
Article
HIV Vaccine Design to Targ
et Germline Precursors of
Glycan-Dependent Broadly Neutralizing Antibodies
Highlights
d Developed mammalian cell display to design germline-

targeting native-like trimers

d Germline-targeting trimers retain native-like antigenicity and

structure

d Germline-targeting trimers prime glycan-dependent HIV

bnAb responses in knockin mice

d Designed boosting schemes intended to induce bnAbs
Steichen et al., 2016, Immunity 45, 483–496
September 20, 2016 ª 2016 The Authors. Published by Elsevier
http://dx.doi.org/10.1016/j.immuni.2016.08.016
Authors

Jon M. Steichen, Daniel W. Kulp,

Talar Tokatlian, ..., Darrell J. Irvine,

Michel C. Nussenzweig,

William R. Schief

Correspondence
nussen@mail.rockefeller.edu (M.C.N.),
schief@scripps.edu (W.R.S.)

In Brief

Elicitation of broadly neutralizing

antibodies (bnAbs) is a critical HIV

vaccine goal. Steichen et al. have

developed immunogens that prime

germline-precursor B cells for the bnAb

PGT121 and can therefore initiate bnAb

induction. The authors have also

designed boosting immunogens to

shepherd the antibody maturation to

develop bnAbs.

Accession Numbers

5T3S
Inc.

mailto:nussen@mail.rockefeller.edu
mailto:schief@scripps.edu
http://dx.doi.org/10.1016/j.immuni.2016.08.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2016.08.016&domain=pdf


Immunity

Article
HIV Vaccine Design to Target
Germline Precursors of Glycan-Dependent
Broadly Neutralizing Antibodies
Jon M. Steichen,1,2,3,11 Daniel W. Kulp,1,2,3,11 Talar Tokatlian,4,11 Amelia Escolano,5,11 Pia Dosenovic,5

Robyn L. Stanfield,2,3,6 Laura E. McCoy,1,2,3 Gabriel Ozorowski,2,3,6 Xiaozhen Hu,1,2,3 Oleksandr Kalyuzhniy,1,2,3

Bryan Briney,1,2,3 Torben Schiffner,1,2,3 Fernando Garces,2,3,6 Natalia T. Freund,5 Alexander D. Gitlin,5 Sergey Menis,1,2,3

Erik Georgeson,1,2,3 Michael Kubitz,1,2,3 Yumiko Adachi,1,2,3 Meaghan Jones,1,2,3 Andrew A. Mutafyan,4 Dong Soo Yun,4

Christian T. Mayer,5 Andrew B. Ward,2,3,6 Dennis R. Burton,1,2,3,7 Ian A. Wilson,2,3,6,8 Darrell J. Irvine,4,7,9,10

Michel C. Nussenzweig,5,9,* and William R. Schief1,2,3,7,12,*
1Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
2IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
3Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
4Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
5Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
6Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
7The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge,

MA 02139, USA
8Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
9Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
10Departments of Biological Engineering and Materials Science & Engineering, MIT, Cambridge, MA 02139, USA
11Co-first author
12Lead Contact
*Correspondence: nussen@mail.rockefeller.edu (M.C.N.), schief@scripps.edu (W.R.S.)

http://dx.doi.org/10.1016/j.immuni.2016.08.016
SUMMARY

Broadly neutralizing antibodies (bnAbs) against
the N332 supersite of the HIV envelope (Env) trimer
are the most common bnAbs induced during infec-
tion, making them promising leads for vaccine
design. Wild-type Env glycoproteins lack detect-
able affinity for supersite-bnAb germline precur-
sors and are therefore unsuitable immunogens to
prime supersite-bnAb responses. We employed
mammalian cell surface display to design stabi-
lized Env trimers with affinity for germline-reverted
precursors of PGT121-class supersite bnAbs. The
trimers maintained native-like antigenicity and
structure, activated PGT121 inferred-germline B
cells ex vivo when multimerized on liposomes,
and primed PGT121-like responses in PGT121 in-
ferred-germline knockin mice. Design intermedi-
ates have levels of epitope modification between
wild-type and germline-targeting trimers; their mu-
tation gradient suggests sequential immunization
to induce bnAbs, in which the germline-targeting
prime is followed by progressively less-mutated
design intermediates and, lastly, with native tri-
mers. The vaccine design strategies described
could be utilized to target other epitopes on HIV
or other pathogens.
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INTRODUCTION

A vaccine is needed for global HIV prevention. Broadly neutral-

izing antibodies (bnAbs) directed against relatively conserved

epitopes in the otherwise highly antigenically variable HIV enve-

lope (Env) glycoprotein trimer offer important guides for vaccine

design. BnAbs have been isolated from a small minority of HIV-

infected individuals and have been shown to protect against

challenge in various animal models, but have not been induced

by vaccination in humans or standard animal models (Burton

and Hangartner, 2016; Mascola and Haynes, 2013; West et al.,

2014). BnAbs recovered from natural infection are typically high-

ly mutated (Klein et al., 2013a; Mouquet et al., 2010; Pancera

et al., 2010; Scheid et al., 2009; Walker et al., 2011; Xiao et al.,

2009; Zhou et al., 2010) and many also contain insertions and/

or deletions (Kepler et al., 2014), owing to chronic stimulation

of B cells by mutating Env. Many bnAbs also possess unusually

long or short heavy-chain complementarity determining region 3

(CDR3) loops (Scheid et al., 2011; Walker et al., 2009, 2011; Wu

et al., 2011; Zhou et al., 2010) and some are polyreactive (Haynes

et al., 2005). Less mutated bnAbs with fewer unusual features

have been engineered, offering more tractable goals for consis-

tent vaccine elicitation (Georgiev et al., 2014; Jardine et al.,

2016b; Sok et al., 2013). Overall, bnAb elicitation by vaccination

presents a major challenge.

Recombinant native-like trimers are promising HIV vaccine

components because they contain the conformational epitopes

of most known bnAbs and lack many non-neutralizing epitopes

present on less native constructs (Julien et al., 2013; Kong
mber 20, 2016 ª 2016 The Authors. Published by Elsevier Inc. 483
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et al., 2016; Kwonet al., 2015; Lyumkis et al., 2013; Pancera et al.,

2014; Sanders et al., 2013; Scharf et al., 2015). However, native-

like trimers have features thatmight impede bnAb induction; they

are highly glycosylated and expose both strain-specific neutral-

izing epitopes and non-neutralizing epitopes. Immunization with

native-like trimers in standard mouse, rabbit, and macaque

models has thus far elicited either non-neutralizing antibodies

(Hu et al., 2015) or neutralizing antibodies only against the immu-

nogen strain (de Taeye et al., 2016; Sanders et al., 2015) analo-

gous to the strain-specific responses to the seasonal flu vaccine

in humans. Induction ofHIV bnAbswill likely require development

of vaccination strategies that focus responses to relatively

conserved, sub-dominant epitopes and avoid or suppress re-

sponses to non-neutralizing and strain-specific epitopes.

Germline targeting, a vaccine priming strategy to initiate the

affinity maturation of specific germline-precursor B cells, could

help solve this immunofocusing problem by preferentially acti-

vating bnAb precursors (Dimitrov, 2010; Xiao et al., 2009). The

strategy aims to activate bnAb-precursor B cells, select produc-

tive (bnAb-like) somatic mutations, and produce memory B cells

that can be boosted subsequently to select additional produc-

tive mutations (Dosenovic et al., 2015; Jardine et al., 2015). For

some bnAbs, inferred precursors have affinity for Env from

particular HIV isolates (Andrabi et al., 2015; Doria-Rose et al.,

2014; Gorman et al., 2016; Liao et al., 2013), facilitating design

of priming immunogens based on Env from those isolates (Hay-

nes et al., 2012). For other bnAbs, efforts to identify wild-type

(WT) Env that bind inferred precursors have failed (Hoot et al.,

2013; Jardine et al., 2013; McGuire et al., 2013; Scheid et al.,

2011; Xiao et al., 2009; Zhou et al., 2010). These latter

cases require design ofmodified Env to serve as a priming immu-

nogen (Dimitrov, 2010; Pancera et al., 2010; Xiao et al., 2009;

Zhou et al., 2010). Proof of principle that designed germline-tar-

geting immunogens can activate their intended precursors and

generate a potentially boostable memory response was recently

demonstrated in knockin mice with B cell precursors for VRC01-

class bnAbs directed to the CD4-binding site (Dosenovic et al.,

2015; Jardine et al., 2015; McGuire et al., 2016). After a germ-

line-targeting prime, induction of bnAbs is expected to require

a succession of boosts, driving a succession of germinal-center

reactions, in order to select sufficient mutations (Dimitrov, 2010;

Dosenovic et al., 2015; Haynes et al., 2012; Jardine et al., 2013;

2015; 2016b; Klein et al., 2013b; Liao et al., 2013; McGuire et al.,

2013; 2016; Pancera et al., 2010; Wu et al., 2011; Xiao et al.,

2009; Zhou et al., 2010). Supporting the concept that sequential

immunization with different immunogens will be required to

develop a bnAb response, native-like trimers but not germline-

targeting immunogens were found to boost near-bnAb B cells

(bearing a mature VRC01-class bnAb heavy chain) to induce

cross-neutralizing Abs (Dosenovic et al., 2015).

Glycan-dependent bnAbs in general, and N332-supersite

bnAbs in particular, are important targets for germline-targeting

vaccine design. In a recent longitudinal study of HIV infection in

Africa, more than half of the HIV-infected individuals who pro-

duced bnAb responses produced them against glycan-directed

epitopes, the majority of which were within the N332 supersite

(Landais et al., 2016). The prevalence of N332-supersite bnAb

responses is probably due in part to the high accessibility of their

epitopes on top of the trimer.
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Among N332-supersite bnAbs, PGT121-class bnAbs have

been particularly well characterized, providing strong rationale

for germline-targeting efforts. PGT121-class bnAbs are among

the most potent bnAbs (Mouquet et al., 2012; Walker et al.,

2011), and PGT121 delivered passively to macaques protects

against SHIV (simian-human immunodeficiency virus) infection

(Moldt et al., 2012; Shingai et al., 2014) and can suppress viremia

whendelivered after infection (Barouch et al., 2013; Shingai et al.,

2013). However, PGT121-class inferred precursors show no

measureable affinity for WT Env proteins that have been evalu-

ated (Mouquet et al., 2012; Sok et al., 2013). Thus, development

of a priming immunogen for PGT121-class precursors requires

either design of a modified Env or identification of a natural Env

with PGT121-class germline-binding capacity. Crystal structures

have been determined for several PGT121-class bnAbs in com-

plex with either BG505 SOSIP native-like trimers or gp120 (Gar-

ces et al., 2015; Garces et al., 2014; Julien et al., 2013; Kong

et al., 2016; Pancera et al., 2014) and for unliganded structures

of two germline-reverted PGT121 variants (Mouquet et al.,

2012; Sok et al., 2013), providing critical information to guide

design of modified Env for PGT121-class germline targeting.

PGT121-class bnAbs interact with conformationally flexible

structures on HIV Env, including several glycans and the

V1 variable loop, making computational design of germline-tar-

geting Env challenging. Here, we developed a structure-guided

directed evolution approach, by using mammalian cell surface

display, to design PGT121-class germline-targeting stabilized-

trimer immunogens. We multimerized these trimers on lipo-

somes and evaluated trimer and liposome immunogens via bio-

physical, structural, and ex vivo B cell activation analyses. We

further evaluated germline-targeting trimers by vaccination in

PGT121 inferred-germline knockin mice. Our design process

produced design intermediates with increasing levels of epitope

modification between WT and germline-targeting trimers. These

results led to our hypothesizing prime-boosting strategies in

which a germline-targeting prime is followed by boosts with pro-

gressively less modified design intermediates and then with WT

Env, followed ultimately by a cocktail of Env variants to expand

breadth. Evaluation of several of these prime-boosting strategies

in PGT121 germline and chimeric knockin mice is described in a

related study (Escolano et al., 2016).

RESULTS

Design of Germline-Targeting gp120s
We identified mammalian cell surface display as a desirable plat-

form for engineering modified HIV Env constructs with affinity for

inferred-germline PGT121Abs because it should allow for optimi-

zation of monomeric or multimeric antigens bearing mammalian

glycans (Chen et al., 2008). Therefore, we developed a lenti-

virus-based mammalian-cell-surface-display method to carry

out directed evolution of HIV gp120monomers and gp140 trimers

(Figure S1). Structural analysis of the PGT121 interaction with

gp120 (Julien et al., 2013; Pancera et al., 2014) led us to

hypothesize that the V1 and V3 loopswere the key sites for germ-

line-targeting mutations. For selection agents, we assembled a

collection of six germline-reverted Abs, all using heavy-chain

genes VH4-59, D3-3, and J6 and light-chain genes V3-21 and

J3, with varying degrees of mutation in the D gene and L-CDR3
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Figure 1. Mammalian-Display Directed-Evolution Design Pathway for PGT121 Germline-Targeting Env-Based Immunogens
(A) Models of the PGT121 epitope are shown for each immunogen, with positions of germline-targeting mutations colored red and glycans depicted with cyan

spheres. The epitope of BG505 is colored yellow (variable loop 1) and pink (variable loop 3). The paratope of PGT122 is mapped onto the epitope of BG505 and

shown in tube representation (heavy chain, blue; light chain, purple).

(B) Binding KDs of mature, intermediately mutated, and germline-reverted variants of PGT121 for BG505 gp120 and germline-targeting gp120s, determined by

SPR. SPR KDs are the average of two or three experiments. Asterisk, complex binding kinetics; WB, weak binding; -, not done.
and with differences in the non-templated regions at the V-D and

D-J boundaries (Figure S2). Ranked by similarity to the germlineD

andL-CDR3sequences, theseAbsareGLCDR3rev1 (most similar to

germline D and L-CDR3), GLCDR3rev2, GLCDR3rev3, GLCDR3rev4,

GLCDR3rev5, and GLCDR3mat (germline V and J genes but with

mature CDR3 loops). We began by screening libraries based on

the template genes BG505 T332N gp120 and BG505 SOSIP

T332Ngp140 (Sanderset al., 2013), inwhich theconservedglyco-

sylation site at position 332 absent in BG505 was introduced

(Figure 1A). These molecules had no detectable affinity for germ-

line-revertedPGT121Abs (Figure1BandTableS1). Therefore,we

employed a ‘‘bootstrapping’’ approach: for initial screening we

utilized two variants of GLCDR3mat, one with nine PGT121 light-

chain mutations (GL+9, with 28 mM affinity for BG505 T332N
gp120) and another with three light-chain mutations (GL+3, no

detectable affinity for BG505 T332N gp120) (Figure S2).

Screening a gp120 random mutagenesis library for binding to

GL+9 led to the molecule 3MUT, with mutations T135A and

T139I, which eliminate the V1 loop glycosylation sites at positions

133 and 137 (Figure 1A). Screening a gp140 structure-guided V1

loop library for binding to GL+3 led to the isolation of 5MUT, with

four different mutations (V134Y, N136P, I138L, and D140N) in the

V1 loop. Combining the mutations in 3MUT and 5MUT produced

7MUT gp120, our first construct with quantifiable affinity for

GLCDR3mat (KD = 44 mM, Figures 1A and 1B). To improve this affin-

ity further,wescreenedagp120V1-andV3-loopsaturationmuta-

genesis library for binding to GLCDR3mat; combining the most

enriched mutations (N137F, T320F, and Q328M) with 7MUT
Immunity 45, 483–496, September 20, 2016 485



produced 10MUT, with KD z1 mM for GLCDR3mat (Figures 1A and

1B). Finally, to increase affinity andbreadth, we screened a gp120

V1 loopdirectedmutagenesis library for binding toGLCDR3rev2 and

GLCDR3rev4 (FigureS2). Thisapproachculminated in11MUTB,with

KDs of�5 mM,�3 mM, and�8 mM for GLCDR3rev1, GLCDR3rev3, and

GLCDR3rev5, respectively, and detectable but not quantifiable

binding to GLCDR3rev4 (Figure 1A, Figure S3, and Table S1).

Thus, mammalian display-directed evolution enabled the design

of germline-targeting gp120 molecules with appreciable affinity

for PGT121 germline-reverted antibodies.

Design of Stabilized and Germline-Targeting Trimers
For initial design of germline-targeting and boosting trimers, we

transferred the germline-targetingmutations from the gp120 ver-

sions of 3MUT, 5MUT, 7MUT and 10MUT onto the BG505 SOSIP

trimer platform. These molecules displayed characteristics of

native-like trimers, such as high affinity for the trimer-specific

bnAb PGT151 (Falkowska et al., 2014) and a melting tempera-

ture (Tm) similar to that of BG505 SOSIP (Figure 2A). Further-

more, all had similar monovalent affinities for PGT121 and

GLCDR3mat as their gp120 counterparts (Figure 2A), indicating

that the germline-targeting mutations were transferable to a

native-like trimer.

In addition to binding bnAb putative precursors, germline-tar-

geting trimers should have an otherwise native-like antigenic

profile, with high affinity for bnAbs and no significant affinity for

non-neutralizing antibodies directed to epitopes exposed on

monomeric gp120 but buried or conformationally absent on

the trimer. BG505 SOSIP gp140, the trimer on which our

PGT121-class germline-targeting designs were based, displays

undesirable binding to V3 non-neutralizing antibodies (Sanders

et al., 2013) (Figure 2B and Figure S4) and induces non-neutral-

izing V3 responses in mice, rabbits, and macaques (de Taeye

et al., 2016; Hu et al., 2015; Sanders et al., 2015), indicating

that this trimer samples conformational states that expose

non-neutralizing epitopes. Furthermore, BG505 SOSIP gp140

displayed onmammalian cells via a PDGFR linker showed strong

binding to trimer-structure-dependent bnAbs (PGT151 and

PGT145) (Falkowska et al., 2014; Walker et al., 2011) but also

to non-neutralizing antibodies directed to the V3 loop (4025)

(Gorny et al., 2011) and the CD4-binding site (b6) (Barbas

et al., 1992) (not shown), suggesting the coexistence on

the cell surface of native-like trimers along with non-native tri-

mers, dimers, and/or monomers. We also found that adding

germline-targeting mutations to BG505 SOSIP reduced the

already modest expression by 50% (Figure 2A). Therefore, we

sought to use mammalian-display directed evolution to improve

the antigenic profile, thermal stability, and expression of the

BG505 SOSIP trimer and germline-targeting trimers.

Our trimer improvement effort focused on two types of libraries:

(1) whole-gene saturation mutagenesis libraries and (2) a combi-

natorial library sampling the one or two most common HIV resi-

dues at Env positions where BG505 uses rare (frequency <

10%) HIV residues (Figure 2C). The rare library, which allowed

variation at eleven positions in gp120 and two in gp41,

was screened for binding to trimer-structure-preferring bnAbs

PGT145, PGT151, and PG16 and for lack of binding to non-

neutralizing antibodies b6 and 4025. This produced the Rare3

clone with five mutations in gp120 (T106E, M271I, F288L,
486 Immunity 45, 483–496, September 20, 2016
T290A,N363Q)andwith the expressionyield improvedbya factor

of �2 and the Tm increased by 1.4�C (Figure S5). The saturation

mutagenesis library was constructed in three segments, two

covering gp120 and one for gp41 (Figure 2C). Next-generation

sequencing and bioinformatics were employed to analyze the re-

sults of the first two sorts (Jardine et al., 2016a), and Sanger

sequencing was used to identify enriched clones that survived

four or five sorts. Enriched mutations from both sequencing

methods were combined and tested in soluble trimers and were

also assembled into combinatorial libraries and re-screened

with the same antibodies as before. The gp41 library produced

MD2, with an L568D point mutation that increased expression

levels by a factor of�4, andMD33, with four additional mutations

(F519S, A561P, V570H, and R585H) that increased the Tm by 4�C
and improved expression by a factor of �7, relative to BG505

SOSIP (Figure S5). The gp120 library produced MD16, with three

mutations (F223W,R304V, andA319Y) and reducedbinding toV3

non-neutralizing antibodies (Figure S4). Finally, mutations from

Rare3, MD16, and MD33 were combined to produce MD39 with

11 mutations (F223W and T290A did not improve the biophysical

properties of the trimer and were excluded; data not shown).

Compared to BG505 SOSIP.D664, the MD39 yield improved by

a factor of �7, Tm increased by 10�C, and antigenic profile

improved, with reduced V3 Ab reactivity and similar bnAb binding

except for slightly reducedaffinities forV2apexbnAbs (Figures2A

and 2B and Figure S5)

Combining theMD39mutations with germline-targeting muta-

tions produced germline-targeting trimers with improved prop-

erties. MD39-10MUT had a 6-fold-improved yield and 6�Chigher

Tm as compared to 10MUT (Figure 2A and Figure S5). Our most

advanced germline-targeting trimer, MD39-11MUTB, the only

trimer with detectable affinity for five of six PGT121 germline re-

verted variants tested (Figure 2B), had excellent yield, thermal

stability, and antigenic profile (Figures 2A and 2B). Directed evo-

lution therefore produced native-like trimers with improved po-

tential functionality via both stabilization and germline-targeting

mutations.

Structural Analysis
To ascertain whether stabilized, PGT121 germline-targeting tri-

mers maintain native-like structure, we conducted crystallog-

raphy and electron microscopy (EM) studies. Negative-stain

EM two-dimensional (2D) classification revealed that all four

trimers tested (MD39, 10MUT, MD39-10MUT, and MD39-

11MUTB) were characterized by a high fraction (R95%) of

native-like structural features and were similar in appearance

to BG505 SOSIP (Figure 3A). The MD39 mutations improved

the structural uniformity of the 10MUT trimer; the amount of

flexible, native open conformations dropped from 35% to 5%

between 10MUT and MD39-10MUT (see the Experimental

Procedures for a description of the 2D classification system).

Our best germline-targeting trimer, MD39-11MUTB, exhibited

100% native closed conformations and was indistinguishable

from BG505 SOSIP by EM. For higher resolution analysis, we

solved a 4.5 Å resolution crystal structure of MD39-10MUTA, a

variant of MD39-10MUT with one mutation added and another

removed (see Supplemental Experimental Procedures), com-

plexed with 35O22 and PGT124 (Garces et al., 2014; Sok

et al., 2013). Although this resolution precluded analyses of
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Figure 2. Design of Mutations to Stabilize BG505-SOSIP and Germline-Targeting Native-Like Trimers
(A) Biophysical properties of stabilized BG505-SOSIP and germline-targeting trimers. Antigenic profile was assessed by SPR, thermostability measurements

were made by DSC, and expression was determined as yield of purified protein relative to BG505-SOSIP made with PEI or 293Fectin transfection reagents in

293F cells. Monovalent KDs were measured by SPR with trimer ligand and Fab analyte except for PGT145 and PGDM1400, for which monovalent KDs were

determined with IgG ligand and trimer analyte. For PGT151, a one-to-one binding model gave a relatively poor kinetic fit.

(B) Antigenic profile of stabilized BG505-SOSIP and germline-targeting trimers by ELISA. Data are representative of two independent experiments, each done in

duplicate.

(C) Mammalian display-directed evolution design pathways for engineering stabilized native-like trimers.
side-chain conformations, and the interface between trimer and

PGT124 could not be analyzed due to missing V1 loop density,

the structure accurately determined the backbone positions for

most (1,659 of 1,692) residues of gp140. Superposition of the

gp140 backbones in this structure and in the 3.0 Å structure of

BG505 SOSIP N137A complexed with 3H109L and 35O22
(PDB: 5CEZ) or the 3.1 Å structure of BG505 SOSIP bound to

PGT122 and 35O22 (PDB: 4TVP) gives backbone root-mean-

square deviation values of 0.7 and 1.1 Å, respectively (Figure 3B).

We conclude that MD39-10MUTA, with 20 mutations relative to

BG505 SOSIP T332N (Figure 3C), retains an overall native-like

conformation.
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Figure 3. Structural Analysis of Stabilized Germline-Targeting Trimers

(A) Negative-stain EM analysis of the indicated trimers, in which the 2D class averages are shown and classified as percent closed native-like (blue), partially open

native-like (blue), or non-native (red) (Pugach et al., 2015). We observed ± 5% variation between experiments.

(B) The crystal structure of a stabilized germline-targeting trimer (MD39-10MUTA, in purple) is shown aligned to BG505-SOSIP (PDB: 5CEZ), in gray.

(C) Crystal structure of MD39-10MUTA (one subunit of gp41 is shown as a purple cartoon and one subunit of gp120 is shown as a green cartoon) highlighting the

MD39 stabilizing mutations in yellow spheres and germline-targeting mutations in blue spheres.
Liposome Platform
We have previously found that highly multimeric particulate

immunogens are superior to trimeric immunogens for B cell acti-

vation ex vivo (Jardine et al., 2013) and for generation of antigen-

specific memory B cells after immunization in vivo (Jardine et al.,

2015). Therefore, we developed trimer-conjugated liposomes to

improve the immunogenic potential of our germline-targeting tri-

mers. Trimerswith aC-terminal His-tagwere attached to 145-nm

mean diameter uni-lamellar liposomes (DSPC [1,2-distearoyl-sn-

glycero-3-phosphocholine], 66.5%; cholesterol, 28.5%; DGS-

NTA(Ni), 5%) via the histidine-Ni-NTA interaction. On average,

522 ± 92 trimers were attached to each liposome. Cryo-EM ex-

amination of trimer-decorated liposomes confirmed the dense

particulate array of trimers (Figure 4A). ELISA analysis on intact

vesicles indicated that trimer-decorated liposomes maintained

the native-like antigenic profile and germline-binding properties

of the soluble trimers (Figure 4B).

Ex Vivo B Cell Activation
To determine whether germline-targeting trimers or trimer lipo-

somes can specifically activate germline or mature PGT121 B

cells, we conducted ex vivo experiments with B cells harvested

from PGT121 GLCDR3rev4 knockin mice, PGT121 bnAb knockin

mice, and wild-type (WT) mice (Escolano et al., 2016) (PGT121
488 Immunity 45, 483–496, September 20, 2016
GLCDR3rev4 is referred to as GLHL121 in Escolano et al.). B cell

activation was measured by a Ca2+-flux assay (Ota et al., 2012)

for MD39, 10MUT, and MD39-11MUTB (as trimers and trimer li-

posomes) and was compared to positive control activators (ion-

omycin and IgM) and negative control activators (ovalbumin)

(Figure 5). Soluble trimers did not specifically activate germline

PGT121 B cells (Figure S6) but did activate PGT121 bnAb B cells

in a dose-dependent manner (Figure S6), with the strongest acti-

vation by MD39-11MUTB, in accordance with its higher affinity

for PGT121 as compared to MD39 and 10MUT (Figure 2C).

MD39-11MUTB liposomes activated PGT121 germline B cells

at concentrations as low as 0.3 mg/mL, whereas MD39 or

10MUT liposomes failed to activate at concentrations up to

300 mg/mL (Figure 5 and Figure S6). We conclude that MD39-

11MUTB liposomes have promise as a PGT121-class germline-

targeting prime.

Priming Germline PGT121 Responses in Knockin Mice
To determine whether germline-targeting trimers can activate

germline PGT121 B cells in vivo, we conducted priming immuni-

zations in PGT121-GLCDR3rev4 knockin mice (Escolano et al.,

2016). A combined five mice were immunized with 10MUT

SOSIP, in two separate experiments, and four mice were immu-

nized with MD39-11MUTB SOSIP. In a control experiment, six
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Figure 4. Structure and Antigenicity of Trimer Liposomes

(A) Cryo-EM image of MD39-11MUTB trimer liposomes.

(B) ELISA analysis of trimer liposomes for MD39, 10MUT, and MD39-11MUTB. Data are representative of two experiments.
micewere immunizedwith BG505 SOSIP. Twoweeks after a sin-

gle immunization, the sera was analyzed for immunogen- and

epitope-specific responses. Sera of BG505-SOSIP-immunized

mice showed no detectable binding to the BG505 SOSIP immu-

nogen (Figure 6). In contrast, 4/5 10MUT-immunized mice and

4/4 11MUTB-immunized mice showed epitope-specific serum

responses to either 10MUT-gp120 or MD39-11MUTB SOSIP

(Figure 6). We conclude that germline-targeting mutations,

such as those in 10MUT and 11MUTB, are required for activation

of inferred PGT121 germline B cells in vivo by BG505-based

native-like trimers.

Sequential Boosting Strategies
As noted above, induction of bnAbs after a germline-targeting

prime is expected to require sequential boosting with epitope

variants to mature the response. With PGT121-class germline-

targeting candidates (10MUT and 11MUTB) in hand, we devel-

oped boosting strategies aiming to select PGT121-like muta-

tions and induce bnAbs. We hypothesized that any sequential

immunization strategy starting with a germline-targeting trimer

should end with a native-like trimer, such as BG505 MD39

SOSIP, so as to select mutations productive for high-affinity

interaction with native trimers present on circulating HIV strains.

However, in order for PGT121-class antibodies to engage their

epitope including the N137 glycan on the V1 loop, such anti-

bodies must accommodate V1 loops diverse not only in

sequence but also in length and number of glycosylation sites

(Figures 7A–7C), implying that boosting with a single native-like

trimer bearing a single V1 loop might not be sufficient. Indeed,

boosting only with a BG505 native-like trimer would present a

V1 loop that is significantly shorter than most (Figure 7B).

Furthermore, modeling of variable loops and glycan conforma-

tions (not shown) suggested that diversity in the V2 and V4 loops

might potentially impact the PGT121 epitope by altering confor-

mational sampling of the V1 loop or N332 glycan, respectively

(Figures 7A–7C), and immunodominant responses involving V2

or V4 could potentially sterically interfere with PGT121-class

boosting. On the basis of these considerations, we hypothesized

that a cocktail of native-like trimers displaying diverse variants of

the V1, V2, and V4 loops, especially variants within hotspots of
more frequently occurring combinations of length and number

of glycosylation sites (Figure 7B), might be needed to select

PGT121-class mutations favoring neutralization breadth. We

therefore designed and produced four native-like trimers based

on BG505 MD39 SOSIP and containing diverse loops for V1, V2,

V4, and V5 (Figure 7C, Figures S7A and S7B, and Supplemental

Experimental Procedures). These trimers, together with BG505

MD39 SOSIP, form a five-member variable loop cocktail (VLC)

that might broaden PGT121-like responses initiated by a germ-

line-targeting trimer (Figure 7D).

We then considered the question of what intermediate boosts,

if any, might be employed between a germline-targeting prime

and a native-like trimer. Our germline-targeting design interme-

diates become increasingly more native-like in the PGT121

epitope (e.g., 7MUT, 5MUT, and 3MUT have six, four, and two

epitope mutations, respectively), but the 5MUT and 3MUTmuta-

tions are mutually exclusive (3MUT lacks two V1 glycans while

5MUT has those glycans but has four other V1 loop mutations)

(Figure 1A). These considerations impose directionality on any

boosting scheme (e.g., 7MUT should not be used after 5MUT

or 3MUT or WT and 3MUT should not be used after 5MUT),

thus limiting the number of possible schemes (Table S3). Consid-

ering only the most efficient directional schemes, those employ-

ing boosting pairs that differ by more than one mutation or

involve substantial affinity changes (Table S4), we identified a

total of seven potential boosting schemes (Figures 7E).

We sought to rank these schemes to allow prioritization for

experimental testing. We reasoned that the least mutated anti-

body that showsmeasurable affinity for all of the potential boost-

ing immunogens, GL+9, could serve as a proxy for intermediate

PGT121-class antibodies developing after a germline-targeting

prime and before a native-like boost. We further reasoned that

the affinity drop, the ratio of GL+9 affinities for two immunogens,

could be used to estimate the likelihood of successfully boosting

memory B cells when the two immunogens are used in sequence

(e.g., the GL+9 KDs for 7MUT and 3MUT are 3 nM and 1,600 nM

respectively, so when immunizing with 7MUT followed by 3MUT,

the affinity drop would be 1,600/3 = 530). One expects that a

boost immunogen with very different epitope structure from

the previous immunogen might result in too large an affinity
Immunity 45, 483–496, September 20, 2016 489
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Figure 5. Ex Vivo B Cell Activation Assay

Ca2+ flux transients detected as increases in Fluo-4 fluorescence after addition of trimer liposomes (MD39, 10MUT, MD39-11MUTB) at the indicated gp140

concentrations. Data are shown for germline-reverted PGT121 (GLCDR3rev4) B cells (top), mature PGT121 B cells (middle), and WT mouse B cells (bottom). Data

are representative of two experiments.
drop to activate memory B cells generated by the prior immu-

nogen. We estimated the affinity drops for all seven boosting

schemes (Figure 7E), ranked them according to the largest affin-

ity drop in that boosting scheme, and listed the three most likely

to succeed (Figure 7F).

In collaboratingwork, Escolano et al. (2016) evaluatedboosting

schemes following the 10MUT trimer prime in PGT121 germline

(GLCDR3-rev4) knockin mice and PGT121 mature-heavy-and-

germline-light-chain knockin mice. Relying on the directionality

of the boosting immunogens developed here, Escolano et al.

used serum ELISA against boost candidates after each immuni-

zation to select the most native-like directional boost for which at

least weak serum reactivity could be detected; that process re-

sulted in the testing of the second scheme in Figure 7F and the

finding that this scheme induces PGT121-like bnAbs with sub-

stantial breadth and potency. Although the first scheme in Fig-

ure 7F remains to be tested, the data in Escolano et al. support

the validity of the logic underlying these boosting schemes.

We note that the affinity drop analysis also provides clues as

to how to improve boosting schemes: to minimize the probability

of a boost failure at a high affinity drop, one could redesign im-

munogens to equalize the affinity drops in any given scheme.

Thus the germline-targeting design process is capable of

defining potential boost immunogens and directional boosting

schemes, and it can guide prioritization and improvement of

such schemes.
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DISCUSSION

Germline-targeting vaccine design offers the potential to initiate

the induction of specific classes of protective antibodies against

HIV or other pathogens that have eluded vaccine development.

Many protective bnAbs against HIV are directed toward

glycan-dependent epitopes on the trimeric glycoprotein spike

(Burton and Hangartner, 2016; Mascola and Haynes, 2013;

West et al., 2014). Therefore, methods are needed to develop

trimer immunogens for germline targeting and boosting of

glycan-dependent bnAbs. Trimer immunogens should be stabi-

lized, to maximize the probability of retaining native-like confor-

mational epitopes in vivo and to minimize the probability of elic-

iting non-neutralizing Abs that could potentially detract from

priming or boosting the targeted bnAb responses.

Here, we (1) developed a mammalian-cell-surface-display

directed-evolution method for optimization of multimeric anti-

gens bearing human glycans; (2) engineered stabilized HIV Env

trimers with affinity for both germline and mature PGT121-class

glycan-dependent bnAbs; (3) showed by crystallography and

EM that these trimers maintain native-like conformations; (4)

demonstrated that germline-targeting trimers multimerized on

liposomes potently activate PGT121 germline and mature B

cells ex vivo; and (5) showed that soluble germline-targeting tri-

mers can prime PGT121-class responses in vivo, in a PGT121 in-

ferred-germline knockin mouse. Our data indicate that 11MUTB
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Figure 6. Serum ELISA Binding Specificity

of PGT121 Germline-Reverted (GLCDR3rev4)

Knockin Mice Before and After a Single

Immunization with BG505 SOSIP, 10MUT

SOSIP, or MD39-11MUTB SOSIP

(A) Pre-immunization sera showed no reactivity to

the four antigens tested (10MUT gp120, 10MUT-

KO gp120, MD39, and MD39-11MUTB).

(B) Mouse sera from 2 weeks after immunization

with BG505 SOSIP showed no reactivity to BG505

SOSIP.

(C) Mouse sera from 2 weeks after immunization

with 10MUT SOSIP showed reactivity to 10MUT

gp120 and not to 10MUT-KO gp120.

(D) Mouse sera from 2 weeks after immunization

with MD39-11MUTB SOSIP showed reactivity to

the immunogen and not to MD39 SOSIP; mouse

sera from 4 weeks after immunization showed

similar results (inset).

The number of mice used for each experiment is

indicated. A duplicate experiment for (C) with two

additional mice gave similar results.
trimers and trimer-liposomes are promising candidates for

priming PGT121-class glycan-dependent bnAb responses in im-

mune systems with diverse antibody repertoires, although the

frequency of PGT121-class precursors in humans and the germ-

line-targeting affinities and/or avidities necessary to prime those

precursors remain to be determined.

This work could provide a more general template for HIV bnAb

germline-targeting than previous work on germline-targeting for

VRC01-class bnAbs directed to the CD4-binding site. VRC01-

class bnAbs generally do not depend on glycans for their activity,

evidenced by the fact that elimination of glycans surrounding the

VRC01epitopegenerally increasesneutralizationpotency (Jardine

et al., 2016b); this has led to removal of all epitope-proximal native

glycans from germline-targeting candidates (Jardine et al., 2013,

2015, 2016a; McGuire et al., 2013, 2014, 2016). However, the ac-

tivity of many HIV bnAbs requires engagement of one ormore gly-

cans within their epitope, and germline-targeting primes should

probably retain such key glycans, as was the case here with the

N332, N301, andN156 glycans. Furthermore, owing to the relative

inaccessibility of the VRC01 epitope on native-like trimers, efforts

todesignVRC01-classgermline-targetingprimeshaveconverged

on strategies to increase epitope exposure by presentation on

minimal domains rather than on trimers (Jardine et al., 2013,

2015, 2016a; McGuire et al., 2013, 2016), although boosting with

native-like trimers is anticipated to be required to mature the

response (Jardine et al., 2016b). In contrast, many bnAb proteo-

glycan epitopes are well exposed on native-like trimers, and

some are formed only on intact trimers, making native-like trimers

like thosedesignedhere thepreferredplatform for germline target-

ing. Indeed, multiple different bnAbs could potentially be primed

witha single trimerharboringmultiple germline-targetingepitopes.

Because germline-targeting vaccine design requires devel-

oping not only the vaccine prime but also boost immunogens to
mature the response in order to elicit bnAbs, we developed both

a stabilized native-like trimer (MD39) and a cocktail of native-like

trimers (VLC) that could be employed as boosts to potentially

refine and expand the breadth of responses initiated by a germ-

line-targeting prime. However, considering that memory B cells

induced by the germline-targeting prime might not be sufficiently

mutated tobeboostedbyanative-like trimer, intermediateboosts

might be needed to mature the response prior to native-like

boosts. In the process of developing PGT121-class germline-tar-

geting immunogens, we created design intermediates with

increasing levels of epitope modification between wild-type and

germline-targeting trimers. Thesemolecules are candidate boost

immunogens that, if used in sequence, offer directional and

gradual epitope changes to guide maturation of the B cell

response. We proposed seven potential sequential immunization

schemes, and our analysis of affinity drops provided a ranking of

those schemes. In a relatedpaper (Escolanoet al., 2016), a subset

of these prime-boosting schemes were evaluated in PGT121

germline knockin mice and PGT121 mature-heavy-and-germ-

line-light-chain knockin mice, and one such scheme was found

tobeeffective for inducingbnAbs inbothmousemodels, support-

ing thegermline-targeting vaccinedesignprocessdescribedhere

and encouraging its expanded use and further improvement.

Although here we have described strategies for designing

trimer immunogens with changes in the structure of an epitope

in order to prime and mature an epitope-specific response, the

ultimate success of these strategies might also require modifica-

tion of antigenic surfaces outside the epitope of interest, to mini-

mize boosting of off-target responses that might hinder or

interfere with the desired epitope-specific response.

The approaches employed here could be adapted for

immunogen design to other bnAb targets on HIV and other path-

ogens. The ‘‘bootstrapping’’ strategy of using partially mutated
Immunity 45, 483–496, September 20, 2016 491
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antibodies (such as GL+3 and GL+9) as initial selection agents

and then using antibodies closer to germline in successive

iterations could be useful for design of germline-targeting and

boosting immunogens for other bnAbs, such as HIV V2 Apex

glycan-dependent bnAbs (Andrabi et al., 2015; Gorman et al.,

2016) or influenza virus hemagglutinin stem-directed bnAbs.

Our mammalian display methods allowing directed evolution

on native-like trimers should be useful in those endeavors and

could also be used to stabilize monomeric or multimeric glyco-

protein immunogens for diverse viral vaccines.

In summary, we have developed stabilized native-like trimer

immunogens for germline-targeting and boosting of glycan-

dependent PGT121-class bnAb responses against HIV. The

immunogens and boosting schemes we created are candidates

for human vaccine testing and further optimization, and the

methods developed here are applicable to immunogen design

for other epitopes and pathogens and thus are of relevance for

future vaccine design.

EXPERIMENTAL PROCEDURES

DNA Gene Synthesis and Protein Production

Genes were synthesized by GenScript. gp120s, gp140s, antigen binding frag-

ments (Fabs), and IgGs were expressed in 293 cells and purified as described

in the Supplemental Experimental Procedures.

Library Assembly

The BG505 SOSIP whole-gene saturation mutagenesis and ‘‘rare’’ amino acid

libraries were synthesized by Integrated DNA Technologies and GenScript,

respectively. Libraries for germline targeting were created by error-prone

PCR (GeneMorph II, Agilent), site-directed mutagenesis (QuikChange, Agilent)

or two-step assembly PCR of degenerate primers with the Q5 High-Fidelity

DNA Polymerase (New England Biolabs) and cloned into a modified version

of the gateway cloning entry vector pENTR/D-TOPO (Ota et al., 2012) with

the circular polymerase extension cloning (CPEC) method (Quan and Tian,

2014) or Gibson Assembly (New England Biolabs), according to the manufac-

turer’s instructions. All libraries were then transferred to the lentiviral vector

pLenti CMVTRE3G puro Dest (Ota et al., 2012) with the LR Clonase II enzyme

mix (Thermo Scientific).

Lentivirus Production and Stable Cell Generation

293T cells cultured in Advanced DMEM (GIBCO) supplemented with 5% fetal

calf serum, GlutaMAX (GIBCO), 2-mercaptoethanol (GIBCO), and Antibiotic-

Antimycotic (GIBCO) were co-transfected with 10.8 mg pLenti CMVTRE3G

puro Dest gene library, 7.0 mg psPAX2, and 3.8 mg pMD2.G, as previously

described (Salmon and Trono, 2007). 293T cells stably expressing rtTA3G

from the pLenti CMV rtTA3G Blast vector (Ota et al., 2012) were transduced
Figure 7. Sequential Boosting Schemes Employing a Native-Like Trim

(A) Side view of a single PGT122 Fab (light blue cartoon and semi-transparent surfa

The PGT122-bound gp140 subunit is shown in wheat-colored cartoon; the V1, V

crystal structure, are shown in yellow (V1), olive (V2), teal (V4), and magenta (V5); t

shown as gray surfaces.

(B) Same model as in (A), except that glycosylation sites on the trimer have been

glycans, olive; V4 glycans, teal; N156 glycan, magenta; N332 glycan, red; all oth

(C) 2D histogram of variable loop (V1, V2, V4, and V5) length and number of glyc

individuals and obtained from http://www.hiv.lanl.govcontent/index. Frequency i

glycosylation sites for each loop of the native-like VLC trimers are indicated. Furthe

non-variable-loop positions within the N332-epitope region (Figure S7C).

(D) Basic scheme in which a germline-targeting prime (10MUT or 11MUTB) is boos

(E) Diagram illustrating seven boosting schemes employing germline-targeting des

targeting prime and before a native-like trimer; the scheme in (A) is included fo

computed from Figure 1B as described in the text, are indicated as red numbers

(F) Linear diagrams of three of the best boosting schemes as ranked by favoring
at lowMOI (< 0.1) in a T75 or T225 flask in the presence of 10 mg/mL blasticidin

and, after 24 hr, were transferred to medium supplemented with 2 mg/mL

puromycin.

Cell Surface Expression and FACS

293T cells containing the stable library were induced with doxycycline

(1 mg/mL) and harvested the next day in fluorescence-activated cell sorting

(FACS) buffer (HBSS, 1 mM EDTA, 0.5% BSA). Cells containing BG505-SO-

SIP libraries were transfected with furin 24 hr prior to induction. Cells were

stained with IgGs or Fabs for �30 min, washed with FACS buffer, and then

stained with fluorescein isothiocyanate (FITC)-labeled a-cMyc (Immunology

Consultants Laboratory). IgGs were labeled with phycoerythrin (PE)-conju-

gated a-human IgG (Sigma), Fabs containing HA epitope tags (PGT145,

PGT151, and PG16) were labeled with a-HA-PE (Miltenyi Biotec), and

Fabs containing V5 epitope tags (B6 and 4025) were labeled with a-V5-

FITC (GeneTex). Cells were sorted on a BD Influx (BD Biosciences) FACS

sorter. Approximately 2 3 105 double positive cells were collected and

expanded for approximately one week in the presence of puromycin and

blasticidin before the next round of enrichment. Once the desired popula-

tion had been obtained, chromosomal DNA was extracted from the cell cul-

ture with the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma). The

gp120 or gp140 gene was PCR amplified from the genomic DNA and in-

serted back into the pENTR vector via CPEC cloning or Gibson Assembly

and transformed into TOP10 competent cells (Invitrogen); colonies were

sequenced at Genewiz.

Next-Generation Sequencing

Sequencing and bioinformatic analysis of the BG505-SOSIP whole-gene satu-

ration mutagenesis libraries were done essentially as described previously

(Jardine et al., 2016a).

Trimer-Conjugated Liposome Synthesis and Characterization

Unilamellar liposomes comprised of DSPC:cholesterol:DGS-NTA(Ni) lipids

in a 66.5:28.5:5 mole ratio were synthesized by lipid film rehydration and

membrane extrusion, followed by post-synthesis binding of 6xHis-tagged

trimer for 2 hr at 4�C. Unconjugated trimer was removed by size exclusion

chromatography. Total conjugated trimer was quantified by ELISA in the

presence of 1% triton-X and 100 mM imidazole to fully disrupt liposomes

and Ni-6xHis interactions, respectively, for uninhibited detection via an

a-6xHis antibody. Antigenic profiles were determined by ELISA on intact

liposomes.

Ca2+-Flux Measurements and Immunizations

Details about Ca2+-flux assays and mouse immunizations can be found in the

Supplemental Experimental Procedures and in Escolano et al., 2016.

Negative-Stain EM

Purified SOSIP trimers were analyzed by negative-stain EM with a protocol

adapted from de Taeye et al., 2016.
er Cocktail and Germline-Targeting Design Intermediates

ce) bound to the BG505 SOSIP native-like gp140 trimer, based on PDB: 4NCO.

2, V4, and V5 variable loops on that subunit, modeled wherever missing in the

he N332 glycan is shown as red spheres; and the two other gp140 subunits are

decorated with Man8GlcNAc2 glycans shown as spheres (V1 glycans, red; V2

er glycans, gray), and all trimer subunits are shown as gray surfaces.

osylation sites among 3,897 unique HIV Env sequences isolated from infected

s indicated by the color scale shown for each loop. The length and number of

r elaboration of this cocktail could include accounting for sequence variation at

ted by a native-like trimer (BG505) and then by a cocktail of native-like trimers.

ign intermediates (7MUT, 6MUT, 5MUT, and 3MUT) as boosts after a germline-

r reference. Relative affinity drops (in fold affinity decrease) for each boost,

.

those with the smallest maximum affinity drop.
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DSC and SPR Methods

Differential scanning calorimetry (DSC) and surface plasmon resonance (SPR)

methods are described in the Supplemental Experimental Procedures.

Crystallization and Data Collection

Description of crystallization, data collection, and refinement can be found in

the Supplemental Experimental Procedures. Statistics for data collection

and final refinement are listed in Table S2.

ACCESSION NUMBERS

The accession number for the coordinates and structure factors for MD39-

10MUTA in complex with 35O22 and PGT124 is PDB: 5T3S.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.immuni.2016.08.016.
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