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This paper provides a framework for identifying preferences in a large network
where links are pairwise stable. Network formation models present difficulties for iden-
tification, especially when links can be interdependent, for example, when indirect con-
nections matter. We show how one can use the observed proportions of various local
network structures to learn about the underlying preference parameters. The key as-
sumption for our approach restricts individuals to have bounded degree in equilibrium,
implying a finite number of payoff-relevant local structures. Our main result provides
necessary conditions for parameters to belong to the identified set. We then develop a
quadratic programming algorithm that can be used to construct this set. With further
restrictions on preferences, we show that our conditions are also sufficient for pairwise
stability and therefore characterize the identified set precisely. Overall, the use of both
the economic model along with pairwise stability allows us to obtain effective dimen-
sion reduction.

KEYWORDS: Network formation, pairwise stability, partial identification, large net-
work.

1. INTRODUCTION

THIS PAPER PROVIDES A FRAMEWORK for studying identification—what can be learned
about parameters of interest from data—in strategic network formation models. The
framework applies to complete information games with non-transferable payoffs in which
individuals, given a particular utility function, form links with each other. Our objective
is to learn about these payoffs from observed data on network linkages. In particular,
we assume that observed networks are equilibrium networks and use pairwise stability,
proposed in Jackson and Wolinsky (1996), as the solution concept.
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A network formation model founded on a well-defined preference structure for all the
players is helpful in determining how networks develop given a particular policy or in-
centive system. In a variety of applications, the architecture of networks is thought to
influence final outcomes, and so it is important to understand how the networks them-
selves are formed. Empirically sound network formation models can also be helpful in
describing why certain networks emerge and not others, for example, tracking the effects
of policies or frictions on the kinds and shapes of networks that arise.

The problem in analyzing such strategic models is that multiplicity of solutions and
other computational difficulties are pervasive, especially when more than a handful of
agents are involved. This paper proposes a framework for studying large networks, which
achieves dimension reduction by aggregating individuals with similar network positions.
We impose restrictions on the number of links that a person would choose to have, as well
as on the cardinality of the observable characteristics. As a consequence, each individual’s
position in the network can be described as one of a finite number of possible local net-
work structures. This greatly reduces the dimensionality of the problem. The limitation
on the number of links, or bounded degree, is of course an important restriction. It makes
this framework appropriate for applications where individuals are observed to have a rel-
atively small number of connections, but not for others where it is important to have some
nodes with many links (e.g., network “hubs”).

Our approach for characterizing set-identified parameters bypasses the selection of a
particular equilibrium (when many are possible) and directly exploits the economic pre-
dictions under pairwise stability. The key idea is that each individual can be classified as
the central node (the “ego”) of one of the finite possible local network structures, which
we refer to as network types. The set of relevant types is determined by the preference spec-
ification, so, for example, a specification where only direct connections matter will lead
to a different set of types than a specification where indirect connections matter as well.
The link between the observed frequencies of these network types and their model pre-
dicted ones allows us to learn about preference parameters. A utility structure generates
a set of payoff-relevant network types, and a parameterization of the network formation
model predicts the measures or proportions of these types in the network. The inference
question then reduces to collecting all utility parameters that can predict proportions of
network types that match the proportions estimated in the data.

Developing this correspondence in a computationally feasible way represents the main
contribution of this paper. Our main result provides necessary conditions for a set of
parameters to generate a pairwise stable network with a distribution of network types
that matches the observed distribution. For preference structures that satisfy an addi-
tional restriction, we show that these conditions are sufficient as well, and so are able to
characterize the identified set precisely. Then, to implement the approach, we show that
the majority of the computation can be done through a series of quadratic programming
problems.

In part because of the difficulties indicated above, the literature on the econometric
analysis of strategic network formation models is small, but growing.1 The payoff struc-
tures we analyze are related to those contemplated in, for example, Currarini, Jackson,
and Pin (2009), Christakis, Fowler, Imbens, and Kalianaraman (2010), and (for a directed
network) Mele (2017). The most similar papers to ours are those which also use pair-
wise stability and identify a set of parameters that could be consistent with the data in

1See Graham (2015) and de Paula (2017) for recent surveys.
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any equilibrium (Sheng (2014), Miyauchi (2016), Leung (2015)).2 Relative to these pa-
pers, our proposed method does not require certain restrictions on preferences (e.g., rul-
ing out negative externalities or requiring a homophilous attribute), and it may be more
computationally tractable. A number of other papers in this literature rely on dynamic
meeting protocols for the formation of the network (Christakis et al. (2010), Mele (2017),
Badev (2013)).3  Chandrasekhar and Jackson (2014) proposed a different approach where
the network is generated from overlapping sub-graphs. Also, some recent papers consider
the estimation of dyadic link formation models (i.e., without link externalities) with a fo-
cus on disentangling homophily and node-specific heterogeneity (Charbonneau (2017),
Graham (2017), Dzemski (2014)).

Because matching models essentially aim at characterizing a bipartite graph, and hence
a particular type of network, those models are also related to strategic network forma-
tion. There is a growing literature on the econometrics of matching (e.g., Choo and Siow
(2006), Fox (2010, 2018), Galichon and Salanie (2009), Echenique, Lee, and Shum (2010),
Chiappori, Galichon, and Salanié (2016), Menzel (2015)). Our setting differs in substan-
tive aspects, however: indirect connections are payoff-relevant, utility is non-transferable,
and multiple equilibria are possible (in contrast to some models in that literature). Also
the concept of pairwise stability in matching games is related but not identical to the
Jackson and Wolinsky (1996) definition, where only one link at a time is considered.

2. NETWORK FORMATION MODEL

Our framework applies to complete information games that produce an undirected net-
work. One example is a static game in which players simultaneously announce the set of
other players they would like to be connected with, links form if they are mutually benefi-
cial, and payoffs are received.4 We use a continuum of players, i ∈N ≡ [0�μ], where μ> 0
is their total measure. This is unlike the typical setup in the empirical games literature,
but the modeling choice is natural in our setting where there is a large number of players
(Khan and Sun (2002)). Each player has some predetermined characteristic(s) Xi ∈ X
that is (are) observed by the econometrician, and player-pairs have a one-dimensional
characteristic εij that is not observed by the econometrician. Nature draws X = (Xi)i∈N
and ε= (εij)(i�j)∈N2 , and these vectors are common knowledge to all players.

The network that results from players’ actions is characterized by the adjacency map-
ping G : N ×N → {0�1}. This is a continuous graph as there is a continuum of nodes.5
Such graphs (particularly refinements known as graphings, for limits of bounded degree
graphs) are a recent development and are used as approximations for large graphs under
a well-defined metric (for a review, see Lovasz (2012)). Hence, we view the continuous
graph model as a close approximation to a model with a large but finite number of play-
ers.6

2Boucher and Mourifié (2017) developed a method that is similar to Leung (2015) but bypasses the issue of
multiplicity.

3Dynamic data on link formation are rarely available. As pointed out in Mele (2017), the meeting proto-
col therefore acts as an equilibrium selection mechanism. Additionally, Badev (2013) extended the model to
include actions beyond link formation.

4Pairwise stability can also describe the rest point of a sequential meeting process (Jackson (2009)).
5Formally, the graph consists of the adjacency mapping G and set of players N . However, we typically refer

to G as the “network.”
6To be clear, we use the word “large” in its colloquial sense when referring to a network, not in the econo-

metric sense that would imply the number of nodes is sent to infinity.
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Payoffs depend on the network configuration and covariates, and are denoted by
ui(G�X)= u(G�X;εi), where εi = (εij)j �=i. Our objective is to learn about the (paramet-
ric) utility functions u(G�X; ·) using the data on G and X.

To make the model tractable, we rely on two main assumptions about the payoffs. We
start with a restriction on network depth and total number of links.

ASSUMPTION 1: Only connections up to distance D affect utility, and preferences are such
that players will never choose more than a total of L links.

The distance above refers to the length of the shortest path between two individuals,
denoted d(i� j;G). IfD= 1, only direct connections are relevant (e.g., Currarini, Jackson,
and Pin (2009)). When D> 1, indirect connections also matter, and here most specifica-
tions in the literature use D= 2 (e.g., “friends of friends”). The limit L denotes the max-
imum number of links an individual would have (i.e., utility would be infinitely negative
if you have more than L links). This restricts our framework to networks with bounded
degree distributions, where nodes have a relatively small number of links, rather than
networks with approximately power-law degree distributions. Networks with such limited
degree distributions are found in several social science contexts (e.g., close friendships)
but not in others (e.g., Facebook).7 Together, the restrictions on depth and degree in As-
sumption 1 make payoffs depend on a finite number of direct and indirect connections
in the network. This is crucial for dimension reduction. For example, with D = 2, there
would be at most L direct alters and L× (L− 1) indirect alters that impact utility.

Our second assumption relates to the unobservable preference shocks, as well as the
support of the observable characteristics. We assume that the preference shocks do not
depend on the individual identities of the alters. Instead, there is one shock for each
possible direct connection, combined with their possible predetermined characteristics.
We further assume that the predetermined characteristics have finite support, and that
the unobserved shocks are independent of these characteristics.

ASSUMPTION 2: Individuals are endowed with L × |X | preference shocks, denoted
εl(x)� l = 1� � � � �L�x ∈ X , which correspond to the possible direct connections and their
characteristics. This vector of preference shocks is independent of X with a known distri-
bution (possibly up to some finite-dimensional parameter). In addition, the support of X is
finite.

This assumption implies that if two potential alters have the same observables, then
the ego in question is indifferent between them. Similar (though not identical) assump-
tions about homogeneity in preferences have been made in models of large games (e.g.,
Kalai (2004), Menzel (2016)) and in some matching models (e.g., Choo and Siow (2006),
Galichon and Salanie (2009)). This helps control the dimensionality of the problem, and
it can be a natural restriction in settings with many agents where individual identities are
unknown and irrelevant to the researcher. In addition, having a limited number of shocks
allows the model to retain a positive fraction of isolated individuals in equilibrium even

7For example, such a limitation is seen in the National Longitudinal Study of Adolescent to Adult Health
(also known as the “Add Health” study), a commonly used data set on social networks. Individuals nominate up
to five friends of each sex, and the number of reciprocated nominations is even smaller. The median number of
such links is one, and less than five percent of individuals have more than three links to the same sex. Similarly,
in data on networks among Indian villagers used in Jackson, Rodriguez-Barraquer, and Tan (2012), fewer than
1 per 1,000 respondents reached the caps of 5 or 8 nominations, respectively, for various kinds of social and
financial relationships (footnote 37, p. 1879).
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when the group under consideration is large.8 This assumption could be weakened some-
what, by extending the vector of shocks to include ones for indirect connections up to
distance D. In that case, the number of shocks would be |X | × L

∑D

d=1(L − 1)d−1 (for
L> 1). Our theoretical results would be unchanged, but the computational burden would
of course increase. Last, we note that Assumption 2 allows for correlation within the vec-
tor of preference shocks. This has economic relevance since it captures preference cor-
relation among unobservables. However, generally allowing for unrestricted correlation
might lead to exceedingly large identified sets.

Assumptions 1 and 2 together imply that there is a finite number of possible configura-
tions of alters and their characteristics within the payoff-relevant distance from any given
individual. Then, much as in discrete choice models for differentiated products, utility
is determined from a fixed and finite list of possible outcomes. Our proposed inference
strategy relies on this feature of the model to reduce the dimensionality of the problem
from the universe of possible network configurations to the much smaller set of possible
payoff-relevant local subnetworks, which we refer to as the network types in the model.9

Next, we provide an example utility specification, which we will return to throughout
the paper. Payoffs depend on the predetermined characteristics of the individual and her
direct connections (f (xi� xj) + εil(xj)), any links among these direct connections (ω),
and any further connections at distance 2 (ν). Such specifications are commonly used to
model high school friendships, where the observable characteristics are race and perhaps
other family attributes (e.g., Christakis et al. (2010), Mele (2017), Goldsmith-Pinkham
and Imbens (2013), Sheng (2014), Miyauchi (2016)). We use this context descriptively as
well.10 The utility function is expressed as follows:

ui(G�X)≡
∑
j∈N(i)

(
f (xi� xj)+ εil(j)(xj)

)
(direct connections)

+
∣∣∣∣

⋃
j∈N(i)

N(j)−N(i)− {i}
∣∣∣∣ν (friends of friends)

+
∑
j∈N(i)

∑
k∈N(i):
k>j

G(j�k)ω (mutual friends)

− ∞ · 1|N(i)|>L� (bounded degree)

(1)

8Otherwise, if there were, for example, i.i.d. preference shocks for every potential connection in the network,
the probability that a link is mutually beneficial with at least one other person increases as the size of the
network increases (and hence the number of preference shocks increases).

9The use of subnetworks here is rather distinct from their use in Sheng (2014), although both are promising
strategies for dimension reduction. We consider all possible subnetworks among individuals that are within
some distance from a reference individual, where the distance is determined by the specification of preferences.
Sheng (2014) considered subnetworks among arbitrary individuals, where the number of individuals in the
subnetwork is chosen for computational tractability and is unrelated to the model. These approaches offer
different advantages and should be viewed as complementary developments.

10We believe the approach we put forward can accommodate many other applications. Our presentation is
based on nontransferable utility (NTU). Applications elsewhere, for example, in Industrial Organization (e.g.,
networks of buyers and suppliers or hospitals and insurers), may rely instead on transferable utility (TU). In
that case, pairwise stability would require a positive surplus for observed links and a negative one for absent
links, and preference classes, which we introduce later in the article, may need to rely on dyads rather than
individuals. It may also be important to consider differences in “numerosity” whereby one side of the market
(e.g., insurers) is substantially smaller than the other (e.g., hospitals). A careful examination of these variations
merits much more space and attention.
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where N(i) denotes the neighbors of node i (i.e., N(i) ≡ {j :G(i� j) = 1}) and | · | gives
the cardinality of a set. In the first line, the index function l(j) assigns neighbor j to the
lth link of node i and thereby assigns the preference shocks.11 The second line takes the
union of the neighbors of each friend but removes the friends themselves (N(i)) and
the reference individual ({i}) to find the number of distinct friends of friends. The third
line counts any links among the direct connections, and the fourth line ensures bounded
degree in equilibrium. Like related specifications in the literature, this uses a maximum
depth of D = 2, and has additively separable shocks for direct connections from some
known distribution.

As in most of the empirical games literature, we assume that observed choices corre-
spond to equilibrium play. Our solution concept is pairwise stability (Jackson and Wolin-
sky (1996)).

DEFINITION 1—Pairwise Stability: All links ij must be preferred by players i and j over
not having the link, and all non-existing links must be damaging to at least one of the
players:

∀i� j: G(i� j)= 1� ui(G�X)≥ ui(G−ij�X) and uj(G�X)≥ uj(G−ij�X); (i)

and

∀i� j: G(i� j)= 0� if ui(G+ij�X) > ui(G�X) then uj(G+ij�X) < uj(G�X)� (ii)

In the definition, G−ij denotes the mapping (k� l) 	→ G−ij(k� l) = G(k� l) if (k� l) �=
(i� j) and (k� l) 	→G−ij(k� l)= 0 if (k� l)= (i� j). Analogously, G+ij denotes the mapping
(k� l) 	→G+ij(k� l)=G(k� l) if (k� l) �= (i� j) and (k� l) 	→G+ij(k� l)= 1 if (k� l)= (i� j).
Other solution concepts exist; see Bloch and Jackson (2006) or Jackson (2009). As dis-
cussed in those references, an advantage of pairwise stability is that it incorporates the
intuition that, in a social setting, agents are likely to communicate to form mutually desir-
able connections. This is not the case with Nash equilibrium, where absent links can still
be part of an equilibrium even though they would be mutually beneficial.

3. PREVIEW OF OUR RESULTS

Here, we provide a preview of the approach using a very simple case of specification (1).
In this example, individuals have at most one link (L= 1, also D= 1), and there are two
races: B (black) and W (white). This could describe a network of best friends, which
consists only of isolates and linked pairs. There are no externalities from links in such a
network, but it nevertheless illustrates the main features of our approach.

Outcomes can be expressed as ordered pairs, (x� y), for the individual’s race (x) and
the best friend’s race (y , where y = 0 if no best friend). For example, (B�W ) corresponds
to a black individual with a white best friend. These pairs represent the network types in
this model. (More generally, network types will involve a local adjacency matrix as well
as a vector of node characteristics such as (B�W ), but here the matrices are redundant.)
Utility depends on an individual’s network type, (x� y). The utility function (1) simplifies
here to ui(x� y)= fxy + εi(y), where the fxy , x� y ∈ {B�W }, are four parameters, and each
individual is endowed with two preference shocks, εi(B) and εi(W ), with some known

11The function l(j) implicitly depends on G as well, because in different graphs the neighbor j could be
assigned to different links. This is omitted to alleviate the complexity of the notation.
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distribution (up to a finite-dimensional parameter). Our goal is to use data on the linkages
in the network to learn about the parameters fxy .

First, we collapse the global graph and node characteristics (G�X) into the shares of
individuals of each network type, or type shares. For example, suppose, in a school with
500 students, there were 50 black individuals with a white best friend. The share of type
(B�W ) is 0.1 (the share of type (W �B) is also 0.1, as they must balance). We will search for
parameter values fxy that can generate the observed type shares while satisfying necessary
conditions for pairwise stability.

To do this, we start by classifying individuals based on which network types they would
not reject (i.e., they would be happy with all the links). For example, depending on the
preference shocks drawn, a black individual may prefer having a black best friend to being
alone, but may not prefer having a white best friend to being alone: that is, fBB+εi(B)≥ 0
and fBW + εi(W ) < 0. Hence, the network type (B�W ) could not be an equilibrium out-
come for this individual, but (B�B) could be. We refer to these sets of network types that
individuals would not unilaterally deviate from as preference classes, generically denoted
as H. For this individual, the preference class would be H = {(B�0)� (B�B)}. (Because
there are no connections to be dropped from an isolated type, e.g., (B�0), every prefer-
ence class contains one such type.) There are four possible preference classes for blacks
in this example: H1 = {(B�0)}, that is, prefers to be alone; H2 = {(B�0)� (B�B)}, that
is, prefers a black best friend; H3 = {(B�0)� (B�W )}, that is, prefers a white best friend;
H4 = {(B�0)� (B�B)� (B�W )}, that is, prefers a best friend of either race. The preference
classes for whites are similar, replacing the first race in each type with W .

Each preference class corresponds to some region in the space of the shocks, ε, that de-
termines which network types would be “acceptable” to an individual with those shocks
(i.e., an individual with shocks from the region for preference class H would not unilat-
erally deviate from any network type in H, but would deviate from any type not in H).
Hence, given a distribution for the preference shocks and proposed values for the pref-
erence parameters, one can compute the probability that individuals fit into each pref-
erence class. In this example, there are simple thresholds in ε(B) and ε(W ) based on
the parameters fxy that yield these probabilities. With more elaborate models, the prefer-
ence class probabilities can be computed, for example, via Monte Carlo integration (see
Section 7 and Supplemental Material Appendix D.7.1 (de Paula, Richards-Shubik, and
Tamer (2017))).

Given the preference class probabilities derived from a vector of structural parame-
ters, we can then generate predicted type shares by allocating the individuals from each
preference class to the possible network types. To do this, we define allocation parame-
ters, denoted αH(·), one for each type in each class, which designate the proportion of
individuals allocated from preference class H to network type “·”. For example, the pre-
dicted share of blacks with a white best friend, type (B�W ), is Pr(H1|B)αH1(B�W ) +
Pr(H2|B)αH2(B�W )+ Pr(H3|B)αH3(B�W )+ Pr(H4|B)αH4(B�W ) (multiplied by the pro-
portion of blacks in the school to obtain the share among all students).

The key to our approach is to provide restrictions on the allocation parameters that
need to be satisfied in order for the network to be pairwise stable. These restrictions
correspond to necessary equilibrium restrictions and agreement with the data. First, indi-
viduals may only be allocated to network types contained in their preference classes. This
restricts some of the allocation parameters to zero. Second, given any pair of network
types that could feasibly add a link with each other (i.e., an isolated individual of either
race in this example), the measure of individuals who would prefer to do so must be zero
for at least one of the two types. Otherwise, additional mutually beneficial links could be
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formed and the network would be unstable. Hence, for any pair of types, the product of
the measures of individuals of one type who would prefer to add links to individuals of
the other type must be zero. This defines a quadratic objective function which in equilib-
rium has to be zero. Finally, the predicted proportions of types must match the observed
proportions of types in the network, which defines a set of linear constraints.

4. NETWORK TYPES AND PREFERENCE CLASSES

Now we formalize and extend the concepts discussed in the preceding example. Our
proposed identification strategy is built on the notion of predefined network types. These
describe the local network structure around a given individual, along with the predeter-
mined characteristics of each person (or node) in this local subnetwork. The size of the
local subnetworks depends on the preference specification, specifically the parameters D
and L that control the relevant depth in the network and maximum number of links. The
predetermined characteristics are fixed attributes, such as sex and race, or predetermined
behaviors (i.e., those which precede the formation of the network), for example, the ed-
ucation levels of coworkers at a firm. Intuitively, then, network types can be described in
words, for example, “a female connected to two females and one male,” “an unconnected
low-income male,” “a female connected to another female with two other friends,” and
so on.

More formally, a network type is characterized by a local adjacency matrix, A, and
a vector of node characteristics, v. The matrix A describes the local subnetwork up to
distance D from the reference individual, who is called the ego of the network type. It is
symmetric and has one row and column for the ego and one for each possible alter up
to distance D. The first row corresponds to the ego and indicates that individual’s links
with a 1 in the appropriate columns, and 0 otherwise. The next L rows correspond to the
possible direct alters, then the next L(L − 1) rows to the possible alters at distance 2,
and so on. This gives a total of 1 + L + L(L − 1) + L(L − 1)2 + · · · + L(L − 1)D−1 =
1 +L∑D

d=1(L− 1)d−1 rows.12 The vector v contains the predetermined characteristics of
the ego and the alters, in the same order as the rows of A. The first element of v is the
characteristic of the ego, denoted v1. The subsequent elements are the characteristics of
the possible alters, belonging to X ∪ {0}, where 0 denotes the absence of an alter in that
position.13 Thus we have the following:

DEFINITION 2—Network Type: Fix D, L, and X . A network type t is characterized by
t = (A�v), where A is a square matrix of size 1 + L∑D

d=1(L− 1)d−1 and v is a vector of
same length as the number of rows inA. This matrix describes the local subnetwork that is
utility-relevant for an individual of type t. The vector v contains the predetermined char-
acteristics of this person and the alters in the local subnetwork. The complete enumera-
tion of network types generated from a preference structure u and set of characteristics
X is given by T .

12This count simplifies to 1 + L[(L − 1)D − 1]/(L − 2) lines when L > 2, and is 1 + 2D when L = 2 and
simply 2 when L= 1 (since links are reciprocated).

13Typically, there will be a collection of isomorphic matrix and vector pairs (A�v) that can characterize a
given type t. The first row and column ofA and the first element of v are reserved for the ego, but the remaining
rows and columns of A and elements of v could be permuted and still express the same local subnetwork that
is rooted in the ego. For computational convenience, we adopt a convention that singles out a representative
characterization for each network type (see Supplemental Material Appendix D.5.1.)
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FIGURE 1.—Graphs of network types in Example 1.

As the definition says, the set of network types, T , is determined completely by the
preference structure and the set of predetermined characteristics. For example, if pref-
erences are such that individuals have a taste for at most one friend (and there are no
X ’s), then there would be only two types: “alone” and “connected.” Each person in the
network is one of these mutually exclusive and exhaustive types (i.e., each person can be
identified as an ego of one particular network type), and we assume that the proportions
of individuals of each network type can be consistently estimated from the observed data
(see Section 6.2).

Below, we use a particular example of specification (1) to illustrate the network types
that arise from a given preference structure and to show their representation as (A�v).

EXAMPLE 1: Let preferences be given by (1), with D= 2, L= 2, and X = {B�W }. An
individual has at most two direct alters and two indirect alters at distance 2.14 The graphs
of all the relevant network types under these preferences are visualized in Figure 1. The
ego is represented with a square and the alters are circles. There are seven distinct graphs
and a total of 62 different types, found by populating the nodes of these graphs with
different combinations of the two races.

Figure 2 shows the local adjacency matrix A and vector of predetermined character-
istics v for two network types in this example. The first type is a triangle (graph 5 from
Figure 1) where the reference individual (the ego) is black, with one black friend and one
white friend who are also friends with each other. The first row of A indicates the ego’s
links to the two direct alters (in columns 2 and 3). The second and third rows correspond
to the direct alters and indicate that they are linked to the ego and to each other. The
second type is a tree (graph 6) where the ego is black with one black friend and one white
friend, and the black friend has a further connection (i.e., a friend of a friend to the ego)
who is also black. Here, the direct alters are not linked to each other (elements (2�3)
and (3�2) of A are 0), but the first direct alter (in row 2) is linked to an indirect alter
represented in row and column 4.

(a) First Example Type (Graph 5) (b) Second Example Type (Graph 6)

A=

⎡
⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ v=

⎛
⎜⎜⎜⎝

B
B
W
0
0

⎞
⎟⎟⎟⎠ A=

⎡
⎢⎢⎢⎣

0 1 1 0 0
1 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ v=

⎛
⎜⎜⎜⎝

B
B
W
B
0

⎞
⎟⎟⎟⎠

FIGURE 2.—The matrix A and vector v for two network types in Example 1.

14We are grateful to an anonymous referee who suggested using an example with two links.
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Next, we note that under Assumptions 1 and 2, utility depends only on an individ-
ual’s network type. Assumption 1 limits payoffs to depend on a subnetwork represented
by A, and Assumption 2 restricts the unobserved shocks to depend on the character-
istics listed in v, not the individual identities of the alters. Accordingly, we rewrite the
utility function as ui(G�X) = u(A�v;εi). The vector εi contains one preference shock
for each potential direct connection and each possible characteristic of those connec-
tions (i.e., each element of L × |X |). In Example 1, there would be four shocks: εi =
(εi1(B)�εi1(W )�εi2(B)�εi2(W )).15 For the two example types shown in Figure 2, the util-
ities would be f (B�B) + εi1(B) + f (B�W ) + εi2(W ) + ω for the triangle with mutual
friends and f (B�B)+εi1(B)+ f (B�W )+εi2(W )+ ν for the tree with a friend of a friend
(the only difference is whether ω or ν appears).

In order to make predictions from the model, we will categorize individuals based on
their preferences over network types. For this, we define preference classes, the second
important concept in our framework. These are sets of types that individuals would not
unilaterally deviate from, given their own preferences. In other words, individuals would
not reject any of their links if assigned to one of the types in their preference class, but
would reject a link if assigned to a type outside their preference class. Naturally, each
preference class corresponds to a region in the support of ε: individuals with shocks in the
same region (and with the same predetermined characteristics) would be content with the
same set of types. The preference classes therefore partition the support of ε into regions
that can rationalize different sets of network types, from an individual perspective.

Given the predetermined characteristics (Xi = x) and preference shocks (εi) of an in-
dividual, it is fairly straightforward to find his or her preference class. We compare the
utility of each network type (where v1 = x) against the utility that would be obtained by
removing any of the links in that type, and retain all types that are not dominated by this.
To express these comparisons, we define the matrixA−l to be equal to the local adjacency
matrix A but with the lth link removed.16 The preference class is then the set of types
(A�v) with v1 = x such that u(A�v;εi) ≥ u(A−l� v;εi)�∀l = 1� � � � �L. We indicate how
this works below.

EXAMPLE 1—Continued: Suppose that the values of mutual friendships,ω, and friends
of friends, ν, are positive. Consider an individual who is black (Xi = B), with preference
shocks for black friends (εi1(B) and εi2(B)) such that fBB + εi1(B)≥ 0, fBB + εi2(B) < 0,
fBB + εi2(B)+ω≥ 0, and fBB + εi2(B)+ ν ≥ 0. The first inequality above means that this
person would prefer to have one black friend over being isolated. Hence, the network
type with graph 2 from Figure 1 and v = (B�B�0�0�0)′ would be in this person’s prefer-
ence class. Also, because ν is positive, the network types with one friend and one friend
of a friend—that is, graph 3 and v = (B�B�0�B�0)′ or v = (B�B�0�W �0)′—would be in
the preference class as well. The second inequality (fBB + εi2(B) < 0) means that i would
not want to have a second black friend with no other connections. Hence, the prefer-
ence class would not include network types with graphs 4 or 6 from Figure 1, where the
second friend is black. However, the third and fourth inequalities above mean that the

15As noted earlier, this could be extended to include shocks for the indirect alters (friends of friends) as
well. Then εi would have eight elements in total (four possible alters times two races), in this example.

16In other words, set elements (1� l + 1) and (l + 1�1) in A to zero (because alter number l appears in
row l+ 1). There may remain nodes in the subnetwork represented by A−l that are irrelevant to the resulting
network type, because there is no path shorter than D between them and the ego once the lth link is removed.
All the entries in the rows and columns ofA−l corresponding to these nodes could be replaced with 0, as could
the corresponding elements of v. Regardless, these nodes will have no impact on u(A−l� v;εi).
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shock εi2(B) is large enough so that i would want to have a second black friend if there
was a mutual friendship or an indirect connection (i.e., friend of friend) via this second
friend. Hence, the preference class would contain the network type with graph 5 where
v = (B�B�B�0�0)′ and the types with graph 7 and v = (B�B�B�v4� v5), where v4 and v5

are either B or W .
The discussion above identifies seven types in individual i’s preference class (and it

rules out certain other types). Similar conditions on the shocks for white friends (εi1(W )
and εi2(W )) would determine which types with white friends, or a combination of black
and white friends, are also in the preference class, thereby completing its construction.

To formalize the definition of preference classes, we introduce a mapping ψ that yields
the preference class for a given value of (x�ε):

(x�ε) 	→ψ(x�ε)=H ⊂ T � (2)

where H = {(A�v) ∈ T : v1 = x and u(A�v;ε)≥ u(A−l� v;ε)�∀l = 1� � � � �L}. The defini-
tion is then as follows.

DEFINITION 3: Given a preference structure u, let ψ be as defined in (2). A preference
class H ⊂ T is a set of network types in the range of ψ.

One important note is that every preference class includes an isolated type with the ap-
propriate ego characteristics (e.g., in the example above,A= 05×5 and v= (B�0�0�0�0)′).
This is implicit from the definition of A−l: there are no links to drop in the adjacency ma-
trix for an isolated type, so A−l =A. The presence of an isolated type in each preference
class is important in order to allow for individuals who wind up isolated even if they desire
connections. A second note is that preference classes must be obtainable under u from
some vectors of characteristics and preference shocks. Hence, the number of preference
classes is smaller than the number of subsets of T , and typically much smaller. That is be-
cause the preference structures in these models imply dependencies among the network
types that can appear together in a preference class. This is seen in Example 1, where,
for example, the positivity of ν implies that if a class includes a type with an unconnected
friend (Figure 1, graph 2), it will also include types where that friend has a further friend
(Figure 1, graph 3).

Finally, we can use the preference classes to generate predictions about the measures
or proportions of individuals of each network type. First, we need the probability of each
preference class. This is the probability that ε falls into the region corresponding to that
class. We define these probabilities conditionally on the characteristics of the ego, as those
characteristics are fixed within a given class. Accordingly, the preference class probabili-
ties are denoted as PH|v1 ≡ P(ε : ψ(X�ε)=H|X = v1). These are direct functions of the
utility specification and the distributions of the unobservables. Hence, given a parameter-
ization of the model, these probabilities are known.

Then, to generate the predictions, we specify how many individuals from each prefer-
ence class are assigned to each network type. This uses allocation parameters, defined as
follows.

DEFINITION 4: An allocation parameter αH(t) ∈ [0�1] gives the proportion of individu-
als with preferences in preference class H that are of network type t.
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The allocation parameters yield the measure of individuals of network type t as follows:
μv1(t)

∑
H PH|v1(t)αH(t), where μv1(t) is the measure of individuals with characteristic v1(t)

(the characteristic of the ego in type t). The proportion of individuals of network type t
is this divided by the total measure μ. This provides the exact link between the data and
the underlying preferences. The measures or proportions of individuals of each network
type can be consistently estimated, and we will try to match these with predictions from
the model.

5. IDENTIFICATION WITH NETWORK TYPES

In this section, we show how to use the model to map the observed proportions of in-
dividuals of each network type (or more succinctly, the type shares) into restrictions on
the preference parameters. We develop two general conditions on the allocation parame-
ters that are necessary for pairwise stability, which can then be used to collect preference
parameters that could be compatible with the observed type shares. If, using allocation pa-
rameters that satisfy these conditions, a vector of structural preference parameters cannot
predict the observed type shares, then that vector is not compatible with the observed net-
work. Otherwise, if such a prediction can be made, the vector is included in the recovered
set. The two conditions are as follows (their intuition is discussed after the theorem):

CONDITION 1—Existing Links: All existing links are pairwise stable. For any type t and
preference class H, t /∈H =⇒ αH(t)= 0.

CONDITION 2—Nonexisting Links Between Distant Individuals: There are no mutu-
ally beneficial links to add between individuals who are at a distance greater than 2D
(d(i� j;G) > 2D). For every pair of types t� s where the egos of both types have fewer
than L links, and for the pair of types t� s that would result if a link were added between
two individuals of these types who are greater than 2D from each other,

(
μv1(t)

∑
H̃∈H

PH̃|v1(t)
αH̃(t)1t̄∈H̃

)
·
(
μv1(s)

∑
Ȟ∈H

PȞ|v1(s)
αȞ(s)1s̄∈Ȟ

)
= 0�

The theorem below provides our general result on identification. It takes as given the
predicted probabilities of the preference classes, P·|·, which are yielded by a parameter-
ization of the utility function. The theorem provides necessary conditions for a pairwise
stable network with specified type shares (i.e., the observed shares) to exist given this
distribution of preference classes in the population. To state the theorem, we denote the
vector of type shares as π ≡ (πt)t∈T , where the element πt is the proportion of individuals
in the network who are of network type t. We maintain in this paper that our sample con-
tains information on exactly these type shares.17 For a given vector π and a distribution
of preference classes {PH|v1}, we have the following result. (The proof is in Appendix A.)

THEOREM 1: Let the vector (πt)t∈T be known. Given a probability distribution of prefer-
ence classes {PH|v1}, if there exists a pairwise stable network where the proportion of agents
of type t is equal to πt for each t ∈ T , then there exists a vector of allocation parameters α
satisfying Conditions 1 and 2 such that πt is equal to 1

μ

∑
H μv1(t)PH|v1(t)αH(t) for every t ∈ T .

17Our sampling approach to inference maintains that nodes are sampled randomly to collect information
on types. This is common in the network statistics literature as it is common for networks to only be partially
observed in practice (see, e.g., Chapter 5 in Kolaczyk (2009)).
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This result can be extended to show that Conditions 1 and 2 are also sufficient for the ex-
istence of a pairwise stable network, under further restrictions on preferences. The main
restriction is that the payoff from adding a link to a distant individual must be greater
than that from adding a link to a nearby individual of the same type. Also, a separability
condition is required in the utility function. Because these restrictions are more special-
ized, the result on sufficiency is presented in Supplemental Material Appendix B. Here,
we provide the intuition for how Conditions 1 and 2 translate the pairwise stability of links
into conditions on the allocation parameters.

Condition 1 relates to expression (i) in the definition of pairwise stability. It is, in
fact, equivalent because it requires individuals to be allocated only to network types in
their preference classes, and those types must satisfy the same inequalities as in expres-
sion (i). Although Condition 1 treats individuals separately, this nevertheless implies that
the inequalities hold for any pair of linked individuals. If instead Condition 1 is violated
(αH(t) > 0 for someH and t /∈H), then there is some positive measure of individuals who
would like to drop one of their links, and so the network cannot be pairwise stable.

Condition 2 relates to expression (ii) in the definition of pairwise stability. It establishes
that there would be no further mutually beneficial links to add between individuals who
are at a distance greater than 2D from each other in the network. This limitation to distances
greater than 2D makes our conditions necessary but not sufficient for pairwise stability
(except under the restrictions discussed in Supplemental Material Appendix B).

To understand Condition 2, note that there is one such equation for every pair of types
(t� s), including pairs of the same type (t� t), where the egos of both types have fewer
than L links. The other pair of types referred to in the condition, (t̄� s̄), would be ob-
tained if a link were added between two individuals of types t and s who are greater than
2D from each other in the network. For a simple illustration, consider the types t and s
shown in Figure 3, which follow Example 1 (D= 2�L= 2). If a link were added between
two individuals of these types, who were at any distance greater than 2D, they would
be transformed to the types t̄ and s̄ shown in the figure. This is because the local adja-
cency matrices for the resulting types would not capture any differences in the resulting
structure of the (global) network that depend on the exact distance between the two indi-
viduals. These differences would involve loops of lengths greater than 2D+ 1, which are
not payoff-relevant and would not appear in the local adjacency matrices that extend only
to distance D. Importantly, since the resulting types do not depend on the exact distance
between the two individuals (so long as it is greater than 2D), verifying Condition 2 does
not require the global network G.

(a) Initial Types (b) Resulting Types

FIGURE 3.—Example of a link added between individuals who are initially distant from each other. Notes:
The ego of each type is represented with a square node. Dashed lines in the resulting types indicate connections
to alters that appear in only one of the new network types, because they are beyond distance D= 2 from the
ego of the other type.
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(a) Initial Types (b) Resulting Types

FIGURE 4.—Example of a link added between individuals who are already close in the network.

Nonexisting links between individuals who are 2D or less from each other are not con-
sidered in Condition 2 because different network types could result if a link were added.
For example, if two individuals of the same types t and s from Figure 3 were initially
connected at distance 3, as in Figure 4, adding a direct link would transform them to the
types t̂ and ŝ shown in that figure. The utility of those types would potentially be different
than for types t̄ and s̄ (e.g., there is only one friend of a friend in types t̂ and ŝ). Assessing
the stability of nonexisting links such as these would be more complex in our framework
because, among other reasons, only certain network types can be located near each other
(they must be able to have overlapping alters), and because the placement of individuals
with different preference classes becomes important.

Next, note that with a positive measure of individuals of type s in the network, there are
infinitely many individuals of type s who are beyond 2D from any one individual of type
t (this is a consequence of the bounded degree assumption). Any of them could feasibly
link with this individual of type t and transform her to type t̄. So if this individual of type
t prefers t̄, and a positive measure of individuals of type s prefer s̄ as well, the network is
unstable. Accordingly, Condition 2 requires that if a positive measure of type t individuals
prefer t̄ (i.e., αH̃(t) > 0 for some H̃ where t̄ ∈ H̃), there must be zero measure of type s
individuals who prefer s̄. Conversely, if a positive measure of type s individuals prefer s̄,
there must be zero measure of type t individuals who prefer t̄. Notice that the expression
μv1(t)

∑
H̃∈H PH̃|v1(t)

αH̃(t)1t̄∈H̃ gives the total measure of type t individuals who prefer t̄.
Hence, this or the analogous expression for the measure of type s individuals who prefer
s̄ must be zero. Because these measures cannot be negative, the condition that either one
or the other measure must be zero is equivalent to requiring that their product be zero,
as stated in Condition 2.

Finally, to complete the discussion, we show how these conditions relate to individual
preferences in the context of Example 1.

EXAMPLE 1—Continued: Consider the types t and s illustrated in Figure 3. Condition 1
requires that all individuals who are type t in the network have this type in their preference
class. This means that fBW +ε1(W )+ν ≥ 0, because the utility of type t is fBW +ε1(W )+ν,
and the utility of the type obtained by removing the one link in this type is zero. Hence,
Condition 1 requires that all individuals who are type t prefer to have the link to their
white friend (who has another friend). Similarly, all individuals who are type s must have
preferences in a class where fW B + ε1(B)+ ν ≥ 0, and so they prefer to have the link to
their black friend (who has another friend).

Condition 2 checks for individuals of type t who would prefer to be type t̄, or type s
who would prefer to be type s̄. The expression inside the first parentheses of the equation
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for these types gives the measure of individuals of type t (αH̃(t) are allocated from each
preference class H̃) who also have type t̄ in their preference classes (1t̄∈H̃). Such individ-
uals would prefer to have a second white friend (who has another friend), because their
preferences satisfy fBW + ν + ε2(W )≥ 0.18 The expression inside the second parentheses
gives the analogous measure of individuals of type s who also have s̄ in their preference
classes. One or the other of these measures must be zero. In other words, either none of
the individuals of type t want a second white friend (who has another friend), or none of
the individuals of type s want a second black friend (who has another friend), or both. If
this condition is violated, there would be individuals of types t and s in the network who
would prefer to be types t̄ and s̄, respectively. These individuals would prefer to add a link
with each other, and so the network would not be pairwise stable.

Taken together, Conditions 1 and 2 restrict the preference classes that can be used to
generate the predicted type shares for types t and s. Hence, in order to match the observed
type shares, a given parameterization must place sufficient probability on the allowable
preference classes for these types (i.e., those with type t but not t̄ or those with type s but
not s̄).

The proof of Theorem 1 formalizes the preceding discussion by showing that, if expres-
sion (i) holds for all existing links and (ii) holds for all nonexisting links, then Conditions
1 and 2 must be satisfied. One note on this result is that it does not require the existence
of equilibrium for every possible parameterization and realization of the variables (recall
that nonexistence is possible under pairwise stability). If a particular parameterization
cannot generate a pairwise stable network, then there may be no vector of allocation pa-
rameters satisfying Conditions 1 and 2. In that case, this parameterization would not be
included in the identified set. If no parameterization can match the observed type shares
while satisfying Conditions 1 and 2, then the identified set would be empty. We would con-
clude that the observation cannot be an equilibrium outcome under the model as spec-
ified, and so we might reject the model. Thus, our framework can be used with models
where nonexistence is possible, for example, when links have negative externalities.

6. IMPLEMENTATION

We now describe how to use Theorem 1 to find values of the preference parameters
that could be compatible with the observed network. First, we show that the necessary
conditions in the theorem can be verified using a quadratic programming (QP) problem.19

Then, we show how consistency of the estimators for the type shares from a single, large
network can be obtained under a sampling approach to inference.

6.1. Formulation as Quadratic Programming Problem

Condition 2 provides a quadratic function of the allocation parameters that must equal
zero in equilibrium. Using this to develop an objective function, a QP problem based on
Theorem 1 can be defined as follows. The variables in the problem are those allocation

18The utility of type t̄ is 2fBW + 2ν + ε1(W )+ ε2(W ), and removing either link results in type t (note the
symmetry of t̄) with utility fBW + ν+ ε1(W ). Hence, type t̄ is in a preference class when fBW + ν+ ε2(W )≥ 0.
Similarly, type s̄ is in a preference class when fW B + ν+ ε2(B)≥ 0.

19A similar approach to “solving” for the identified set is seen in Honoré and Tamer’s (2006) use of a
linear programming problem in a nonlinear panel data model. For a recent interesting example of the use of a
quadratic programming problem in economics, see Kitamura and Stoye (2013).
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parameters that are not set to zero by Condition 1: {αH(t) : t ∈H}, or α for short. The
objective function derived from Condition 2 is α�Qα, where the matrix Q is described
in detail below. A set of linear constraints impose the requirement that the predicted
type shares match the observed shares ( 1

μ

∑
H μv1(t)PH|v1(t)(θ)αH(t)= πt). There are also

adding-up and positivity constraints on the allocation parameters. The QP problem is thus

min
{αH(t):t∈H}

α�Qα subject to:

1
μ

∑
H

μv1(t)PH|v1(t)(θ)αH(t)= πt� ∀t;
∑
t∈H
αH(t)= 1� ∀H; αH(t)≥ 0�

(3)

As we establish further below, this problem has an optimal value of zero if and only
if the conditions of Theorem 1 are satisfied. Therefore, given a vector of preference pa-
rameters θ (which produces a probability distribution of preference classes, {PH|v1(θ)}),
if a solution can be found yielding a value of zero, that parameter vector belongs in the
recovered set.

The assembly of the programming problem is straightforward except for the objective
matrix Q, which encodes Condition 2. This is a square matrix that has one row (and col-
umn) for each variable in the problem, so the entries of Q correspond to pairs of al-
location parameters such as αH(t) and αG(s). The entries equal 1 for those pairs that
could yield a positive value in the expression for Condition 2, and otherwise equal 0.
Specifically, Q[αH(t)�αG(s)] = 1t̄∈H · 1s̄∈G, where t̄ and s̄ are the types that would result if a
link were added between two individuals of types t and s (as defined in the condition).
This entry yields the term (αH(t)1t̄∈H) · (αG(s)1s̄∈G) in the objective function α�Qα. Sim-
ilarly, the expression in Condition 2 for this pair of allocation parameters includes the
term (μv1(t)PH|v1(t)αH(t)1t̄∈H) · (μv1(s)PG|v1(s)αG(s)1s̄∈G). Hence, as long as μv1(·) and P·|· are
strictly positive, the former can be used to assess whether the latter is nonzero.20

The example below illustrates the matrix Q in the simple model from Section 3.

EXAMPLE 2: Let preferences be given by (1), withD= 1,L= 1, and X = {B�W }. Here,
network types can be described using just the vectors of characteristics v= (v1� v2). Pref-
erence classes can be enumerated as follows: H1 = {(B�0)}, H2 = {(B�0)� (B�B)}, H3 =
{(B�0)� (B�W )}, H4 = {(B�0)� (B�B)� (B�W )}, H5 = {(W �0)}, H6 = {(W �0)� (W �W )},
H7 = {(W �0)� (W �B)}, and H8 = {(W �0)� (W �W )� (W �B)}. After excluding allocation
parameters set to zero by Condition 1, there are 16 remaining: α1(B�0); α2(B�0),
α2(B�B); α3(B�0), α3(B�W ); α4(B�0), α4(B�B), α4(B�W ); α5(W �0); α6(W �0),
α6(W �W ); α7(W �0), α7(W �B); α8(W �0), α8(W �W ), and α8(W �B) (the subscripts corre-
spond to the subscripts of the preference classes). The vector α collects these allocation
parameters.

The matrixQ is 16×16, and its rows and columns correspond to the allocation parame-
ters as listed in α (the matrix itself is shown in Figure D.1 in the Supplemental Material).
The matrix is symmetric, sparse, and indefinite. The first row corresponds to α1(B�0).

20An expression identical to Condition 2 would be obtained if the entries of Q included the measures and
probabilities, that is, if Q[αH(t)�αG(s)] = (μv1(t)PH|v1(t)1t̄∈H) · (μv1(s)PG|v1(s)1s̄∈G). However, having binary entries
saves memory and potentially avoids recomputing Q at each candidate parameter vector.
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All entries in that row are zero because the preference class associated with that alloca-
tion parameter, H1 = {(B�0)}, contains only the isolated type with a black ego. Hence,
1t̄∈H1 = 0 for any type t̄ that could be obtained by adding a link. There are nonzero entries
in six rows (and columns) of Q: those corresponding to allocation parameters α2(B�0),
α3(B�0), α4(B�0), α6(W �0), α7(W �0), and α8(W �0). These parameters all indicate iso-
lated individuals who would prefer to have a friend. (Because L = 1, only isolated in-
dividuals can add a link.) For example, in the row corresponding to α3(B�0), there are
1’s in the columns corresponding to α7(W �0) and α8(W �0). The preference classes as-
sociated with these parameters are H3 = {(B�0)� (B�W )}, H7 = {(W �0)� (W �B)}, and
H8 = {(W �0)� (W �W )� (W �B)}, respectively. To denote the types, let t = (B�0) (isolated
black) and s = (W �0) (isolated white), and let t̄ = (B�W ) (black with white best friend)
and s̄= (W �B) (white with black best friend), which are the the types that would result if
a link were added between two individuals of types t and s. Thus, we have 1t̄∈H3 · 1s̄∈H7 = 1
and 1t̄∈H3 · 1s̄∈H8 = 1.

The construction ofQ in the example above is fairly simple because it is feasible to eval-
uate the expression 1t̄∈H · 1s̄∈G for each entry individually. Given the corresponding pair of
allocation parameters αH(t) and αG(s), the types t and s determine the types t̄ and s̄ that
would result if a link were added, and it is then easy to check whether t̄ and s̄ are con-
tained in H and G, respectively. However, for larger matrices it may be too burdensome
to loop through the entries individually. Instead, we suggest first constructing a prelimi-
nary matrix S, with the same dimensions and organization as Q, whose entries S[αH(t)�αG(s)]
are defined as 1t̄∈H rather than 1t̄∈H · 1s̄∈G. Conceptually, the difference between S and
Q is that the entries of S reflect only the preference class associated with the allocation
parameter in the row, rather than those of both the row and the column. This makes it
faster to construct S because operations can be applied row-by-row rather than element-
by-element. The matrix Q then simply equals the Hadamard (i.e., entrywise) product of
S with its transpose: Q= S ◦ S�. (See Supplemental Material Appendix D.7.2 for further
details.)

With the objective matrix Q defined as above, we can establish the following result.
(The proof appears in Appendix A.)

THEOREM 2: Given a probability distribution of preference classes {PH|v1(θ)}, there exists a
vector of allocation parameters α yielding type shares {πt} while satisfying Conditions 1 and 2
if and only if the optimal value of QP problem (3) is zero.

This theorem provides a computational avenue to implement our approach. Because
this pertains to identification, however, the population type shares are assumed to be
known. In order to accommodate data from a finite sample, the QP problem must be
modified to allow for some error in the estimated shares. The approach we take is to add
slack variables that define fixed “bands” around the type shares, the width of which are a
function of the sample size.21 The modified QP problem then verifies whether a structural
parameter vector can yield a prediction within these bands while satisfying Conditions
1 and 2.

21See Supplemental Material Appendix D.6. Given a sampling distribution for the vector of estimated type
shares, one could instead define the bands to contain a 95% confidence set. This would be a computation-
ally efficient means to incorporate statistical uncertainty, as discussed in more general terms in Supplemental
Material Appendix C.



280 Á. DE PAULA, S. RICHARDS-SHUBIK, AND E. TAMER

Finally, we note that the objective function α�Qα may not be convex because, while
the matrix Q is symmetric, it may be indefinite, as is the case in the example above. This
rules out some standard QP solvers, but more general constrained nonlinear optimization
routines can be used instead.22 In the simulation exercises in Section 7, we find that the
problem solves quickly using an active set algorithm in the program KNITRO. Impor-
tantly, because the optimal value is known (i.e., α�Qα= 0), it is trivial to ascertain that a
global rather than local optimum has been reached. On the other hand, one must exercise
caution so that positive local minima do not erroneously lead to dismissal of a parameter
value.

6.2. Consistency of Type Shares

The parameter of interest in our setup is the vector that characterizes the payoff struc-
ture, θ, for a given large network. The main insight from Theorems 1 and 2 is that, knowing
the type shares π, we have a mapping that yields the identified set for θ. We now briefly
discuss inference and show how it is possible to obtain consistent estimates of π for this
mapping.

Assuming that we do not observe the full network (and hence do not know π), we use a
sampling approach to inference whereby we maintain that the observed data are a simple
random sample from this full network that records the types only. The central question in
this sampling approach is how close the sampled quantities are to the true quantities that
can be obtained if we had access to the full network. Here, the possibility of inverting from
a sample to gain information on the population depends crucially on the sampling method
employed. In our case, we maintain the assumption that we have a random sampling
scheme where individuals are drawn independently (conditional on the realized network)
and their types are recorded, which requires registering the features of their neighboring
connections. The snowball sampling procedure defined in Goodman (1961), which starts
with an initial random sample and interviews connections up to a specified distance, is an
example of such a sampling scheme.23 The only source of variation here is the random
sampling, which then leads to statements about how close our estimate π̂ is to π.24

Hence, while we do not know π, we can estimate it from appropriately sampled indi-
viduals in the network. As indicated in Section 2, the equilibrium graphing used in our
theoretical analysis is an approximation to a large but nevertheless finite network, so here
we consider a population network that is finite. Suppose we have data recording the net-
work types ti of a sample of n individuals. A sample analogue of the proportion of types
is then π̂t = 1

n

∑
i 1[ti = t]. Accordingly, let π̂ ≡ (π̂t)t∈T , which is the vector of estimated

type shares. Given that the population is finite, as n increases (i.e., as we are drawing a
larger sample), it is then simple to see that π̂ will converge to π. We state this result in
the proposition below.25

22Quadratic programs that are not convex are NP-hard, and our model may actually be an example of such
a problem. Alternative relaxation schemes are nonetheless available in the numerical optimization literature
to handle such cases. Another computationally simple approach that gets a superset of the identified set is to
base inference on only Condition 1 for stability, which will yield a linear program.

23The term “snowball sampling” has different uses. See Handcock and Gile (2011) for a helpful discussion.
24This relates to what is sometimes referred to as a “design-based” paradigm in statistics and goes back to

at least Neyman (1934). The randomness here obtains from the probability ascribed by the survey scheme to
the sampling of the various individuals in the network. In applications where the full network is observed (e.g.,
with administrative data), this approach would imply there is no statistical uncertainty.

25For a primer on the sampling approach to inference, see Cochran (1977). For sampling approaches with
network data, see Kolaczyk (2009). Similar treatments using random sampling and relating finite and infinite
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PROPOSITION 1: Under random sampling (on the underlying, realized network) and as
sample size increases, we have π̂

p→ π.

Supplemental Material Appendix C contains the proof and elaborates on our approach
in a simple example.26

7. SIMULATIONS

We now present two simulation exercises using examples of utility specification (1). The
main purpose is to illustrate the performance of our approach, in terms of the parame-
ter sets that are recovered and the computational burden that is involved. Additionally,
the procedures described here and in Supplemental Material Appendix D provide some
guidance on further aspects of the implementation, such as how to generate the sets of
network types and preference classes, and details of the construction of the objective ma-
trix Q.

7.1. Model of Best Friendships

The first exercise uses the simple model of best friendships from Section 3, whereD= 1,
L= 1, and X = {B�W }. Here, network types can be represented using just the vector of
characteristics v = (x� y), where x is the race of the ego and y is the race of the alter (or
0 if no alter). The utility function simplifies to ui(x� y)= fxy + εi(y), with four preference
parameters, fxy , x� y ∈ {B�W }, and two preference shocks, εi(B) and εi(W ).

The parameters are set at fBB = 0�4, fBW = 0�2, fW B = 0�15, fWW = 0�5, with population
sizes μB = 1�0, μW = 1�2. The shocks have a uniform distribution (U[−1�0]) so that the
parameters can be interpreted as probabilities. We then use a microsimulation procedure
to generate a single pairwise stable network with a large number of individuals (500 blacks
and 600 whites).27 From this network we extract the type shares, which are plotted in
Figure 5. The figure also shows all possible type shares from pairwise stable networks
under this parameterization, which demonstrates the full range of equilibria.28

Given the type shares from the simulated network, we then search for parameter vec-
tors where the QP problem can be minimized to zero. Figure 6 shows the resulting identi-
fied set. The values of the cross-race preference parameters (fBW and fW B) are unbounded
from above, and together they display a Leontief pattern: if tastes on one side of the

populations that we follow also here are given in Imbens and Rubin (2015) and references therein (see Chap-
ter 6). Also, ARD data (Aggregated Relational Data) is an approach to collecting exactly sampled information
(types) from a subset of nodes in a network. This ARD sampling approach to recovering full network proper-
ties from a random sample of nodes fits with our sampling approach (for the latest in econometrics on ARD
work, see Breza, Chandrasekhar, McCormick, and Pan (2017)).

26There are alternative approaches to inference that take the repeated sampling approach whereby one
observes one large network that is a draw from a population distribution of networks. There, large sample
limit theory (where randomness is due to repeated sampling from this population distribution) is subtle due
to the built-in correlations that result from interactions. For some recent advances, see Leung (2015) and Lee
and Song (2017).

27This procedure is described in detail for the second exercise, in Supplemental Material Appendix D.4.
28In this example, the QP problem simplifies so that it is trivial to verify whether a vector of preference

parameters and a vector of type shares are compatible with each other. This makes it easy to find all the
equilibrium vectors of type shares for a given vector of structural parameters. See Supplemental Material
Appendix D.2 for details.
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FIGURE 5.—Equilibrium type shares in first simulation exercise. Notes: Points illustrate the full set of
equilibrium type shares under parameter values fBB = 0�40, fBW = 0�20, fW B = 0�15, and fWW = 0�50. Tri-
angles indicate the type shares from one finite network simulation, with values π(B�B) = 0�173, π(B�W ) = 0�056,
π(W �B) = 0�056, and π(W�W ) = 0�255.

market constrain the number of cross-race linkages, tastes on the other side could be un-
bounded. By contrast, the identified ranges for the own-race preference parameters (fBB
and fWW ) are small and informative: 0.38–0.51 for blacks and 0.46–0.57 for whites. How-
ever, the set would not provide conclusive evidence on the ranking of these parameters
(i.e., fWW > fBB).

Finally, for this model, we are able to confirm the results obtained above and explore
how the identified set changes with additional observations, using a simplification of the
QP problem that can be derived in this particular case (see Supplemental Material Ap-
pendix D.2). With the simplification, it is trivial to verify that the optimal value is zero, and
so we can evaluate a large grid of parameter vectors almost instantaneously. Figure D.2 in
the Supplemental Material shows that the identified set matches what we obtained with
the search procedure above. We then evaluate four other vectors of type shares, selected
at random from the set of all equilibria shown in Figure 5. Qualitatively similar identified
sets are recovered from each of these observations. (See Figure D.3 for the vectors of
type shares, and Figures D.4 and D.5 for the identified sets.) If we were to observe all
four of the randomly selected networks, the identified set would be the intersection of
the sets recovered with each network because the parameters must be able to predict all
four vectors of type shares as equilibrium outcomes. The resulting identified set is quite
precise (see Figure D.6). Only one parameter vector in the grid we evaluate is included
(fBB = 0�40, fBW = 0�20, fW B = 0�16, fWW = 0�50). Since the grid uses intervals of 0.02,
this means that the identified set spans less than 0.04 in each dimension. This indicates
substantial identifying power from the observation of multiple large networks.

7.2. General Friendship Model

Next, we consider a more complete version of specification (1), whereD= 2 and L= 3.
To motivate the latter, we note that fewer than five percent of the students in the Add
Health study have more than three same-sex friends, based on reciprocated nomina-
tions. The predetermined characteristics are the same as before: black or white race,
X = {B�W }.

The preference parameters (θ ≡ (fBB� fBW � fW B� fWW � ν�ω)
′) are chosen to generate a

degree distribution that is similar to the observed distribution in Add Health, and the
values of ν and ω also satisfy Assumption 3 so that the sharp identified set is obtained
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FIGURE 6.—Identified set from one finite network in first exercise. Notes: Points illustrate the identified set
obtained using type shares from one finite network (shown with triangles in Figure 5). Diamonds indicate true
parameter values: fBB = 0�40, fBW = 0�20, fW B = 0�15, and fWW = 0�50.

here (see Supplemental Material Appendix B).29 The six preference shocks are drawn
independently from a standard normal distribution, but they are assigned to links in de-
scending order (within alter characteristic). That way, the particular convention we use to
select the representation, (A�v), for each network type does not impact their utility (see
Supplemental Material Appendix D.3).

To generate the data, we simulate a number of finite networks with n= 500 individuals
(100 blacks and 400 whites, reflecting μB/μW = 1/4), using a procedure described in Sup-
plemental Material Appendix D.4. Figure 7 plots the shares of certain combinations of
types in these simulated networks, to illustrate the variation that can arise for a fixed vec-
tor of preference parameters but with different realizations of shocks and equilibria. One
network, selected at random, serves as the observation we use to recover the identified

29The parameter values are (fBB� fBW � fW B� fWW ) = (−0�9�−1�5�−1�7�−0�7), ν = 0�2, and ω = 0�2. Fig-
ure D.7 in the Supplemental Material shows the degree distributions. The average degree in the simulated
networks matches the average degree for same-sex friendships in Add Health.
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FIGURE 7.—Equilibrium type shares in second simulation exercise. Notes: Figure plots shares of cer-
tain combinations of types: types with any own-race friends (x: x friend(s)), any opposite-race friends (x: y
friend(s)), any indirect friends, and any mutual friends. Points represent the shares from different simulated
networks, and triangles indicate the shares from the network randomly selected to use as the observation.

set (indicated with triangles in Figure 7). Supplemental Material Appendices D.6 to D.8
describe the specific procedures we then use to formulate and solve the QP problem (for
a given parameter vector) and to search through the parameter space. One key point is
that, to save memory and improve computational speed, we only consider network types
that are either observed in the data or adjacent to an observed type (i.e., they can be
reached via addition or deletion of one link). The search procedure uses Markov Chain
Monte Carlo (MCMC) algorithms (Supplemental Material Appendix D.8).

Projections of the identified set are shown in Figure 8. The identified range for fW B
appears to be unbounded from above, as in the previous example, while fBW is bounded
in both directions. Also, for both blacks and whites, we would not be able to conclude
that there is a preference for same-race over different-race friends (i.e., the fact that
fBB > fBW and fWW > fWB), as there are points in the identified set where the opposite
holds. On the other hand, the values of same-race friendships (fBB and fWW ) again have
fairly tight ranges. Furthermore, if more than one network were observed, the identified
set would be even smaller, as seen in the previous example.30 The identified range of
ν (friends of friends) seems reasonably informative, as it spans less than one standard
deviation of the preference shocks, and its sign could be correctly inferred (the minimum
identified value is 0.055). The parameterω (mutual friends) is not shown. The data do not
provide any information on its value, mainly because there are no mutual friendships in
the observed network. The identified range forω is consequently unbounded from below,
and the upper bound (ω ≤ 3

2ν) follows from Assumption 3 (see Supplemental Material
Appendix B).

Importantly, the computational burden involved in this exercise indicates that our ap-
proach is feasible for empirically realistic models. The average time required to evaluate a
candidate vector of structural parameters was just less than 30 seconds (see Supplemental
Material Appendix D.8). Furthermore, the MCMC search process is trivial to parallelize
by running multiple chains simultaneously, so richer models with potentially longer eval-
uation times (say 5 to 15 minutes) would remain tractable. Most of the computational
burden (80% of the total compute time) comes from solving the QP problem, which also

30In preliminary results from a simulation using two observations, the identified range for fW B is bounded
and is roughly similar in size to the identified range for fBW , for example.
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FIGURE 8.—Identified set in second exercise. Notes: Diamonds indicate true parameter values: fBB = −0�9,
fBW = −1�5, fW B = −1�7, fWW = −0�7, and ν = 0�2.
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suggests that additional gains in performance may be possible with further advances in
solution algorithms.

8. CONCLUSION

We conclude with a brief discussion about empirical settings where our framework
might apply, and where it might not. The main consideration is whether the assumption
of bounded degree is reasonable in a particular context. The maximum degree and the
degree distribution are, of course, observable in a given data set, and, depending on the
sampling scheme (and the model), one can determine whether a specific bound is rea-
sonable to impose. For example, in the social and financial networks studied in Jackson,
Rodriguez-Barraquer, and Tan (2012), a negligible portion of the sample reached the caps
of 5 or 8 nominations for each type of relationship. This suggests that the bounded degree
assumption may be reasonable in analyses of informal insurance as well as close friend-
ships. On the other hand, bounded degree would not apply in online social networks. Nor
would it apply in certain markets for intermediate goods or financial networks where firms
with many connections (i.e., “hubs”) are observed. Economically, the difference between
settings with bounded degree distributions versus approximately power law distributions
may relate to the cost of links. If there are substantial fixed costs, relative to a finite bud-
get of time, for example, individuals would be limited in the number of links they can
maintain.

APPENDIX A: PROOFS OF THEOREMS 1 AND 2

A.1. Theorem 1

PROOF: Given a pairwise stable networkG, predetermined characteristics X, and pref-
erence shocks ε (for all the individuals in the network), partition individuals by their
preference class H and define αH(t) as the fraction of individuals in this pairwise sta-
ble network in preference class H who are of network type t. This allocation yields the
observed proportions of network types; that is, (μv1(t)/μ)

∑
H PH|v1(t)αH(t)= πt .

If the network G is pairwise stable, then all existing links satisfy expression (i) in Def-
inition 1. Hence, for any individual i, whose network type is characterized as (A�v), we
have u(A�v;εi)≥ u(A−l� v;εi)�∀l= 1� � � � �L. By definition, this type is in the individual’s
preference class. Hence, αH(t) > 0 only if t ∈H, and so Condition 1 is satisfied.

To show that Condition 2 is satisfied, consider an arbitrary pair of types (t� s) where
both types have fewer than the maximum L links. Let (t̄� s̄) be the pair of types that
would result if a link were added between two individuals of types t and s who are greater
than 2D from each other. Suppose that the measure of individuals of type t who prefer t̄
is positive: μv1(t)

∑
H̃∈H PH̃|v1(t)

αH̃(t)1t̄∈H̃ > 0. Hence, there is an infinite number of individ-
uals of type t who would prefer to add links to some individuals of type s that are greater
than 2D away from them. These individuals of type t would indeed prefer to add links to
any individuals of type s that are greater than 2D away, because adding a link to any dis-
tant individual of type s would yield the same utility for a given individual of type t. Also,
because degree is bounded, only a finite number of individuals of type t can be within
distance 2D from any given individual of type s. Hence, every individual of type s faces
individuals of type t who are greater than 2D away and who want to add a link. Because
all nonexisting links satisfy expression (ii) in a pairwise stable network, the utility of type s̄
must therefore be lower than the utility of type s for all individuals of type s. Because type
s can be obtained by dropping one of the links in type s̄, this means that s̄ is not contained
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in the preference class of any individuals of type s in the network. Therefore, the measure
μv1(s)

∑
Ȟ∈H PȞ|v1(s)

αȞ(s)1s̄∈Ȟ is zero. Thus, at least one of the measures expressed in the
equation for types (t� s) in Condition 2 must be zero, which gives us the condition. Q.E.D.

A.2. Theorem 2

PROOF: Condition 2 is satisfied if and only if the objective function is equal to zero.
This is because, as long as μv1(·) and P·|· are strictly positive,

μv1(t)μv1(s)

∑
H̃∈H

∑
Ȟ∈H

PH̃|v1(t)
PȞ|v1(s)

αH̃(t)αȞ(s)1t∈H̃1s∈Ȟ = 0

⇔
∑
H̃∈H

∑
Ȟ∈H

αH̃(t)αȞ(s)1t∈H̃1s∈Ȟ = 0�

The first set of constraints in (3) is to match the observed proportions of network types
(πt). The second and third sets of constraints simply require that allocations from a given
preference class add up to 1 and are nonnegative. Finally, Condition 1 is encoded by the
fact that allocation parameters are only defined for the types in each preference class (i.e.,
the variables in the problem are {αH(t) : t ∈H}, not all {αH(t)}). Hence, from each pref-
erence class, there are no allocations made to types not in that preference class. Q.E.D.
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