BUPT. His research interests include
pattern recognition theory and application, infor-
mation retrieval, content based information securi-
ty, and bioinformatics. He has published over200
papers on the journals and conferences including
SCIENCE, Nature Scientific Reports, IEEE Trans.

on PAMI, Pattern Recognition, AAAI, CVPR, ICCV, SIGIR, etc.


