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Abstract
Background: BarraCUDA is an open source C program which uses the BWA algorithm
in parallel with nVidia CUDA to align short next generation DNA sequences against a
reference genome. Recently its source code was optimised using “Genetic
Improvement”.

Results: The genetically improved (GI) code is up to three times faster on short paired
end reads from The 1000 Genomes Project and 60% more accurate on a short
BioPlanet.com GCAT alignment benchmark. GPGPU BarraCUDA running on a single
K80 Tesla GPU can align short paired end nextGen sequences up to ten times faster
than bwa on a 12 core server.

Conclusions: The speed up was such that the GI version was adopted and has been
regularly downloaded from SourceForge for more than 12 months.

Keywords: GPGPU, Parallel computing, Genetic improvement, Double-ended DNA
sequence, Nextgen NGS

Background
Why run bioinformatics on gamingmachines

Bioinformaticians have seized the advantages of using computer graphics hardware
(GPUs) [1], particularly those made by nVidia. Amongst other software tools, nVidia’s
CUDA gives the ability to run C/C++ programs on nVidia GPUs. CUDA versions of sev-
eral popular Bioinformatics applications have been written. In particular BarraCUDA [2],
which aligns short noisy DNA sequences against one of the increasing number of refer-
ence genomes. It can align human DNA sequences when run on nVidia consumer GPU
cards with more than 4GB of memory, e.g. the GeForce GT 730. In fact it has been run
on cards costing less than $100 up to $325 million super computers.
Recently [3] we presented an approach in which a small part of the manually written

code had been optimised by a variant of genetic programming [4, 5] to give a huge speed
up on that part. (The raw graphics kernel can process well over a million DNA sequences
a second ([3], Fig. 1)). The next section describes BarraCUDA and other programs
(“Alternative tools” section) for aligning large numbers of next generation DNA
sequences, whilst “Scalability” section considers factors affecting their performance and
“Genetic improvement (GI)” section contains a very quick introduction to the genetic
improvement of software (GI) technique used to create the current version of Bar-
raCUDA. “Programs, DNA sequences and parallel operation under multi-core Unix”
section gives details of the programs and DNA benchmarks. This is followed (“Results”
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section) by the overall performance changes genetic improvement [6–12] gives and
comparison with bwa. (See particularly Table 3.)

Introduction
NextGen DNA sequence alignment

Both version of BarraCUDA and bwa use the Burrows-Wheeler algorithm. This requires
the reference genome to be converted offline into an index file. The whole of the
index must be kept in memory. Fortunately modern GPUs have high capacity and high
bandwidth to their on-board memory (see last column in Table 1).
Typically the Burrows-Wheeler algorithm scales linearly with the length of the DNA

sequences to be looked up. This makes it more suitable for shorter sequences than
for longer ones. Ideally sequences should not exceed 100 bp, however we have recently
demonstrated BarraCUDA on paired end epigenetic data of 150 bp [13]. (Above 150 bp,
BarraCUDA issues a warning and ignores the remainder of the string.)
Taking The 1000 Genomes Project as an example, ([14], Fig. 4) shows some sequence

lengths are much more common than others. In Section Results we report tests on paired
end data comprised of 36 bases per end and of 100 bases per end. Both are common in
The 1000 Genomes Project (in fact the most popular is 101 bases).

Alternative tools

Highnam et al. [15] report the accuracy of four popular CPU based alignment tools. Three
are open source Bowtie2 [16] bwa and BWA-MEM [17] whilst Novoalign3 is commer-
cial). They says the tools’ accuracy lies between 91% (Bowtie2) and 98% (BWA-MEM).
BarraCUDA is towards the top of this range, see “GCAT” data in the last column in
Table 3. Lenis and Senar [18] tuned performance for four open source CPU aligners
(Bowtie2, BWA-MEM, GEM [19] and SNAP [20]) on a 64 core AMD Opteron Proces-
sor 6376, 128 gigabyte computer. They report ([18], Table 4) BWA-MEM and GEM 3.0
give similar speed but GEM 3.0 is the fastest of the four at 383 000 sequences per second.
(Notice this is for single ended 100bp next generation DNA sequences, NGS, see list of
abbreviations).
Luo et al. [21] compare SOAP3-dp [22] and their own MICA on what was at the

time the world’s fastest computer. The Tianhe-2 contains 48 000 Intel Xeon Phi 31S1P
many integrated core (MIC) co-processor boards. They report that SOAP3 [23] run-
ning on GTX 680 [24] is the fastest of the 13 open source aligners they benchmarked.
(nVidia’s GTX 680 GPU has 1536 1.06 GHz cores and they claim a memory bandwidth
of 192.26 GB/s. Luo et al. give performance for MICA, SOAP3-dp, SOAP, Bowtie2 (3 set-
tings), bwa, SeqAlto [25] (2 settings) CUSHAW2 [26] and GEM (3 Settings)). Luo et al.’s

Table 1 Parallel computer graphics hardware

GPU Compute level MP Total cores Clock Memory

GT 730 2014 £54 2.1 2× 48 = 96 1.40 GHz 4 GB 23 GB/s

Tesla K20 2012 £2905 3.5 13× 192 = 2496 0.71 GHz 5 GB 140 GB/s

Tesla K80a 2014 £6261 3.7 13× 192 = 2496 0.82 GHz 11 GB 138 GB/s

Fourth column is CUDA compute capability level. Each GPU chip contains 2 or 13 identical independent multiprocessors (MP,
column 5). Each MP contains 48 or 192 stream processors (total column 7). Onboard memory size and bandwidth are given in the
right most two columns. Technical report [36] has full details
aK80 is a dual GPU, Original total list price is followed by performance data for one half
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Table 3 [21] suggests that SOAP3 on a GTX 680 processes 45 500 paired end simulated
NGSDNA sequences per second. However the accuracy (sensitivity) of 97.77% is the low-
est of the 13 tools in ([21], Table 3) whereas SOAP3-dp (99.66%) is the highest. Apart
from their own MICA, the other ten tools are all benchmarked on Intel i7-3730k, 6-core
3.2 GHz CPUs. For example (depending upon parameter settings), ([21], Table 3) suggests
GEM processes from 14 400 to 20 100 sequence/sec.
nvBowtie https://nvlabs.github.io/nvbio/nvbowtie_page.html was written by nVidia on

top of their nvbio CUDA templates to emulate Bowtie2 on their GPUs. They claim similar
accuracy and on real 100 bp paired end NGS data they claim a single dual K80 Tesla gives
a 2.1 speed up compared to Bowtie2 using 20 threads on an Intel Xeon E5-2690 v2 CPU.
The above tools are based on compressing the reference genome into a prefix index

using the Burrows-Wheeler transform (which gives bwa its name). This has the advan-
tage that typically, e.g. for human data, the whole index can be fitted into a GPU’s
memory or indeed into many laptops and personal computers. However it means at
best finding each NGS short read (of n bp) takes O(n) time. (Typically, where the NGS
data are noisy or the DNA truly differs from the reference genome, e.g. due to SNPs or
indels, these tools back up and perform some type of heuristic guided truncated tree
search of the index. This can greatly increase run time.) Arioc [27] takes a different
approach.
Arioc [27] uses hash techniques. In principle hashing allows constant time (O(1)) access

but in practise search is complicated by the need to deal with inexact matches and the
size of the hash table. Wilton et al. [27] say for the human reference genome Arioc needs
about 65 GB of RAM on the host computer. Sixty five gigabyte is far more than current
generation GPUs and so Arioc takes care to optimise loading it in parts into GPUs. They
compare Arioc performance against four Burrows-Wheeler based tools, two CPU based
(Bowtie2 and BWA-MEM) and two GPU based (SOAP-dp and nVidia’s NVBIO from
http://nvlabs.github.io/nvbio/) Wilton et al. [27] run the three GPU based aligners on an
nVidia K20 Tesla. They use a 6 dual 2.93 GHz cores (24 threads of execution) workstation
with 144 GB of system memory for Bowtie2 and BWA-MEM. They say “Arioc demon-
strated up to 10 times higher throughput across a wide range of sensitivity settings.” ([27],
Fig. 8) suggests Arioc can process well in excess of 200 000 100 bp paired end simulated
NGS DNA sequences against the YanHuang genome per second, although speed falls
by more than a factor of ten to increase accuracy from ≈93.4% to ≈95.6%. Surprisingly
([27], Fig. 8) suggests BWA-MEM accuracy is at best 93.2% which is well down on other
benchmarks, e.g. those reported by Highnam et al. [15].

Scalability

Typically next generation sequencing (NGS) alignment tools (such as bwa, both versions
of BarraCUDA and those mentioned in the previous section) have a start up overhead.
Once started, data are often processed at a constant rate. (I.e. run time is linear in number
of NGS DNA sequences.) However speed may be dramatically affected by user selected
options and the quality of the data. For example, some tools allow the user to force all
potential matches to be reported. Naturally this can considerably reduce the aligner’s
speed. Similarly poor data can force the aligner to do more internal back tracking, which
can similarly reduce the alignment rate (particularly if the user changes parameters to
compensate for the noisy data).

https://nvlabs.github.io/nvbio/nvbowtie_page.html
http://nvlabs.github.io/nvbio/
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In many cases the aligners have strict memory requirements. Typically the computing
hardware must have sufficient RAM to hold one or more large indexes. The size of the
index typically depends upon the reference genome. Once this requirement is met, there
is often little additional advantage if the size of RAM is increased. With CPU based align-
ers, Lenis and Senar [18] showed performances gains can sometimes be had by placing
the data near the CPU using it, even if the data have to be duplicated. Usually GPU based
tools use techniques such as non-paged/locked memory on the host to maximise data
rates across the PCI bus. (PCI buses are often used to connect GPUs and host computers.)
However PCI is typically an order of magnitude slower than CPU–RAM speeds. There-
fore, except for Arioc1 (previous section), GPU based aligners usually copy large data
structures onto the GPU only once when they start. For BarraCUDA and similar aligners
this means for human data the GPU must have at least 4GB of on board RAM.
GPU based aligners (such as BarraCUDA) typically get their speed by using a GPU

thread per sequence. This works well where DNA strings map directly and uniquely to
the reference genome. However, e.g. when data are noisy, there may be a need for the
search to backtrack. Since when backtracking is invoked is different for each query, this
means each GPU thread behaves differently, which means in turn that they diverge. Mod-
ern GPUs support thread divergence transparently, however divergent threads impact the
GPU’s speed. In the case of the GI version of BarraCUDA we deal with this by inserting a
non-divergent high speed pre-pass. This handles most cases. DNA strings which do not
map simply, fall back to the slower divergent code. Thus, as with other tools, mentioned
above, in practise speed will depend upon how noisy the DNA strings are. Although
thread divergence is particularly a problems with GPU based aligners, the problem of
noisy data needing more complex handling affects all NGS aligners and their speed can
always be adversely affected by poor quality DNA sequence data.

Genetic improvement (GI)

Genetic improvement is the process of applying search based optimisation techniques,
such as genetic programming [5], directly to software [12]. Specifically, we applied grow
and graft genetic programming [28] to BarraCUDA’s GPU source code. (Full details are
given in [3].)
Darwinian evolution is applied inside the computer (see evolutionary cycle in Fig. 1).

A grammar describing the CUDA source code and CUDA parameters, and all legal muta-
tions of source code is automatically generated from the manually produced program,
and a population of 1000 individuals each defining a set of CUDA parameters and code
mutations is created. Each is applied via the grammar to give a new CUDA kernel, which
is compiled. The grammar ensures the mutant code is syntactically correct and has a
high chance of compiling. Each new kernel is run on ≈160 000 NGS DNA strings and its
answers and how long it took are compared with the original code. Kernels which pro-
duce equivalent answers and are faster than the original are eligible to be parents of the
next generation of mutant kernels. The fastest half of the population are given two chil-
dren each, one is created by crossover with another fit parent and one by mutation. We
cycle through 50 generations. The best of the last generation is tested on millions of DNA
sequences not used by the GP.
In [3] we evolved new versions of BarraCUDA’s GPU code specifically for two dif-

ferent GPUs (K20 and K40), however it is easier to support a single version. Therefore
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Fig. 1 Major components of Genetic Improvement (GI)

the two evolved versions were manually reconciled into one, which was released in
March 2015. This version has subsequently been maintained in the conventional man-
ual way. Nonetheless this does not preclude re-applying genetic improvement in future.
E.g. to re-tune BarraCUDA to new hardware or new types of data, such as longer DNA
sequences.
Designers of Bioinformatics and other software are frequently faced with heuristic

design choices. Sometimes these can be parametrised so that the choice can be delegated
to the users. This can lead to a huge number of frequently opaque command line options.
In which case the software designer has to provide sensible defaults. In many cases the
designer makes their best guess based on anticipated use and expectations of the com-
puter hardware that will be available. Although best placed to make these choices at the
time, pressure of other tasks can make it impractical for them to re-visit these choices
should circumstances change. Where parameters were exposed, search can be used to
optimise them [29, 30] and if not, new GI techniques, such as deep parameter optimisa-
tion [31], might be used to automatically revisit design choices, e.g. in the light of a new
use case. In [32] we demonstrated re-tuning legacy code for six different nVidia GPUs
covering several generations of their architecture. As well as the comprehensive survey in
[11, 12] describes several recent demonstrations in which GI was applied to Bioinformat-
ics tools and other software.

Method
Programs, DNA sequences and parallel operation under multi-core Unix

bwa 0.7.12

bwa [17] (0.7.12-r1039 (https://github.com/lh3/bwa/archive/0.7.12.tar.gz)) was down
loaded from GitHub and compiled with default settings (i.e. including support for
multi-threading).

BarraCUDA 0.6.2

For comparison, the previous version of BarraCUDA, i.e. 0.6.2, was compiled with default
settings (i.e. again including support for multi-threading).

https://github.com/lh3/bwa/archive/0.7.12.tar.gz
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BarraCUDA 0.7.107

BarraCUDA (0.7.107), was down loaded from SourceForge (http://sourceforge.net/
projects/seqbarracuda/files/latest/download). Again it was built with default setting
(including support for multi-threading). However a second version was built specifically
for the GT 730 which was compiled with -arch 2.1 to support compute level 2.1 (the
default is now 3.5 or higher).

Reference Genome: UCSC HG19 ucsc.hg19.fasta.gz

The reference human genome [33] was downloaded from the Broad Institute’s GATK
resource bundle (version 2.8/hg19). It was converted into two indexes. BarraCUDA
0.6.2 converted ucsc.hg19.fasta.gz into an index for itself. Secondly BarraCUDA 0.7.0
converted it into an index for itself and for bwa.

36 base pairs: 1000 Genomes project

One of The 1000 Genomes Project [34]’s normal (i.e. not color space encoded) paired
end data with 36 DNA bases per end was chosen at random (ERR0012702). It contains
14 102 867 sequences. Approximately 5.7% of sequences occur more than once.

100 base pairs: GCAT Benchmark

We used BioPlanet.com’s GCAT [15] 100 bp-pe-small-indel alignment benchmark
(gcat_set_037, available via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/www.
bioplanet.com/gcat/gcat_set_037). It contains 5 972 625 paired end (100 base) sequences.
(Less than 0.1% of sequences were repeated.) (We have compared other nextgen tools on
GCAT for this journal [35].)

Example 1 Example bash command line using process substitution, pipes and input-
output redirection to run two “aln” processes (one per paired end) in parallel with “sampe”,
thus avoiding use of intermediate disk files.

$exe1 sampe -t 24 $hg19 \

<($exe1 aln -C 0 $hg19 $seq1) \

<($exe1 aln -C 1 $hg19 $seq2) $seq1 $seq2 \

> $sam

$exe1, $hg19, $seq1, $seq2 and $sam are the names of bash environment vari-
ables. $exe1 is the program, (i.e. bwa, BarraCUDA 0.6.2 or BarraCUDA 0.7.107), $hg19
is the location of the reference genome index, $seq1 and $seq2 are the files holding the
pairs of DNA sequences and $sam is the output. See also Fig. 2.

Results
bwa, the original BarraCUDA (i.e. version 0.6.2) and the GI version of BarraCUDA
(i.e. 0.7.107) were each run five times on both the fourteen million real world
paired end DNA sequences from The 1000 Genomes Project (“36 base pairs: 1000
Genomes project” section) and the almost six million GCAT paired end DNA sequences
(Section ‘‘100 base pairs: GCAT Benchmark”). bwa was run on 12 core 2.60 GHz servers
(see Table 2) whilst BarraCUDA was run on three GPUs, stretching from £50 low end
GT 730 to the top of the range K80 Tesla (see Table 1). The results are summarised in
Table 3.

http://sourceforge.net/projects/seqbarracuda/files/latest/download
http://sourceforge.net/projects/seqbarracuda/files/latest/download
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/www.bioplanet.com/gcat/gcat_set_037
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/www.bioplanet.com/gcat/gcat_set_037
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Fig. 2 Processing paired end DNA sequences. “aln” is run two times (once per end), potentially in parallel,
and its alignments are piped or passed via intermediate .sai files (dashed blue arrows) into “sampe” (sam (pe)
paired end). “sampe” may be run in parallel. It also reads the index of the reference human genome and both
ends of each DNA sequence in order to give the combined alignment in sam format. In the case of
BarraCUDA, the two “aln” process each use a GPU and “sampe” uses multiple host threads. For bwa “aln” uses
multiple host threads but “sampe” is single threaded

Apart from the low end GT 730, BarraCUDA is typically between two and ten times
faster than bwa on a 12 core compute server. Table 3 shows the new version of Bar-
raCUDA is up to three times faster than BarraCUDA 0.6.2 on the real world DNA
sequences (36 bp) and typically about 10% faster on the longer benchmark strings
(100 bp).
bwa “aln” (via pthreads) uses multiple threads. However bwa “sampe” does not support

multiple host threads. This may explain why bwa performs relatively badly on the short
36 bp 1000 Genomes Project data.
We have used large real world and benchmark sequences. However both bwa and Bar-

raCUDA are sensitive not only to the length of the DNA sequences but also how noisy
they are. Resolving ambiguous matches caused by noise slows them down.

Conclusions
Depending upon examples, even a £50 GPU running BarraCUDA can be faster than bwa

on a twelve core 2.60 GHz server. With a top end nVidia Tesla GPU, BarraCUDA can be
more than ten times faster than bwa on a 12 core server.

Table 2 Computers. The desktop computer houses one GT 730. The servers are part of the Darwin
Supercomputer of the University of Cambridge and hold multiple Tesla K20 or K80 GPUs

Type Intel x86 Effective cores Clock Memory

Desktop CoreTM2 CPU 6700 2 2.66 GHz 4 GB

Darwin Xeon CPU E5-2630 v2 12 2.60 GHz 62 GB

NVK80 Xeon CPU E5-2670 v3 24 2.30 GHz 125 GB



Langdon and Lam BioDataMining  (2017) 10:28 Page 8 of 11

Ta
b
le

3
M
ea
n
nu

m
be

ro
fp

ai
re
d
en

d
se
qu

en
ce
s
pr
oc
es
se
d
pe

rs
ec
on

d

Pr
og

le
ng

th
12

co
re

se
rv
er

a
G
T
73
0b

2
×

K2
0

K8
0

A
cc
ur
ac
y
%

b
w
a

36
bp

19
00

±
50

–
–

–
M
ap

pe
d
re
ad
s

82
.0
5

b
w
a

10
0
bp

45
00

±
20

–
–

–
G
C
A
T

98
.9
1

0.
6.
2

36
bp

–
32
70

±
2
(1
.7

±
0.
05
)

53
00

±
11
0
(2
.8

±
0.
10
)

65
00

±
18
0
(3
.4

±
0.
13
)

M
ap

pe
d
re
ad
s

83
.1
7

0.
6.
2

10
0
bp

–
18
60

±
4
(0
.4

±
0.
00
2)

87
00

±
14
0
(1
.9

±
0.
03
)

11
70
0

±
10
0
(2
.6

±
0.
02
)

G
C
A
T

97
.4
9

0.
7.
10
7

36
bp

–
76
00

±
6
(4
.0

±
0.
11
)

12
90
0

±
16
0
(6
.8

±
0.
20
)

19
90
0

±
50
0
(1
0.
5

±
0.
39
)

M
ap

pe
d
re
ad
s

83
.0
1

0.
7.
10
7

10
0
bp

–
21
00

±
14

(0
.5

±
0.
00
4)

88
00

±
70

(2
.0

±
0.
02
)

12
80
0

±
27
0
(2
.8

±
0.
06
)

G
C
A
T

98
.4
3

Im
pr
ov
em

en
tr
at
io
Ba
rr
ac
ud

a
0.
7.
10
7
ov
er
0.
6.
2

36
bp

–
2.
32

±
0.
00
3

2.
43

±
0.
06

3.
07

±
0.
11

M
ap

pe
d
re
ad
s

–0
.1
6

10
0
bp

–
1.
13

±
0.
01

1.
00

±
0.
02

1.
09

±
0.
02

G
C
A
T

1.
60

In
(b
ra
ck
et
s)
sp
ee
d
re
la
tiv
e
to

b
w
a
0.
7.
12
.±

gi
ve
s
st
an
da
rd

de
vi
at
io
n
es
tim

at
ed

fro
m

fiv
e
ru
ns
.T
he

re
w
as

al
m
os
tn

o
va
ria
tio

n
in
m
ap

pi
ng

ra
te

or
ac
cu
ra
cy

re
po

rt
ed

by
G
C
A
T

a 2
.6
0G

H
z,
se
e
“D
ar
w
in
”i
n
Ta
bl
e
2

b
Es
tim

at
ed

fo
rt
w
o
G
T
73
0
G
PU

s



Langdon and Lam BioDataMining  (2017) 10:28 Page 9 of 11

Endnotes
1Arioc’s index considerably exceeds current GPU memories and care must be taken to

try and limit the volume of re-loaded data.
2 ERR001270 is available from The 1000 Genome Project’s FTP site. Additionally a

copy can be down loaded from http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/
barracuda_0.7.105/1000.
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aln: Alignment process used by both bwa and BarraCUDA; bp: Base pair; BWA: Burrows-Wheeler algorithm; BarraCUDA: A
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