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Abstract—In this paper, we propose novel strategies for neu-

tral vector variable decorrelation. Two fundamental invertible
transformations, namely serial nonlinear transformation and
parallel nonlinear transformation, are proposed to carry out
the decorrelation. For a neutral vector variable, which is rot
multivariate Gaussian distributed, the conventional principal
component analysis (PCA) cannot yield mutually independen
scalar variables. With the two proposed transformations, ehighly
negatively correlated neutral vector can be transformed toa set
of mutually independent scalar variables with the same degres
of freedom. We also evaluate the decorrelation performancefor
the vectors generated from a single Dirichlet distribution and
a mixture of Dirichlet distributions. The mutual independence
is verified with the distance correlation measurement. The d@-
vantages of the proposed decorrelation strategies are intsively
studied and demonstrated with synthesized data and practa
application evaluations.

Index Terms—Neutral vector, neutrality, non-Gaussian, decor-
relation, Dirichlet variable

I. INTRODUCTION

shape is symmetric). Therefore, such data are non-Gaussian
distributed [14]. It has been demonstrated in many recent
studies that explicitly utilizing the non-Gaussian chéesistics

can significantly improve the performance in practice [3], [
[8]-{20].

One typical type of non-Gaussian distributed data, among
others, is the one that represents proportions. In the @ty
used mixture modeling technique [3], [21], [22], the weight
factors denote the proportions of each mixture component
in the whole mixture model. In the text mining area, the
Dirichlet distribution is used to model topic relations., the
proportions with which a specific topic appears in the total
set of documents [23]-[25]. For analyzing color images, the
normalized RGB space, which is often used as pure color
space by discarding the illuminance [26]-[29], represéms
proportions of RGB channels in the whole color space. In
time series signal processing [30], [31], the differencavieen
two adjacent line spectral frequencies (LSFs) conveys the
proportion of frequency distance (in angle) to half of thétun

In many pattern recognition and machine learning areasicle’s circumference. The LSFs are less sensitive to quan

Gaussian distributions, among other probability distitms,

tization noise than other representations and are widedyg us

have been ubiquitously applied to describe data distobuti in speech coding [30], [32], [33]. Also, the parameters ia th

with the assumption that these data are Gaussian distributaltinomial distribution [34], [35] represent probakis for

ed [1]. However, in many applications the distribution otada each particular event to happen in the trial sequence. Ij [36
is asymmetric or constrained [2]. For example, the pixalgal a novel online kernel learning algorithm, called QKRLS, was
in a color or grey image [3], [4], the ratings assigned tdeveloped, which is computationally efficient and can beluse
an item in collaborative filtering [5]-[7], and the epigeet for online regression and classification.

mark values in epigenome-wide-association studies [§], [9 Data representing proportions can be denoted by & 1
have strictly bounded suppore.@, = € [0,¢]). In speech dimensional vectok = [z1,...,zx, Tx+1]" with K degrees
enhancement, the spectrum coefficients [10], [11] are serof-freedom. Each element, is nonnegative and the sum of
bounded i(e., x € (0,4+00)). The Il norms of the spatial all the elements i is a constant (usually can be normalized
fading correlation [12] and the yeast gene expressions [18]1). Connor et al. [37] introduced the concept “neutrality” to
are equal tal and such data convey directional propeitg.( investigate a particular type of independence for the elgme
[Ix||2 = 1). A common property of the aforementioned data x. Even though the resulting neutral vector represents a par-
is that, these data havet onlya specific support rangbeut ticular type of independence after a substraction-nomattn
alsoa non-bell distribution shape. Apparently, these propsrtioperation [38], the elements in the neutral vector are niiytua
do not match the natural properties of a Gaussian distdbutihighly correlated, or rather, negatively correlated. itntaly,

(i.e., the definition domain is unbounded and the distributicifi one proportion increases, then the remaining propostion
would decrease correspondingly, since the summation of all
the proportions is a constant.

For correlated random vector variables, principal compbne
analysis (PCA) is a popular technique used for applications
such as data decorrelation, dimension reduction, lossy dat
compression, and feature extraction [21], [39], [40]. It is
also known as Karhunen-Loéve transform (KLT) in transform
coding [41], [42]. It can be considered as an orthogonal
transformation of the correlated variables into a set of un-
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correlated scalar variables, which are named as princigdgorithm 1 Serial Nonlinear Transformation
components. This transformation is linear and invertiFEA  Input: Neutral vectorx = [z1, ..., 1, Tx41]"
is the optimal decorrelation strategy for multivariatesGsian ,Seept;ft =t
distributed data [21]. For data from a multivariate-Gaassi Assign the value of thest element ofx; t0 u;; .
distribution, the resulting transformed scalar variatsles not Norarze s romi e Biomenrs 1 ey 71, removed:
only mutually uncorrelated but also mutually independEot.  until i == K
data from other sources, PCA can only guarantee that th8“Put Transformed vecton =
scalar variables are mutually uncorrelated.

Independent component analysis (ICA) is a computational . .
methog applied to szparate a multivariate vector va?iaﬁke i the whole observation set. In other words, the decorrelatio
a set of additive and mutually independent scalar variab

(sources) [43], [44]. With the assumption that the sour d with PCA which . : lue d i
signals are independent of each other and the source sigr‘@t%pare wit which requires eigenvaiue decomposition

are non-Gaussian distributed, ICA attempts to decorraiate! (e covariance matrix. ICA has_ even higher compu_tatlongl
multivariate vector variable into mutually independeninno _COStS than PCA. The dec_orrelatlon of_a \_/ector variable is
Gaussian scalar variables. ICA can be applied to severdisfie\mpf)rtam_ and very helpml N many appllcat|ore§g, source
such as face recognition [45], blind source separation,[4§ ding, dimension reduction, and.feature sellectlon [
and wireless communications [47]. ence, the proposeq decorrellatlon strategies are novel and
A neutral vector has a bounded support [c]) and is useful for the da_ta with ngutrallty._ ) .
negatively correlated (the off-diagonal elements in theace The rest of this Paper 1 organized as follows: we review
ance matrix is negative). Thus, it cannot follow a multiedet t_he concept. of neutrallty n Seq. Il. The proposed transéorm
fion strategies are introduced in Sec. Ill where the proof of

Gaussian distribution. In this case, applying PCA to néutr wally ind d i< al ided. In Sec. IV tak
vector can only yield mutually uncorrelated but not mutyjallmu ually Independence IS aiso proviged. In Sec. 1V, we lake
the Dirichlet distribution as an example for neutral vestor

independent scalar variables. Although ICA can yield miljua . ) ) .
P g y it Comprehensive evaluations of the proposed strategies with

independent non-Gaussian scalar variables, it cannogiwes : ,
the bounded support property. By considering the nemrali?ymhes'zed a_nd rgal data are presented in Sec. V. We draw
ome conclusions in Sec. VI.

the highly correlated variables in a neutral vector can 5
decorrelated into a set of independent variables with neali Il NEUTRAL VECTORVARIABLE
transformation. Moreover, such procedure does not depend o '
the eigenvalue decomposition of the covariance matrix. Assuming we have a random vector varialle= [z1, 22,
In this paper, we propose two fundamental transformation. , 2, £x 1], Wherez;, > 0 and> ;' @y = 1. Letxyy =
strategies, namely the serial nonlinear transformatiddT(S [71,- - - ,xe]" andxgz = [@p41, ..., 2x41]". The vectorxy,
and the parallel nonlinear transformation (PNT), to deglate is neutral ifx;; is independent ofw;, = 1= —xy», for 1 <
neutral vectors. These invertible nonlinear transforaregitake k < K [37], [54], wheres;, = Zle x; andsg = 0. If for all
the advantages of the completely neutrality. We prove thiatx; are neutral, thex is defined as @ompletely neutral
the above mentioned nonlinear transformations can ddatere vector [37], [55]. A neutral vector witliK + 1) elements has
the neutral vector variable into a set of mutually indeperideX” degrees of freedom.
variables. Particularly, if the neutral vector variabl®isichlet The idea of neutrality was introduced by Connor et al. [37]
distributed, each of the transformed variables followshib&a for describing constrained variables with the property men
distribution, which is actually a special case of the Dikith tioned above. It was originally developed for biologicapbp
distribution with two parameters. cations. According to the above definition, the neutral @ect
Although nonlinear kernel functions can be introduced toonveys a particular type of independence among its elesnent
carry out kernel PCA [48], [49] or kernel ICA [50], [51] even though the element variables themselves are mutually
such that the vector variable decorrelation can be impléetennegatively correlated. A complete neutral vector varidids
in a nonlinear manner, the proposed nonlinear transfoomatia set of properties, we list those will be used here:
strategies are different from these ones. In kernel PCAytinp Property2.1 (Mutually Independencefor completely

|t§ategies are model independent. Therefore, the proposed
correlation strategies reduce the computational codtple

vectors are firstly mapped into a feature space via a kerm&utral vectorx, definez, = 179;:;7 and z; = x1, we have
function, and then the standard PCA is applied to conduct the z,, ..., zx are mutually independent.

decorrelation [21, Ch. 12.3]. Similar approaches are adpli Property2.2 (Aggregation Property)Mutually
to kernel ICA. Therefore, kernel PCA and kernel ICA eacindependence For a completely neutral vestowhen adding
contain two stages, which are nonlinear kernel mapping aady adjacent elements. andz,.;; together, the resultingy -
linear decorrelation (in the feature space). In contraghi® dimensional vectox™" ! = [x1,..., 2, + Try1, ..., T 11]
the proposed nonlinear transformation strategies, (SNT is a completely neutral vector again.
and PNT) do not require kernel mapping. It is a one-stagéne proofs of the above properties can be found in Appendix A
nonlinear operation in the decorrelation implementation. and B.

For a neutral random vector, the decorrelation strategiesUsually, the dimensions in a completely neutral vector
are based on each observed veanoly and does not require should be equally treated. In other words, the positions of
any statistical informatione(g, the covariance matrix) of the dimensions do not affect the properties of the vector. In
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Fig. 1. An example of SNT withk = 5. The transformed variables are Fig. 2. An example of PNT with' = 5. The transformed coefficients are
Ul = 31,1, U2 = T12, U3 = T1,3, U4 = 1,4 andus = x1 5. T;,; denotes U1 = @1,1/T1,2, u2 = 3,1/T22, U3 = ¥5,1/73,2, u4 = T1,2/T1,3 and
the i*" element inx;. N is thel;-norm normalization. us = z1,3. R represents the reciprocal operation.

order to explicitly convey this fact, we make the following®- Serial Nonlinear Transformation

definition: For an exchangeable completely neutral vector variable wit

K degrees of freedom, if we process the vector variable

with the SNT strategy described in Algorithm 1, thé+ 1

dimensional vector variabla is transformed to a vecton

with K variables. TheseK scalar variables are mutually
In the field of statistical analysis, a typical variable whicindependent.

has the above mentioned properties is the Dirichlet vagiabl The proof of mutually independencewfis straightforward.

For the Bayesian analysis of mixture models [21], [22], thi the transformed vectou, the first element; = x, = z;.

weighting factors of the mixture components are usuallihe second element af is

Definition For a completely neutralvector x, if arbitrarily
permuted version ok is still completely neutralthen this
vector isexchangeably completely neutral

modelled by a Dirichlet distribution. Recently, the Dirich I )
let process €.9, [56], [57]) was applied for nonparametric L=

Bayesian analysis. If we represent the Dirichlet procesh wiSimilarly, we have

the so-called stick-breaking process [56], the indepecelen 3 s

among different generating steps can be expressed ekplicit us = T mp =y = % @

T—s1

as a neutral vector with infinite dimensionality. The Ditieth
process is the cornerstone of non-parametric Bayesiagsisal More generally,
and applied to a variety of practical signal and featureyasisl =k

we can obtain that

1—-sk—2 Tk
problems. Thus, the concept of neutral vectors is very lisefu Ry e @
in many signal processing, pattern recognition, and other _ e )
practical applications. According to Property 2.1, Eqg. 3 shows that tRevariables

in u are mutually independent. Since the SNT is invertible
andx hasK degrees of freedomy contains the same amount
lIl. TRANSFORMATIONS FORNEUTRAL VECTORS of information asx. An example of the SNT withk = 5 is

In most signal processing applications, the transformatiolllustrated in Fig. 1.

we use are linear or linear according to some nonlinear
kernel functions. Even though we could apply PCA directly tB. Parallel Nonlinear Transformation

the neutral random vector variable, this linear transfdioma The SNT algorithm need rounds of iterations to finalize
could only decorrelate the data, but cannot guarantee 9@ ransformation. In order to facilitate the operatiore w
independence if the data are not Gaussian. Furthermore, PCf\ 4150 carry out the nonlinear transformation in a pdralle
does not exploit the neutrality [14]. In this case, PCA is NQfay \hich is referred as the parallel nonlinear transfdiona
optimal for decorrelating neutral vectors. By considerihg (PNT). The PNT scheme is introduced in Alg. 2. At each

exchangeably complete neutrality, we propose two nonfinggsration, the dimension of the processed vector is reduced
invertible transformations, namely the serial nonlineans- by half. Finally, we still get a vector variable with K

formation (SNT) and the parallel _nonlinear transfo_rmatioH]utua"y independent element variables. An example of PNT
(PNT). Each of the proposed nonlinear transformations cain r — 5 is shown in Fig. 2. The proofs of independence
decorrelate the vector variable into a set of mutually irep -, pe found in Appendix C.

dent variables. In contrast to PCA, the transformationsato n

require any statistical informatior.@, the covariance matrix) _ )

of the observed vector set. Thus, it avoids the eigenvalfre Fast Parallel Nonlinear Transformation

analysis for PCA and, therefore, the computational coniylex According to Alg. 2, the implementation of PNT needs to
is reduced. check if the length ofx; in each iteration is even or odd.



Algorithm 2 Parallel Nonlinear Transformation [32]

Algorithm 3 Fast Parallel Nonlinear Transformation

Step 1 Initialization
Setx; = x,1=2
Step 2 Aggregation
L =length(x;,—1) — 1
if L is eventhen
for i =1,1 < L/2,l+ + do

Tii = T2-1,0—1 + z2r,i-1
_ ®2-1,i—1
Up,i—1 = T
end for
T
Xi = [iﬂl,m cee s Ty -'EL+1,L'—T1]
u;i—1 = ['Ufl,i—l 77777 ul,i—l]

else
for il =1, < (L+1)/2,1+ + do

Ty = T2—1,i—1 1T T21,i—1
Tol—1,i—1

Input: Neutral vectorx = [z1,..., Tk, zKH]T
SetT = [log, (K +1)] and P = 27 — (K + 1)
Setxzp = [x',05]" (zero-padding)’
Setx; = Xzp
fort =1,t<T,t+ + do
ulf™P = %0 /(90 e
S%tml;t to be a vector containing only the elements that are not eguahe in

u;
Xip1 = xgdd + xet:ven
end for
Output: Transformed vecton = [ul, ..., ul]".

T Op is aP x 1 vector contains only.
¥ x99 and x®"*" represent the odd and even elementsin respectively. The operator

./ denotes element-wise division. Moreover, we def{he: 1.

UL i—1 = T
end for '
Xi = [11,i 77777 11,7,]T .
endui?l =[uii-1,..., up 1] xK+1]T, it can be shown that [59]
Step 3 Stop criterion K+1
if length(x;) == 2 then f(zk,x\r) =Beta(zy; o, a;) X Dir(x\x; o\ k), (5)
. — mr 1. go to stepd (Th, X\ k) (zk k/izgqék- i) (x\ &5 0\ k)
else
- _ .
endl if i+ 1, goto step2 Wherea\k = [041, ey Q1 Oy e - - ,OéK+1] and
Step 4 Return the transformed coefficienis= [uf, ..., u?]7. r b
Beta(z;a,b) = 20 jaziq -t ®)
I'(a)T'(b)

is the beta density function, which is exactly a Dirichlensligy

This :S due to thle fact that the number ofr:alep"nentxifr; function with two parametersandb. Thus a Dirichlet variable
not always equal to power df. Inspired by the fast Fourier _ _ [z1,.... 25, 2x41]T is a neutral vector. Furthermore, the

transform [58], we design a fast PNT (FPNT) algorithm t@yiichjet variable has the aggregation property as [59]
facilitate the practical computation with zero-paddingr@-

padding is a technique usually employed to make the length it ~ Dir(xitg; aits), @
of a vector equal to a power @f by adding zeros to the end\yhere Xipj = [T1,. @ + 25, xx1)" and iy =
of the vector so that the total number of elements equals thg ... o, + aj,...,ax1]T. These properties can be easily

next higher power o. The vectorx is expanded with zero- shown by the principles of variable substitution.

padding to the next higher power af During each iteration  For the SNT strategy, the transformed variableis beta
in the transformation, the vector length reduces to halfil ungistributed as

the length of the vector reduces to two. This algorithm skips wp ~ Beta(uy; ap, Kil o), ®
the check of parity, and, therefore, the practical comjanat S

time is reduced. It is convenient to implement in praCtiC%vhich can be proved by the neutrality and the aggregation

It is worthy to note that this FPNT algorithm has Sim""’_‘&/roperties. For each loop in the PNT algorithm (Algorithm 2)

computational complexity to the PNT flow chart shown i e define a new parameter vecter for the ith loop ¢ > 2).
Alg. 2. The FPNT algorithm is introduced in Algorithm 3. The update rule fory; is the same as; anda = a. Iﬁthe

ith loop, we can obtain a Dirichlet distribution by aggregati
V. DIRICHLET VARIABLE: AN EXAMPLE

the elementss ;_1,..., 21411 together as
In the above nonlinear transformations, we did not assign -
any explicit distribution to the neutral vector variabledéed, (w1 1,221, 9 w1l
the transformation itself does not require us to know the 1=3 ©)
‘g . . . . . . L+1 L+1
specific distribution of the vector variable, with the asgtion ~DIE(@1 i1, T2,61, D Tt @i 1 02,015 D ai1)-
that the vector variable is exchangeably completely neutra ' = ' o=

In this section, we will take the Dirichlet variable as a
intuitive example. It has been showed in [54] that the Digth

distribution is characterized by neutrality and a vectavet are again Dirichlet distributed with two parameters. ThEs i

from a Dmchk_at distribution |scomplete_lyne_utral. Moreover, equivalent to a beta distribution. Thus the obtained cdeffic
any permutation of such vector (which is generated from

o o . -1 = X1 - ;1) follows a beta distribution
a Dirichelt distribution) is also aompletelyneutral vector ./~ ~ 1 1/ (@11 4 22001)

%y considering thaElL:Jg1 x1;—1 IS a neutral variable, the nor-
malized version of the remaining two variables; 1, z2 ;1

(i.e., exchangeably completely neutral). Note thatpanpletely wrio1 ~ Beta(uy i1 a1, azi-1). (10)
neutral vectormay nothave such permutation property [37]. } _
The Dirichlet density function is defined as Based on the same reasoning, we can showhat; is also
P i beta distributed. Thus, with SNT or PNT, the Dirichlet vaiea
Dir(x; a):w IT e en>0, 3" ap=1,ar>0. (4 Can be decorrelated into a vector with the same degrees of
ey Plea) ey k=1 freedom. Due to the complete neutrality, the element viatab
If we take any element;, from x and denote the remainingin the transformed vector are mutually independent, anti eac

normalized elements as,;, =

[€1,..., Tk—1,Zk+1,..., element variable is beta distributed.

1
11—z



V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The importance of independence arises in many applica-
tions. The proposed nonlinear transformation methods can
decorrelate a neutral vector variable into a set of mutually
independent scalar variables. In order to illustrate theode
relation performance, the distance correlation (DC) [¢81],
which measures statistical dependence between two random
variables, is applied to evaluate the mutual independefce o
the scalar variables after transformation. Unlike the camiyn
used Pearson correlation coefficient [62], [63], the DC is
zero if and only if the random variables are statistically
mutually independent [64]. Given a set of paired samples
(X, Y,), n=1,..., N, all pairwise Euclidean distances;
andb;; are calculated as

aij = [ Xi = X5, by =I1Ya = Y5ll, di=1,..., N. 1)
Taking the doubly centered distances, we have
Aijj =a;; —a;. —a.j +a.., Bij =bij —bi. —b.j+b., (12)

wherea;. denotes the mean of thigh row, a.; is the mean
of the jth column, anda.. stands for the grand mean of the
matrix. The same definitions apply t@, b.;, andb...

In order to evaluate the statistical significance of the DC, a
permutation test is employed. Thevalue for the permutation
test is calculated as follows: .

1) For the original datdX,,Y,,), create a new data set

(X,,Y,+), wheren* denotes a permutation of the set
{1,...,N}. The permutation set is selected randomly
as drawing without replacement;

2) Calculate a DC for the randomized data

3) Repeat the above two steps a large number of times, the

p-value for this permutation test is the proportion of the
DC values in ste that are larger than the DC from
the original data.
The null hypothesis in this case is that the two variables
involved are independent of each other (the DQ)isVhen the
corresponding-value is smaller thaf.05, the null-hypothesis
is rejected so that these two variables mo¢independent (but  °
could still be uncorrelated). Hencgsvalue greater thaf.05
indicates independence. We choose the significance level as
0.05 in the remaining parts of this paper.

In this section, we firstly compare PNT/SNT with PCA
and ICA, with evaluation of decortication performance. Nex
we demonstrate the decorrelation performance of PNT (in
terms of mutual independence) with both synthesized arld rea
data. Afterwards, we apply the proposed strategy to réal-li
applications to improve corresponding practical perfaroea

A. Comparisons of SNT, PNT, PCA, and ICA

1) Computational Complexity:In practical applications,
the computational complexity of decorrelation is usually
concern. We now analyze the computational complexities
SNT and PNT, respectively, and compare them with that g]d
the conventionally used PCA and ICA strategies.

e SNT and PNT

a (K + 1) neutral vector variable (with' degrees of
freedom) into a set oK’ independent scalar variables,
K iterations are required. During each iteration, one
summation andL division should be operated for the
purpose of normalization, wheré is the number of
elements in the intermediate vectoy. Therefore, if we
treat the summation as one floating-point operation and
the division as eight times of thatthe computational
complexity for SNT isO(NK?).

When applying Algorithm 3 to decorrelate the neutral
vector in a parallel manner, at mostog, (K + 1)]
iterations are required. Within each iteration, abayp
summations and./2 divisions with an everl. or (L +

1)/2 summations andL + 1)/2 divisions with an odd

L are needed. Therefore, with the same consideration
of the floating-point operation above, the computational
complexity for PNT isO(NK log K), sinceL = K at

the first iteration and. will reduce to (approximately)
half in each of the consequent iteration.

With the above analysis, we can conclude that the PNT
algorithm is more efficient than the SNT algorithm and
preferable in practice, although both algorithms can non-
linearly transform the neutral vector into a set of mutually
independent scalars.

PCA

The operation of PCA includes two parts: 1) eigenvalue
analysis of the covariance matrix and 2) decorrelation
of the vector. Many approaches exist for an eigenvalue
analysis. To our best knowledge, the fastest method so-far
is the method proposed by Luk et al. [66]. The computa-
tional cost is abou® (K2 log K) for a K x K covariance
matrix. For the decorrelation, multiplying the source vec-
tor with the eigenvector matrix will have computational
cost aroundO(K?). Therefore, the computational cost
for PCA is, on average) (N K?log K).

Hence, the proposed SNT- and PNT-based decorrelation
methods are more efficient than the PCA-based method.
ICA

Although robust source separation performance can be
achieved by ICA, the drawback of algorithms for carrying
out ICA is the high computational complexity [67].
Typical algorithms for ICA requires centering, whiten-
ing, and dimension reduction as preprocessing steps to
facilitate the calculation. Unlike PNT/SNT or PCA which
converges fast, the convergence of ICA also depends on
the number of iterations. Hence, analytically tractable
solution does not exist. As introduced in [68], the compu-
tational cost for ICA, withM iterations, isO(M N K?)

2) Decorrelation Performance:We generated differen-
t amounts of samples from a single Dirichlet distribution,
where the parameters are chosen todoe= [2,5,6,3,7]".
Pe proposed PNT method, which was shown more efficient
an the SNT method, was applied to decorrelate the gewerate
mples. With different amounts of data, the DCs between
possible pairs of all the transformed variables were evatla

As described in Algorithm 1, each iteration yields ONE€ 1according to T. Minka's Lightspeed Matlab toolbox [65] hipesearch.
element in the target vectar. Hence, when decorrelatingmicrosoft.com/en-us/um/people/minka/software/ligktsd/.



TABLE |
EVALUATION OF THE DECORRELATION PERFORMANCE ON THE DATA GENRATED FROM A DIRICHLET DISTRIBUTIONWITH & = (2,5, 6,3, 7]T. THE
NULL HYPOTHESIS IS THAT THE RELATED TWO DIMENSIONS ARE INDEENDENT FROM EACH OTHER(i.e., THE DC IS 0). THE FIRST ROW p-VALUES FOR
THE GENERATED DATA. THE SECOND ROW p-VALUES FOR THE DECORRELATED DATA VIAPNT. THE THIRD ROW. p-VALUES FOR THE DECORRELATED
DATA VIA PCA. THE FOURTH ROW p-VALUES FOR THE DECORRELATED DATA VIAICA. THE p-VALUES THAT ARE SMALLER THAN 0.05 ARE MARKED
WITH UNDERLINE, INDICATING THAT THE CORRESPONDING TWO RANDOM VARIABLES ARENOT INDEPENDENT.

(&) N = 100, original. (b) N = 200, original. (c) N = 400, original. (d) N = 800, original.
T1 T x3 T4 | 1 =z x3 T4 | 21 o z3 T4 T1 @ T3 T4
x1 0 0.198 0.127 0.376 =z 0 0.054 0.063 0.189 =z 0 0.010 0.004 0.069 =z, 0 0.000 0.000 0.007
x2 0 0.007 0.140 x» 0 0.001 0.024 =x» 0 0.000 0.001 2 0 0.000 0.000
x3 0 0.067 x3 0 0.047 z3 0 0.002 z3 0 0.000
T4 0 x4 0 x4 0 T4 0
(e) N = 100, with PNT. (f) N = 200, with PNT. (9) N = 400, with PNT. (h) N = 800, with PNT.
Ul u us uUg | ul u us U4g | Ul U us Ug U1 u2 us Ugq
uy 0 0.455 0.426 0.546 w1 0 0.464 0.527 0.455 wuy 0 0.583 0.484 0.668 wu; 0 0.519 0.360 0.367
U2 0 0.481 0.405 w2 0 0.621 0.625 w2 0 0.538 0.402 wuo 0 0.561 0.496
us3 0 0.495  wus 0 0.508 w3 0 0.582 wus 0 0.564
Ug 0 Ug 0 Ug 0 Ug 0
(i) N =100, with PCA. () N = 200, with PCA. (k) N = 400, with PCA. () N = 800, with PCA.
| Ul U2 us Ug Ul u us Ug Ul u us Ug | Ul u us Ug
ui | 0 0.307 0.565 0.606 w; | 0 0.142 0.511 0.625 wi | 0 0.048 0.395 0.472 w; | 0 0.00L 0.258 0.197
Uz 0  0.211 0.330 wug 0 0.075 0.152 s 0  0.003 0.084 wug 0  0.000 0.008
us 0 0.207  wus 0 0.019 s 0 0.000 wus 0 0.000
Ug 0 Ug 0 Ug 0 Ug 0
(m) N = 100, with ICA. (n) N = 200, with ICA. (0) N = 400, with ICA. (p) N = 800, with ICA.
| Ul U us Ug Ul U2 us Ug Ul U2 us Ug | Ul U2 us Ug
uy 0 0.080 0.098 0.104 wuy 0 0.124 0.126 0.136  wu; 0 0.073 0.222 0.324  wu;y 0 0.091 0.241 0.174
U2 0 0.095 0.092 w2 0 0.142  0.145 w2 0 0.123 0.134  wus 0 0.329 0.353
uz 0 0.086  us 0 0.108  wus 0 0.155  wus 0 0.114
U4 0 Ug 0 Ug 0 U4 0

and the correspondingvalues are listed in Tab. I(e), I(f), I(g), computational complexity (usuallyy/ is a number larger than
and I(h), respectively. To make extensive comparison, we allog K). At the meantime, it does not have analytically tractable
applied the PCA-based decorrelation method and the IC#elution and needs many iterations to converge.

based decorrelation method, respectively, to the gertbdata ~ When evaluating these methods with decorrelation perfor-
and summarized the decorrelation performance in Tab. I(ijtance, we only used PNT to represent the proposed nonlinear
Tab. 1(p). transformation strategies. It can be observed that both &idT

When the amount of samples is smadl.d, N = 100), ICA have good decorrelatoin performance (in terms of mutual
the generated data cannot reveal neutrality completly, ( independence measured by DC) for neutral vector variables,
in Tab. I(a), thep-value for the DC betweerr; and zo with a wide range of data amounts. PCA does not perform
is larger than0.05. This indicates that these two variablesvell for neutral vector variables wheN increases.
are independent of each other, which is in conflict with In summary, for neutral vector variable, PNT performs
the definition of neutrality.), PNT, PCA, and ICA methoddetter than PCA and ICA, in terms of both decorrelation and
can decorrelate the “semi”-neutral vector variable intoed scomputational complexity. Comparing with PNT and PCA,
of mutually independent scalar variables. As the amount A does not have an analytically tractable solution. There
sample increases, the neutrality of the data becomes cléme, ICA algorithms typically resort to iterative proceds
(i.e. all the p-values are smaller thai05 in Tab. I(b), I(c), with either difficulties or high computational load. Henees
and I(d)). It can be observed that both the PNT and the IG@mpare only PNT and PCA in the following experiments.
algorithms can yield mutually independent variables fdr al ) )
the casesptvalue is larger tham.05). In contrast, the PCA B: Synthesized Data Evaluation
algorithm can only lead to partially mutual independence. 1) Mixture of Dirichlet Distributions: In real applications,

In summary, the proposed strategy can nonlinearly transféhhe data we obtained are usually multimodally distribufte
m the highly negatively correlated neutral vector varidhte neutral vector variable is, however, uni-modally disttél
a set of mutually independent scalar variables. Compartéd wby definition. Hence, it is of sufficient interest to study the
PCA, PNT and ICA show better decorrelation performance fdecorrelation performance of the proposed method on the
the data with neutral property, with a wide range of amount&ita sampled from a mixture of Dirichlet distributions. hist
of samples. In order to remove the effect of randomness, wection, we generated a set of data from a mixture of Dirichle
ran50 rounds of simulations and the mean values are reportigtributions to evaluate the decorrelation performarides
in Tab. I. Each round of simulation includes data generatiochosen model contains two mixture components, which has
PNT decorrelation, PCA decorrelation, ICA decorrelatiamg mixture coefficients as; = 0.3, m» = 0.7, and component
DC calculation. parameters a&;; = [2,5,6,3,7]T, s = [10,2,8,2,18]". Ta-

3) Discussions\We compared the computational complexible 11 shows the decorrelation performance on the whole data
ties of SNT, PNT, PCA, and ICA in Sec. V-Al. The proposedet. The upper row illustrates the decorrelation perforcean
SNT and PNT methods have less computational complexftyr the data set withV = 50 samples. As mentioned in the
compared to PCA and ICA. In all of these methods, PNprevious section, small amount of data from a single compo-
has the least computational complexity. ICA has the largestnt cannot completely reveal the neutrality. Hence, tha da



TABLE 1l
EVALUATION OF THE DECORRELATION PERFORMANCE ON THE DATA GENRATED FROM A MIXTURE OF DIRICHLET DISTRIBUTIONS WITH
w1 = 0.3, m2 = 0.7, AND a1 = [2,5,6,3,7]T, a2 = [10,2,8,2,18]7T. THE UPPER ROW p-VALUES FOR THE DATA SET WITHN = 50 SAMPLES. THE
BOTTOM ROW: p-VALUES FOR THE DATA SET WITHN = 800 SAMPLES. THE p-VALUES THAT ARE SMALLER THAN 0.05 ARE MARKED WITH UNDERLINE,
INDICATING THAT THE CORRESPONDING TWO RANDOM VARIABLES ARENOT INDEPENDENT.

(a) Whole data set, original. (b) Whole data set, with PNT. (c) Cluster1, with PNT. (d) Cluster2, with PNT.

| 1 o T3 T4 [ w1 us us U | ui  uo uz Uy | ur  us us Uy

0 0.107 0.021 0.001 uy 0 0.031 0.029 0.000 uy 0 0.471 0.610 0.480 uy 0 0.468 0.410 0.502
0 0.246 0.019 U2 0 0.321 0.109 ug 0 0.463 0.513 U2 0 0.614 0.559

T3 0 0.359 u3 0 0.147 u3 0 0.422 u3 0 0.534
Ta 0 Ug 0 Ug 0 Ug 0
(e) Whole data set, original. (f) Whole data set, with PNT. (9) Cluster1, with PNT. (h) Cluster2, with PNT.
| ] 2 xr3 Ta | Ul U us Ug | Ul U2 us Ug | Ul U us Ug

0 0.483 0.459 0.414
0 0.531 0.474
0 0.517

0

0 0.000 0.000 0.000 ul
0 0.001  0.000 U2
0 0.023 us

0 0.000 0.000 0.000 uy
0 0.000 0.000 Uz

0 0.000  wus

0 Ug

0 0.529 0.484 0.429 ul
0 0.511  0.630 U2

0 0.469 u3

0 U4

generated from a mixture of Dirichlet distributions maylstiassuming thak is Dirichlet distributed with known parame-
have mutual independence between some pairs of dimensiters, we can apply the PNT algorithm to transfatrto u, and
(e.g, in Tab. ll(a), thep-value for the DC between, andxs  uy is beta distributed (see (10)) [32]. With the high rate tlyeor
is larger than).05, which indicates mutual independence.) lIrand entropy constrained quantization [69], we can deriag th
such case, when applying the PNT algorithm to the wholgith R bits and probability density function (PDF)-optimized
data set, it yields onlypartially mutual independence (seebit allocation strategy [72], the distortion in the domain
Tab. llI(b)). For each data cluster, the PNT algorithm workacurred by quantizing: is [32]
well, as expected (see Tab. ll(c) and II(d)). With large antou

of data (V = 800), the data generated from each mixturep, () = X « o~ & *[R-Tily )] o K\j
component have strong neutral property so that the whobe dat 2

set are highly correlated babt neutral (see Tab. li(e)). In this whereh(uy,) is the differential entropy ofiy,.

case, the PNT algorithm does not work (see Tab. II(f)). This On the other hand, if we quantize each element accord-
is because the proposed decorrelation strategy is basdwonifig to its marginal distribution (this means we replace awec
assumption of neutrality and it may not work for the data thgfuantizer by a set of scalar quantizer without decorraidfio
are not neutral. However, if we partition the data into @&uSt the distortion is

where each cluster contains data vectors that are neuteal, t

K
[1E 7 @Ir@],,

k=1

K o —2x[r-vE  n
PNT algorithm can perfectly leads to mutual independence Dul)= g x2 ¥ [romi rew), (5)
between any possible pairs of decorrelated dimensions ($&% a (K + 1)-dimensional Dirichlet distribution with param-
Tab. 1i(g) and li(h)). etera = [oy, o, ..., ax41)T, the marginal distribution for
2) Coding Gain/Removal of Memory Advantag@ne ad- the kth dimension is
vantage of the proposed nonlinear transformation strategy K
occurs in high rate quantization of vectors. In the applicaof @), ~ Beta(zg;ak, > i) (16)
i=1,i#k

source coding, the source vectors are usually highly cated|
Hence, it is natural to decorrelate the vector into a set ®hus we can measure the coding gain as the ratio of two
mutually independent scalars so that the vector quargizatidistortions
(VQ) can be replaced by a set of scalar quantization (SQ) D) o S [ —hug)]
without losing the memory advantage [69]. This can be 9= petw) ~ /T, B [0 (0 ()] :
quantified by the so-called coding gain measurement [69], P T ek
[70]. For different quantization methods, the coding gadm c In the above equation, the rati® > 1 indicates less distortion
be measured as (or proportional to) the ratio of quantimatican be achieved by the proposed nonlinear transformattos. T
distortions, with a given number of bits for quantization.  larger this ratio is, the more benefit we obtain from the trans
As shown in [71], with the high rate assumption, théormation. In order to evaluate the coding gdinextensively,
distortion incurred by quantizing a vector approaches pkm we evaluated the coding gain with different and different

an

quadratically weighted error as dimensionalities. To give an example, the inverse noniinea
g — TT R s transformation and the elements if-(u) with K = 4 are
(%) = (u = W) Ty (w)Jr(w) (u ~0), @3 Jisted in Tab. Ill. The expectation term in the denominator

where 7 is the Jacobian matrix of thiaversePNT algorithm of (17) can be calculated in a closed-form expression with
x = T(u). The distortion in thex domain, incurred by the fact thatu, is beta distributed and the parameters can be

guantizingu, can be approximated as [32] calculated from the original Dirichlet parameters (see) (b0
x more details).
Dx(u)= S E [J;(u)JT(u)L _x D(ui), (14) The coding gains withk = 4,5,6 are plotted in Fig. 3.
k=1 ’

For eachK, we randomly generated the elementsairfrom
whereK is the dimensionality ofi andE[-] denotes expecta- [10,50]. In total 100 rounds of simulations were conducted
tion operation. In the above equation, we denbte:;,) as the for each K. It can be observed that the proposed nonlinear
distortion incurred by quantization af;, in theu domain. By transformation yield a coding gain greater thiafor different



TABLE Il
THE INVERSEPNT ALGORITHM x = 7 (u) AND THE JACOBIAN MATRIX J7(u) FOR (K = 4).

T1 = Uru3u4 U3 U4 0 U1 Ug U U3
_ X xo = (1 — u1)uguy _ — U3 U4 0 (1 —ui)ua (1 —ui)usg
x=T(u): r3 = uz (1 — ug)us Ir(u) = 0 (1 — u3)ua —UoUsg wa (1 — ug)
g = (lfuz)(lfug)ugl 0 7(17’[143)71,4 7(1771,2)71,4 (1771,2)(1771,3)
. . . -
1.4F - — 095} T4 o+ o+ o+ Tt
| + =
135 I @
+ o
13F i =
*
125 e S
‘ | i ) X Original data
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Fig. 3. Coding gains for differenfC shown as box plot. The central red Fig. 4. Independence coefficients of different data €stdenotes the!”

mark is the median, the blue star mark is the mean, the edgéxe dfox are cluster obtained by the EM algorithm. The amount of samped i= 800

the 25" and 75t percentiles. The outliers are marked with red crosses. Ttamd the number of mixture components (clustersy.is

mean values are listed at bottom.

cglrﬂplexity; 2) the effort of training a codebook and searghi

Y& an index in the codebook is also exponentially increased

with the data’s dimension, which is computationally castly
specially, when the dimension is higk,g, > 10, the

above VQ is not feasible. In practical VQ implementatiorg th

frequently used method is to decorrelate the LSF parameters

into a set of mutually independent scalars so that the memory

distributed so that they are not neutral. In this case, we can
- . . : vantage of VQ over SQ can be removed [69], [70], [73].
partition the data into different clusters. By assuming tha Then, a set of SOs will be employed to replace the VO.

data assigned to each cluster were generated from a single ) . . L
Dirichlet distribution, the proposed method can be appl@d n thz Ot'ﬁs'gn of PDF;j‘?p“rgzed VQ, the tGa“SS""(‘j” ld'séz\'}l’h‘jl'
these data and results in promising decorrelation perfocaa ion an e corresponding Gaussian mixture model ( )

Decorrelation of highly negatively correlated vector [gagn haveLSbFeen mtenswel)éoapp?h:d t7OG mHodeI the d_|str|buht|orlso;
important role in many applications. In the next section, W& parameters [30], [75], [76]. However, since the

: P o parameters are in the interv@l, 7) and are strictly ordered, it
will apply this idea to real data applications. is not Gaussian distributed. For the purpose of more efficient
modeling, the LSF parameters can be converted to the so-
C. Real Data Evaluation called ALSF parameters [32], [72]. ThA\LSF parameters

Decorrelation of a highly correlated vector variable intsed are nonnegative and the summation equélsAs the ALSF
of mutually independent variables leads to many advantagesameters fit the the definition, we suppose that they follow
in real applications [21], [32], [39], [40], [69]. In this sgon, Dirichlet distributions and apply a Dirichlet mixture mdde
we evaluate the decorrelation performance of the propodg¥MM) to describe the underlying distribution of the dates A
strategy for real life data that fit the definition of neutraflata generated from a Dirichlet distribution have neutrapp
vector (nonnegative anéi norm equals one). To this end,erty, the proposed nonlinear strategy is applied to detziere
we assume such “neutral-like’data have neutral propertythe ALSF parameters. A practical VQ is carried out based on
and apply the PNT algorithm to nonlinearly transform thenthe neutrality.

The performance improvement in practical applicationdse a
presented.

1) Vector Quantization of Line Spectral Frequency Pa-
rameters Quantization of the LSF parameters of the linear
predictive coding (LPC) model is an essential part of speech
transmission [32], [73], [74]. The LSF parameters are ugual
10-dimensional for narrow band speech angtdimensional
for wide band speech. Hence, vector quantization (VQ) is
required. Generally speaking, VQ has memory, shape, and
space-filling advantages over scalar quantization (SQ), [69 e ' ' _
[73]. However, it isimpracticalto design a full vector quan- , SUel SPESkig, e Simen s SF bt S i
tizer because 1) the size of codebook increases eXPonﬁnt'?jpresent the proportions of theLSF on the unit circle [32].

with the dimension of data, which leads to high storage*we show only the results for wide band data here. Similargpetéance
can also be obtained for narrow band data.
2Hereby, we name the vector 1) contains nonnegative elenagt®) has SFor a K x K matrix, the number of all the possible pair g@
unit/constant; -norm as “neutral-like” data. without consideration of self pairs.

dimensions. This is because the memory advantage of VQ o
SQ has been removed.

3) Discussion: The synthesized data experiments abo
demonstrated the superior performance of the proposethron
ear transformation strategy for neutral data. The datargésad
from a mixture of Dirichlet distributions are multimodally

« Evaluation of Independence

The ALSF parameters args-dimensiond for wide band
speech data. It is space consuming to lisiéax 16
mutual independencg-value table. Thus, we calculat-
edindependence coefficie(C), which is defined as the
proportion of the number of mutually independent pairs
to the number of all the possible p&ire measure the
decorrelation performance. The higher this proportion is,



the better the decorrelation performanck is

As described in Sec. V-B3, we firstly applied the PNT
algorithm to theALSF parameters. As shown in Fig. 4,
the IC of PNT for the original data is small, which means
the decorrelation performance of PNT is not significant.
This is due to the fact that thALSF parameters are
multimodally distributed. We applied the EM algorith-
m [32] to partition theALSF parameters into different
clusters. With the assumption that the data in each cluster
are Dirichlet distributed (hence, they are neutral vegtors

Transmission

Convert
to ALSF

Transmission

(b) GMM-based VQ.

we applied the PNT algorithm to the data in each clustefiy. 5. Flow chart of DMM-based VQ and GMM-based VQ.

respectively. The ICs of PNT for each cluster are also
plotted in Fig. 4. It is clearly shown that most of the pairs
(more than95%) are mutually independent. Hence, the
mutual correlation for each cluster has been significantly
removed by PNT.

Improvement in VQ

Motivated by the coding gain advantage in Sec. V-B2,
we designed and implemented a DMM-based VQ based
on the neutral properties. The LSF parameters were
partitioned intoI” clusters with a DMM which contains

I mixture components [72]. With the above introduced
procedure, the PNT algorithm is applied to realize the
decorrelation for each cluster and a set of mutually
independent scalar elements are obtained. As the memory
advantage of VQ over SQ is removed by explicitly using
the neutrality, we carried out a PDF-optimized VQ for
the LSF parameters. The benefits are two fold:

1) Saving of the storage, training and searching costs.
With average bit rate (in per vector sensf)
there ardog, M bits spent on indexing the mixture
component and?, = R—log, M bits spent on VQ.
Hence, by assuming all the components are identical
to each other, a codebook witt« codewords is re-
quired for each mixture component. In the SQ case,
the bit for each clusteri.e., mixture component)
will be further placed on each dimension based on
its differential entropy. On averagéei is assigned

to each dimension and only6 x 27 is needed
for each component. Usuallyg is a number about
40 ~ 50. Hence, the required number of codewords
is significantly reduced and the storage cost is saved.
The well-known Lloyd algorithm [77], [78] and the
Linde-Buzo-Gray (LGB) algorithm [79], [80] are
usually utilized for obtaining the codebook. In the
case of VQ, the training is carried out in I&-
dimensional space. Meanwhile, the training is exe-
cuted in one-dimensional space for SQ. Obviously,
training a codebook in6-dimensional space is more
computationally costly than that in one-dimensional
space, and, therefore, the training cost is saved.
For the same reasoning, the searching cost is also
significantly reduced when replacing VQ by SQ.

2) Saving of Bit rates.The ultimate goal of PDF-

optimized VQ is to spend as less bits as possible
while satisfying the quantization distortion require-
ment. A practical VQ for the LSF parameters, which
is based on the DMM modeling and the proposed
nonlinear transformation strategy, was introduced
in [32]. With the transparent codifigriterion, we
evaluated the log spectral distortion (LSD) obtained
from the DMM-based VQ and compared it with the
state-of-the-art GMM-based VQ [81]. The GMM-
based VQ partitioned the LSF parameters irdto
clusters with the EM algorithm for GMM. Next, the
LSF parameters are decorrelated with PCA. Finally,
a PDF-optimized GMM-based VQ is carried as
well. Fig. 5 shows the designs for the DMM-based
VQ and the GMM-based VQ. The VQ performance
comparisons are summarized in Tab. IV. It is clearly
demonstrated that the DMM-based VQ improves the
performance by about bits/vector. This is due to
the fact that the proposed nonlinear transformation
strategy removes the memory advantage and makes
the implementation of practical VQ feasible. More
details can be found in [32].

2) EEG Signal Classification For persons who suffer
from neuromuscular diseases, brain-computer interface
(BCI) connects them with computers by recording and
analyzing the brain signals. As non-invasively acquired
signal, the Electroencephalogram (EEG) signal is the
most studied and applied one in the design of a BCI
system [82], [83]. For the EEG signal obtained from
one channel, various types of features have been ex-
tracted from the signal for the purpose of classification.
The marginal discrete wavelet transform (mDWT) vec-
tor, among others, is a typical feature that is widely
adopted [84]-[86]. The elements in a DWT vector reveal
features related to the transient nature of the signal.
The marginalization operation, which yields the mDWT
vector, makes the DWT vector insensitive to time align-
ment [84]. The data set used in this paper is from the
BCI competition 11l [87]. During one EEG signal trial
recording, a subject had to perform imagined movements
of either the left small finger or the tongue. The data
set contains278 trials for training and100 trials for
test. The trials in the training and test sets are evenly
distributed and labeled, respectively. For each tréall,

6The largest ratio isl, which means all the possible pairs are mutually
independent.
“Usually, I equals a power of.

8Transparent coding criterion: 1) dB LSD on average, 2) less tha%o
outliers in2 ~ 4 dB range, and 3) no outlier larger thandB.
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TABLE IV
COMPARISONS OFVQ PERFORMANCE THE NUMBER OF MIXTURE
COMPONENTS ISM = 256. 706k LSFVECTORS WERE USED FOR
TRAINING AND 258k WERE USED FOR EVALUATION THE SPEECH DATA
ARE FROM THETIMIT DATABASE [91].

VQ Type ‘ bits/vec.‘ LSD (dB) ‘ -0 olers {in %)

Classification accuracy (iff)

— 4 dB >4 dB
44 1.039 1.200 0.000
DMM-based VQ | 5 0.997 0.830 0.000
47 1.029 0.776 0.005 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
GMM-based VQ Top m channels
48 0.971 0.920 0.003 (a) Channel selection with FR and = 2.

channel data of lengtB000 samples were provided. The
mDWT vector contains nonnegative elements and has unit
l1-norm. Hence, we applied the nonlinear transformation
method to decorrelate the mDWT vector for the purposed
of classification accuracy improvement.

In our previous work [88], we have successfully applied
the proposed PNT method in EEG signal classification. SN
The so-called multivariate Beta distribution (mvBeta)- (b) Channel selection with GEE and = 2.
based classifier was introduced based on the feature - '

selection strategy in the transformed feature domain afif %, Sesfcalor setiaey conrsons oL RoSvn terc 1o

has been applied to classify the EEG signals. In thigsuits have been presented in [88].

paper, we will make thorough study to show that the

obtained gain in classification accuracy is indeed from cross validation of training accuracy is the higheSi.

the application of the PNT method to the mDWT vectors. MDWT vectors from the training set were used for the
parameter adjustment. To make fair comparisons, we
also applied PCA to decorrelate the mDWT vectors. The
mDWT vectors in the test set were transformed with the
eigenvectors obtained from the training set. The relevant
dimensions were also selected according to the variances.
The classification results were obtained with the tap
channels (ranked via FR or GEE). For each channel,
the most relevanD features (ranked via variance) were
selected. In total, we obtaine@in x D)-dimensional
feature vector to train the RBF-SVM. It can be observed
that the RBF-SVM+PNT yields the highest recognition
accuracies, for FR case and GEE case, respectively.
Figure 6 illustrates the classification results with top
m channels whenD = 2. The highest classification
rates are both obtained withh = 2, which indicates
that feature selection via variance indeed benefits the
classification. The RBF-SVM+PNT yields the highest
recognition accuracy for FR case(o with with D = 2

of which contains mutually independent elements andm = 19’20). and GEE case7(% with D = 2 and
were obtained. We sorted tHedimensions according m - 4), r.espectlvely. .

to their variances in descending order. The mDWT 3) Discussion:The LSF parameters in the LPC model and
vectors from the test set were also decorrelatdg® MDWT parameters in the EEG signal contain nonneg-
via PNT. The dimension reordering was carried oiivé elements and have unit/constannorm, respectively.
based on the variance order from the training sefithough it is difficult (or even not feasible) to prove the

According to the reordered dimensions, we selectdtgutrality for such neutral-like data, we can still expltie
the relevantD dimensions for classification. neutrality to apply the PNT-based nonlinear transfornmatio

Bert | strategy for the purpose of decorrelation and improve falct
» Performance Improvement l$)erformance. Compared with the PCA-based linear trans-

For binary classification task, the support vector machiiigation strategy, the PNT-based nonlinear transfomati
(SVM) is a classic and the widely applied classifier [leshowed advantages in both applications
[92]-[94]. We evaluated the above introduced feature '

selection strategy by comparing the classification accu-
racies. For each channel selection method, an SVM with
radial basis function (RBF) kernel was trained as the Nonlinear transformations for neutral vector variable aver
benchmark, respectively. With LIBSVM toolbox [95], weproposed and studied in this paper. By explicitly utilizitnge
adjusted the parameters in the RBF-SVM so that theeutrality of neutral vector variables, we introduced thead

Classification accuracy (iffo)

— Channel Selection
Not all the channels are closely relevant to the
classification task. Before conducting the classifi-
cation task, it is of importance to select more rel-
evant channels so that the classification accuracy
can be improved. The Fisher ratio (FR) and the
generalization error estimation (GEE) [88], [89] were
applied to select channels. The channels are ranked
according to their FRs and GEEs, respectively. In the
classification stage, we exploit the mDWT vectors
from the topm channels.

— Feature Selection
Feature selection is an important problem in EEG
signal classification [84], [88], [90]. For each select-
ed channel, the dimension of the mDWT vectobis
(the degrees of freedom i§. We applied the PNT
algorithm to decorrelate the mDWT vectors from the
training set. A set ofi-dimensional vectors, each

VI. CONCLUSIONS
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nonlinear transformation and parallel nonlinear transfation APPENDIXC

methods to decorrelate a neutral vector variable into a set o PROOF OFINDEPENDENCE AFTERPNT

mutually independent element variables. The mutual indepe 1) Independence within Subvectar: According to the
dence was theoretically proved. The computational costtseof pNT scheme in Alg. 2, at thé" iteration, we obtain a new
proposed decorrelation methods were analyzed and compq;ggltorxi = (@141 + 2,41, T3.i-1 +Tai1,...]T, where we

with the PCA-based and ICA-based approaches. It has beR)ote that” element in thex: as 2;; and definex; = x.
shown that the computational costs of the proposed methqgjgy, Property 2.2 (the aggregation property), it can be ifgad

are the smallest. , . __shown thatx; is completely neutral for any.
As a typical case, the vector variable following the Dirgthl |\ the it iteration. the elements i are wq =
distribution is a completely neutral vector. The transfedel- f2-Li__ For any two elements,, ; andu, ; (we assume

A .. . . Top—1,itT21,i . .
ement variables are all beta distributed. With the distarore m”<1n thLre), we have the following relation

relation metric, the decorrelation performance of the pezal
nonlinear transformation was demonstrated to be supesior t [ @ometi@amil L[ wan 1, wani, -], (20)
those of PCA and ICA with both synthesized and real life data

. . .. Which is due to the completely neutrality of;. Here,
Moreover, we applied the proposed nonlinear transformatio Ton 1. pietely y

HE ZT2m—1,i
U ' Lo . Won_1, = =——=t, By recognizinQu,,; = -——r—t—
two applicationsj.e., quantization of line spectral frequenc ’ L—s2m . " Tam—1,itTam i
pp q p q Y, dup; = —izn-li — wan-1i__ gnd denoting

parameters in the speech linear predictive model and Eé@ ) :cznfl,q,ar@n,i . uunfl,m;ﬁ%,,% lation bet
signal classification. Extensive experimental resultswatp ‘i = & = Um.i @NQlni = L= Un, € T€1AlON Etween
that, when carrying out decorrelation and feature seldtio  [“m.i lm.i> tin,i i @NG [Bam 1. T2m,i Wan—1.i> Wan i}
neutral-like data, the proposed parallel nonlinear tramsé- can be presented as

tion (PNT)-based nonlinear transformation can achieveebet (u,, ., @, ., un.:, a0 = H ([mm,l,“mm,“ww,l,i,wmm) . @
practical performance and is preferable to the convenliipna

applied PCA-based linear transformation. The Jacobian matrix of the above transformation is
m=[% 8] (22)
APPENDIXA
PROOF OFPROPERTY2.1 where

Oty i U i

. . . . . aum,i O“Vn,m O“n,m 0“71,,7,
This property can be readily proved by iteratively using the , _ Peam—1i Team.i } andB — [ dwon—1,  Owan;

neutral property oky;. The reader is referred to [37, pp.196] Tromo1 P

Owapn —1,i Qwanp 4

for more details. @3
By the principles of variable substitution, we have
APPENDIX B F(@2m—1,i, T2m,is Wan—1,i; Wan,;)
PROOF OFPROPERTY2.2 = | det(Tn) | F(wm,is Wm,isUn,istn,i) (24
Due to the completely neutral property, we haye L wy, = [ det(A) H_ det(B) | f(““““)
1 < k < K, where L denotes independence. For tihe  Similarly, the following relations also hold
dimensional vectox™"*1?, F@am—1,6@2m.5) = | det(A) | f(tm,is Gm.)
. . o ' ’ ’ 25
1) Whenl < k < r, it can be recognized that the elements flwan—1,i, wan,i) = | det(B) | f(un,i,Un,i)- @
in x,7"*! are identical to those i;. The only differ- Combining (20), (24), and (25), we can obtain
ence betweenv; " ™! andwy, is thatw,*"*' contains
S iy Wiy Un iy Uni) = f (Wonis Wnyi) f (Un iy U ) (26)

element% while wy, containg 2=, ~~L] Based

1—5sg 7 1—si

i : a1l : -
on these facts, we can immediately show g™ is  and infer thatu,,; L u,.. Hence, the elements within the

i 1 . ; .
'E‘Ependem of all the elements #n;*" ' except for groupu; are mutually independent. Note that this proof is
IS r4+1 . . .
—i—s, - On the other hand, we also have different from that shown in [32], as no permutation propert
1 S vy T of x is used.
X Lwe=oxg L] (8) 2) Independence between Subvectarsand u;: In Al-

= xprth L %ﬂ:l, (19) gorithm 2, each iteration yields one subvector based on

) Gl x;. Taking two arbitrary subvectors; and u; (we suppose
He+npe, it can be provedwthﬁl is independent of ; — jy and selecting arbitrary elements,; andu,_; from each
S and, thereforex) ;" is neutral forl < k < 7. gupvector, respectively, we have the following transfdiama

2) Whenr < k < K, w;*"t! = w;, and the distinct ele-

H . 11 . T — P .o P . T
ments |px2§”“ andxy, arex, + 1 and(z,, rr41], [tp.is g Ta.g]' = G (Twpis 220-15, 201" @7
respectively. For the same reasoning, we can also PrQVeore, - — @015 andi. - — 1 — . .. Similar as
9,7 — . q,7 — q,7"

,,A&J,,A_;’_l . 2 71,«'4‘1’.932 ] . .
thatxg, """ is neutral forr < k < IK the proof procedure in Sec. C-1, we get the Jacobian matrix
Based on these, we conclude th@ﬁ”+ is neutral forl <  of the transformatior as
k < K andx""*! is completely neutral. Lo o ug,  dug,
0 g } L C= { TR R } SN
0

Jg =

“q,j
Or2g—1,5  O%2q,j

SWe use similar notation as defined at the beginning of Sec. II.



With the fact® thatw, ; L [va,-1j,724.;]", We have [13]

o 1
=Tder(c) |’

fup,isug,j,q,5) (up,i,T2g—1,5,T2q,5)

(29)

_ o [14]
= [det(C) | f(up,%)f(x?q—l,] s Jf2q,1)~
. . [15]
In addition to this, we also have
f(x2q9-1,j,%2q,5) =| det(C) | f(uq,j,Uq,;)- (30)
. . . 16
Thus, substituting (30) into (29), we finally get el
f(up,m uq,jaﬂq,j) = f(up,i)f(uq,jv ﬂq,j)a (31)

[17]
which indicatesu, ; L u4 ;. Then it can be concluded that
any two subvectors are mutually independent. [18]
Combining the conclusion of independence within and
among the subvectors, the mutual independence of the etemes)

variables inu is proved.
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