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Pretty good state transfer in networks of qubits occurs when a continuous-time quan-

tum walk allows the transmission of a qubit state from one node of the network to

another, with fidelity arbitrarily close to 1. We prove that in a Heisenberg chain

with n qubits there is pretty good state transfer between the nodes at the j-th and

(n−j+1)-th position if n is prime congruent to 1 modulo 4 or a power of 2. Moreover,

this condition is also necessary for j = 1. We obtain this result by applying a theorem

due to Kronecker about Diophantine approximations, together with techniques from

algebraic graph theory.
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I. INTRODUCTION

Long-distance quantum communication, for example over several kilometers, typically

uses photonic systems. On the other hand, given the difficulty of engineering interactions

between photons, several promising candidates for quantum hardware are based on quantum

networks of localized qubits1, which are easier to manipulate. In typical quantum algorithms

during the computation the states of different qubits have to be transferred between var-

ious registers, namely between different nodes of the network. However, when qubits are

localized, their physical movement may be either impossible, by construction, or energy inef-

ficient. A viable solution to this problem is to exploit the coherent dynamics of the quantum

network, namely a continuous-time quantum walk, to transfer the quantum states between

different nodes2. This approach for short-distance (in-chip) communication has attracted

much attention3 because it minimizes the use of external control and also avoids the complex

interface between localized and moving particles. However, in a generic quantum network

the resulting coherent dynamics is very complicated and the transmission between two nodes

is normally inefficient. Therefore, much effort has been devoted to understand what are the

best strategies, or the best networks, to achieve either perfect state transfer between distant

nodes4–7, or pretty good state transfer8–13 where the transmission quality is almost perfect.

One-dimensional systems, namely chains of qubits, are perhaps the most natural candidate

for transmission as they resemble a quantum wire or data-bus.

Most of the literature on perfect or pretty good state transfer has considered chains

interacting with the XY Hamiltonian because they offer several mathematical simplifications,

e.g. the Hamiltonian in the single-particle subspace is equivalent to the adjacency matrix of

the corresponding graph and also the many-particle problem is exactly solvable14. However,

in solid state systems such as quantum dots15 or dopants in silicon16 and in current optical

lattice experiments17, which are some of the most promising quantum devices, the natural

interaction is the Heisenberg (XYZ) Hamiltonian. Motivated by this, in this paper we

focus on unmodulated qubit networks described by the XYZ Hamiltonian and we find a full

characterization of the chains admitting pretty good state transfer, namely we prove the

following result:

Theorem 1. Pretty good state transfer occurs between the extremal vertices of Heisenberg

chain of n qubits if and only if n is prime congruent to 1 modulo 4 or a power of 2. Moreover,
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in these cases, pretty good state transfer occurs between vertices at the jth and (n+ 1− j)th

position for all j = 1, ..., n.

The remainder of the paper is organized as follows. In Section II we introduce the required

notation. Section III describes the tools needed for the proof of our main result. Specifically

Theorem 2 generalizes for every symmetric algebraic matrix a result by Vinet and Zhedanov8

on XY spin chains. Finally Section IV proves our main result.

II. NOTATION

We consider a graph G = (V,E) with a set of vertices V (G) = {1, . . . , n} and a set of

edges E(G) that describe the physical pairwise couplings between two vertices. We denote

A(G) the adjacency matrix with elements [A(G)]ij = 1, if (i, j) ∈ E(G), and [A(G)]ij = 0

otherwise. For a generic graph structure the Heisenberg (XYZ) Hamiltonian is defined by

HXYZ(G) =
1

2

∑
i 6=j

A(G)ij (XiXj + YiYj + ZiZj) , (1)

where Xi, Yi, Zi are the Pauli matrices acting on the i-th vertex. On the other hand, the

XY Hamiltonian is

HXY(G) =
1

2

∑
i 6=j

A(G)ij (XiXj + YiYj) . (2)

Both HXY(G) and HXYZ(G) act on the Hilbert space (C2)⊗n. We call {|0〉, |1〉} the ba-

sis of the Pauli matrices on each vertex and we define the single-particle subspace as the

Hilbert space generated by the vectors Xi|0〉⊗n = |0 . . . 010 . . . 0〉 ∈ (C2)⊗n, for i = 1, . . . , n,

where the |1〉 state is in the i-th position. Within this single-particle subspace, the above

Hamiltonians can be written as (see Ref.6)

H(1)
XYZ(G) = |E(G)|11− 2L(G), (3)

H(1)
XY(G) = 2A(G), (4)

where the subscript (1) refers to the single-particle subspace, L(G) = ∆(G) − A(G) is the

Laplacian of the graph and ∆(G) is the diagonal matrix whose diagonal i-th entry is the

degree d(i) of vertex i, namely the number of edges incident with i. For simplicity, we avoid

the use of the explicit notation H(1)
XYZ(G), H(1)

XY(G), and we simply call A(G) and L(G) as
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the XY and XYZ Hamiltonians, as they are equivalent to equations ((1)) and ((2)) in the

single-particle subspace up to a trivial rescaling and shift.

We now introduce the concept of perfect and pretty good state transfer. Given M a

symmetric matrix whose columns are indexed by the set of vertices V , we say that perfect

state transfer occurs between vertices a and b of M if there is a τ ∈ R+ such that

|| exp(iτM)a,b|| = 1.

This framework generalizes the concept of state transfer in the quantum walk of XY and

XYZ Hamiltonians in the single-excitation subspace where M is respectively chosen as A(G)

or L(G). If it is clear from the context which M we are dealing with, we use the notation

exp(itM) = U(t).

We relax the definition of perfect state transfer to an ε-version. We say that M admits

pretty good state transfer (also known as almost perfect state transfer) between vertices a

and b if, for any ε > 0, there is a time τ > 0 such that

||U(τ)a,b|| > 1− ε, (5)

If ea and eb are the characteristic vectors of columns a and b, equation (5) is equivalent to

the existence of a λ ∈ C of absolute value equal to 1 such that

||U(τ)ea − λeb|| < ε.

Finally, for shortness, when ε is not relevant, we abbreviate this equation to

U(τ)ea ≈ λeb.

Godsil et al.9 determined when a linear chain with unmodulated spins admits pretty good

state transfer between the end vertices according to the XY-Hamiltonian. Subsequently,

Vinet and Zhedanov8 worked on chains with non-unitary weights, providing new examples

of pretty good state transfer in the XY-Hamiltonian model.

In this paper, we review a known characterization of pretty good state transfer in detail,

and as a result, we fully characterize linear chain with unmodulated spins admitting pretty

good state transfer according to the Heisenberg Hamiltonian.
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III. TECHNICAL PRELIMINARIES

Given a real symmetric matrix M , with spectral decomposition

M =
d∑
r=0

θrEr,

we say that a and b are strongly cospectral if Erea = ±Ereb for all r. This nomenclature

is inspired by the following fact. We say that vertices a and b are cospectral if the matrix

obtained from M upon removing row and column indexed by a has the same spectrum as

when we remove row and column indexed by b. An equivalent formulation is that (Er)a,a =

(Er)b,b for all r, therefore every pair of strongly cospectral vertices is cospectral, as one would

expect. If M is either the adjacency or the Laplacian matrix of a graph, cospectral vertices

have necessarily the same number of neighbours. Moreover, in the adjacency case, a and b

are cospectral if and only if, for all k ∈ Z, the number of walks of length k that start and

end in a is the same as the number for b (see Ref.18 (Section 2.5) for proofs and references

of these facts). There are cases in which cospectral vertices are not strongly cospectral, and

in fact we do not know any combinatorial characterization of this property. Finally, it is

worth mentioning that if all eigenvalues are simple, both properties are equivalent, and that

if M is a tridiagonal matrix (thus encoding the adjacency of a linear chain), then strong

cospectrality is equivalent to the property of mirror-symmetry of the weights.

We also define the eigenvalue support of a as the set of eigenvalues θr such that Erea 6= 0.

To prove our main result, we use the following characterization of pretty good state

transfer. The core of the result is a theorem due to Kronecker. It has already been applied

to study quantum walks. For instance, the restriction of this characterization to study pretty

good state transfer in the adjacency matrix of XY chains with arbitrary weights was used

by Vinet and Zhedanov8. Here we extend its usage to a very general case.

Theorem 2. Let a and b be columns of a symmetric algebraic matrix M . Then pretty good

state transfer occurs between a and b if and only if

(i) Columns a and b are strongly cospectral. In this case, let θ0, ..., θd be the eigenvalues

in their support, and for r = 0, ..., d, let σr be defined as 0 if the projections onto Er

are equal, and 1 if they have opposite signs.
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(ii) If there is a set of integers `0, ...., `d such that

d∑
r=0

`rθr = 0 and
d∑
r=0

`rσr is odd,

then
d∑
r=0

`r 6= 0,

and, if 2α is the largest power of 2 dividing
∑d

r=0 `r, then for any other set of integers

j0, ..., jd satisfying
∑d

r=0 jrθr = 0, if 2β is the largest power of 2 dividing
∑d

r=0 jr

(assuming β = ∞ if the sum is equal to 0), then β ≥ α, with equality if and only if∑d
r=0 jrσr is odd.

We will see that for Heisenberg chains, condition (ii) can be significantly simplified. So

bear with us. But before, we show that (i) is a necessary condition.

Lemma 3. If pretty good state transfer occurs between a and b, then they are strongly

cospectral vertices.

Proof. From the spectral decomposition, we have

U(t) =
d∑
r=0

eitθrEr,

thus

|U(t)a,b| ≤
d∑
r=0

|(Er)a,b|.

Now
∑
Er = I, and, by Cauchy-Schwartz,

(Er)a,a ≥ |(Er)a,b|.

Thus
d∑
r=0

|(Er)a,b| = 1

if and only if, for all r,

(Er)a,a = |(Er)a,b|,

or equivalently, a and b are strongly cospectral. As pretty good state transfer means that

|U(t)a,b| gets arbitrarily close to 1 for some values of t, the result follows.
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We make use of the following result due to Kronecker.

Theorem 4 (Kronecker, see for instance Ref.19, Chapter 3). Let θ0, ..., θd and ζ0, ..., ζd be

arbitrary real numbers. For an arbitrarily small ε, the system of inequalities

|θry − ζr| < ε (mod 2π), (r = 0, ..., d),

admits a solution for y if and only if, for integers `0, ..., `d, if

`0θ0 + ...+ `dθd = 0,

then

`0ζ0 + ...+ `dζd ≡ 0 (mod 2π).

Now we prove our characterization.

Proof of Theorem 2. Observe that

U(τ)ea ≈ λeb

is equivalent to, for all r,

eiθrτErea ≈ λEreb,

which in turn, when λ = eiδ, is equivalent to, for all r such that Ereu 6= 0,

θrτ ≈ δ + qrπ, (6)

where qr ∈ Z is even if and only if Ereu = Erev, and odd if and only if Ereu = −Erev.

A solution to equation (6) is equivalent to a solution as described in Theorem 4 with

y = τ and ζr = δ + σrπ,

where σr = 0 if Erea = Ereb, and σr = 1 if Erea = −Ereb.

Now, a set of integers `0, ..., `d satisfies

`0ζ0 + ...+ `dζd ≡ 0 (mod 2π)

if and only if there is a δ such that

`0(δ + σ0π) + ...+ `d(δ + σdπ) ≡ 0 (mod 2π)
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which in turn is equivalent to

δ

(
d∑
r=0

`r

)
+ π

(
d∑
r=0

σr`r

)
≡ 0 (mod 2π). (7)

A choice of δ that solves equation (7) for all sets of integers `0, ..., `d satisfying
∑
`rθr = 0

is possible if and only if, whenever
∑d

r=0 σr`r is odd, δ
∑d

r=0 `r is an odd multiple of π, and

whenever
∑d

r=0 σr`r is even, δ
∑d

r=0 `r is an even multiple of π. This proves that if (i) holds,

then (ii) is equivalent to pretty good state transfer.

This next corollary is notably useful to study the Laplacian matrix.

Corollary 5. Assume that 0 is an eigenvalue of M in the support of strongly cospectral

columns a and b. Say the other eigenvalues in their support are θ1, ..., θd, and have σ1, ..., σd

defined as before. Then pretty good state transfer occurs between a and b if and only if

whenever there are integers `1, ...., `d such that

d∑
r=1

`rθr = 0,

then
d∑
r=1

σr`r is even.

Moreover, in this case, the complex phase with which pretty good state transfer occurs will

be equal to 1.

Proof. Make θ0 = 0. Then given `0, ..., `d,

d∑
r=0

`rθr = 0 ⇐⇒
d∑
r=1

`rθr = 0.

Hence the choice of `0 is arbitrary, and thus can always be made such that

d∑
r=0

`r = 0.

Thus, in order for pretty good state transfer to occur,
∑d

r=1 σr`r can never be odd, and if

it is even in all cases, condition (ii) of Theorem 2 is vacuously satisfied. Moreover, in this

case, as the choice `0 is arbitrary and hence can also be made in a way that
∑d

r=0 `r is odd,

δ must be an even multiple of π, therefore λ = eiδ = 1.
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A. The spectrum of Heisenberg chains

We refer the reader to Brouwer and Haemers20 for the result below. Let Pn denote the

path on n vertices. Recall that L(X) denotes the Laplacian matrix of the graph X.

• The eigenvalues of L(Pn) are 0 with the all 1s eigenvector, and 2 + 2 cos(πr/n), r =

1, ..., n− 1. If βk = sin(kπr/n), its corresponding eigenvector is

(β1, (−1)1(β1 + β2), (β2 + β3), ..., (−1)n(βn−2 + βn−1), (−1)n+1βn−1).

IV. MAIN RESULT

We are ready to prove Theorem 1.

Theorem 1 (restated) Pretty good state transfer occurs on L(Pn) between the extremal

vertices if and only if n is prime congruent to 1 modulo 4 or a power of 2. Moreover, in

these cases, pretty good state transfer occurs between vertices at the jth and (n + 1 − j)th

position for all j = 1, ..., n.

Proof. Suppose the spectral decomposition of L(Pn) is given by

L(Pn) =
n−1∑
r=0

λrEr.

Let R be the anti-diagonal matrix of order n. It is a straightforward consequence of the

spectrum of Pn described in Section III A that

n−1∑
r=0

(−1)rEr = R.

This readily implies that vertices at positions j and (n + 1 − j) are strongly cospectral for

j = 1, ..., n, and hence condition (i) of Theorem 2 is always satisfied, with σr = (−1)r.

Let ζ2n = eπ/n. Clearly the eigenvalues of Pn can be expressed as

λr = 2− (ζ r
2n + ζ r

2n) = 2− (ζ r
2n + ζ 2n−r

2n ).

As a consequence, the eigenvalues belong to the cyclotomic field of ζ2n. Now assume there

are integers `1, ..., `n−1 such that

n−1∑
r=1

`r
(
−2 + (ζ r

2n + ζ 2n−r
2n )

)
= 0. (8)
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If `0 = −
∑n−1

r=1 `r, then the cyclotomic polynomial Φ2n(x) divides

L(x) = 2`0 +
n−1∑
r=1

`rx
r +

2n−1∑
r=n+1

`2n−rx
r. (9)

• If n is a power of 2, then Φ2n(x) = 1 + xn. Performing long division starting from the

terms of smaller degree, the general form of an exact quotient of the division of L(x)

by Φ2n(x) is

2`0 +
n−1∑
r=1

`rx
r,

thus the division is exact (and equation (8) is satisfied) if and only if `0 = 0 and

`s = `n−s for all s = 1, ..., n. As a consequence, whenever (8) holds,
∑
`odd is always

even, and pretty good state transfer occurs.

• If n is an odd prime, then Φ2n(x) = 1− x+ x2 − ...+ xn−1. Performing long division

starting from the terms of smaller degree, the general form of an exact quotient of the

division of L(x) by Φ2n(x) is

2`0 + (2`0 + `1)x+
n−1∑
r=2

(`r + `r−1)x
r + `1x

n.

This implies that a set of integers `1, ..., `n−1 satisfy equation (8) if and only if, for all

odd s between 1 and n− 1,

`s − `n−s = −2`0 = 2
n−1∑
r=1

`r. (10)

If n ≡ 3 (mod 4), then `odd = n and `even = −(n− 2) provides a solution such that∑
`odd is odd,

hence pretty good state transfer does not occur in this case.

If n ≡ 1 (mod 4), the analysis is more delicate. Let A =
∑
`odd and B =

∑
`even.

From equation (10) it follows that

A−B = (n− 1)(A+B).

Suppose A is odd. Because (n−1) ≡ 0 (mod 4), it follows that A ≡ B (mod 8). Hence

2(A + B) ≡ 4 (mod 8). With s odd, equation (10) and the fact that A is odd imply
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that there is an odd number of pairs (`s, `n−s) such that either `s ≡ `n−s ≡ 1 (mod 4)

or `s ≡ `n−s ≡ 3 (mod 4), but not both. Say the former (the latter is analogous).

Suppose there are M pairs with `s ≡ 1 (mod 8) and `n−s ≡ 5 (mod 8), and N pairs

with `s ≡ 5 (mod 8) and `n−s ≡ 1 (mod 8). As M + N is odd, suppose without loss

of generality that M > N , and thus M −N is odd. Hence there is an even number P

such that

A ≡ (M −N) + P (mod 8) and B ≡ 5(M −N) + P (mod 8).

A contradiction to the fact that A− B ≡ 0 (mod 8). Therefore A must be even, and

pretty good state transfer occurs in this case.

• Now suppose n = mj, with m odd, m > 1 and j > 1. Let p be an odd prime dividing

m, thus 2n = pk, with k a positive even number. It follows that x2n − 1 = Φp(x)R(x)

where

R(x) =
k−1∑
t=0

−xtp + xtp+1.

Let `r be defined as 0, 1 or −1 in such way that

R(x) =
n−1∑
r=0

`rx
r.

Note that 1, ζ2n and ζ 2n−1
2n are all roots of R(x). Thus

R(ζ2n) +R(ζ 2n−1
2n ) = 0 and

n−1∑
r=1

`r = 1.

Hence

0 = R(ζ2n) +R(ζ 2n−1
2n ) =

n−1∑
r=1

`r
(
−2 + ζ r

2n + ζ 2n−r
2n

)
where, for t = 1, ..., k − 1,

`r = 1 if r = tp+ 1, `r = −1 if r = tp, `r = 0 otherwise.

Note that t is odd if and only if tp is odd, and t is even if and only if tp + 1 is odd.

Thus the sum of the `r with odd r is equal to −1. Therefore pretty good state transfer

does not occur in this case.
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We point out that we are not necessarily determining all cases in which a qubit chain

might admit pretty good state transfer, as we are focusing only on transfer between the

end vertices. In fact, it seems that the problem of characterizing pretty good state transfer

between inner vertices was not solved for the XY-Hamiltonian either. We leave this as an

open question.
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